Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 20$. It is above calculations until y_1 changes by less than 0.2 Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Effective pier width = $L \sin(a) + a \cos(a)$ Expression in the pier of $L \cos(a) + a \cos(a)$ Expression in the pie		SCOUR ANALYSIS AND REPORTING FORM						
Bridge discharge (Q ₂) = \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}								
Bridge discharge (Q ₂) = \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}		Site Location 2.2 W Ashton						
Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = $\frac{1}{160}$ ft. Flow angle at bridge = $\frac{1}{100}$ $\frac{1}{100}$ Abut. Skew = $\frac{1}{100}$ $\frac{1}{100}$ Effective Skew = $\frac{1}{100}$ $\frac{1}{100}$ Avg. flow depth at bridge, y, iteration = $\frac{1}{100}$ $$		Q ₁₀₀ = 17 700 by: drainage area ratio flood freq. anal. regional regression eq.						
Bridge Width		Bridge discharge $(Q_2) = 13733$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
Water Surface Elev. =	PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Bridge Width = $\boxed{60}$ ft. Flow angle at bridge = $\boxed{10}$ ° Abut. Skew = $\boxed{0}$ ° Effective Skew = $\boxed{10}$ ° Width (W ₂) iteration = $\boxed{146}$ Avg. flow depth at bridge, y ₂ iteration = $\boxed{20.4}$ $\boxed{17.8}$ ft $\boxed{17.8}$ $\boxed{17.8}$ ft $\boxed{17.8}$ $\boxed{17.8}$ $\boxed{17.8}$ $\boxed{17.8}$ ft $\boxed{17.8}$						
Water Surface Elev. = $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			186					
Width of main channel at approach section $W_1 = 90$ ft Width of left overbank flow at approach, $W_{lob} = 90$ ft Width of left overbank flow at approach, $W_{lob} = 90$ ft Width of right overbank flow at approach, $W_{rob} = 90$ ft Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 10.16$ From Figure 9 W_2 (effective) = 175.8 ft $x = 10.16$ ft Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = 90$ ft Critical approach velocity, $V_1 = Q_{100}/(y_1W_1) = 90$ ft/s If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 90$ ft Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = 90$ From Figure 10, $y_{cs} = 90$ ft PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K_2 = 90$ ft Using pier width a on Figure 11, $\xi = 90$ ft Pier scour $y_{ps} = 90$ ft		Water Surface Elev. = $\begin{array}{c} & \text{ft} \\ \text{Low Steel Elev.} = & \begin{array}{c} 17.9 \\ \text{ft} \end{array} \end{array}$ ft $\begin{array}{c} 7.4 \\ \text{n (Channel)} = & \begin{array}{c} 0.033 \\ \text{n (LOB)} = & \begin{array}{c} 0.047 \\ \text{n (ROB)} = \\ \end{array}$ $\begin{array}{c} 0.025 \\ \text{Pier Width} = \begin{array}{c} 1.85 \\ \text{ft} \end{array}$ ft $\begin{array}{c} \text{ft} \end{array}$	7.4					
Width of main channel at approach section $W_1 = 90$ ft Width of left overbank flow at approach, $W_{lob} = 90$ ft Width of left overbank flow at approach, $W_{lob} = 90$ ft Width of right overbank flow at approach, $W_{rob} = 90$ ft Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 10.16$ From Figure 9 W_2 (effective) = 175.8 ft $x = 10.16$ ft Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = 90$ ft Critical approach velocity, $V_1 = Q_{100}/(y_1W_1) = 90$ ft/s If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 90$ ft Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = 90$ From Figure 10, $y_{cs} = 90$ ft PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K_2 = 90$ ft Using pier width a on Figure 11, $\xi = 90$ ft Pier scour $y_{ps} = 90$ ft		CONTRACTION SCOUR						
Width of left overbank flow at approach, $W_{lob} = 46$ ft Average left overbank flow depth, $y_{lob} = 74$ Width of right overbank flow at approach, $W_{rob} = 46$ ft Average right overbank flow depth, $y_{rob} = 74$ Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 10.16$ From Figure 9 W_2 (effective) = 175.8 ft $V_2 = 11.1$ ft Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = 1$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 1$ ft/s Critical approach velocity, $V_2 = 11.52y_1^{1/6}D_{50}^{1/3} = 1$ ft/s If $V_1 < V_2$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 1$ ft Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = 1$ From Figure 10, $y_2 = 1$ ft PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K_2 = 1$ Using pier width a on Figure 11, $\xi = 7.5$ Pier scour $y_{ps} = 5.8$ ft								
Width of right overbank flow at approach, $W_{rob} = 46$ ft Average right overbank flow depth, $y_{rob} = 7.4$ Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 10.16$ From Figure 9 W_2 (effective) = 175.8 ft $y_{cs} = 11.1$ ft Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = 11.52y_1^{1/6}D_{50}^{1/3} = 11.52y_1^{1/6}D$	Contract	Width of left overbank flow at approach, $W_{lob} = \frac{14.6}{14.6}$ ft Average left overbank flow depth, $v_{lob} = \frac{14.6}{14.6}$	7.4 ft					
		1 4 7	Control of the Contro					
	iRM							
Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s Critical approach velocity, $V_0 = 11.52y_1^{1/6}D_{50}^{1/3} = $ ft/s If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $ ft If $D_{50} >= D_{c50}$, $\chi = 0.0$ Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = $ From Figure 10, $y_{cs} = $ ft PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K_2 = $ the second of the proof of	PG							
Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =$	M	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =$	SNE	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $	ft/s					
Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =$	CWC	Critical approach velocity, $Vc = 11.52y_1^{1/6}D_{50}^{1/3} =ft/s$						
Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =$.ï							
PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = $ Using pier width a on Figure 11, $\xi = $ Pier scour $y_{ps} = $ $\xi = $ $\xi = $ Pier scour $\xi = $	PGI	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $ ft If $D_{50} >= D_{c50}$, $\chi = 0.0$						
A DATE OF THE SECOND SELECTION OF THE SECOND SECOND SELECTION OF THE SECOND SECOND SECOND SECOND SELECTION OF THE SECOND SEC		Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = $ From Figure 10, $y_{cs} = $	ft					
ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 7.4$ ft right abutment, $y_{aRT} = 7.4$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12. $y_{aLT} = 19.3$ and $y_{aRT} = 19.3$	PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = $ Using pier width a on Figure 11, $\xi = $ Pier scour $y_{ps} = $.8_ft					
Average flow depth blocked by: left abutment, $y_{aLT} = 7.4$ ft right abutment, $y_{aRT} = 7.4$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12. $y_{aLT} = 19.3$ and $y_{aRT} = 19.3$		ABUTMENT SCOUR CALCULATIONS						
Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 19.3$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 19.3$ ft	PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = 7.4$ ft right abutment, $y_{aRT} = 7.4$ ft Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 19.3$ and $\psi_{RT} = 19.3$	arough					

Route 166 St Stream Snake Creek MRM Date 6/9/10 Initials CM										
Bridge Structure No. 5808 7170 Location 2.2 W Ashton										
GPS coordinates: N 44° 59′ 56.6° taken from: USL abutment centerline of î MRM end Datum of coordinates: WGS84 NAD27										
Drainage area = 2058, 74 sq. mi.										
The average bottom of the main channel was 2.7 ft below top of guardrail at a point 52 ft from left abutment.										
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.										
Flows $Q_{100} = 17.700 \qquad Q_{500} = 43600$										
Estimated flow passing through bridge	$Q_{100} =$	17700		$Q_{500} =$)				
Estimated now passing through bridge Estimated road overflow & overtopping										
Consideration	Yes	No	Possibly	Yes	No	Possibly				
Chance of overtopping	V	110	Tossiony	X	110	Tossibly				
Chance of Pressure flow	×			X						
Armored appearance to channel		X			X					
Lateral instability of channel		X			X					
V										
Riprap at abutments? YesNoMarginal										
Evidence of past Scour? YesNoDon't know										
Debris Potential?HighMedX_Low										
Does scour countermeasure(s) appear to have been designed?										
Riprap Yes No Don't know NA										
Spur Dike Yes No Don't know NA NA										
Other YesNoDon't knowNA										
Bed Material Classification Based on Median Particle Size (D ₅₀)										
						Dauldana				
	Gravel			Cobbles Boulders						
Size range, in mm <0.062 0.062-2.	00	2.00-64		64-250		>250				
Comments, Diagrams & orientation of digital phot	os	-	7 7							
1642-ID 4	a - US	Fac ot	bridg	(
49 - USRB 45 - USLB 46 - L. Abult Press 51 - ROB										
45 - 45 LB 46 - L. Abult & Piers 51 - ROB										
46 - L. Abut & 1800										
47 - L. Abut 5:	2-20	B								
Summary of Results										
		Q100			Q500					
Bridge flow evaluated	4	73 1373	2	1	3732					
Flow depth at left abutment (yaLT), in feet 7, 4										
Flow depth at right abutment (yaRT), in feet	7.4			7.4						
Contraction scour depth (ycs), in feet		. /			11.1					
Pier scour depth (yps), in feet	5	8			5.8					
Left abutment scour depth (yas), in feet) 9	1.3			19.3					
Right abutment scour depth (yas), in feet		9, 3			19.3					
1Flow angle of attack		10			10					