SCOUR ANALYSIS AND REPORTING FORM										
	Bridge Structure No. 52395367 Date 11/4/10 Initials Cw Region (ABCD)									
	Site Location Soring Creek on Neck Yoke Drive									
	Site Location Spring Creek on Neck Yoke Drive Q ₁₀₀ = 3320 by: drainage area ratio I flood freq. anal. regional regression eq.									
	Bridge discharge $(Q_2) = \frac{1}{3320}$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)									
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method									
	Bridge Width = $\frac{40}{10}$ ft. Flow angle at bridge = $\frac{25}{10}$ Abut. Skew = $\frac{30}{10}$ ° Effective Skew = $\frac{5}{10}$ °									
ionB	Width (W_2) iteration = 7340 68 30									
PGRM: "RegionA", "RegionB" "RegionC", or "RegionD"	Avg. flow depth at bridge, y_2 iteration = 5.5 6.1 5.5									
A", '	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{71.7}{1}$ ft* $q_2 = Q_2/W_2 = \frac{41.7}{1}$ ft ² /s									
gion or "F	Bridge Vel, $V_2 = 7.5$ ft/s Final $y_2 = q_2/V_2 = 5.5$ ft $\Delta h = 1.2$ ft									
"Re	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 6.7$ ft									
RM:	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$									
PG R	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,									
	Water Surface Elev. = ft									
	Water Surface Elev. = ft Low Steel Elev. = 7.6 ft									
	n (Channel) = 0.045									
	n (LOB) = 0.646									
	n (ROB) =									
	Pier Width = 0.7 ft Pier Length = 33 ft									
	# Piers for $100 \text{ yr} = 2 \text{ ft}$									
	rae ing									
Se	See Photo CONTRACTION SCOUR									
	Width of main channel at approach section $W_1 = 80$ ft									
ract	Width of left overbank flow at approach, $W_{lob} = $ ft Average left overbank flow depth, $y_{lob} = $ ft									
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = $ ft Average right overbank flow depth, $y_{rob} = $ ft									
.W	Average right overbank now at approach, Wrob									
PGI	Live Bed Contraction Scour (use if bed material is small cobbles or finer)									
	$x = $ ft $y_{cs} = $ ft									
IEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles) 2=0									
CSN	Estimated bed material $D_{50} = 0.50$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 6.19$ ft/s									
C	Critical approach velocity, $Vc = 11.52y_1^{1/6}D_{50}^{1/3} = 12.17$ ft/s									
PGRM: CWCSNEW	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.									
PG	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = $ From Figure 10, $y_{cs} = $ ft									
PGRM: Pier	36.6 PIER SCOUR CALCULATIONS									
IRM I	Froude # at bridge = 0.56 PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1.5$ Using pier width a on Figure 11, $\xi = 4.4$ Pier scour $y_{ps} = 6.0$ ft									
PG	Froude # at bridge = 0.50 Using pier width a on Figure 11, $\xi = 4.5$ Pier scour $y_{ps} = 6.0$ It									
	ABUTMENT SCOUR CALCULATIONS									
PGRM: Abutment	Average flow depth blocked by: left abutment, $v_{a,r} = 0$, $v_{$									
Abut	Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 60.55 for spill-through									
M.	Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{0.82}{2}$ for vertical-wall with wingwalls, and $\psi_{RT} = \frac{0.53}{2}$ for spill-through									
PGF	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 0$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0$ ft									

SCOUR ANALYSIS AND REPORTING FORM

Neck Yoke									
Route Drive Stream Spring Creek MRM Date 11/4/10 Initials Ch									
Bridge Structure No. 52395367 Location Spring Creek on Neck Yoke Drive									
GPS coordinates: N 43°59′16.0″ taken from: USL abutment \times centerline of \cap MRM end									
W/03°/6′ 12.2″ Datum of coordinates: WGS84 NAD27									
Drainage area = 174.47 sq. mi. 12.2									
The average bottom of the main channel was H. I ft below top of guardrail at a point 23 26 ft from left abutment.									
Method used to determine flood flows: Freq. Anal. drainage area ratio regional regression equations.									
MISCELLANEOUS CONSIDERATIONS									
Flows	$Q_{100} = 3320$			$Q_{500} = 24700$					
Estimated flow passing through bridge	3320			5892					
Estimated road overflow & overtopping				18808					
Consideration Chance of overtopping	Yes	No	Possibly	Yes	No	Possibly			
Chance of Overtopping Chance of Pressure flow		X		X		X			
Armored appearance to channel		×			X	2 /			
Lateral instability of channel		~			×				
Riprap at abutments? YesNoMarginal									
Evidence of past Scour? Yes No Don't know									
Debris Potential? X High Med Low									
Does scour countermeasure(s) appear to have been designed? Riprap YesNoDon't knowNA Agreers to be cobblex fromNA									
Riprap Yes No Don't know NA 5tre									
Spur Dike Yes No Don't know NA									
Other YesNoDon't know X NA									
Bed Material Classification Based on Median Particle Size (D ₅₀),									
Material Silt/Clay Sand	Gravel			Cobbles X Boulders					
Size range, in mm <0.062 0.062-2	.00	2.00-64		64-250		>250			
Comments, Diagrams & orientation of digital photos 32-US Face bridge									
Dry 27- US L, A	out				DR				
9hotos 1423-BidgID 29-Pier config 33-App. XS lookin to RB 24-US L. Abut 33-App. XS looking to LB 34-US RB 36-US RB 30-US-R. Abut 35-App XS looking to RB 36-US LB 31-US R. Abut									
1423- Bidg ID 29 Dia - C- CV 21/ 15									
24-45 RB 30-45-R. Abut 35-App X5 looking to RB									
26-45RB 30-45-K.	Abut	35- An	n Y6	look no	L R	R			
26-45 LB 31-1,5 RA	but	101	U NJ	reoning	10 11				
US N. HOW									
Summary of Results									
		Q100			Q500				
Bridge flow evaluated	3320			5892					
Flow depth at left abutment (yaLT), in feet	0.0			6.65-0.50					
Flow depth at right abutment (yaRT), in feet Contraction scour depth (ycs), in feet	0.0			0.50					
Pier scour depth (yps), in feet	6.0			0.0					
Left abutment scour depth (yas), in feet	0,0			2.3					
Right abutment scour depth (yas), in feet	0.0			2,3					
1Flow angle of attack	5°			50					