	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 52399300 Date 4/1/11 Initials Ch Region (ABCD)
	Site Location W. Main St. over Rapit Creek
	Site Location <u>W. Main St. over Rapid Creek</u> Q ₁₀₀ = <u>4720</u> by: drainage area ratio flood freq. anal regional regression eq
	Bridge discharge $(Q_2) = 4720$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 310 ft.30 Flow angle at bridge = 20 ° Abut. Skew = 15 ° Effective Skew = 45 °
, suon	Width (W_2) iteration = 310 242 246
LD"	Avg. flow depth at bridge, y_2 iteration = 3.2 3.4 3.3
egior	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{2811}{100}$ ft* $Q_2 = Q_2/W_2 = \frac{16}{100} \cdot \frac{1}{100}$ ft ² /s
or "RegionD"	Corrected channel width at bridge Section = W_2 times cos of flow angle = 281% ft* $q_2 = Q_2/W_2 = 16.6$ ft²/s Bridge Vel, $V_2 = 4.4$ ft/s Final $y_2 = q_2/V_2 = 3.3$ ft $\Delta h = 0.5$ ft
C", C	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 3$ ft
RegionC",	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$
Z S	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
	Water Surface Elev. = ft \\ \ \ 386'
	Low Steel Elev. = 9.9 ft
	n (Channel) = 0.045
	n(LOB) = 0.035
	n (ROB) = 0.055 Pier Width = 1.0 ft
	Pier Length = 73.0 ft
	# Piers for $100 \text{ yr} = \underline{5}$ ft
	CONTRACTION SCOUR
	Width of main channel at approach section $W_1 = 360$ ft Width of left querbank flow at approach $W_2 = 60$ ft
onua	Width of left overbank flow at approach, $W_{lob} = 0$ ft Average left overbank flow depth, $y_{lob} = 0$ ft
OKM. Contract	Width of right overbank flow at approach, $W_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft
25	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x =$ From Figure 9 W_2 (effective) = ft y_{cs} = ft
× 1	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
NIC	Estimated bed material $D_{50} = 0.3$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 3.27$ ft/s
3	Critical approach velocity, $Vc = 11.52y_1^{-10}D_{50}^{-10} = 11.52y_1^{-10}D_{50}^{-10} = 11.52y_1^{-10}D_{50}^{-10}$
UKWI. CWCSINEW	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
2	$\begin{array}{c} D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = \underline{\ \ \ \ \ \ \ \ \ \ \ } \\ Otherwise, \ \chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = \underline{\ \ \ \ \ \ \ \ \ \ \ } \\ & From \ Figure \ 10, \ y_{cs} = \underline{\ \ \ \ \ \ \ \ \ \ \ } \\ & ft \end{array}$
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 =ft$
Ž.	PIER SCOUR CALCULATIONS Correction for flow and a fattack (from Table 1) V2 = 1.5
GRIMI. PIET	L/a ratio = $\frac{73}{100}$ Correction factor for flow angle of attack (from Table 1), K2 = $\frac{1.5}{100}$ Correction factor for flow angle of attack (from Table 1), K2 = $\frac{1.5}{100}$ Froude # at bridge = $\frac{0.44}{1000}$ Pier scour $y_{ps} = \frac{6.5}{1000}$ ft
4	Froude # at orange = $\frac{0.776}{0.000}$ Using piet within a on Figure 11, $\zeta = \frac{9}{1.000}$ Fiet scoul $y_{ps} = \frac{6.000}{0.000}$ It
Ħ	ABUTMENT SCOUR CALCULATIONS
JONN. Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 6$ ft
. A0	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through
N N	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 0.0$ and $\psi_{RT} = 0.0$ the labutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 0.0$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0.0$ ft
L	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 0.00$ It Kight abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0.00$ It

Route W. Main 5t. Stream Rapid Cree Bridge Structure No. 52399300 Low	ek	MRM	Da	te 4/1/1	/ Initi	ials Ch		
Bridge Structure No. 52399.300 Loc	cation W.	Main St.	over I	Rapid (creek			
GPS coordinates: $4.460454.0''$ taken from: USL abutment \times centerline of \cap MRM end Datum of coordinates: WGS84 NAD27								
Drainage area = $\frac{408.66}{1000}$ sq. mi.								
The average bottom of the main channel was 15.4 ft below top of guardrail at a point 180 ft from left abutment.								
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.								
MISCELLANEOUS CONSIDERATIONS								
Flows	$Q_{100} =$	4720	EKATIO	Q ₅₀₀ =	17700			
Estimated flow passing through bridge	4720			2500 7700				
Estimated flow passing through bridge Estimated road overflow & overtopping		1120		17700				
Consideration	Yes	No	Possibly	Yes	No	Possibly		
Chance of overtopping	103	X	1 0551019	1 65	X	Possibly		
Chance of Pressure flow		~			$\overline{}$			
Armored appearance to channel		\$			~			
Lateral instability of channel		7			\			
Lateral histability of chamics				1	/\			
Pinner et abutmente?								
Riprap at abutments?YesX_NoMarginal								
Evidence of past Scour?YesX_NoDon't know								
Debris Potential?HighMedLow								
Does scour countermeasure(s) appear to have been designed?								
Riprap Yes No Don't know NA								
Spur Dike Yes No X Don't know NA								
Other Yes No Don't know X NA								
IESNODON I KNOWNA								
Red Material	Classificatio	n Dagad on Ma	dian Dartia	la Siza (D.)				
Bed Material Classification Based on Median Particle Size (D ₅₀)								
Material Silt/Clay Sand				Cobbles Boulders				
Size range, in mm < 0.062 0.062-2.	.00	2.00-64		64-250		>250		
Comments, Diagrams & orientation of digital phot	os							
Thotos_				33-	Approx	ch XS bokin		
1523 - Brdge 1D	29-1. A	but						
211 114	20 116	Face bridge			1eft			
24- US	30- W	race of large						
25 - USRB	100	ting right						
26-4518								
				1				
28- US Face bridge looking left	32-Appro	rach X5 look	ing righ	<i>T</i>				
Summary of Results	V.V.		, ,					
		Q100			Q500			
Bridge flow evaluated	4720			17700				
Flow depth at left abutment (yaLT), in feet	C	0.0			0.0			
Flow depth at right abutment (yaRT), in feet	0.0			0.0				
Contraction scour depth (ycs), in feet	0.0			0.0				
Pier scour depth (yps), in feet	6.5			6.8				
Left abutment scour depth (yas), in feet	0.0			0,0				
Right abutment scour depth (yas), in feet 0.0								
1Flow angle of attack	5°			5°				