_	Dup. OK-MIN						
	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. 6139 0096 Date 10-12-12 Initials 2 FT Region (ABCD)						
	Site Location 2.5W + 1.4 N of Hidden Timber on 150 Oil St or Hidden						
	Q ₁₀₀ = 1920 by: drainage area ratio flood freq. anal. regional regression eq. Timber Rd Bridge discharge (Q ₂) = 1920 (should be Q ₁₀₀ unless there is a relief bridge, road overflow, or bridge overtopping)						
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ Abut. Skew = $?$ $?$ $?$ $?$ $?$ $?$ Effective Skew = $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$						
Σ ×̄	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,						
	Water Surface Elev. = $\frac{1}{1.9}$ ft Low Steel Elev. = $\frac{1}{1.9}$ ft n (Channel) = $\frac{1}{1.035}$ n (LOB) = $\frac{1}{1.035}$ n (ROB) = $\frac{1}{1.035}$ ft Pier Width = $\frac{1}{1.035}$ ft # Piers for 100 yr = $\frac{1}{1.035}$ ft						
	CONTRACTION SCOUR						
	Width of main channel at approach section $W_1 = 10.5$ ft						
act	Width of left overbank flow at approach, $W_{lob} = \frac{93}{100}$ ft Average left overbank flow depth, $y_{lob} = \frac{100}{100}$						
M: Contract	Width of right overbank flow at approach, $W_{rob} = 83$ ft Average right overbank flow depth, $y_{rob} = 33$ ft						
PGR	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer)						
_	$x = 3.49$ From Figure 9 W_2 (effective) = 89.7 ft $y_{cs} = 4.1$ ft						
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = $ ft						
PGRM: Pier	PIER SCOUR CALCULATIONS L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 = Using pier width a on Figure 11, $\xi = 7$ Pier scour $y_{ps} = 5.8$ ft						
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 1.0$ ft right abutment, $y_{aRT} = 3.3$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 4.7$ and $\psi_{RT} = 12$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 4.7$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 12$ ft						

	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. 61390096 Date Initials Region (ABCD)						
	SiteLocation						
	Q ₅₀₀ = 3370 by: drainage area ratio flood freq. anal. regional regression eq.						
	Bridge discharge $(Q_2) = 3370$ (should be Q_{500} unless there is a relief bridge, road overflow, or bridge overtopping)						
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 93 ft. Flow angle at bridge = 3 Abut. Skew = 3 Effective Skew = 3 Width (W ₂) iteration = 33 Avg. flow depth at bridge, y ₂ iteration = 33 Corrected channel width at bridge Section = W ₂ times cos of flow angle = 33 ft* q ₂ = 34 Q ₂ /W ₂ = 34 R ² /s Bridge Vel, V ₂ = 34 ft/s Final y ₂ = 4 Primary 4 Ah = 4 Average main channel depth at approach section, y ₁ = 4 Ah + y ₂ = 4 At 4 Reflective pier width = 4 sin(q) + a cos(q) If y ₂ is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,						
	Water Surface Elev. = $\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	CONTRACTION SCOUR						
ract	Width of main channel at approach section $W_1 = 105$ ft						
	Width of left overbank flow at approach, $W_{lob} = 93$ ft Average left overbank flow depth, $y_{lob} = 3.4$ ft						
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = 8$ ft Average right overbank flow depth, $y_{rob} = 5$, μ ft						
ÄΞ							
<u>R</u>	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = \frac{7.59}{\text{ft}} \text{From Figure 9} W_2 \text{ (effective)} = \frac{87.7}{\text{ft}} y_{cs} = \frac{2.4}{\text{ft}} \text{ft}$						
≩	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
SNE	Estimated bed material $D_{50} = ft$ Average approach velocity, $V_1 = Q_{500}/(y_1W_1) = ft/s$						
PGRM: CWCSNE	Estimated bed material $D_{50} = ft$ Average approach velocity, $V_1 = Q_{500}/(y_1W_1) = ft/s$ Critical approach velocity, $V_C = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$						
Ä	If $V_1 < V_c$ and $D_{50} > 0.2$ ft, use clear water equation below, otherwise use-live bed scour equation above.						
PGR	$D_{cso} = 0.0006(q_2/y_1^{7/6})^3 = ft$ If $D_{so} >= D_{cso}$, $\chi = 0.0$						
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft$						
. <u>.</u>	PIER SCOUR CALCULATIONS						
Ξ	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =						
PGRM: Pic	Froude # at bridge = 0.34 Using pier width a on Figure 11, $\xi = 7$ Pier scour $y_{ps} = 5.9$ ft						
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 3.4$ ft right abutment, $y_{aRT} = 5.4$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 12.2$ and $\psi_{RT} = 15.7$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 12.7$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 15.7$ ft						

Hidden										
Route Timber Rd Stream Antelope (seek MRM Date Initials										
Bridge Structure No. 6/39009/ Los	cation 2.5	W + 1.4N	J.f. Hic	den Tion	her on	150 0:1 St				
Bridge Structure No. 61390096 Location 2.5 W + 1.4N of Hidden Timber on 150 0:1 St GPS coordinates: N 43° 15.1/9' taken from: USL abutment centerline of 11 MRM end										
W/QD° 28,294 Datum of coordinates: WGS84 NAD27										
Drainage area = 167 sq. mi.										
The average bottom of the main channel was $\frac{12}{12}$ ft below top of guardrail at a point $\frac{45}{12}$ ft from left abutment.										
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.										
MISCELLANEOUS CONSIDERATIONS										
Flows	$Q_{100} = 1920$			$Q_{500} = 3370$						
Estimated flow passing through bridge	1920			3370						
Estimated road overflow & overtopping	0			0						
Consideration	Yes	No	Possibly	Yes	No	Possibly				
Chance of overtopping		V								
Chance of Pressure flow		V			V					
Armored appearance to channel		/			V					
Lateral instability of channel		V								
Riprap at abutments? Yes 1/No Marginal										
· · · · · · · · · · · · · · · · · · ·										
Debris Potential?HighMedLow										
Does scour countermeasure(s) appear to have been designed?										
RiprapY	esN	loDo	n't know	<u>✓</u> NA						
Spur Dike Y	esNoDon't know			✓ NA						
	esNoDon't know									
Bed Material	Classificatio	n Based on Mo	edian Partic							
Material Silt/Clay Sand	<u>(</u>	Gravel		Cobbles		Boulders				
Size range, in mm < 0.062 0.062-2.		2.00-64		64-250		>250				
Comments, Diagrams & orientation of digital photos										
Str. no.	ciah	+ abut.		Nie.	54021 [remnain+				
bridge From approach				4151	321201					
18 7 2.001										
LOB	LOB approach from									
ROB	ا ا	bridge								
Summary of Results										
		0100		l .	Q500	· ·				
Bridge flow evaluated	Q100 1920			3370						
Flow depth at left abutment (yaLT), in feet	1.1			<u> </u>						
Flow depth at right abutment (yaRT), in feet	3.3			5.4						
Contraction scour depth (ycs), in feet	4.1			2.4						
Pier scour depth (yps), in feet	5.8			5,9						
Left abutment scour depth (yas), in feet	4.7			12.2						
Right abutment scour depth (yas), in feet	12.0			15.7						
1 Flow angle of attack	()°			D°						