

	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 52314371 Date 10/22/10 Initials Region (ABCD)
	Site Location First bridge downstream from Mountain Park Road
	Q ₅₀₀ = 22 4 00 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 15195$ (should be Q_{500} unless there is a relief bridge, road overflow, or bridge overtopping)
PGKM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 95 ft. Flow angle at bridge = 50 ° Abut. Skew = 40 ° Effective Skew = 10 ° Width (W ₂) iteration = 10 ° Avg. flow depth at bridge, y ₂ iteration = 10 °
	Bridge Vel, $V_2 = 13.9$ ft/s Final $y_2 = q_2/V_2 = 11.7$ ft $\Delta h = 4.0$ ft
onC	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 15, 7$ ft
Segi Regi	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$ If y_2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
- F	1) y 1 is above LS, then account for Rolla Overflow using PROM: RDOVREGA, RDOVREGB, RDOVREGG, OF RDOVREGD,
	Water Surface Elev. = $\frac{1}{1}$ ft Low Steel Elev. = $\frac{1}{1}$ ft n (Channel) = $\frac{1}{0.045}$ ft n (LOB) = $\frac{1}{0.050}$ ft Pier Width = $\frac{1}{0.050}$ ft # Piers for 500 yr = $\frac{1}{0.050}$ ft
	CONTRACTION SCOUR
GKM; Contract	Width of main channel at approach section $W_1 = 100$ ft
	Width of left overbank flow at approach, $W_{lob} = \frac{30}{30}$ ft Average left overbank flow depth, $y_{lob} = \frac{4.85}{100}$ ft
	Width of left overbank flow at approach, $W_{lob} = \frac{30}{2000}$ ft Average left overbank flow depth, $y_{lob} = \frac{400}{2000}$ ft Average right overbank flow depth, $y_{rob} = \frac{400}{2000}$ ft
Z	Tretage right overbank now at approach, wrob
25	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x =$ ft $y_{cs} =$ ft
3	Clear Water Contraction Scour (use if bed material is larger than small cobbles) Z=0
GKM: CWCSNE	Clear Water Contraction Scour (use if bed material is larger than small cobbles) $Z = 0$ Estimated bed material $D_{50} = 0$ ft Average approach velocity, $V_1 = Q_{500}/(y_1W_1) = 0$ Critical approach velocity, $V_2 = 11.52v_1^{1/6}D_{10}^{1/3} = 0.3$ On the second of the seco
3	emediapproach velocity, ve 11.32y 1 550
ξ	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
5	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 0.166$ ft If $D_{50} >= D_{c50}$, $y_1 = 0.0$
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$
202	
CKM: Pie	L/a ratio = PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), K2 = 1.
ΣŽ	L/a ratio = $\frac{1}{100}$ Correction factor for flow angle of attack (from Table 1), K2 = $\frac{1}{100}$
2	Froude # at bridge = 0.72 Using pier width a on Figure 11, $\xi = 8$ Pier scour $y_{ps} = 7.6$ ft
	A DUTMENT SCOUD CALCULATIONS
nent	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 4.85$ ft right abutment, $y_{aRT} = 5$ ft
\Dat	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through
JKM: Abutment	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 14.8$ and $\psi_{RT} = 10.2$ Left abutment scour, $y_{aLT} = y_{aLT}(K_1/0.55) = 10.2$ ft
5	Left abutment scour $v = v(x/K_1/0.55) = 14.9 \text{ ft}$ Right abutment scour $v = v(x/0.55) = 10.2 \text{ ft}$

4.5

Sheridan LLC								
Route Road Stream Soring Cr	eek	MRM	Dat	e 10/22	//O Ini	tials Cu		
Bridge Structure No. 523(437) Lo	cation Firs	+ bridge d	launstra	in from	Mour	ta's Park Road		
GPS coordinates: N430 54'55, 7"	taken from:	USL abutmen	t	centerline o	of î MRM	end		
Bridge Structure No. 52314371 Location First bridge downstream from Mountain Park Read GPS coordinates: N43058'55.7" taken from: USL abutment centerline of îl MRM end Datum of coordinates: WGS84 NAD27								
Drainage area = 150.84 sq. mi.								
The average bottom of the main channel was 15.8 ft below top of guardrail at a point 3/ ft from left abutment.								
Method used to determine flood flows:Freq. Anal. \(\sqrt{\text{drainage area ratio}} \)regional regression equations.								
MISCELLANEOUS CONSIDERATIONS								
Flows	$Q_{100} = 30/0$			$Q_{500} = 22400$				
Estimated flow passing through bridge	3010			15195				
Estimated road overflow & overtopping	3010			7205				
Consideration	Yes	No	Possibly	Yes	No	Possibly		
Chance of overtopping		X		X				
Chance of Pressure flow		X				X		
Armored appearance to channel		X			X			
Lateral instability of channel		X			X			
Riprap at abutments? YesNoMarginal								
Evidence of past Scour? Yes No Don't know								
Debris Potential?HighMedLow								
Does scour countermeasure(s) appear to have been decigned?								
Does scour countermeasure(s) appear to have been designed?								
Riprap Yes No Don't know NA								
Spur DikeYesNoDon't knowNA								
Other YesNo Don't know NA								
Bed Material Classification Based on Median Particle Size (D ₅₀)								
Material Silt/Clay Sand		Gravel		Cobbles		Boulders		
Size range, in mm <0.062 0.062-2.		2.00-64		64-250		>250		
0.002 2.	.00	2.00 01		01 230		250		
Comments, Diagrams & orientation of digital photos								
Q s il d	.00	1400-	App. X3 1	R. Dank				
Prescribed burn in area 1400 - App. X3 R. Bank								
96 - L. Hout, 01 - App X 2. Jank								
1392-10 97-R.Abut 02-45 Face Dam								
93-115 99- Burn								
100								
1 1 Du Ch								
95 - US LB								
Summary of Results								
	Q100			Q500				
Bridge flow evaluated	3010			15195				
Flow depth at left abutment (yaLT), in feet	0.45			4.85				
Flow depth at right abutment (yaRT), in feet	0.0			4.85 2.5				
Contraction scour depth (ycs), in feet	C	0.0		0	.0			
Pier scour depth (yps), in feet	7.	3		7.	6			
Left abutment scour depth (yas), in feet		2. [14.	8			
Right abutment scour depth (yas), in feet	6.0			10.2				

1Flow angle of attack