Skip Links

USGS - science for a changing world

Scientific Investigations Report 2014–5007

In cooperation with the Wisconsin Department of Natural Resources

Geomorphic, Flood, and Groundwater-Flow Characteristics of Bayfield Peninsula Streams, Wisconsin, and Implications for Brook-Trout Habitat

By Faith A. Fitzpatrick, Marie C. Peppler, David A. Saad, Dennis M. Pratt, and Bernard N. Lenz

Thumbnail of and link to report PDF (23.4 MB)Abstract

In 2002–03, the U.S. Geological Survey conducted a study of the geomorphic, flood, and groundwater-flow characteristics of five Bayfield Peninsula streams, Wisconsin (Cranberry River, Bark River, Raspberry River, Sioux River, and Whittlesey Creek) to determine the physical limitations for brook-trout habitat. The goals of the study were threefold: (1) to describe geomorphic characteristics and processes, (2) to determine how land-cover characteristics affect flood peaks, and (3) to determine how regional groundwater flow patterns affect base flow.

The geomorphic characterization consisted of analyses of historical aerial photographs and General Land Office Survey notes, observations from helicopter video footage, surveys of valley cross sections, and coring. Sources of sediment were identified from the helicopter video and field surveys, and past erosion-control techniques were evaluated. Geomorphic processes, such as runoff sediment erosion, transport, and deposition, are driven by channel location within the drainage network, texture of glacial deposits, and proximity to postglacial lake shorelines; these processes have historically increased because of decreases in upland forest cover and channel roughness. Sources of sediment for all studied streams mainly came from bank, terrace, or bluff erosion along main stem reaches and along feeder tributaries that bisect main-stem entrenched valley sides. Bluff, terrace, and bank erosion were the major sources of sediment to Whittlesey Creek and the Sioux River. No active bluff erosion was observed on the Cranberry River or the Bark River but anecdotal information suggests that landslides occasionally happen on the Cranberry River. For the Bark River, sources of sediment were somewhat evenly divided among road crossings (bridges, culverts, and unimproved forest lanes), terrace erosion, bank erosion, and incision along upper main stems and feeder channels along valley sides. Evaluation of past erosion-control techniques indicated that bluffs were stabilized by a combination of artificial hardening and bioengineering of the bluff base and reducing mass wasting of the tops of the bluffs.

Flood hydrographs for the Cranberry River were simulated for four land-cover scenarios—late 20th century (1992–93), presettlement (before 1870), peak agriculture (1928), and developed (25 percent urban). Results were compared to previous simulations of flood peaks for Whittlesey Creek and for North Fish Creek (southern adjacent basin to Whittlesey Creek). Even though most uplands are presently forested, flood peaks simulated for 1992–93 were 1.5 to 2 times larger than presettlement flood peaks. The increased flood peaks caused (1) increased incision along upper main stems and tributaries that bisect entrenched valley sides, (2) bluff and terrace erosion along reaches with entrenched valleys, (3) overbank deposition and bar formation in middle and lower main stems, and (4) aggradation in mouth areas.

A base-flow survey was conducted and a groundwater-flow model was developed for the Bayfield Peninsula to delineate groundwater contributing areas. A deep aquifer system, which includes thick deposits of sand and the upper part of the bedrock, is recharged through the permeable sands in the center of the peninsula. Base flow is unevenly distributed among the Bayfield streams and depends on the amount of channel incision and the proximity of the channels to the recharge area and coarse outwash deposits. Groundwater contributing areas for the five streams do not coincide with surface-water-contributing areas. About 89 percent of total recharge to the deep aquifer system discharges to Bayfield streams; the remaining 11 percent directly discharges to Lake Superior. Historical land-cover changes have had negligible effects on groundwater-flow from the deep aquifer system.

Available brook-trout habitat is dependent on the locations of groundwater upwellings, the sizes of flood peaks, and sediment loads. Management practices that focus on reducing or slowing runoff from upland areas and increasing channel roughness have potential to reduce flood peaks, erosion, and sedimentation and improve brook-trout habitat in all Bayfield Peninsula streams.

First posted February 9, 2015

For additional information, contact:
Director, Wisconsin Water Science Center
U.S. Geological Survey
505 Research Way
Middleton, Wisconsin 53562–3586
http://wi.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here.


Suggested citation:

Fitzpatrick, F.A., Peppler, M.C., Saad, D.A., Pratt, D.M., and Lenz, B.N., 2015, Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat: U.S. Geological Survey Scientific Investigations Report 2014–5007, 80 p., http://dx.doi.org/10.3133/sir20145007.

ISSN 2328–0328 (online)



Contents

Abstract

Introduction

Methods of Collecting Geomorphic, Flood, and Groundwater-Flow Data

Geomorphic Characteristics

Flood Characteristics

Groundwater-Flow Characteristics

Implications for Brook-Trout Habitat

Summary and Conclusions

Acknowledgments

References Cited


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2014/5007/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Monday, 09-Feb-2015 16:42:44 EST