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Equations for Estimating Selected Streamflow Statistics

in Rhode Island

By Gardner C. Bent, Peter A. Steeves, and Andrew M. Waite

Abstract

Regional regression equations were developed for
estimating selected natural—unaffected by alteration—
streamflows of specific flow durations and low-flow frequency
statistics for ungaged stream sites in Rhode Island. Selected
at-site streamflow statistics are provided for 41 long-term
streamgages, 21 short-term streamgages, and 135 partial-
record stations in Rhode Island, eastern Connecticut, and
southeastern and south-central Massachusetts. The regression
equations for estimating selected streamflow statistics and
the at-site statistics estimated for each of the 197 sites may be
used by Federal, State, and local water managers in addressing
water issues in and near Rhode Island.

Multiple and simple linear regression equations were
developed to estimate the 99-, 98-, 95-, 90-, 85-, 80-, 75-,
70-, 60-, 50-, 40-, 30-, 25-, 20-, 15-, 10-, 5-, 2-, and 1-percent
flow durations and the 7Q2 (7-day, 2-year) and 7Q10
(7-day, 10-year) low-flow-frequency statistics. An additional
49 selected statistics, for which regression equations were not
developed, also were estimated for the long- and short-term
streamgages and partial-record stations for flow durations
between the 99.99 and 0.01 percent and for the mean annual,
mean monthly, and median monthly streamflows. A total
of 70 selected streamflow statistics were estimated for
41 long-term streamgages, 21 short-term streamgages, and
135 partial-record stations in and near Rhode Island. Estimates
of the long-term streamflow statistics for the 21 short-term
streamgages and 135 partial-record stations were developed
by the Maintenance of Variance Extension, type 1 (MOVE.1),
record-extension technique.

The equations used to estimate selected streamflow
statistics were developed by relating the 19 flow-duration
and 2 low-flow-frequency statistics to 31 different basin
characteristics (physical, land-cover, and climatic) at the
41 long-term and 19 of 21 short-term streamgages (a total of
60 streamgages) in and near Rhode Island. The 135 partial-
record stations were not used in the regression analyses. The
regression analyses were done by using a user-weighted least-
squares technique in the weighted-multiple-linear regression
program for the 90- to 1-percent flow-duration statistics. For
the 99-, 98-, and 95-percent flow durations and the 7Q2 and
7Q10 statistics, left-censored regression analyses were used to

account for zero flows at a few streamgages. The regression
analyses determined that two basin characteristics—

drainage area and stream density—were the only significant
explanatory variables for 16 of the 19 flow-duration and

the 2 low-flow regression equations. For the 10-, 15-, and
20-percent flow-duration regression equations, drainage area
was the only significant explanatory variable. The standard
error of the estimate for the 21 regression equations ranged
from 17.58 to 141.83 percent. The 99- to 85-percent flow
durations and the low-flow statistics 7Q2 and 7Q10 had the
highest standard errors of the estimate, ranging from 48.68

to 141.83 percent. The standard error of the estimate for the
medium- to high-flow statistics—the 80- to 1-percent flow
durations—ranged from 17.58 to 37.65 percent, with the
standard errors for the 60- to 1-percent flow durations all being
less than about 21 percent. Data also are provided to allow
the user to calculate the 90-percent prediction intervals for the
21 streamflow statistics.

The equations, which are based on data from streams
with little to no flow alterations, will provide an estimate of
the natural flows for a selected site. They will not estimate
flows for altered sites with dams, surface-water withdrawals,
groundwater withdrawals (pumping wells), diversions, and
wastewater discharges. If the equations are used to estimate
streamflow statistics for altered sites, the user should adjust
the flow estimates for the alterations. The regression equa-
tions should be used only for ungaged sites with drainage
areas between 0.52 and 294 square miles and stream densities
between 0.94 and 3.49 miles per square mile; these are the
ranges of the explanatory variables in the equations.

Introduction

Flow statistics for streams are crucial for water-
resources planning, management, and permitting to ensure
adequate water for consumptive use, water-quality standards,
recreation, and aquatic habitat. For example, the minimum
7-day-average flow that has a probability of occurring once
every 10 years (7Q10) is a streamflow statistic frequently
referenced by regulatory agencies as a threshold criterion
for waste-load assimilation of point discharges and other
water-resource-protection issues. Information on streamflow
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statistics is critical for water-resource managers who make
decisions, especially during drought periods. For example,
in Rhode Island (fig. 1), drought periods occurred during
1930-31, 194145, 1949-50, 1963-67, 198081, and
1987-88 (Walker and Lautzenheiser, 1991). Most of these
drought periods correspond to intervals when the annual
mean streamflow was well below the long-term mean annual
streamflow records for Branch River at Forestdale, R.I.
(01111500), and Pawcatuck River at Wood River Junction,
R.I. (01117500) (figs. 2 and 3), in northern and southern
Rhode Island, respectively. Other shorter periods of low flow
similar to those during the drought period noted previously
can be seen in 1957, 1985, 1995, 2002, and 2008 (fig. 3).

In Rhode Island, instream flow standards have become
more of a critical topic since the early 2000s with reports
on how to develop these standards by the Rhode Island
Water Resources Board (RIWRB) Water Allocation Program
Advisory Committee (2004). The State developed a modified
Aquatic Baseflow (RI-ABF) Methodology (Rhode Island
Department of Environmental Management, Office of Water
Resources, 2005) to assist in developing these instream
streamflow standards. The RI-ABF methodology includes a
site-specific standard that allows for maximum sustainable use
of the State’s waters but that is also protective of the biologi-
cal, chemical, and physical integrity of those waters. A draft
describing a streamflow-depletion methodology (Rhode Island
Department of Environmental Management, Office of Water
Resources, 2010) was developed to determine the maximum
volume of water that can be extracted from a stream (whether
as direct stream withdrawals or indirect groundwater with-
drawals) yet leave sufficient streamflow to maintain habitat
conditions essential to a healthy aquatic ecosystem.

