Average main channel at approach section $W_1 = \frac{1}{100} = \frac{1}{$		SCOUR ANALYSIS AND REPORTING FORM
Bridge discharge (Q ₂) = \$\frac{1}{2} \left[\left(\text{Scour} \text{ for Estimating Hydraulic Variables Needed to Apply Method} \right] Bridge Width = \frac{1}{2} \left(\text{ find the procedure for Estimating Hydraulic Variables Needed to Apply Method} \right] Bridge Width (W ₂) iteration = \frac{1}{2} \right) \right] \righ		dge Structure No. 52311263 Date 9//7//O Initials (MW Region (ABCD)
Bridge discharge (Q ₂) = \$\frac{1}{2} \left[\left(\text{Scour} \text{ for Estimating Hydraulic Variables Needed to Apply Method} \right] Bridge Width = \frac{1}{2} \left(\text{ find the procedure for Estimating Hydraulic Variables Needed to Apply Method} \right] Bridge Width (W ₂) iteration = \frac{1}{2} \right) \right] \righ		Location Approx 1.411 NW from intersection Nemo Rd + Norris Peak
Bridge discharge (Q ₂) = \$\frac{1}{2} \left[\left(\text{Scour} \text{ for Estimating Hydraulic Variables Needed to Apply Method} \right] Bridge Width = \frac{1}{2} \left(\text{ find the procedure for Estimating Hydraulic Variables Needed to Apply Method} \right] Bridge Width (W ₂) iteration = \frac{1}{2} \right) \right] \righ		0 = 3160 by: drainage area ratio \(\sqrt{flood freq. anal.} \) regional regression eq. \(\sqrt{R} \)
Average main channel at approach section $W_1 = \frac{1}{100} = \frac{1}{$		dge discharge $(Q_2) = 3/60$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
Width of main channel at approach section $W_1 = 100$ ft Width of left overbank flow at approach, $W_{lob} = 0$ ft Average left overbank flow depth, $y_{lob} = 0$ ft Average right overbank flow depth, $y_{lob} = 0$ ft Average right overbank flow depth, $y_{lob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average approach velocity, $y_{rob} = 0$ ft Average approach velocity, $y_{rob} = 0$ ft/s If $y_{rob} = 0$ ft/s If $y_{rob} = 0$ ft/s If $y_{rob} = 0$ ft ft/s Otherwise, $y_{rob} = 0$ ft ft/s Average approach velocity, $y_{rob} = 0$ ft/s If $y_{rob} = 0$ ft/s Otherwise, $y_{rob} = 0$ ft ft/s Average approach velocity, $y_{rob} = 0$ ft/s If $y_{rob} = 0$ ft/s Otherwise, $y_{rob} = 0$ ft ft/s Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft Average right overbank flow depth, $y_{$	PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method dge Width = 100 ft. Flow angle at bridge = 0 Abut. Skew = 10 Effective Skew = 10 Effective Skew = 10 Abut. Skew = 10 Effective Skew = 10 Abut. Skew = 10 Effective Skew = 10 Abut. Skew
Width of main channel at approach section $W_1 = 1000$ ft Width of left overbank flow at approach, $W_{lob} = 1000$ ft Width of left overbank flow at approach, $W_{lob} = 1000$ ft Average left overbank flow depth, $y_{lob} = 1000$ ft Average right overbank flow depth, $y_{lob} = 1000$ ft Average right overbank flow depth, $y_{lob} = 1000$ ft Average right overbank flow depth, $y_{lob} = 1000$ ft Average right overbank flow depth, $y_{lob} = 1000$ ft Average right overbank flow depth, $y_{lob} = 1000$ ft Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = 10000$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 10000$ ft/s Critical approach velocity, $V_0 = 11.52y_1^{1/6}D_{50}^{1/3} = 10000$ ft/s If $V_1 < V_0$ and $V_0 > 0.0$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{0.00} = 0.0006(q_2/y_1^{7/6})^3 = 100000$ ft Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = 100000$ From Figure 10, $V_0 = 10000$ ft PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $V_0 = 100000$ ft Applitments scould calculate the piece of the pie		
Width of left overbank flow at approach, $W_{lob} = 0$ ft Average left overbank flow depth, $y_{lob} = 0$ Width of right overbank flow at approach, $W_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ Elive Bed Contraction Scour (use if bed material is small cobbles or finer) $x = $ From Figure 9 W_2 (effective) =		CONTRACTION SCOUR
Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = $ From Figure 9 W_2 (effective) =		dth of main channel at approach section $W_1 = 100$ ft
Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = $ From Figure 9 W_2 (effective) =	ract	dth of left overbank flow at approach, $W_{lob} = C$ ft Average left overbank flow depth, $y_{lob} = C$ ft
From Figure 9 W_2 (effective) =	M: Conti	dth of right overbank flow at approach, $W_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft
$x = \text{From Figure 9} \qquad W_2 \text{ (effective)} = \text{ft} \qquad y_{cs} = \text{ft}$ $\frac{\text{Clear Water Contraction Scour}}{\text{Estimated bed material D}_{50} =$	PGR	e Bed Contraction Scour (use if bed material is small cobbles or finer)
Critical approach velocity, $V_c = 11.52y_1^{1/6}D_{50}^{1/3} = 1.52y_1^{1/6}D_{50}^{1/3} = 1.52y_1^{1/6}D_{50}^{$		
A DUTMENT SCOUD CALCULATIONS	tM: CWCS	tical approach velocity, $V_c = 11.52y_1^{1/6}D_{50}^{1/3} = 4.75$ ft/s $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through	PGRM: Pier	ratio = $\frac{1}{5}$ Correction factor for flow angle of attack (from Table 1), K2 = $\frac{1}{5}$
Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft Shape coefficient $K_1 = 0.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through	_	ABUTMENT SCOUR CALCULATIONS
Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} =$ and $\psi_{RT} =$ and $\psi_{RT} =$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) =$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) =$ ft	PGRM: Abutment	erage flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft righ

Route Nema Rd Stream Boxelder C	reek	MRM	Da	te 9//7/	10 Init	tials CMh				
Bridge Structure No. 52311263 Location Approx. 12NW from intersection Nemo Rd + Norris Peak										
GPS coordinates: N 44 08 09.9" W103° 25' 46.1"	taken from:	USL abutmen	nt X	centerline	of î MRM e	end Rd				
Drainage area = 96.37 sq. mi.	Datum of co	ordinates. W	0364_/	NAD2/						
The average bottom of the main channel was 15	() ft belov	v ton of guard	rail at a noin	, 22	ft from le	ft abutment				
The average bottom of the main channel was 15.0 ft below top of guardrail at a point 2 ft from left abutment. Method used to determine flood flows: Freq. Anal. drainage area ratio regional regression equations.										
MISCELLANEOUS CONSIDERATIONS										
Flows	$Q_{100} = 3160$			$Q_{500} = 17400$						
Estimated flow passing through bridge	3160			12453						
Estimated road overflow & overtopping				4947						
Consideration	Yes	No	Possibly	Yes	No	Possibly				
Chance of overtopping		X		X	1					
Chance of Pressure flow		X			X					
Armored appearance to channel		1			X	-				
Lateral instability of channel					X					
Riprap at abutments? YesNoMarginal										
Evidence of past Scour? Yes No Don't know										
Debris Potential?HighMedLow										
Does scour countermeasure(s) appear to have been designed?										
Riprap X Yes No Don't know NA Gabian Waske 15										
Spur Dike Yes No Don't know XNA										
Other YesNo Don't know NA										
			85 ELETTRE (II) .	1,00,00						
Bed Material	Classificatio	n Based on M	edian Particl	e Size (D ₅₀)					
Material Silt/Clay Sand		Gravel		Cobbles		Boulders				
Size range, in mm <0.062 0.062-2.0				64-250 >250						
Comments, Diagrams & orientation of digital photos 1236 - Bridg # 41-R, Abut. This Site was a Level 2 site.										
37 - US 42 - US face of										
38-45 RB bridge 39-45 LB 43-R. Abut.										
39 - 45 LB 42 - R Ab +										
40- Be L. Abut 43- N. Abut,										
Summary of Results										
		Q100			Q500					
Bridge flow evaluated	3160			12453						
Flow depth at left abutment (yaLT), in feet	0.0			0.0						
Flow depth at right abutment (yaRT), in feet	0.0			5.0						
Contraction scour depth (ycs), in feet	0.0			0.0						
Pier scour depth (yps), in feet	4.2			4.3						
Left abutment scour depth (yas), in feet	0.0			0,0						
Right abutment scour depth (yas), in feet	0.0	2		13	5.0					
1Flow angle of attack	100			100						