	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 5806 4260 Date 6/9/10 Initials (M. Region (ABCD)
	Site Location from South edge Redfield 2.7 W
	Q ₁₀₀ = 16800 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 16800$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 177 ft. Flow angle at bridge = 20 ° Abut. Skew = 0 ° Effective Skew = 20 ° Width (W ₂) iteration = 177 153 161 159 Avg. flow depth at bridge, y ₂ iteration = 14 2 15, 2 14.9 15.0 Corrected channel width at bridge Section = W ₂ times cos of flow angle = 149.41 ft* Bridge Vel, V ₂ = 15 ft/s Final y ₂ = 15 ft 20 ft Average main channel depth at approach section, y ₁ = 20 h + y ₂ = 20 ft *NOTE: repeat above calculations until y ₂ changes by less than 0.2 Effective pier width = 20 so 20 ft If y ₂ is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD. Water Surface Elev. = 20 ft Low Steel Elev. = 20 ft I (Channel) = 20 6 ft
	Pier Length = 2 , 5 ft # Piers for 100 yr = 2 ft
	CONTRACTION SCOUR
ntract	Width of main channel at approach section $W_1 = 230$ ft Width of left overbank flow at approach, $W_{lob} = 6$ ft Average left overbank flow depth, $y_{lob} = 6$ ft
	Width of left overbank flow at approach, $W_{lob} = $ the Average left overbank flow depth, $y_{lob} = $ th
PGRM: Contract	Width of right overbank flow at approach, $W_{\text{rob}} = \frac{31}{26}$ Average right overbank flow depth, $y_{\text{rob}} = \frac{31}{26}$ ft 2.6
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 9.96$ From Figure 9 W_2 (effective) = 144.4 ft $y_{cs} = 0.9$ ft
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
	Estimated bed material $D_{50} = $ ft/s
CWC	Critical approach velocity, $Vc = 11.52y_1^{1/6}D_{50}^{1/3} =ft/s$
 W.	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
PGI	$\begin{split} &D_{c50} = 0.0006 (q_2/y_1^{7/6})^3 = \underline{\qquad} & \text{ft} & \text{If } D_{50} >= D_{c50}, \chi = 0.0 \\ &\text{Otherwise, } \chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad} & \text{From Figure 10, } y_{cs} = \underline{\qquad} & \text{ft} \end{split}$
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 =ft$
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1$ Using pier width a on Figure 11, $\xi = 9.5$ Pier scour $y_{ps} = 3.1$ ft
Ħ	ABUTMENT SCOUR CALCULATIONS
utme	Average flow depth blocked by: left abutment, $y_{aLT} = 1.7$ ft right abutment, $y_{aRT} = 2.6$ ft
I: Ab	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{7.0}{10.00}$ and $\psi_{RT} = \frac{10.00}{10.00}$
PGRM: Abutment	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{7.0}{1000}$ and $\psi_{RT} = \frac{70.0}{1000}$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \frac{7.0}{1000}$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = \frac{10.0}{1000}$ ft
0	Lett douthlett scott, $y_{as} = \psi_{LT}(K_1/0.55) = \frac{1}{100}$ Kight douthlett scott $y_{as} = \psi_{RT}(K_1/0.55) = \frac{1}{100}$

Route 174 St Stream Turtle	Creek	MRM	Dat	e 6/9/	/6 In	itials Ch			
Bridge Structure No. 580/642/60 Location for S. 41 ed - Red Chald									
GPS coordinates: 44°51′53, 9′′ taken from: USL abutment centerline of î MRM end									
GPS coordinates: 44°51′53, 9′′ taken from: USL abutment centerline of îl MRM end Datum of coordinates: WGS84 NAD27_									
Drainage area = 1403.48 sq. mi.									
The average bottom of the main channel was 26 ft below top of guardrail at a point 47 ft from left abutment.									
Method used to determine flood flows: Freq. Anal. Varianage area ratio regional regression equations.									
Flows	SCELLANEOUS CONSIDERATIO								
294107 CV 202	$Q_{100} = 16800$			$Q_{500} = 33900$					
Estimated flow passing through bridge	16800			33900					
Estimated road overflow & overtopping Consideration	Yes No Possibly			Ver Ne Deschi					
Chance of overtopping	1 68	No	Possibly	Yes	No	Possibly			
Chance of Pressure flow	-	Y	-						
Armored appearance to channel	<u> </u>	X			V	X			
Lateral instability of channel		8			6				
Ediction instability of change					X				
Riprap at abutments? Yes No Marginal									
Evidence of past Scour? Yes No Don't know									
Debris Potential? High Med Low									
IngiiIvied _/_Low									
Does scour countermeasure(s) appear to have been designed?									
Riprap Yes No Don't know NA									
\\\									
Other									
Bed Material Classification Based on Median Particle Size (D ₅₀)									
V									
	Gravel			Cobbles Boulders					
Size range, in mm <0.062 0.062-2	.00	2.00-64		64-250		>250			
Comments, Diagrams & orientation of digital pho	tos		11	as VC	1 B				
11/2 To									
60	asphalt erosion? 67			US Face Bridge					
54-45	aspraint t	105104	60	7	DD.				
5 - 45 (1)			20 -	, on	KD (15			
56- USLB Abit 63-	1. Abut		69 - 6	es In	R.	100			
55-45RB 62-" 68-7 on RB US 56-43LB 57-erosion@ L. Abut 64-R. Abut 69-45 Face Bridge									
59 - L. Abut 65-App RB									
	APP IID								
Summary of Results									
	Q100			Q500					
Bridge flow evaluated	16460			33900					
Flow depth at left abutment (yaLT), in feet	1./			3.0					
Flow depth at right abutment (yaRT), in feet	2,6			7:4					
Contraction scour depth (ycs), in feet	10,9			11.6					
Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet	7.0			8.3					
Right abutment scour depth (yas), in feet	10.6			14.0					
- Bir in and in account depth () do), in rect	101	•			2				