	Bridge Structure No. 52341445 Date 1212 Initials Region (ABCD) Site Location 5 m; 5 of Harney on CR330 or Play house R4 $Q_{100} = 1820$ by: drainage area ratio flood freq. anal regional regression eq. \times Bridge discharge (Q_2) = 1820 (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Water Surface Elev. = $\frac{0}{100}$ ft Low Steel Elev. = $\frac{12.5}{0.0015}$ ft n (Channel) = $\frac{0.0015}{0.0030}$
	n (ROB) = 0.035 Pier Width = 0.035 Pier Length = 0.035 # Piers for 100 yr = 0.035 ft CONTRACTION SCOUR Width of main channel at approach section $W_1 = 0.035$ Width of 100 cm. In 100
	Width of main channel at approach section $W_1 = 45$ ft
ract	Width of left overbank flow at approach, $W_{lob} = $ ft Average left overbank flow depth, $y_{lob} = $ ft
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = 26$ ft Average right overbank flow depth, $y_{rob} = 1.3$ ft
	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 0.39 \text{From Figure 9} W_2 \text{ (effective)} = 44.8 \text{ft} y_{cs} = 0.6 \text{ft}$
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s Critical approach velocity, $V_0 = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s
RM	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
PG	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $ ft If $D_{50} >= D_{c50}$, $\chi = 0.0$
	Otherwise, $\chi = 0.122 y_1 [\dot{q}_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 =ft$
PGRM: Pier	PIER SCOUR CALCULATIONS L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 = Froude # at bridge = Using pier width a on Figure 11, ξ = Pier scour y _{ps} = ft
=	ABUTMENT SCOUR CALCULATIONS
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = $

PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 11$, t_1 ft * NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$ If y_2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD, Water Surface Fley = $\sqrt{\frac{1}{2}}$ ft						
	Low Steel Elev. = 12.4 ft n (Channel) = 0.015 n (LOB) = 0.030 n (ROB) = 0.035 Pier Width = 0.035 Pier Length = 0.035 # Piers for 500 yr = 0.035 ft						
PGRM: Contract	Width of main channel at approach section $W_1 = \frac{45}{45}$ ft Width of left overbank flow at approach, $W_{lob} = \frac{45}{45}$ ft Width of right overbank flow at approach, $W_{rob} = \frac{45}{45}$ ft Average left overbank flow depth, $y_{lob} = \frac{200}{45}$ ft Average right overbank flow depth, $y_{rob} = \frac{600}{45}$ ft Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = \frac{600}{45}$ From Figure 9 W_2 (effective) = $\frac{4400}{45}$ ft $y_{cs} = \frac{700}{45}$ ft						
PGRM: CWCSNEW							
PGRM: Pie	PIER SCOUR CALCULATIONS L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 = $ ft Froude # at bridge = Pier scour $y_{ps} = $ ft						
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left-abutment, $y_{aLT} = 2.66$ ft right abutment, $y_{aRT} = 6.1$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $y_{LT} = 1.00$ and $y_{RT} = 1.00$ left abutment scour, $y_{as} = y_{LT}(K_1/0.55) = 20.3$ ft Right abutment scour $y_{as} = y_{RT}(K_1/0.55) = 20.9$ ft						

b- sentroly to their

BELB'EL 19812801

9674 126 801 89:52 ,29 Sh

Route Playhase Kd Stream IRON CK		MRM	Da	te 9/2/1	2 Init	ials bat						
Bridge Structure No. 52341445 Location 1.5 m; 5 & Harner on CR330 or Playhouse Rd												
CDS coordinates: 1) (20 5) (4) Location 110 m) O of flowing of MADM and												
GPS coordinates: N 43° 51° 255' taken from: USL abutment centerline of îl MRM end Datum of coordinates: WGS84 × NAD27												
Drainage area = 1759 sq. mi.												
The average bottom of the main channel was												
Method used to determine flood flows:Freq. Analdrainage area ratio regional regression equations.												
MISCELLANEOUS CONSIDERATIONS 7/3												
Flows	Q ₁₀₀ =	1820		$Q_{500} =$	2 5	5MB						
Estimated flow passing through bridge	1620			Q ₅₀₀ = 4400 4400				175				
Estimated road overflow & overtopping	.0				10	394						
Consideration	Yes	No	Possibly	Yes	No	Possibly	25	708				
Chance of overtopping		X			X		5e	1180				
Chance of Pressure flow		×			×		100	1820				
Armored appearance to channel		X			K			4400				
Lateral instability of channel		X			X	2	3.5	1				
Riprap at abutments? Yes No Marginal												
1 - 1 contract												
Evidence of past Scour? YesNoDon't know Mrc/ Company												
Debris Potential?HighMedLow												
Does scour countermeasure(s) appear to have been designed?												
RiprapY	es X_N	loDor	't know	NA								
Spur DikeY	$es \times N$	lo Dor	't know	NA.								
		NoDor	't know	NA								
		-										
Bed Material	Classificatio	n Based on Me	dian Partic	e Size (D ₅₀))							
Material Silt/Clay X Sand_		Gravel X		Cobbles >		Boulders_						
Size range, in mm <0.062 0.062-2.	2.00-64			64-250 >250								
Size range, in thin <0.002 0.002-2.	00	2.00 01		0.200								
Comments, Diagrams & orientation of digital phot	os	. +										
		Ine 1										
1107 0 3	Lin Cha	12 11 11 11 11										
Zl. mais Charse 1					11 bbles	Full fl	oh 185	100				
21. main chance 1 31. noin chance 1 31. noin chance 1 4.5). but material > Note: clow then region of bridge is gravel cobbles. Full flow region 4.5). but material > Note: clow then region of bridge is gravel cobbles. Full flow region 6-11, right abutuars												
This will be soul then region to lead water scoul.												
4.5). bud meteria Proces is silt. Consider												
6-11,11 statutuers												
Summary of Results		Q100			Q500		7					
Deider Gewenshieted	1920				1							
Bridge flow evaluated	9			440 <i>0</i> 2.5			1					
Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet	1,3			6,1			1					
Contraction scour depth (ycs), in feet	X 0,6				1							
Pier scour depth (yps), in feet					1							
Left abutment scour depth (yas), in feet	X				1							
Right abutment scour depth (yas), in feet	9:9			20.3								
1Flow angle of attack												
II ion diffic of dimon												