	Bridge Structure No. 55230404 Date 9312 Initials Region (ABD)
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Site Location O.7 mi Not Corona on 472 Are
	Q ₁₀₀ = 1446 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 1440$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 96 ft. Flow angle at bridge = 3 Abut. Skew = 9 Effective Skew = 5 OWidth (W ₂) iteration = 9
	# Piers for $100 \text{ yr} = 100 \text{ ft}$
	CONTRACTION SCOUR
PGRM: Contract	CONTRACTION SCOUR Width of main channel at approach section $W_1 = 96$ ft
	Width of left overbank flow at approach, $W_{lob} = $ ft Average left overbank flow depth, $y_{lob} = $ f
	Width of right overbank flow at approach, $W_{rob} = $ ft Average right overbank flow depth, $y_{rob} = $ ft
	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer) $x = \frac{O.45}{V} \text{From Figure 9} \qquad W_2 \text{ (effective)} = \frac{CS.S}{S} \text{ft} \qquad y_{cs} = \frac{O.9}{S} \text{ft}$
VEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
WCS	Estimated bed material $D_{50} = \underline{\qquad}$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = \underline{\qquad}$ ft/s
 O	Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$ If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
PGRM: CWCSNEW	$D_{co} = 0.0006(a_2/v_c^{7/6})^3 = 0.0006($
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = \underline{\qquad \qquad} ft$ Otherwise, $\chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad} ft$ From Figure 10, $y_{cs} = \underline{\qquad} ft$
	Otherwise, $\chi = 0.1229 \text{ [} [\mathbf{q}_{2}/(D_{50} \text{ y}_{1})] = y_{1} = \underline{\qquad}$
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = $ Using pier width a on Figure 11, $\xi = $ Pier scour $y_{ps} = $ ft
Ħ	ABUTMENT SCOUR CALCULATIONS
KM: Abı	Average flow depth blocked by: left abutment, $y_{aLT} = $ ft right abutment, $y_{aRT} = $ ft Shape coefficient $K_1 = 100$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = $ and $\psi_{RT} = $ triangle ft Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = $ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = $ ft

Route 472 Ave Stream		MRM	D	ate 8/3/1	Z Ini	tials Pat				
Bridge Structure No. 55230404 Location 017 m; N of Corona on 472 Are										
GPS coordinates: 1 45° 20' 57.0' taken from: USL abutment centerline of 1 MRM end Datum of coordinates: WGS84 NAD27										
Drainage area = 21.82 sq. mi.										
The average bottom of the main channel was 1,9 ft below top of guardrail at a point 52 ft from left abutment.										
Method used to determine flood flows: Freq. Anal. drainage area ratio regional regression equations.										
MISCELLANEOUS CONSIDERATIONS 8/26										
Flows			DEKATIO	10000	229	0	12	1110		
Estimated flow passing through bridge	$Q_{100} =$	1440		$Q_{500} = 2290$ 2290			5	311		
Estimated now passing through bridge Estimated road overflow & overtopping	1770			0			10	508		
Consideration	Yes No Possibly						25	829		
Chance of overtopping	105	110	Tossibly	103	7	Tossibly	50	1120		
Chance of Pressure flow		-			1		100	1440		
Armored appearance to channel		2			V	1		2290		
Lateral instability of channel		- Q		-	2		500	12210		
Edicial instability of chainer			- bolde 1	AL abuta	ent police	[2	_			
Riprap at abutments? Yes No X Marginal										
Come stella / When Lave Contraction										
Evidence of past Scour? Yes No Don't know Some Project Note: Debric Potential?										
Debris Potential?HighMedLow										
Does scour countermeasure(s) appear to have been designed?										
Riprap Yes No Don't know NA										
Spur Dike Yes No Don't know NA										
OtherYesNoNA										
Bed Material Classification Based on Median Particle Size (D ₅₀)										
Material Silt/Clay X Sand	Gravel			Cobbles Boulders						
· — —	.00 2.00-64			64-250 >250						
5120 range, in him 40.002 0.002-2.	00	2.00-04		04-230		- 250				
Comments, Diagrams & orientation of digital photos										
7-5) lott androll										
Diet Cid										
TIOL (ISNI CC)										
2) main channel 11) main channel										
2/1/1944 015										
9), pier										
S), plei Scan										
6) contraction scale										
Summary of Results										
		Q100			Q500		1			
Bridge flow evaluated	1440			2390						
Flow depth at left abutment (yaLT), in feet	0			0.1			1			
Flow depth at right abutment (yaRT), in feet	0			0			1			
Contraction scour depth (ycs), in feet	0.8			Ĭ			1			
Pier scour depth (yps), in feet	5.5			5, 7			1			
Left abutment scour depth (yas), in feet	0			0,9			1			
Right abutment scour depth (yas), in feet										
							1			

1Flow angle of attack