	Bridge Structure No. (6401019) Date $5/27/7$ Initials rat Region (ABCD) Site
PGRM: "RegionA", "RegionB", "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = $12\frac{1}{2}$ ft. Flow angle at bridge = $\frac{1}{2}$ $\frac{1}{2}$ Abut. Skew = $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Avg. flow depth at bridge, y_2 iteration = $\frac{1}{2}$ $$
	Water Surface Elev. = $\frac{0-1.5}{15.7}$ ft $\frac{10.9}{15.2}$
	CONTRACTION SCOUR
	Width of main channel at approach section $W_1 = \frac{129}{129}$ ft Width of left overbank flow at approach, $W_{lob} = \frac{129}{129}$ ft Average left overbank flow depth, $y_{lob} = \frac{5.0}{129}$ ft
	Width of right overbank flow at approach, $W_{rob} = 129$ ft Average right overbank flow depth, $y_{rob} = 9$ ft
	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 293 \text{From Figure 9} W_2 \text{ (effective)} = 17.9 \text{ft} y_{cs} = 9.7 \text{ft}$
CWCSNE	
RM:	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
bd	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = \int ft \qquad \text{If } D_{50} >= D_{c50}, \chi = 0.0$
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft$
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = $ Using pier width a on Figure 11, $\xi = 9.1$ Pier scour $y_{ps} = 7.2$ ft
	ABUTMENT SCOUR CALCULATIONS
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = \underline{SO}$ ft right abutment, $y_{aRT} = \underline{4}$, Z ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \underline{15.6}$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \underline{15}$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = \underline{13.6}$ ft

Route 471 Ave Stream Brule C	reel	MRM	Da	te An 3	127/12 Ini	tials Lat			
		D89D 4	71 100	-			-		
GPS coordinates: N 42° 54′ 441′ taken from: USL abutment X centerline of \(\hat{\pi}\) MRM end Datum of coordinates: WGS84 X NAD27									
Drainage area = $154.47 \cdot 13^{137}$ sq. mi.									
The average bottom of the main channel was 20, 9 ft below top of guardrail at a point 16 ft from left abutment. Method used to determine flood flows: Freq. Anal. Aregional regression equations.									
MISCELL ANEQUE CONSUMERATIONS									
MISCELLANEOUS CONSIDERATIONS									
Flows	$Q_{100} =$	TOBERON	- 0	Q ₅₀₀ =	MANS	00/9/00	217		
Estimated flow passing through bridge	12500			14/39			5 192		
Estimated road overflow & overtopping	0			4911			10 324		
Consideration	Yes	No	Possibly	Yes	No	Possibly	1901		
Chance of overtopping		×		X			25/973		
Chance of Pressure flow			>	λ			50 1360		
Armored appearance to channel		×			X		100 1816		
Lateral instability of channel		<i>></i>			X		308		
N.									
Riprap at abutments? Yes No Marginal									
Riprap at abutments? Evidence of past Scour? Pebris Potential? Yes No Marginal Pier Potential? No Don't know Part 1021									
Debris Potential? High Med Low									
Does scour countermeasure(s) appear to have been	designed?						16 5060		
Riprap Yes No Don't know NA (CSE) 7									
Spur Dike Yes No Don't know NA									
Other Yes _X NoDon't knowNA									
Other Yes _X_NoDon't knowNA									
Bed Material Classification Based on Median Particle Size (D ₅₀)									
Material Silt/Clay Sand									
Size range, in mm <0.062 0.062-2.						Boulders	<u></u> ?		
Size range, in min <0.062 0.062-2.	00	2.00-64		64-250		>250			
Comments Diagrams & orientation of digital photos									
Comments, Diagrams & orientation of digital photos									
A. rain channel 60. left 03									
2) dist OB 7) left at									
2) ill / channel									
3. 115 M ab. (6) main (1)									
1) piers 1) main chami									
2). right OB 7). left at 3). right ab. 3) main channel 4). piers 7), main channel 5). pier scar, 7), main channel									
Summary of Results									
	Q100			Q500					
Bridge flow evaluated	12500			14189					
Flow depth at left abutment (yaLT), in feet	5.0			6.1					
Flow depth at right abutment (yaRT), in feet	4.2								
Contraction scour depth (ycs), in feet	4,z 8.z			S.3 10.8					
Pier scour depth (yps), in feet	7. 7			7.7					
Left abutment scour depth (yas), in feet	13			17					
Right abutment scour depth (yas), in feet	13,6			15.6					

13,6

1Flow angle of attack