	SCOUR ANALYSIS AND REPORTING FORM							
	Bridge Structure No. 64/16/69 Date 5/27/292 Initials (at Region (ABCD)							
	Site Location O, 6 m, 5 of HW 48 on 481 Are Que Esc 5650 by: drainage area ratio flood freq. anal. regional regression eq. X							
	by: drainage area ratio flood freq. anal. regional regression eq. X							
	Bridge discharge $(Q_2) = 560$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)							
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method							
ionB",	Bridge Width =							
"Reg onD"	Avg. flow depth at bridge, y ₂ iteration =							
PGRM: "RegionA", "RegionB" "RegionC", or "RegionD"	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{102.6}{\text{ft}}$ ft* $q_2 = Q_2/W_2 = \frac{55.}{\text{ft}}$ Bridge Vel, $V_2 = \frac{5}{\text{ft}}$ Final $y_2 = q_2/V_2 = \frac{10.5}{\text{ft}}$ ft							
Reg	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 1$ ft							
gion(* NOTE: repeat above calculations until y_1 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$							
PGF "Reg	If y 1 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,							
	Water Surface Elev. = $\frac{0-9}{4}$, $\frac{9}{6}$ ft Low Steel Elev. = $\frac{11.6}{6}$ ft n (Channel) = $\frac{0.050}{0.070}$ ft n (LOB) = $\frac{0.050}{0.070}$ ft							
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	Pier Width = V, 1 ft							
	Pier Length = 1, 1 ft							
	# Piers for 100 yr = $\frac{1}{2}$ ft							
	CONTRACTION SCOUR							
ntract	Width of main channel at approach section $W_1 = 10^{-5}$ ft							
	Width of left overbank flow at approach, $W_{lob} = \frac{163}{160}$ ft Average left overbank flow depth, $y_{lob} = \frac{3.7}{160}$ ft							
	Width of right overbank flow at approach, $W_{rob} = $ ft Average right overbank flow depth, $y_{rob} = $ ft							
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)							
	$x = 1.57$ From Figure 9 W_2 (effective) = 100.4 ft $y_{cs} = 2.1$ ft							
≥	Clear Water Contraction Scour (use if bed material is larger than small cobbles)							
	Estimated bed material D_{59} ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) =ft/s$							
CWC	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} =ft/s$							
Ž	If $V_1 < V_c$ and $D_{50} > = 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.							
PGI	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ If $D_{50} >= D_{c50}$, $\chi = 0.0$							
	$D_{c50} = 0.0006(q_2/y_1^{76})^3 = ft$ $Otherwise, \chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $If D_{50} >= D_{c50}, \chi = 0.0$ $From Figure 10, y_{cs} = ft$							
Pier	PIER SCOUR CALCULATIONS							
PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = \frac{1}{2}$ Froude # at bridge = 6.29 Using pier width a on Figure 11, $\xi = \frac{1}{2}$ Pier scour $y_{ps} = \frac{1}{4}$								
PG	Froude # at bridge = 6.29 Using pier width a on Figure 11, $\xi = 5.2$ Pier scour $y_{ps} = 4.3$ ft							
Ħ	ABUTMENT SCOUR CALCULATIONS							
ıtmeı	Average flow depth blocked by: left abutment, $y_{aLT} = \frac{1}{2}$, ft right abutment, $y_{aRT} = \frac{1}{2}$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, $\frac{1}{2}$ ft right abutment, $y_{aRT} = \frac{1}{2}$ ft right abutment, $y_{aRT} = \frac{1}{2}$ ft shape coefficient $K_1 = 1.00$ for vertical-wall, $\frac{1}{2}$ and $\frac{1}{2}$							
Abı	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.55 for spill-through							
'GRM: Abutment	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{16.7}{10.75}$ and $\psi_{RT} = \frac{1}{10.75}$							
PG	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 12.7$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 6$ ft							

Route 481 Are Stream Dra, hage Dr	eh	MRM	Dat	e 5/27/	12 Ini	itials La			
Bridge Structure No. 64110169 Lo GPS coordinates: N 42° 50′ 14.4″	cation 0 6	m · 5	of Why	144	- 481	Ano	_		
GPS coordinates: 11 478 561 19 41)	taken from:	IISI abutmer	t X	centerline o	f I MRM	end	_		
W 16 351 12.0	Datum of coo	ordinates: W	GS84×	NAD27_		cnu			
Drainage area = 37.62 sq. mi.									
The average bottom of the main channel was 16.	6 ft below	top of guard	rail at a point	23	_ft from le	eft abutment.	-1.	7 1	
Method used to determine flood flows:Freq	Anal	Irainage area	ratio 🔀 r	egional reg	ression equ	uations.	5/ 1	4	
	SCELLANE						-8/2	6	
Flows		se 5650	DERATION	Q00 = G100 = 6980			12	186	
Estimated flow passing through bridge	5400 00	5650		6938			5	199	
Estimated road overflow & overtopping		:0		47				296	
Consideration	Yes	No	Possibly	Yes No Possibly					
Chance of overtopping	103	X	1 000101)	100	110	1 055,151)		442	
Chance of Pressure flow				X		24	50 5	565	
Armored appearance to channel		X			X	7.7	100 6	698	
Lateral instability of channel		4			X	2	500 V	040	
	/)					٦ ١,	010	
Riprap at abutments? Yes	No	Marginal		i e					
Evidence of past Scour? Yes	No	Don't knov	CONTROCT	TON					
Debris Potential? High	Med	Low	M						
Deblis Fotential:	- Ivied	_Low							
Does scour countermeasure(s) appear to have been	designed?								
Riprap Y	1	Do.	n't know	NA					
	es X No		n't know	NA NA					
OtherY	es No	Do:	n't know _	NA					
. P.114	G1 : G :	D 1 1/		G: (D.)					
Bed Material Classification Based on Median Particle Size (D ₅₀)									
Material Silt/Clay Sand Sand	Gravel			Cobbles Boulders					
Size range, in mm < 0.062 0.062-2.	.00 2.00-64			64-250 >250					
Comments, Diagrams & orientation of digital photo									
1) main channel 7), right of									
2) piers at 8) main channel 3), left at 6), left BB 6. right at. 6. right at.									
2) piers at. 8) main channel 3) left at. 6) left BB									
31, 101 or, a) Lett 6B									
1) lett of.									
6'tight ab									
i right at.									
Summary of Results									
Summary of Results		Q100 50			Q50010	0	1		
Bridge flow evaluated	5650			6938			1		
Flow depth at left abutment (yaLT), in feet	3.7			5.0					
Flow depth at right abutment (yaRT), in feet	0			0			1		
Contraction scour depth (ycs), in feet	2.1			2.9			1		
Pier scour depth (yps), in feet		4.3			1,3		1		
Left abutment scour depth (yas), in feet	12.7			15			1		
Right abutment scour depth (yas), in feet		0			0		1		
1Flow angle of attack	14-24-5	5			5				
					_		* II		