Additionally, the Rhode Island Department of
Environmental Management (RIDEM) and Rhode Island
Water Resources Board Streamflow Committee (2004) made
recommendations for a streamgage network to allow proper
management of the State’s water resources. The streamgage
network is intended to provide streamflow data for the
development of regression equations for estimated streamflow
statistics at ungaged sites in Rhode Island.

This study was done from 2007—11 by the U.S.
Geological Survey (USGS) in cooperation with the RIWRB.
This study provides the RIWRB; RIDEM; Providence Water
Supply Board; other federal, state, county, city, and town
agencies; nongovernmental and private organizations; and
the public with regression equations for estimating selected
streamflow statistics for ungaged stream sites and at-site
streamflow statistics for long- and short-term streamgages and
partial-record stations in and near Rhode Island. Streamflow
statistics can inform planning, management, and permitting
decisions related to ensuring adequate water for consumptive
use, water-quality standards, recreation, and aquatic habitat
in Rhode Island. In addition, the streamflow statistics can be
used by the RIWRB in identifying water sources where uses
might exceed the safe yield under the Rhode Island General
Laws 46-15.7-3.

Purpose and Scope

This report describes regression equations developed for
estimating selected statistics for streamflows in Rhode Island
from basin, land-use, and climatological characteristics. The
selected streamflow statistics estimated with the regression
equations are for natural flow conditions (unaltered stream-
flows). The report provides estimates of selected streamflow
statistics for long- and short-term streamgages and partial-
record stations in and near Rhode Island. Streamflow statistics
for which regression equations were developed include the
99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-,
20-, 15-, 10-, 5-, 2-, and 1-percent flow durations and the 7Q2
(7-day, 2-year) and 7Q10 (7-day, 10-year) low-flow frequen-
cies. An evaluation of the accuracies of the equations and the
limitations for their use are provided with example applica-
tions. Additionally, estimated statistics are provided for long-
and short-term streamgages and partial-record stations for
other selected flow durations between the 99.99- and 0.01-
percentiles and for the mean annual, mean monthly, and
median monthly streamflows; however, regression equations
were not developed for these statistics.

Previous Studies

Kliever (1996) estimated the 99-, 98-, 97-, 95-, 90-,
85-, 80-, 70-, 60-, 50-percent flow durations, 7Q10, and
mean monthly streamflows for August, February, April,
and May for 16 partial-record stations in northern Rhode
Island. Cervione and others (1993) calculated the 80-, 90-,
95-, 98-, and 99-percent flow durations for 25 partial-record
stations in southern Rhode Island. Cervione and others
(1993) also presented a regression equation to estimate the
7Q10 for selected streams in Rhode Island. The equation
does not provide an estimate of the potential error of the
7Q10 and is based on only 4 continuous-record streamgages
in southwestern Rhode Island, 5 streamgages in eastern
Connecticut, 8 streamgages in western Connecticut,
2 streamgages in western Massachusetts, and 2 streamgages
in eastern New York with data through water year 1991.
Currently (2014) selected streamflow statistics may be
estimated for about 25 continuous-record streamgages,
10 discontinued streamgages, and about 90 partial-record
stations throughout Rhode Island. Wandle and Randall (1994)
developed regression equations for estimating the 7Q2 and
7Q10 for central New England, which includes Rhode Island.
Seven of the 51 streamgages used in the regression analyses
were in Rhode Island. Ries (1990) estimated mean annual
runoff from major drainage areas in Rhode Island and
Massachusetts to Narragansett Bay. Additionally, Haecker
(2000) provided estimates of base flow at selected streams in
Rhode Island.

In the adjacent States of Connecticut and Massachusetts,
several additional studies have published regression equations
for estimating selected low-flow statistics over the last
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Figure 3. Annual mean streamflows at the streamgages Branch River at Forestdale, R.1. (01111500), and Pawcatuck River at Wood

River Junction, R.I. (01117500), for water years 1942-2009.

20 years. Ahearn (2008 and 2010) and Ahearn and others
(2006) provided estimated streamflow statistics and regression
equations for various flow durations, 7Q2, 7Q10, and
seasonal flows based on aquatic habitat needs in Connecticut.
Fennessey and Vogel (1990), Vogel and Kroll (1990), Ries
(1990), Risley (1994), Ries (1994a, 1994b, 1997, and 1999),
Ries and Friesz (2000), Ries and others (2000), and Archfield
and others (2010) provided estimated streamflow statistics
and regression equations for various flow durations, 7Q2,
and 7Q10 in Massachusetts. Armstrong and others (2008)
provided regression equations for estimating median monthly
streamflows in Massachusetts. Bent and Archfield (2002)

and Bent and Steeves (2006) provided logistic regression
equations for estimating the probability of a stream flowing
perennially in Massachusetts.

Description of Study Area

Rhode Island encompasses 1,045 square miles (mi?) in
the northeastern United States (fig. 1). Altitudes range from
sea level (defined as the North American Vertical Datum of
1988) in coastal areas to 812 feet (ft) above sea level in the
northwest. Altitudes generally increase from southeast to
northwest in Rhode Island. The climate is humid and temper-
ate. Average annual precipitation ranged from 40 to 53 inches
(in.) during 1971-2000 and is fairly evenly distributed
throughout the months (National Oceanic and Atmospheric
Administration, 2002). Average annual temperature ranged
from 48 to 52 °F; the minimum ranged from 26 to 33 °F in
January, and the maximum ranged from 71 to 73 °F in July
(National Oceanic and Atmospheric Administration, 2002).
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6 Equations for Estimating Selected Streamflow Statistics in Rhode Island

About half of the annual precipitation is returned to the atmo-
sphere through evaporation and plant transpiration, with the
remainder becoming groundwater recharge or stream runoff.

