	SCOUR ANALYSIS AND REPORTING FORM							
	Bridge Structure No. 5269 2290 Date 8/11/11 Initials Cy Region (ABCD) Site Location 2.2 mi F of Exit 84 on HW 1416							
	Q ₁₀₀ = 427 by: drainage area ratio flood freq. anal. regional regression eq.							
	Bridge discharge $(Q_2) = 42$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)							
PGRM: "RegionA", "RegionB", "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 30 ft. Flow angle at bridge = 30 ° Abut. Skew = 0 ° Effective Skew = 30 ° Avg. flow depth at bridge, y_2 iteration = 3 3 4 4 4 4 4 4 4 4 4 4							
	CONTRACTION SCOUR							
PGRM: Contract	Width of main channel at approach section $W_1 = 50$ ft							
	Width of left overbank flow at approach, $W_{lob} = \frac{1}{3}$ ft 33 Average left overbank flow depth, $y_{lob} = \frac{1}{3}$ ft							
	Width of right overbank flow at approach, $W_{rob} = 15$ ft Average right overbank flow depth, $y_{rob} = 1$ ft							
	Live Bed Contraction Scour (use if bed material is small cobbles or finer)							
	$x =$ ft $y_{cs} =$ ft							
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = 0.5$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 1.26$ ft/s Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = 12.17$ ft/s If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 0.019$ ft If $D_{50} >= D_{c50}$, $\chi = 0.0$ Otherwise, $\chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = 0.0$ From Figure 10, $y_{cs} = 0.00.0$ ft							
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 100$ Using pier width a on Figure 11, $\xi = 300$ Pier scour $y_{ps} = 700$ ft							
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 1.00$ ft right abutment, $y_{aRT} = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 1.00$ ft Right abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 1.00$ ft							

Route HWY 1916 Stream		MRM	Da	te 8/11/	/// Init	ials CC	
Bridge Structure No. 52692290 Los	cation 2.2	m: F 0					_
GPS coordinates: $\frac{V44^{\circ}05^{\circ}46.5^{\circ}1}{W102^{\circ}34^{\circ}53.3^{\circ}1}$	taken from:	USL abutmen	t X	centerline o	of î MRM e		
		ordinates: We	GS84 <u>×</u>	NAD27_			
Drainage area = 3.97 sq. mi.				11			
The average bottom of the main channel was	6 ft below	v top of guardr	ail at a poin	t 7	_ft from lef	t abutment.	
Method used to determine flood flows:Freq.							
MI	SCELLANE	OUS CONSII	DERATION	NS .			PK calcd
Flows	$Q_{100} = 827$			$Q_{500} = 1430$			PPK2 3
Estimated flow passing through bridge	427			1097			
Estimated road overflow & overtopping			333			5 10 2 4	
Consideration	Yes	No	Possibly	Yes	No	Possibly	25 4
Chance of overtopping		X				X	50 6
Chance of Pressure flow		X				X	100 8
Armored appearance to channel		X			X		1500 14
Lateral instability of channel		X			X	¥	
Evidence of past Scour? Debris Potential? Does scour countermeasure(s) appear to have been Riprap Spur Dike Other Bed Material Material Silt/Clay Sand Size range, in mm Source Yes High Yes High Yes High Yes High Yes And Silt/Clay Sand O.062-2.	esNes _	oDon	't know 't know 't know dian Particle	NA NA NA e Size (D ₅₀) Cobbles 64-250		Boulders_ >250	
Comments, Diagrams & orientation of digital photo 1891-1P 04-L, 00-45 06-45 01-45 RB 02-43 LB 03-R, Abut Summary of Results Bridge flow evaluated	22.3	Q100		/	Q500 ()97		
Flow depth at left abutment (yaLT), in feet	Da	6		1	30		1
Flow depth at right abutment (yaLT), in feet		7			251-	7	

7.0

See Comments/Diagram for justification where required

Contraction scour depth (ycs), in feet

1Flow angle of attack

Pier scour depth (yps), in feet
Left abutment scour depth (yas), in feet
Right abutment scour depth (yas), in feet