	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. 52608298 Date 9-20-12 Initials RF T Region (ABCD)						
	Site Location O.3 mi S of New Underwood on 161 Ave						
	Q ₁₀₀ = 152 by: drainage area ratio flood freq. anal. regional regression eq						
	Bridge discharge $(Q_2) = 152$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method						
۳.	Bridge Width = 50 ft. Flow angle at bridge = 0 ° Abut. Skew = 0 ° Effective Skew = 0 °						
jonE	Width (W_2) iteration = 32 47 43						
a Reg	Avg. flow depth at bridge, y_2 iteration = $2.4 2.0 2.1 2.1$						
ıA". Regi	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{43}{100}$ ft* $q_2 = Q_2/W_2 = \frac{3.5}{100}$ ft²/s						
egior	Bridge Vel, $V_2 = 1.7$ ft/s Final $y_2 = q_2/V_2 = 2.1$ ft $\Delta h = 0.1$ ft						
PGRM: "RegionA", "RegionB' 'RegionC", or "RegionD"	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \underline{2 \cdot 2}$ ft						
SE SE	• NOTE: repeat above calculations until y 2 changes by less than 0.2 Effective pier width L sin(q) + a cos(q)						
22 %	If y, is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD, this bridge is "large" for its drainage area. It may act						
	Water Surface Flev = ft as a relief by the control of the control						
	Low Steel Elev. = 5.8 ft pasture w/gassed (Channel) = .035 channel 1 1 1 1 1 1 1 1 1						
	n (Channel) = 1035 Pasture W/gassed						
	n (LOB) = 1030 pasture						
	$n (ROB) = \frac{\sqrt{30}}{\sqrt{\Lambda}} $ ft						
	Pier Length = $\frac{NA}{N}$ ft						
	# Piers for $100 \text{ yr} = 0$ ft						
	CONTRACTION SCOUR						
#	Width of main channel at approach section $W_1 = \frac{50}{100}$ ft						
intrac	Width of left overbank flow at approach, $W_{lob} = 0$ ft Average left overbank flow depth, $y_{lob} = 0$ ft						
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = O_{th}$ ft Average right overbank flow depth, $y_{rob} = O_{th}$ ft						
GRA	Live Bed Contraction Scour (use if bed material is small cobbles or finer)						
<u>a.</u>	$x = $ From Figure 9 W_2 (effective) = ft ft						
	The state of the s						
₹	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
GRM: CWCSNEW	Estimated bed material $D_{50} = 0.3$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 1.38$ ft/s						
SWC	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = 8.53$ ft/s						
Ξ̈́	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.						
Ž	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 0.002 \text{ ft} $ If $D_{50} >= D_{c50}, \chi \neq 0.0$						
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$						
Pic	PIER SCOUR CALCULATIONS						
^o GRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2						
Š	Froude # at bridge = Using pier width a on Figure 11.5 Pier scour y _{ps} =ft						
	ADUTMENT SCOUD CALCULATIONS						
ment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{al.T} = $ ft right abutment, $y_{aRT} = $ ft						
Abuti	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through						
Average flow depth blocked by: left abutment, $y_{aLT} = $							
PGR	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = $ Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = $ ft						

	SCOUR ANALYSIS AND REPORT	ΓING FORM	
	Bridge Structure No. 52608298 Date	Initials	Region (ABC D)
	SiteLocation		
	$Q_{500} = \underline{271}$ by: drainage area ratio flo		regional regression eq.
,	Bridge discharge $(Q_2) = 271$ (should be Q_{500} unless then		
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Bridge Width = 50 ft. Flow angle at bridge = 0 Width (W ₂) iteration = 50 4.7 Avg. flow depth at bridge, y ₂ iteration = $2 \cdot 6$ 2.7 Corrected channel width at bridge Section = W ₂ times cos of flow Bridge Vel, V ₂ = $2 \cdot 1$ ft/s Final y ₂ = q_2/V_2 = $2 \cdot 1$ Average main channel depth at approach section, y ₁ = $40 \cdot 1$ h + y ₂ = $0 \cdot 1$ NOTE: repeat above calculations until y ₂ changes by less than 0.2 If y ₂ is above LS, then account for Road Overflow using PRGM: RDOVREGA. Water Surface Elev. = $6 \cdot 1$ ft Low Steel Elev. = $6 \cdot 1$ ft n (Channel) = $6 \cdot 1$ ft n (ROB) = $6 \cdot 1$ ft Pier Width = $6 \cdot 1$ ft Pier Length = $6 \cdot 1$ ft # Piers for 500 yr = $6 \cdot 1$ ft	Abut. Skew = w angle = $\frac{47}{7}$ The $\frac{\Delta h}{2.8}$ Effective pier wide	Effective Skew = \bigcirc ° $\mathbf{ft}^* \qquad \mathbf{q}_2 = \mathbf{Q}_2/\mathbf{W}_2 = \underline{5}_{\bullet} \underline{8} \mathbf{ft}^2/\mathbf{s}$ $= \underline{\mathbf{O}}_{\bullet} 1 \mathbf{ft}$ $\mathbf{fth} = L \sin(q) + a \cos(q)$
FGRM: Contract	Width of main channel at approach section $W_1 = 50$ ft Width of left overbank flow at approach, $W_{lob} = 10$ ft Width of right overbank flow at approach, $W_{rob} = 40$ ft Live Bed Contraction Scour (use if bed material is small cobblet $x = 60$ From Figure 9 W_2 (effective) = 0	Average left of Average right s or finer)	overbank flow depth, $y_{lob} = \frac{\mathcal{O}_{l}}{\mathcal{O}_{l}}$ ft overbank flow depth, $y_{rob} = \frac{\mathcal{O}_{l}}{\mathcal{O}_{l}}$ ft =ft
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than Estimated bed material $D_{50} = 2.3$ ft Average Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = 8.88$ If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, other $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 2.003$ ft Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = 2.003$	approach velocity, $^{\text{N}}$ ft/s rwise use live bed so lf $D_{50} >= D_{c50}$	cour equation above.
PGRM: Pie	L/a ratio = PIER SCOUR CALCU Correction factor for f Froude # at bridge = Using pier width a on	low angle of attack	(from Table 1), K2 =ft
GRM: Abutment	ABUTMENT SCOUR CA Average flow depth blocked by: left abutment, $y_{aLT} = 0.1$ Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 0.5$ Left abutment scour, $y_{aLT} = y_{aLT} = 0.5$	ft right abutme rtical-wall with wing and ψ _{RT} =	gwalls, 0.55 for spill-through

Route 161 Ave Stream_		MRM	Da	te	lnit	tials					
Bridge Structure No. 521.08298 Loc	ationのる。		Vadeause	d on 1	61 Au						
Bridge Structure No. 521,08298 Location 0.3 mi S New Underwood on 161 Ave GPS coordinates: N 44° 05,086' taken from: USL abutment centerline of ft MRM end											
W 102" 50,036'											
Drainage area = 0.2 Sq. mi.											
The average bottom of the main channel was 103 ft below top of guardrail at a point 14 ft from left abutment.											
Method used to determine flood flows: Freq. Anal drainage area ratio regional regression equations.											
	CELLANE		DERATIO		271						
Flows		<u> 152 </u>		$Q_{500} =$							
Estimated flow passing through bridge	152										
Estimated road overflow & overtopping	U										
Consideration	Yes	No	Possibly	Yes	No	Possibly					
Chance of overtopping		<u> </u>									
Chance of Pressure flow		<u> </u>	ļ <u>.</u>								
Armored appearance to channel				ļ							
Lateral instability of channel	Į.			<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
Riprap at abutments?	_No ِ	Marginal	riprap 1	on abutr	nents a	nd channel under nd down-stram					
Evidence of past Scour? Yes	No	_Don't knov	v bridge	, and ir	vp-a	nd down-stram					
Debris Potential? High	Med 🖌	 Low	ditche	ک							
		2 2				. \ 4.46					
Does scour countermeasure(s) appear to have been	designed?	a few	trees up	stream,	but no	pies					
	sNo	n Do	n't know	NA							
	sNo										
OtherYe	sN	D0	n't know	NA							
Dad Manadal	O1!&4'	D1 14	- 4: D:-	l. 0! (D.)	•						
Bed Material	Classification	Based on Me	edian Partic	le Size (D _{50.})						
Material Silt/Clay Sand Sand	'	Gravel		Cobbles	Cobbles Boulders 64-250 >250 rap, assume cw						
Size range, in mm < 0.062 0.062-2.0	00 :	2.00-64	^	64-250		>250					
Comments, Diagrams & orientation of digital photo	beca	use o	t Lib	rat,	assum	re cwcs					
str, no.											
a nomadifrom bridge		und	er bri	dge							
approach From bridge LOB From bridge ROB From bridge											
DOR from bridge											
Bridge from near rt abut											
Summary of Results											
January of Results		Q100			Q500						
Bridge flow evaluated	152		271								
Flow depth at left abutment (yaLT), in feet	3		 								
Flow depth at right abutment (yaRT), in feet	0										
Contraction scour depth (ycs), in feet	0										
Pier scour depth (yps), in feet	NA										
Left abutment scour depth (yas), in feet											
Right abutment scour depth (yas), in feet	Ö										
I Flow angle of attack	O°			1. O							