Surficial deposits that overlie bedrock in most of
Rhode Island were deposited mainly during the last glacial
period but can include areas of recent flood-plain alluvium
deposits. In this report, these surficial deposits are classified
as either till (which includes till or bedrock, sandy till over
sand, and end-moraine deposits) or outwash (stratified)
deposits (which includes sand and gravel, coarse sand, fine-
grained sand, and flood-plain alluvium deposits) (fig. 4). Till
(also known as ground moraine) is an unsorted, unstratified
mixture of clay, silt, sand, gravel, cobbles, and boulders that
were deposited by glaciers, commonly on top of bedrock
throughout much of the State. Surficial till is primarily found
in upland areas but can also be found at depth in river valleys.
Outwash deposits include sorted and layered glaciofluvial and
glaciolacustrine deposits. Glaciofluvial deposits are material of
all grain sizes (clay, silt, sand, gravel, and cobbles) deposited
by glacial meltwater streams in outwash plains and river
valleys. Glaciolacustrine deposits generally consist of clay,
silt, and fine sand deposited in temporary lakes that formed
after the retreat of the glacial ice sheet. Outwash deposits are
more widespread in central and southern Rhode Island than in
eastern, northern, and western Rhode Island (fig. 4) (Trench,
1991; DeSimone and Ostiguy, 1999, p. 4). The outwash
deposits are mainly along the major river valleys, and the till
deposits and exposed bedrock are in the upland areas. In the
southern coastal area of the State is a large mixed deposit
(fig. 4), often referred to as the Charlestown moraine, that acts
as a physical barrier to surface-water flow heading south and
sends it toward the southwest to a point of discharge into the
Atlantic Ocean (Masterson and others, 2007; Friesz, 2010; and
Bent and others, 2011).

Land in Rhode Island is primarily forested outside of the
Providence metropolitan area (fig. 5). The Providence met-
ropolitan area is generally bound by Interstates 1-95, 1-295,
and [-195 and the State border with Massachusetts (fig. 1)
and consists primarily of moderate- to high-density housing
and commercial and industrial facilities (fig. 5). From 1970
to 1995 there was a 47-percent increase in the developed land
area in Rhode Island, with the greatest increases in the areas
of residential, commercial, and industrial land (Rhode Island
Statewide Planning Program, 2000).

Rhode Island is within the central highlands, coastal
lowlands, and coastal plain physiographic provinces (Denny,
1982). The central highlands physiographic province is lim-
ited to west central and northwestern areas of the State. The
remainder of the State is within the coastal lowlands phys-
iographic province, excluding Block Island, which is within
the coastal plain province. Rhode Island is entirely within the
Northeastern Coastal Zone of the U.S. Environmental
Protection Agency (EPA) (2006) level I1I ecoregions, exclud-
ing Block Island, which is within the Atlantic Coastal Pine
Barrens ecoregion. The level III ecoregions are delineated on

the basis of geology, physiography, vegetation, climate, soils,
land use, wildlife, and hydrology.

Block Island (fig. 1—inset map), which is about 10 miles
(mi) south of the mainland coast of Rhode Island, was not
included in the study area because the topographic map of
Block Island for the 12-mi? island shows no streams. Veeger
and Johnston (1996) reported that streams are absent through-
out most of the island, except for a few springs along the base
of the sea cliffs on the southern part of the island.

Development of the Streamflow
Statistics and Basin Characteristics
Datasets

Historical streamflow data for USGS streamgages are
available in the USGS National Water Information System
(NWIS) database at the Web site http://waterdata.usgs.gov/
nwis. These streamflow data can be analyzed to determine
particular statistics—such as flow durations, flow frequencies,
and monthly and annual statistics—which are used by water
managers throughout the country. Basin characteristics for
physical, land-use, and climatological data are developed
with geographic information system (GIS) data layers from
Federal, State, and local government agencies and non-
governmental agencies.

Site Selection

All active and discontinued long- and short-term
streamgages and partial-record stations in Rhode Island,
eastern Connecticut, and southeastern and south-central
Massachusetts were evaluated for possible use in the regional
regression analyses. Long-term streamgages were defined
as those having 8 or more years of record (both water years!
and climatic years?) through water year 2006. Short-term
streamgages were defined as those having fewer than 8 years
of record through water year 2009. Partial-record stations were
considered if they had at least 10 streamflow measurements
through water year 2006. Sites in eastern Connecticut and
southeastern and south-central Massachusetts were limited
to those within about 25 mi of the Rhode Island border.

All of the sites in the three States considered are within the
Northeast Coastal Zone of the U.S. Environmental Protection
Agency Ecoregion level IIT (2006) and are based on geology,
physiography, vegetation, climate, soils, land use, wildlife,
and hydrology.

All potential sites were evaluated for flow alteration
processes such as water withdrawals, diversions, flood

'A water year is the 12-month period beginning October 1 and ending
September 30. It is numbered by the calendar year in which it ends.

%A climatic year is the 12-month period beginning April 1 and ending
March 31. It is numbered by the calendar year in which it ends.


http://waterdata.usgs.gov/nwis
http://waterdata.usgs.gov/nwis
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Development of the Streamflow Statistics and Basin Characteristics Datasets 9

control, and wastewater discharge. Those sites with known
flow-altered processes within their drainage basins that were
significant enough to clearly change the recorded daily mean
streamflows for more than several days during each water
year were excluded from the dataset. The final list of sites
included 41 long-term streamgages (22 in Rhode Island,

10 in Connecticut, and 9 in Massachusetts), 21 short-term
streamgages (11 in Rhode Island, 6 in Connecticut, and 4

in Massachusetts), and 135 partial-record stations (95 in
Rhode Island, 25 in Connecticut, and 15 in Massachusetts).

Flow Duration

Flow durations represent the percentage of time that
a given flow is equaled or exceeded without regard to the
sequence of recorded flows (Searcy, 1959). Typically,
flow durations characterize the range of flow rates for the
period over which data were collected. Flow durations were
computed for complete water years for the entire period of
record for 41 long-term streamgages (table 1 and fig. 2) with
8 or more complete water years of record. Flow durations
are computed by sorting the daily mean streamflows for the
period of record from largest to smallest and assigning each
streamflow value a rank, starting with 1 for the largest value.
The frequencies of exceedance are then computed by using the
Weibull plotting-position formula (Weibull, 1939):

P=100*[M/(n+1)] )

where
P is the probability that a given streamflow will
be equaled or exceeded (percent of time),
M s the ranked position (dimensionless), and
is the number of events (daily mean
streamflow values) for the period of record
(dimensionless).

