	Bridge Structure No. 52326320 Date $10/14/10$ Initials 100 Region (ABCD) Site Location near intersection Hisega Rd and Hisega Dr $1000 = 1000$ by: drainage area ratio flood freq. anal regional regression eq Bridge discharge (1000) Bridge discharge (1000) gridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = $3 \frac{4}{5}$ ft. Flow angle at bridge = 10 ° Abut. Skew = 15 ° Effective Skew = 15 ° Width (W ₂) iteration = 15 ° Effective Skew = 15 ° Width (W ₂) iteration = 15 ° Effective Skew = 15
	Water Surface Elev. = ft Low Steel Elev. = ft n (Channel) = 0.070 n (ROB) = 0.070 Pier Width = ft Pier Length = ft # Piers for $100 \text{ yr} = $ ft
	CONTRACTION SCOUR
PGRM	Width of main channel at approach section $W_1 = \underbrace{50}_{\text{ft}} ft$ Width of left overbank flow at approach, $W_{\text{lob}} = \underbrace{10}_{\text{ft}} ft$ Average left overbank flow depth, $y_{\text{lob}} = \underbrace{1}_{\text{s}} \underbrace{25}_{\text{ft}} ft$ Width of right overbank flow at approach, $W_{\text{rob}} = \underbrace{0}_{\text{ft}} ft$ Average right overbank flow depth, $y_{\text{rob}} = \underbrace{0}_{\text{ft}} ft$ Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = \underbrace{20}_{\text{ft}} ft$ $y_{\text{cs}} = \underbrace{20}_{\text{ft}} ft$ We (effective) = $\underbrace{35}_{\text{ft}} ft$ $y_{\text{cs}} = \underbrace{20}_{\text{ft}} ft$
PGRM: CWCSN	Clear Water Contraction Scour (use if bed material is larger than small cobbles) $2 + 45 = 0$ Estimated bed material $D_{50} = 0$, $2 = 0$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 0$ ft/s Critical approach velocity, $V_2 = 11.52y_1^{1/6}D_{50}^{1/3} = 0$ ft/s If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 0.000$
~	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 =$ Froude # at bridge = Using pier width a on Figure 11, $\xi =$ Pier scour $y_{ps} =$ ft
RM: Ab	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 1.05$ ft right abutment, $y_{aRT} = 0$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $y_{LT} = 5.3$ and $y_{RT} = 0.55$ for spill-through Left abutment scour, $y_{as} = y_{LT}(K_1/0.55) = 1.05$ ft $y_{aLT} = 0.55$

Route Hisega B., Stream Rapid Cree		MRM	Da	to 1/2/14	(In Init	tials Cw			
Bridge Structure No. 5Z32 6320 Loc	nation 12 do	C lalanda	12- 11/2	D)	10	Mars T	5-		
GPS goordinates: 1/44 653 1 1/4	takan from:	USI abutma	MON MIS	centerline o	FÎ MPM e	HISEGA +	20		
GPS coordinates: \(\frac{\psi_4'\circ_5'}{\psi_103'\psi_4'\circ_6'.3''} \) taken from: USL abutment \(\times \) centerline of \(\hat{\psi} \) MRM end \(\times \) Datum of coordinates: \(\psi_6'' \) Datum of coordinates: \(\psi_6'' \) NAD27									
Drainage area = 340.23 sq. mi.	Datam of Co	ooramates. "	000121						
The average bottom of the main channel was //		w top of guard	rail at a poin	it 12	ft from let	ft abutment.			
Method used to determine flood flows: Freq. Anal. \(\text{drainage area ratio} \) regional regression equations.									
MISCELL ANEQUE CONSIDER ATIONS									
MISCELLANEOUS CONSIDERATIONS									
Flows	$Q_{100} = 865$			$Q_{500} = 1290$			-		
Estimated flow passing through bridge Estimated road overflow & overtopping	865			1290			1		
Consideration	Yes No Possibly			Yes No Possibly			1		
Chance of overtopping	7 05	×	1 0001019	7.05	/	1 000101)	1		
Chance of Pressure flow		· ×			X		1		
Armored appearance to channel		×			X		1		
Lateral instability of channel		X			X]		
Riprap at abutments? Yes No Don't know Debris Potential? Wes No Don't know Debris Potential? Wes No Don't know Dos scour countermeasure(s) appear to have been designed? Riprap Yes No Don't know Spur Dike Yes No Don't know Other Yes No Don't know NA Bed Material Classification Based on Median Particle Size (Ds0) Material Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 >250 Comments, Diagrams & orientation of digital photos Large Boalder in Central of Chay had Lots of Gravel (large) of Small cobbles And Andreys The Bed But Not Sure if Live Bed or Clear of Chay had Do might be more like 0.1 < Deso of Live Bed 1331-10 33- R B is 37- Us Face Bridge Suppress of Peaults Suppress o									
Summary of Results			1				1		
	Q100			Q500					
Bridge flow evaluated	865			1290			-		
Flow depth at left abutment (yaLT), in feet	1.25			1.85			{		
Flow depth at right abutment (yaRT), in feet	0.0			0.0			assume liv		
Contraction scour depth (yes), in feet	0.0 2.5 NA			0.03			bed		
Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet	w 7.2 9.6			an +0. 1 13.9			SCA		
Right abutment scour depth (yas), in feet	7	.0		10.	0		1		
1Flow angle of attack	1:	50		15					