	SCOUR ANALYSIS AND REPORTING FORM								
	Bridge Structure No. 6/39003 Coate 8//7/// Initials Region (ABCD)								
	Site Location 2,5 W+ 1.4 N of Hidden Timber on 150 0:15t or								
	Q ₁₀₀ = 1920 by: drainage area ratio flood freq. anal. regional regression eq. Hidden Timber								
	Bridge discharge $(Q_2) = 1920$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)								
0.0	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = $\frac{q}{2}$ ft. Flow angle at bridge = $\frac{q}{2}$ ° Abut. Skew = $\frac{q}{2}$ ° Effective Skew = $\frac{q}{2}$ ° Effective Skew = $\frac{q}{2}$ ° Average main channel depth at approach section, $\frac{q}{2}$ = $\frac{q}{2}$ ° $\frac{q}{2}$ = $\frac{q}{2}$ ° $\frac{q}{$								
	# Piers for $100 \text{ yr} = 200 \text{ ft}$								
	CONTRACTION SCOUR								
	Width of main channel at approach section $W_1 = 1000$ ft								
ict	Width of left overbank flow at approach, $W_{lob} = 0$ ft Average left overbank flow depth, $y_{lob} = 0$ ft								
PGRM: Contract									
ŭ	Width of right overbank flow at approach, $W_{rob} = 90$ ft Average right overbank flow depth, $y_{rob} = 2.0$ ft								
JRN									
PC	Live Bed Contraction Scour (use if bed material is small cobbles or finer)								
	$x = 1.92$ From Figure 9 W_2 (effective) = $\frac{96.6}{100}$ ft $y_{cs} = \frac{2.9}{100}$ ft								
EW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)								
PGRM: CWCSNEW	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s								
SWC	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} =ft/s$								
X	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.								
GR									
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 =ft If D_{50} >= D_{c50}, \chi = 0.0$ Otherwise, $\chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft From Figure 10, y_{cs} =ft$								
	Otherwise, $\chi = 0.122 y_1 [\dot{q}_2/(D_{50}^{1/3} y_1^{1/6})]^{6/7} - y_1 =ft$								
55									
E Pie	PIER SCOUR CALCULATIONS								
PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1.0$ Using pier width a on Figure 11, $\xi = 7.0$ Pier scour $y_{ps} = 5.9$ ft									
PG	Froude # at bridge = $0, 5$ Using pier width a on Figure 11, $\xi = 1, 6$ Pier scour $y_{ps} = 5, 9$ ft								
ent	ABUTMENT SCOUR CALCULATIONS								
outm	Average flow depth blocked by: left abutment, $y_{aLT} = 0.0$ ft right abutment, $y_{aRT} = 0.0$ ft								
AP	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through								
PGRM: Abutment	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 0.0$ and $\psi_{RT} = 6.2$								
PC	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = 0.0 and ψ_{RT} = 6.2 ft Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 0.0$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0.0$ ft								

Route Hidde Timbe Stream Anticlose	Cla	MRM	Da	te 4/1-	7/1/ Init	tials Ch				
Dridge Structure No. (129 069)										
CDS	cation	2 W 7 /	1 NOS	ndder	chama.	er on 1	50	0115		
Route Hidden Timber Stream Andelope C/C MRM Date 4/17/11 Initials Chr. Bridge Structure No. 613 9 00 96 Location 2.5 W + 1.4 W of Hidden Timber on 150 Oil 9 GPS coordinates: W43 0 15 0 7.2 taken from: USL abutment centerline of ft MRM end Datum of coordinates: WGS84 NAD27 Drainage area = 117 sq. mi										
Drainage area = 167 sq. mi.										
The average bottom of the main channel was 12.2 ft below top of guardrail at a point 43 ft from left abutment.										
Method used to determine flood flows:Freq. Analdrainage area ratio regional regression equations.										
MIS	SCELLANE	EOUS CONSI	DERATIO	NS			PKc	aled &		
Flows	Q ₁₀₀ =	1920		Q ₅₀₀ = 3370			2	1217		
Estimated flow passing through bridge		1920			3370		5	468		
Estimated road overflow & overtopping							10	707		
Consideration	Yes	No	Possibly	Yes	No	Possibly	25	1090		
Chance of overtopping		X			X		50	1470		
Chance of Pressure flow		X			X		100	1920		
Armored appearance to channel		X			X		500	3370		
Lateral instability of channel		\ \			X	2		0,0		
Riprap at abutments? Evidence of past Scour? Debris Potential? Yes No Marginal Yes No Don't know L, Aba+ High Med Low										
Does scour countermeasure(s) appear to have been designed?										
Riprap YesNoDon't knowNA										
Spur Dike Yes No Don't know X NA										
Other Yes No Don't know X NA										
Bed Material Classification Based on Median Particle Size (D ₅₀)										
		Gravel		Cobbles		Boulders				
Size range, in mm <0.062 0.062-2.		2.00-64		64-250		>250				
Size range, in min <0.002 0.002-2.0	00	2.00-04		04-230		-230				
Comments, Diagrams & orientation of digital photo	os									
1969-1D 90- us 91- us RB 92- us LB 93- L. Abat 94- R. Abat										
93 - L. Abat 94 - R. Abat Summary of Results										
19		Q100			Q500		I			
Bridge flow evaluated		1920		3370						
Flow depth at left abutment (yaLT), in feet		0			2.3					
Flow depth at right abutment (yaRT), in feet		2.0			4.1					
Contraction scour depth (ycs), in feet		2,4			5.7					
Pier scour depth (yps), in feet		5.9			6.0					
Left abutment scour depth (yas), in feet		O			9.4					

Right abutment scour depth (yas), in feet

1Flow angle of attack