N

Examples of flow-duration curves are provided for the
Adamsville Brook at Adamsville, R.I. (01106000), and for the
Beaver River near Usquepaug, R.1. (01117468), streamgages
(fig. 6). The drainage areas to these streamgages are similar
in size, about 9 mi?, and their record lengths are fairly simi-
lar—38 and 36 years, respectively—but both show distinctly
different flows over much of the flow-duration curve. These
differences are the results of their different periods of record,
physical basin characteristics, land-use characteristics, and (or)
climatic factors.

The program Make Plotting Position (MkPP) (Granato,
2009) computed the selected flow durations by using the
Weibull plotting-position formula. The selected flow durations
range from 99.99 to 0.01 percent, with the number of selected
durations increasing in the extreme percentile ranges (99.99
to 90 and 10 to 0.01) (table 2). These selected flow durations
were considered to most accurately define the flow-duration

curve for a streamgage or for estimating streamflows at an
ungaged site. The streamflow data to be used in the MkPP
program were downloaded for complete water years during
the streamgages’ periods of record through water year 2006
by using the computer program Get National Water Informa-
tion System Streamflow (GNWISQ) (Granato, 2009). For the
streamgages Miscoe Brook near Franklin, Mass. (01103220),
Catamint Brook at Cumberland, R.I. (01113695), and Queen
River at Liberty Road, at Liberty, R.I. (01117370), data
through water year 2009 were used, so that these streamgages
could be used in this study as long-term streamgages (8 or
more complete water years of record) instead of being used
as short-term streamgages with estimated statistics. Estimated
streamflows for the selected flow durations at the long-term
streamgages are presented in table 3.

Table 3. Estimated streamflow statistics for long- and short-term
streamgages in and near Rhode Island.

[Available separately at http://pubs.usgs.gov/sir/2014/5010/
tables/sir2014-5010 _bent table03.xlsx]

Low-Flow Frequency

Low-flow frequencies typically are computed for
streamgages by use of annual series of selected low flows
based on the lowest mean streamflow for a specified num-
ber of consecutive days (Riggs, 1972). Any combination of
number of days of mean minimum flow and years of recur-
rence may be used to determine the low-flow frequencies. The
annual series for the determination of low-flow frequencies for
this study was based on a climatic year. Use of a climatic year
rather than a water year allows for an analysis of an uninter-
rupted low-flow period; in Rhode Island, this low-flow period
typically occurs from early August through mid-October.

Low-flow frequencies were computed for selected days
and frequencies for 41 long-term streamgages (table 1 and
fig. 2) with 8 or more complete climatic years. Low-flow
frequencies are based on the D-day, Y-year frequency statistic
of daily mean streamflow. This statistic is the minimum
consecutive D-day mean streamflow that is expected to occur
once in any Y-year period, or that has a probability of 1/Y of
not being exceeded in any given year. The two commonly
used indexes of low-flow frequencies were determined for
this report: the 7-day, 2-year low-flow frequency (7Q2) and
the 7-day, 10-year low-flow frequency (7Q10). The 7Q2 s
the annual minimum average streamflow for 7 consecutive
days that has a probability of 0.50 (1/recurrence interval) of
not being exceeded in a given year. The 7Q10is the annual
minimum average streamflow for 7 consecutive days that has
a probability of 0.10 of not being exceeded in a given year.
The 7Q101is commonly used in regulating waste disposal
to streams by many States (U.S. Environmental Protection
Agency, 1986).


http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table03.xlsx
http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table03.xlsx
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Figure 6. Flow-duration curves at the streamgages Adamsville Brook at Adamsuville, R.1. (01106000), and Beaver River near

Usquepaug, R.I. (01117468).

Daily streamflow data were downloaded by using the
USGS database software ADAPS (Automatic Data Processing
System). The streamflow data were downloaded for com-
plete climatic years during the period of record through water
year 2006. The input streamflow data were formatted, man-
aged, and displayed by using the USGS computer software
programs Input and Output for a Watershed Data Manage-
ment (IOWDM) file (Lumb and others, 1990) and ANNIE
(Flynn and others, 1995). The computer program Surface
Water Statistics (SWSTAT) (http://water.usgs.gov/software/
SWSTAT/) (A.M. Lumb, W.O. Thomas, Jr., and K.M. Flynn,
U.S. Geological Survey, written commun., 1997) was used
to determine the annual low-flow frequency statistics for the
USGS streamgages. SWSTAT ranks the seasonal and annual
series of minimum mean n-day streamflows and then fits them
to a log-Pearson Type III distribution. A resulting line of fit is
then plotted through the values. The annual series were then
checked for trends, but no trends were evident in the annual

7-day low flows at the long-term streamgages with more

than 50 years of record. Some long-term streamgages with
less than 50 years of record showed no clear trend, a slight
upward trend over time, or a slight downward trend over time.
The results were highly variable, and no clear trend could be
identified for the annual 7-day low flows in Rhode Island. The
estimated 7Q2 and 7Q10 flows for the long-term streamgages
are presented in table 3. An example of the fit of the log-
Pearson Type 11 distribution to the annual 7-day low flow is
provided for the Branch River at Forestdale, R.I. (01111500),
streamgage (fig. 7).

Annual and Monthly Statistics

The streamflow statistics mean annual, mean monthly,
and median monthly streamflows also were computed by
using The Nature Conservancy (2007) computer program
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Table 2. List of selected streamflow statistics computed for long- and short-term streamgages and partial-record stations in and near

Rhode Island.

[Streamflow statistics for which regression equations are presented in this study are in bold and highlighted in light gray.]

Streamflow statistic

Streamflow statistic

Flow duration
199.99
199.95
99.9
99.5
99
98
97
96
95
94
93
92
91
920
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15

[
N W R U1 N0 0O @

e e =
= W

10.05
10.01

Low-flow frequency
7Q2
7Q10

Mean annual

Mean monthly
October
November
December
January
February
March
April
May
June
July
August
September

Median monthly
October
November
December
January
February
March
April
May
June
July
August
September

'Could not be calculated for long- and short-term streamgages where
there were less than 10,000 daily mean streamflow values available.
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Figure 7.
Forestdale, R.I. (01111500), for water years 1941-2006.

