	Bridge Structure No. 63039010 Date 10-11-10 Initials RAC Region (A BCD)						
	Site Location 2.9 E Dolton						
	$Q_{100} = 9720$ by: drainage area ratio V flood freq. anal. regional regression eq.						
	Bridge discharge $(Q_2) = Q720$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method						
	n (LOB) =						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	60 150						
	CONTRACTION SCOUR						
	Width of main channel at approach section $W_1 = 100$ ft						
tract	Width of left overbank flow at approach, $W_{lob} = 60$ ft Average left overbank flow depth, $y_{lob} = 60$ ft						
Con Con	Width of right overbank flow at approach, $W_{rob} = 150$ ft Average right overbank flow depth, $y_{rob} = 27$ ft						
PGRM: Contract	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 1.96 \text{From Figure 9} W_2 \text{ (effective)} = 1.96, 5 \text{ ft} y_{cs} = 2.5 \text{ ft}$						
	$x = 1 + 100$ From Figure 9 W_2 (effective) = $100 + 100$ it $Y_{cs} = 200$ it						
PGRM: CWCSNEW							
_	$\begin{aligned} D_{e50} &= 0.0006 (q_2/y_1^{7/6})^3 = \underline{\qquad} \text{ft} \\ \text{Otherwise, } \chi &= 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad} \end{aligned} \qquad \begin{aligned} \text{If } D_{50} &>= D_{e50}, \chi = 0.0 \\ \text{From Figure 10, } y_{es} &= \underline{\qquad} \text{ft} \end{aligned}$						
	Otherwise, \(\lambda \cdot 1.122 \frac{1}{1} \frac{1}{2} \lambda \cdot \frac{1}{2} \lambda \frac{1}{2} \frac{1}{2						
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = $ Using pier width a on Figure 11, $\xi = $ Pier scour $y_{ps} = $ ft						
=	ABUTMENT SCOUR CALCULATIONS						
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = \sqrt{2}$ ft right abutment, $y_{aRT} = \sqrt{2}$ ft Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $y_{LT} = 6$ and $y_{RT} = 9$ Left abutment scour, $y_{as} = y_{LT}(K_1/0.55) = 9$ ft Right abutment scour $y_{as} = y_{RT}(K_1/0.55) = 9$ ft						

Route 269 St Stream W Fork Very	william Ri	✓ MRM	Da	ite 10-11	-/0 Ini	tials RRL		
Bridge Structure No. 1, 3039010 Los	ration 29	FD	altan	10		-		
Bridge Structure No. 63039010 Location 2.9 F Dolton GPS coordinates: N43° 29.760′ taken from: USL abutment centerline of îl MRM end Datum of coordinates: WGS84 NAD27								
Drainaga aran = 309 24 ca mi								
The average bottom of the main channel was 18, 5 ft below top of guardrail at a point 30 ft from left abutment.								
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.								
Flows	MISCELLANEOUS CONSIDERATIONS $Q_{100} = 9720 \qquad Q_{500} = 17100$							
Estimated flow passing through bridge	9720			16737				
Estimated now passing through ortuge Estimated road overflow & overtopping				863				
Consideration	Yes No Possibly			Yes No Possibly				
Chance of overtopping	165	X	rossibly	× 1 cs	NO	Possibly		
Chance of Pressure flow		$\overline{}$		X				
Armored appearance to channel			-		X			
Lateral instability of channel					/			
Lateral histability of channel	^			/~				
Does scour countermeasure(s) appear to have been designed? Riprap								
Summary of Results								
	Q100			Q500				
Bridge flow evaluated	9720			16237				
Flow depth at left abutment (yaLT), in feet	1,5			7,25				
Flow depth at right abutment (yaRT), in feet	2.3			5,8				
Contraction scour depth (ycs), in feet		2,5			4.5			
Pier scour depth (yps), in feet	C	5,7			6,8			
Left abutment scour depth (yas), in feet	- (6.3			12			
Right abutment scour depth (yas), in feet 9, 4 16, 5								
1Flow angle of attack		5			5			