	SCOUR ANALYSIS AND REPORTING FORM					
	Bridge Structure No. 63214262 Date 5/24/17 Initials Region (ABCD)					
	Site Location NW edge of Center ville					
	Q ₁₀₀ = <u>26</u> 800 by: drainage area ratio flood freq. anal. regional regression eq.					
	Bridge discharge $(Q_2) = 2600$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)					
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method					
	Bridge Width = 24 ft. Flow angle at bridge = 10 ° Abut. Skew = 0 ° Effective Skew = 0 °					
PGRM: "RegionA", "RegionB", RegionC", or "RegionD"	Width (W ₂) iteration =					
	Avg. flow depth at bridge, y ₂ iteration =					
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{240.29}{1}$ ft* $q_2 = Q_2/W_2 = \frac{119.9}{1}$ ft²/s					
egion or "	Bridge Vel, $V_2 = 7.4$ ft/s Final $y_2 = q_2/V_2 = 15.4$ ft $\Delta h = 1.2$ ft					
	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \frac{16}{100}$ ft					
JRM egio	*NOTE: repeat above calculations until y_1 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$					
7 K	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,					
	Water Surface Elev. = $0-3$ - 0 ft 110					
	Low Steel Elev. = 17.7 ft 23/15					
	n (Channel) = 0.50 -3.8 n (LOR) = 0.50 -3.8					
	"(LOB) - 0, 60 dose					
	n (ROB) = 0.80 Pier Width = 1.3 ft					
5"	Pier Width = $\frac{1}{3}$ ft Pier Length = $\frac{1}{3}$ ft					
	# Piers for 100 yr = $\frac{1}{5}$ ft					
	CONTRACTION SCOUR					
PGRM: Contract	Width of main channel at approach section $W_1 = V_1$ ft					
	Width of left overbank flow at approach, $W_{lob} = 249$ ft Average left overbank flow depth, $y_{lob} = 5.3$ ft					
	Width of right overbank flow at approach, $W_{rob} = 130$ ft Average right overbank flow depth, $y_{rob} = 555$ ft					
Σ	Average right overbank now at approach, wrob = 150 11 Average right overbank now deput, yrob = 150 11 11 11 11 11 11 11 11 11 11 11 11 11					
2	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer)					
	$x = 3.73$ From Figure 9 W_2 (effective) = 233.8 ft $y_{cs} = 4.4$ ft					
GRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)					
3	Estimated bed material $D_{50} = \underline{\hspace{1cm}}$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = \underline{\hspace{1cm}}$ ft/s Critical approach velocity, $V_0 = 11.17y_1^{1/6}D_{50}^{1/3} = \underline{\hspace{1cm}}$ ft/s					
5	Critical approach velocity, $V_c = 11.17y_1^{1/2}D_{50}^{1/2} = $					
X	If $V_1 < V_c$ and $D_{50} > 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.					
Ĭ.	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = \underline{\qquad \qquad } ft \\ Otherwise, \ \chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad \qquad } ft \\ From Figure 10, \ y_{cs} = \underline{\qquad } ft \\ \\ ft$					
	Otherwise, $\chi = 0.122 y_1 [\dot{q}_2/(D_{50}^{1/3} y_1^{1/6})]^{6/7} - y_1 =ft$					
OKM. PIET	PIER SCOUR CALCULATIONS					
N N	Froude # at bridge = $\frac{0.35}{0.35}$ Correction factor for flow angle of attack (from Table 1), K2 = $\frac{1}{1.50}$ Using pier width a on Figure 11, $\xi = \frac{5.50}{0.50}$ Pier scour $y_{ps} = \frac{5.50}{0.50}$ ft					
1	Froude # at bridge = $\frac{0.55}{1.5}$ Using pier width a on Figure 11, $\xi = \frac{5.5}{1.5}$ Pier scour $y_{ps} = \frac{5}{1.5}$					
2	ABUTMENT SCOUR CALCULATIONS					
Abumen	Average flow depth blocked by: left abutment, $y_{aLT} = \underline{5.3}$ ft right abutment, $y_{aRT} = \underline{3.5}$ ft					
nav	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through					
Ä	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{15.6}{2}$ and $\psi_{RT} = \frac{12.9}{2}$					
2	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 15.6$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 12.4$ ft					

Route County Rd Stream Vermillion Bridge Structure No. 632 8262 L GPS coordinates: $\frac{N}{43}$ 67' 23.2' Drainage area = $\frac{1756 \cdot 86}{1756 \cdot 86}$ sq. mi The average bottom of the main channel was 22. Method used to determine flood flows: Free	taken from: Datum of co	USL abutmer pordinates: W w top of guard	rail at a poi	centerline of \(\hat{1}\) MRI NAD27 nt \(\frac{10^25}{2}\) ft from	M end			
MISCELLANEOUS CONSIDERATIONS 5/7/								
Flows	Q ₁₀₀ = 28800			Q ₅₀₀ = 57500		7 7/4		
Estimated flow passing through bridge	29800			37876		1111		
Estimated road overflow & overtopping	0 :			19625		2 1540		
Consideration	Yes	No	Possibly		Possibly	5 4400		
Chance of overtopping		Х		X		10 7650		
Chance of Pressure flow		×		X		25 1390		
Armored appearance to channel		×		人		50 2010		
Lateral instability of channel		7		X	2	100 2880		
Riprap at abutments? Evidence of past Scour? Debris Potential? Wes No Don't know Piece Wes No Don't know Piece High Med Low Does scour countermeasure(s) appear to have been designed? Riprap Spur Dike Yes No Don't know NA Recart Yes No Don't know NA Other Yes No Don't know NA Whaterial Classification Based on Median Particle Size (D50) Material Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 >250 Comments, Diagrams & orientation of digital photos 1) Monda data field Application of digital photos 2) Application of digital photos 3) Application of digital photos 4) Light Ob. The state of								
Summary of Results . 10) f. ab								
Deidas flam and the d	Q100			Q500				
Bridge flow evaluated	2 8800			37876				
Flow depth at left abutment (yaLT), in feet	5.3 3.5			7.7				
Flow depth at right abutment (yaRT), in feet				5-1				
Contraction scour depth (ycs), in feet	4,4			5 6.8				
Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet				10 /				
Right abutment scour depth (yas), in feet	15.6 12.9			19.5				
1Flow angle of attack	12,			15.2				