Indicators of Hydrologic Alteration (IHA). Data for 41 long-
term streamgages (table 1 and fig. 2) were downloaded from
NWISweb by using GNWISQ (Granato, 2009). Streamflow
statistics were computed for 41 long-term streamgages with
at least 8 or more complete water years of record (table 3).
Eight years is the minimum length of record needed for
obtaining this information. The longer a period of record for
a streamgage, the more information that data can provide to
the users, and the more any influence of extended wet or dry
periods on the streamflow data tends to be minimized. Thus,
for this study, the term “long-term streamgages” refers to those
affected by little to no upstream flow alterations and with at
least 8 years of record. The August median flow is an impor-
tant statistical measure for fisheries and often is used for sum-
mer maintenance of aquatic habitat in New England streams
(U.S. Fish and Wildlife Service, 1981).

Example of the fit of the log-Pearson Type Il distribution to the annual 7-day low flow at the streamgage Branch River at

Flow Statistics for Long-Term Streamgages

Flow statistics for long-term streamgages are critical
for understanding water resources in an area, especially for
those streamgages whose upstream basins included few or
no flow alterations. The records from these streamgages can
provide information on the variability of annual, seasonal,
and daily streamflows, potential trends, low flows, and peak
flows. Those long-term streamgages affected the least by
upstream flow alterations and with at least 10 years of record
are referred to as index streamgages. The records from index
streamgages were those records determined to be acceptable
for use in extending the records for short-term streamgages
and partial-record stations.



Development of the Streamflow Statistics and Basin Characteristics Datasets 17

Flow Statistics for Short-Term Streamgages and
Partial-Record Stations

Estimates of streamflow often are needed for short-term
streamgages, whose periods of record may not represent long-
term hydrologic conditions, and for partial-record stations
with only a limited number of streamflow measurements.
Through correlation and streamflow-record extension tech-
niques, streamflow statistics for the short-term streamgages
and partial-record stations can be estimated. Estimates can be
made on the basis of the relation between daily mean stream-
flows at the short-term streamgages and the concurrent daily
mean streamflows at nearby index streamgages. For this study,
only short-term streamgages (table 1 and fig. 2) and partial-
record stations (table 4, in back of report and fig. 8) with little
to no flow alteration and, respectively, at least 1 year of record
and 10 streamflow measurements, in and near Rhode Island
were used. For short-term streamgages and partial-record sta-
tions, daily mean streamflows and miscellaneous streamflow
measurements, respectively, are related to the concurrent daily
mean streamflows at nearby index streamgages. The index
streamgage selected for the relation to a short-term streamgage
or partial-record station is based on proximity, similarity of the
physical, land-cover, land-use, surficial-deposits, and climato-
logical characteristics between the two sites, and the linear-
ity and Pearson’s correlation coefficient (7) of the relation
between streamflows. For this study, the relation is defined
by use of a streamflow-record extension technique known as
the Maintenance of Variance Extension, type 1 (MOVE.I)
(Hirsch, 1982).

The selection of index streamgages used for estimating
streamflows at short-term streamgages and partial-record
stations must satisfy several criteria: (1) the flow is
essentially natural (very little to no alteration), (2) most
or all of the period of record coincides with that for short-
term streamgages and partial-record stations, and (3) the
period of record is greater than 10 years. For this study,

16 long-term streamgages were identified as possible index
streamgages (table 1 and fig. 2). Of the 16 index streamgages,
9 were located in Rhode Island, 3 in Connecticut, and 4 in
Massachusetts. Only the Adamsville Brook at Adamsville, R.1.
(01106000), streamgage is not currently (2014) operated. After
this streamgage was discontinued in 1978, it was operated
continuously for part of the 1987 water year, and concurrent
streamflow measurements were made (on the same day)
during water years 1992-93 and 2003—-04 with streamflow
measurements at nearby partial-record stations.

Scatterplots of log-transformed streamflow at each
short-term streamgage and partial-record station in relation
to concurrent log-transformed daily mean streamflow at each
of the 16 index streamgages were made by using Microsoft
Excel and the computer program SREF (Granato, 2009) to
determine the nature and quality of the relations between
the streamflows. For partial-record stations with zero-flow
measurements, a value of 0.01 cubic feet per second (ft*/s) for
the zero-flow measurement was used for computation of the

logarithms. Graphical plots of the relations of the data were
evaluated to make sure they were linear. Generally, the relation
with the highest correlation coefficient between the stream-
flows at the short-term streamgage or partial-record station and
the index streamgage was used. For this study, the MOVE.1
technique (Hirsch, 1982) was then used to provide an equa-
tion that related streamflow at the short-term streamgage or
partial-record station to the concurrent streamflow at the index
streamgage. The MOVE.1 equation is

-X) ()

where

is the streamflow or streamflow statistic at the
short-term streamgage or partial-record
station,

X s the streamflow or streamflow statistic at the
index streamgage,

Y  is the mean of the daily mean streamflows or
streamflow measurements at the short-
term streamgage or partial-record station,
respectively,

X  is the mean of the concurrent daily mean
streamflows at the index streamgage,

S, is the standard deviation of the daily mean
streamflows or streamflow measurements
at the short-term streamgage or partial-
record station, respectively, and

S is the standard deviation of the concurrent
daily mean streamflows at the index
streamgage.

2~

The streamflow data used in the MOVE.1 equation is base-10
log transformed, and the resulting streamflow (Y)) must then be
re-transformed back to arithmetic units.

Examples of the MOVE.]1 relation for the short-term
streamgage Chickasheen Brook at West Kingston, R.I.
(01117424), to the index streamgage Beaver River near
Usquepaug, R.I. (01117468), and for the partial-record sta-
tion Burnt Swamp Brook near Grant Mills, R.I. (01113670),
to the index streamgage Wading River near Norton, Mass.
(01109000), are shown in figures 9 and 10, respectively.

Streamflow statistics were estimated by using the
MOVE.1 record-extension technique for 21 short-term
streamgages (table 1 and fig. 2) and 135 partial-record sta-
tions in and near Rhode Island (table 4, in back of report and
fig. 8). The index streamgage selected for estimating selected
streamflow statistics at the short-term streamgage or partial-
record station, the correlation coefficient describing that
relation, and the number of data points used in the analyses
are listed in table 5 (in back of report). Additionally, informa-
tion about the relation between the sites, such as the minimum,
maximum, and range of the flow duration(s) for which a daily
mean streamflow at a short-term or streamflow measure-
ment at a partial-record station were used in the analysis, also
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Figure 9. Example of Maintenance of Variance Extension, type 1 (MOVE.1), relation between concurrent daily mean
streamflows at the short-term streamgage Chickasheen Brook at West Kingston, R.1. (01117424), and the index streamgage

Beaver River near Usquepaug, R.I. (01117468).

is presented in the table 5 (in back of report). Analyses for
several partial-record stations in and near Rhode Island are
not presented in the report because (1) the best correlation
coefficients were less than 0.80; (2) the record had fewer than
10 streamflow measurements; (3) the streamflow measure-
ments covered less than 50 percent of the range of the flow-
duration curve; or (4) known alterations in the drainage basin
could have affected streamflows. Results of the estimated
streamflow statistics for 21 short-term streamgages and for
135 partial-record stations are in tables 3 and 6, respectively.

Table 6. Estimated streamflow statistics for partial-record
stations in and near Rhode Island.

[Available separately at http://pubs.usgs.gov/sir/2014/5010/
tables/sir2014-5010 _bent table06.xlsx]

Basin Characteristics for Streamgages and
Partial-Record Stations

The characteristics of streamflow are directly related to a
drainage basin’s physical, land-cover, land-use, geologic, and
climatic characteristics. Characteristics of the drainage basin
were selected for use as potential explanatory variables in the
regression analysis on the basis of their theoretical relations
to streamflows, the results of previous streamflow studies in
similar hydrologic regions, and the feasibility of determining
the basin characteristics with digital datasets and GIS technol-
ogy. Measuring the basin characteristics with GIS technology
facilitates automation of the process and the process of solving
the regional regression equations by using the USGS Stream-
Stats Web-based application.


http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table06.xlsx
http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table06.xlsx
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Figure 10.

Example of Maintenance of Variance Extension, type 1 (MQOVE.1), relation between concurrent miscellaneous streamflow

measurements at the partial-record station Burnt Swamp Brook near Grant Mills, R.I. (01113670), and daily mean streamflows at the

index streamgage Wading River near Norton, Mass. (01109000).

The geospatial data layers for calculation of basin
characteristics are as follows: (1) total length of streams data
are from the National Hydrography Dataset (NHD) (U.S.
Geological Survey, 2007a); (2) elevation data, also used for
slope calculations, are from the National Elevation Dataset
(NED) (U.S. Geological Survey, 2007b); (3) land-cover and
land-use data are from Rhode Island Geographic Information
System (RIGIS) (Rhode Island Geographic Information
System, 2008a), the Massachusetts Office of Geographic
Information (MassGIS) (Massachusetts Office of Geographic
Information, 2009), and the University of Connecticut—
Center for Land Use Education and Research (CLEAR)
(University of Connecticut—Center for Land Use Education
and Research, 2007a); (4) impervious-cover data are from
RIGIS (Rhode Island Geographic Information System, 2008b),
MassGIS (Massachusetts Office of Geographic Information,
2007a), and CLEAR (University of Connecticut—Center for

Land Use Education and Research, 2007b); (5) surficial-
geology data (1:24,000 scale) are from RIGIS (Rhode

Island Geographic Information System, 2007), MassGIS
(Massachusetts Office of Geographic Information, 2007b),
and the University of Connecticut—Map and Geographic
Information Center (MAGIC) (University of Connecticut—
Map and Geographic Information Center, 2007); (6) soil
hydrologic group data are from the Natural Resources
Conservation Service (NRCS) Soil Survey Geographic
database (SSURGO) (Natural Resources Conservation
Service, 2007); and (7) climatic (precipitation and temperature
1971-2000) are from the Parameter-Elevation Relationships
on Independent Slopes Model (PRISM) Climate Group,
Oregon State University (2007). The basin boundaries for the
41 long-term and 21 short-term streamgages and 135 partial-
record stations were overlaid on areal coverages of the basin



characteristics of interest to determine the characteristics’
values for the upstream basin to each site.

A GIS database was set up to store the characteristics of
the drainage basins for the streamgages used in the regres-
sion analysis. The data layer from the NHD for total length of
streams (U.S. Geological Survey, 2007a) was edited. Where a
stream had more than one flow path (for example, around an
island or in outlets from wetland areas), coverage was limited
to only one flow path. Also, any stream segment shown cross-
ing a basin boundary other than at the basin outlet was deleted
so that all stream segments were within the basin boundary.
This data layer for edited total length of streams was used with
the basin characteristic data for drainage area (represented
by the variable DRNAREA?®) to determine the basin charac-
teristic data for stream density (represented by the variable
STRDENED?), which is the edited total length of streams
divided by the drainage area. The names, units of measure,
and sources of data for each measured basin characteristic are
listed in table 7. The basin characteristics for long- and short-
term streamgages and partial-record stations are in tables 8
and 9, respectively.

Table 8. Basin characteristics for long- and short-term
streamgages in and near Rhode Island.

[Available separately at http://pubs.usgs.gov/sir/2014/5010/
tables/sir2014-5010_bent_table08.xlsx]

Table 9. Basin characteristics for partial-record stations in and
near Rhode Island.

[Available separately at http://pubs.usgs.gov/sir/2014/5010/
tables/sir2014-5010 bent table09.xlsx]

Equations for Estimating Selected
Streamflow Statistics

Streamflow information for ungaged sites is critical
for Federal, state, county, city, and town agencies;
nongovernmental and private organizations; and individuals
and public groups dealing with water-resources issues. Flow-
frequency and duration-streamflow statistics for streams at
ungaged sites can be estimated by using several methods.
These methods include (1) a drainage-area ratio and (2) a
regression equation relating streamflow statistics to basin
characteristics. Additionally, streamflow statistics may be
estimated for an ungaged site with at least 10 miscellaneous
streamflow measurements by the correlation of measured
streamflows with concurrent daily mean streamflows at nearby
continuous-record streamgages (index streamgages) followed
by the streamflow-record-extension technique known as
the Maintenance of Variance Extension, type 1 (MOVE.I)
(Hirsch, 1982).

SUSGS StreamStats basin-characteristics label (http:/streamstatsags.cr.usgs.
gov/ss_defs/basin_char defs.aspx).
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Drainage-Area Ratio Methods

The drainage-area ratio method is based on the assump-
tion that the streamflow at an ungaged site is the same per unit
drainage-basin area as that at a nearby hydrologically similar
streamgage with little to no flow alteration of the upstream
basin. Drainage areas to the ungaged site and the streamgage
are determined from topographic maps or the USGS Stream-
Stats web application (http://streamstats.usgs.gov/index.
html). Streamflow statistics are computed for the streamgage,
and then the statistics (streamflow values) are divided by the
drainage area to determine the streamflow for each statistic per
unit area in cubic feet per second per square mile (ft¥/s/mi?)
at the streamgage. These values are multiplied by the drain-
age area to the ungaged site to obtain estimated statistics for
that site. This method is most commonly applied if the index
streamgage is on the same stream as the ungaged site because
the accuracy of the method depends on the proximity of the
two sites, on similarities in drainage area, and on other physi-
cal and climatic characteristics of their drainage basins.

Several studies have provided estimates of the maximum
difference in drainage areas for which the use of the drainage-
area ratio method would generate more accurate estimates
of streamflow statistics than the use of regression equations.
Guidelines have been provided for estimating peak-flow
statistics, and usually the recommendation has been that the
drainage area to the ungaged site should be 0.5 to 1.5 times
the drainage area to the index streamgage (Choquette, 1988,
p. 41; Koltun and Roberts, 1990, p. 6; Lumia, 1991, p. 34;
Bisese, 1995, p. 13; Koltun and Whitehead, 2002, p. 22; and
Martin and Arihood, 2010, p. 28). One report (Koltun and
Schwartz, 1987, p. 32) recommended a narrower range of
0.85 to 1.15 times the drainage area of the index streamgage
for estimating low flows at ungaged sites in Ohio. Ries and
Friesz (2000), however, determined that the drainage-area
ratio method could be used to estimate low-flow statistics for
ungaged sites in Massachusetts if the drainage area for an
ungaged site was between 0.3 and 1.5 times the drainage area
of the index streamgage site. They found that this method
was generally as accurate as or more accurate than regression
equations for this range of drainage areas.

In the drainage-area ratio method, the streamflow values
are transferred from a streamgage to the ungaged site by the
following formula:

0,-0, X( DRNAREA, ) @
DRgNAREA,
where
0, is the estimated streamflow at the ungaged
site,
Qg is the streamflow at the streamgage,
DRNAREA, is the drainage area at the ungaged site, and
DRNAREAg is the drainage area at the streamgage.


http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table08.xlsx
http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table08.xlsx
http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table09.xlsx
http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table08.xlsx
http://streamstats.usgs.gov/index.html
http://streamstats.usgs.gov/index.html
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Table 7. List of basin characteristics determined for long- and short-term streamgages and partial-record stations in and near
Rhode Island.

[The geospatial datalayers for calculation of basin characteristics are as follows: total length of streams data are from an edited version of the National Hydrog-
raphy Dataset (U.S. Geological Survey, 2007a); elevation data, also used for slope calculations, are from the National Elevation Dataset (NED) (U.S. Geological
Survey, 2007b); land-cover and land-use data (2003/2004) are from the Rhode Island Geographic Information System (RIGIS) (Rhode Island Geographic Infor-
mation System, 2008a), the Massachusetts Office of Geographic Information (MassGIS) (Massachusetts Office of Geographic Information, 2009), and the Uni-
versity of Connecticut Center for Land Use Education and Research (CLEAR) (University of Connecticut Center for Land Use Education and Research, 2007a);
impervious-cover data are from RIGIS (Rhode Island Geographic Information Systems, 2008b), MassGIS (Massachusetts Geographic Information System,
2007a), and CLEAR (University of Connecticut Center for Land Use Education and Research, 2007b); surficial-geology data (1:24,000 scale) are from RIGIS
(Rhode Island Geographic Information System, 2007), MassGIS (Massachusetts Office of Geographic Information, 2007b), and the University of Connecticut
Map and Geographic Information Center (MAGIC) (University of Connecticut Map and Geographic Information Center, 2007); soil hydrologic group data are
from the Natural Resources Conservation Service (NRCS) Soil Survey Geographic database (SSURGO) (Natural Resources Conservation Service, 2007); and
climatic data (precipitation and temperature 1971-2000) are from the Parameter-Elevation Relationships on Independent Slopes Model (PRISM) Climate Group,
Oregon State University (2007). NAVD 88, North American Vertical Datum of 1988; NAD 83, North American Datum of 1983]

Physical characteristics

Drainage area (DRNAREA'), in square miles

Basin perimeter, in miles

Total length of streams, in miles

Stream density (STRDENED!) (total length of streams divided by drainage area), in miles per square mile
Stream slope between 10 and 85 percent of the main channel river length, in percent
Mean basin slope, in percent

Maximum basin elevation, in feet relative to NAVD 88

Minimum basin elevation, in feet relative to NAVD 88

Mean basin elevation, in feet relative to NAVD 88

Basin relief (maximum minus minimum basin elevation), in feet

Basin outlet elevation, in feet relative to NAVD 88

Basin centroid location—easting, state plane feet, relative to NAD 83

Basin centroid location—northing, state plane feet, relative to NAD 83

Basin outlet location—easting, state plane feet, relative to NAD 83

Basin outlet location—northing, state plane feet, relative to NAD 83

Areal proportions of land-cover, land-use, and surficial-deposits characteristics
Forested land, in percent

Agricultural land, in percent

Water bodies, in percent

Forested wetlands, in percent

Nonforested wetlands, in percent

Total wetlands (forested and nonforested), in percent

Impervious land, in percent

Urban land (high-density residential, commercial, industrial, and transportation land use), in percent
Sand and gravel deposits, in percent

NRCS SSURGO soil hydrologic groups A, B, C, and D, in percent

Climatological characteristics
PRISM Precipitation 1971-2000, drainage-basin average for mean annual, in inches
PRISM Temperature 1971-2000, drainage-basin average for mean annual maximum, in degrees Celsius

'USGS Streamstats basin characteristics label (http://streamstatsags.cr.usgs.gov/ss_defs/basin_char_defs.aspx).


http://streamstatsags.cr.usgs.gov/ss_defs/basin_char_defs.aspx

Eash and Barnes (2012) did a comparison of estimates
of the 7-day 10-year low flow by using regional regression
equations, the drainage-area ratio method, and the weighted
drainage-area ratio method to estimates from streamflow
records for 48 streamgages (31 pairs of streamgages) on the
same rivers in lowa. They found that the weighted drainage-
area ratio provided the best estimate if the drainage area to the
ungaged site was between 0.4 and 1.5 times the drainage area
to the streamgage.

In the weighted drainage-area ratio method, the stream-
flow values are transferred from a streamgage to the ungaged
site by using the following formula:

- s |_
o.m0(2)

where

Quw

8ar

2 X|DRNAREA| % [QgJ -1
€)

DRNAREA,

is the weighted estimated streamflow at the
ungaged site,
Q,  isthe streamflow at the ungaged site estimated
from the regression equation,
0 is the streamflow at the streamgage estimated
from measured data,

gs

Qgr is the streamflow at the streamgage estimated

from the regression equation,

IDRNAREA|  is the absolute value of the difference between
the drainage areas to the streamgage
(DRNAREAg) and the ungaged site
(DRNAREA ),

DRNAREAg is the drainage area to the streamgage, and

DRNAREA, is the drainage area to the ungaged site.

As % approaches 1, or the difference in drainage areas
o

approaches 50 percent, the weighting factor approaches 1 and
no longer has an effect on the regression equation estimate
for the ungaged site. Additionally, both the drainage-area and
weighted drainage-area ratio methods may not be applicable
for ungaged sites where changes in the physical, land-cover,
land-use, surficial-deposits, or climatological characteristics
or alterations to streamflows between the ungaged site and the
streamgage are substantial. The error associated with estimates
based on the drainage-area and weighted drainage-area ratio
methods can not be calculated.

Regional Regression Analyses

Studies to develop regional regression equations for
estimating streamflow statistics at ungaged sites have been
done in many states throughout the U.S. and specifically in
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the states adjacent to Massachusetts. Multiple regression
analyses provide a mathematical equation for estimating a
response (dependent) variable—streamflow statistic—from
one or more explanatory (independent) variable(s), such as
basin characteristics. Ideally, the development of regression
equations involves the use of streamflow data from a large
number of long-term streamgages on unaltered streams
evenly distributed across the region of interest and with a
range of basin characteristics. But in many cases, the number
of streamgages representing unaltered flow is limited, the
streamgage network is often biased toward representing
larger streams or rivers, the network is unevenly distributed
geographically, and the range of basin characteristics upstream
of streamgages does not cover the complete range found
in the region. In Rhode Island, the number of streamgages
on streams with little to no flow alteration is limited; for
this reason, nearby streamgages in eastern Connecticut and
southeastern and south-central Massachusetts were also
included. The records for these streamgages were used to
develop regional regression equations for estimating selected
streamflow statistics at ungaged sites in Rhode Island.
Multiple regression is used to create equations that relate
streamflow statistics for streamgages to the physical, land-
cover, land-use, surficial-deposit, and climatological character-
istics of their upstream drainage areas. Once an optimal equa-
tion has been determined, a streamflow statistic at a nearby
ungaged site in a basin with similar characteristics can then be
estimated by applying the equation to the ungaged site.
The basic equation describing a linear multiple regression
analysis is

Y, =b,+b X, +b,X,+...+b X, +e, “)
where
Y is the response (dependent) variable
(estimated streamflow statistic) for the
ungaged site i,
b,tob, are the coefficients determined in the analysis,
XtoX are the explanatory (independent) variables

(basin characteristics) for the ungaged site
i, and

e.  1isthe residual error or difference between the
observed and estimated response variables
for ungaged site i.

Linear regression analysis is based on the following
assumptions: (1) the mean of the residuals (e) is zero, (2) the
variance of the residuals is constant, (3) the residuals are nor-
mally distributed, and (4) the residuals are independent of each
other. In addition to these assumptions, the selected explana-
tory variables (X) should have a physical basis as predictors
of the streamflow statistic, the explanatory variables (basin
characteristics) in the equation should not be highly correlated
with each other, and the signs of the terms of the equation
should make hydrological sense. For example, the variable
drainage area should have a positive coefficient because an
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increase in drainage area should result in an increase in the
value of the streamflow statistic.

In almost all regionalization studies to determine low-
flow and peak-flow statistics, the response and explanatory
variable datasets are skewed. As a consequence, the data need
to be transformed to ensure that the mean of the residuals
equals zero. In many studies, a logarithmic transformation is
used. A basel0 log-transformed multiple regression equation
has the form

logY, =b, +blogX, +b,logX, +...+blogX, +e, (5)

After the coefficients have been determined through
regression analysis, the equation is transformed back to its
original units in a form that can be used to estimate a specific
streamflow statistic at an ungaged site. The retransformed
equation has the following form:

Y, =10" + X" + X, +...+ X, +10% . (6)

A linear regression equation provides an unbiased esti-
mate of the mean response of the response variable. Although
estimates provided by equation 5 are unbiased, these esti-
mates are in log units, whereas estimates in the original units
are needed to calculate specific streamflow statistics at an
ungaged site. Estimates from equation 6 are in the original
units. However, this equation predicts the median, instead
of the mean, value of the response variable. A streamflow
statistic based on a median creates an estimate that is biased
and tends to be lower than the mean (Ries and Friesz, 2000).
Bias correction factors (BCFs) were used in some studies in
Massachusetts and New Hampshire to remove the bias from
the estimate (Ries, 1994a and b; Ries and Friesz, 2000; