DE S

	SCOUR ANALYSIS AND REPORTING FORM
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Bridge Structure No. 52313265 Date 9/16/10 Initials CMW Region (ABCD)
	Site Location 0,9 NW from intersection Numo Rd + Norris Peak R
	Q ₁₀₀ = 3180 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 3180$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
	Bridge Width = $1/0$ ft. Flow angle at bridge = 50 ° Abut. Skew = 40 ° Effective Skew = 10 ° Width (W ₂) iteration = 110 ° Effective Skew = 10 ° Skew = 10 ° Effective Skew = 10 ° Skew = 10 ° Effective Skew = 10 ° Skew = 1
	Width (W_2) iteration = 110 $\frac{1}{2}$ $\frac{1}$
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{65}{6}$ ft* $q_2 = Q_2/W_2 = \frac{48.9}{9}$ ft²/s
	Bridge Vel, $V_2 = \frac{Q_1}{ft/s}$ Final $y_2 = q_2/V_2 = \frac{G_1}{ft}$ ft $\Delta h = \frac{1}{3}$ ft
	Average main channel depth at approach section, $v_1 = \Delta h + v_2 = \frac{1}{2} \frac{4}{3}$ ft
	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +$
	If y ₂ is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
	1 Marian
	Water Surface Elev. = ft
	Low Steel Elev. = 11/3 ft
	$ n \text{ (Channel)} = \frac{O \cdot 037}{O \cdot 060} $ $ 126 $
	n(ROR) = 0.0745
	Pier Width = 1.9 ft
	Pier Length = 1. ft
	# Piers for $100 \text{ yr} = 2 \text{ ft}$
	CONTRACTION SCOUR
PGRM: Contract	Width of main channel at approach section $W_1 = 100$ ft
	Width of left overbank flow at approach, $W_{lob} = 6$ ft Average left overbank flow depth, $y_{lob} = 6$ ft
	Width of right overbank flow at approach, $W_{rob} = $ ft Average right overbank flow depth, $y_{rob} = $ ft
	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x =$ ft $y_{cs} =$ ft
	3-6
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles) 2=0
	Estimated bed material $D_{50} = 0.25$ Gft 30 Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 3.7/$ ft/s Critical approach velocity, $V_0 = 11.52y_1^{1/6}D_{50}^{1/3} = 0.44$ ft/s
5	Critical approach velocity, $Vc = 11.52y_1 \cdot D_{50} = 11.52y_1 \cdot $
PGRM	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = \frac{0.0636}{13.76.67} \text{ ft}$ If $D_{50} > D_{c50}$, $\chi = 0.0$
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = ft$
h	DIED CCOUD CALCUL ATIONS
4: Pi	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 = 1.0
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 = \frac{1.0}{1.0}$ Froude # at bridge = $\frac{0.58}{1.0}$ Using pier width a on Figure 11, $\xi = \frac{7.7}{1.0}$ Pier scour $y_{ps} = \frac{7.7}{1.0}$ ft
М	Troube in trings
nt	ABUTMENT SCOUR CALCULATIONS
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft
: Ab	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through
JRM	Shape coefficient K_1 = 1.00 for vertical-wall, Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = ψ_{LT} and ψ_{RT} = $\psi_{LT}(K_1/0.55)$
PC	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \underline{\hspace{1cm}}$ It Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = \underline{\hspace{1cm}}$ It

Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) =$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) =$ ft

Route Nemo Rd Stream Boxeldes	Carol	MDM	Des	9/16/	(Z) Init	in CMh				
Route Wemo Ra Stream BOXEIDET	Creek	IVIKIVI	Da	ie -//0/	init	tials	- 1			
Bridge Structure No. 52313265 Loc	cation 0.9	NW +rom	intersec	tion /V	emo Kd	+ Noms reak	Kd			
GPS coordinates: <u>N 94 67 59. 4 "</u>	taken from:	USL abutmen	t_X_	centerline o	f ii MRM e	end				
GPS coordinates: N 44° 07' 59. 4" V 10 3° 25' 31.4"	Datum of co	ordinates: Wo	GS84_X	NAD27_						
Drainage area = 97.44 sq. mi.				V 71 11						
The average bottom of the main channel was 16.0 ft below top of guardrail at a point 43 ft from left abutment.										
Method used to determine flood flows: Freq. Anal. \(\sqrt{arainage} \) area ratio \(\text{regional regression equations.} \)										
MISCELLANEOUS CONSIDERATIONS										
Flows	Q ₁₀₀ = 3180			$Q_{500} = 17600$						
Estimated flow passing through bridge	3/80			16512						
Estimated road overflow & overtopping	7700			1088						
Consideration	Yes	No	Possibly		No	Possibly				
Chance of overtopping		X	-	X						
Chance of Pressure flow		×				3				
Armored appearance to channel		X			X					
Lateral instability of channel		X			X					
		1	0 1							
Riprap at abutments? YesNoMarginal Gabians										
Evidence of past Scour? Yes No Don't know										
Debris Potential? Yes No Don't know Low										
Debris Potential?	ivied	Low								
Does scour countermeasure(s) appear to have been	designed?				0 1					
Riprap Yes No Don't know NA Gabians										
Spur Dike Yes No Don't know NA										
Other YesNoDon't knowX_NA										
Red Material Classification Resed on Median Particle Size (D.)										
Bed Material Classification Based on Median Particle Size (D ₅₀)										
Material Silt/Clay Sand		Gravel		Cobbles		Boulders				
Size range, in mm <0.062 0.062-2.	00	2.00-64		64-250		>250				
Comments Discusses & arientation of digital photo				,						
Comments, Diagrams & orientation of digital photos There May be 1255 TR. Abut Sour than it say										
There May be 125	5 -16,	1 but	sour	Man	11 >	ay				
late briage 10			- (b)	1						
17-115 17 02/11										
13-RB 45 (F 45)										
12-45 13-RB 45 14-PIBUS US Face of 15-R, Abut bridge										
16-8. Abut bridge										
16- L. Abut										
16- L. Abut would not have much effect										
Summary of Results		0100			0500					
	Q100			Q500						
Bridge flow evaluated	3180			16512						
Flow depth at left abutment (yaLT), in feet	0.0			1.75						
Flow depth at right abutment (yaRT), in feet	0.0			1112						
Contraction scour depth (ycs), in feet	0.0			0.0						
Pier scour depth (yps), in feet	7.1			1.3						
Left abutment scour depth (yas), in feet	0.0			9.9						
Right abutment scour depth (yas), in feet	0.0	8		- 1	100					
1Flow angle of attack	10				10					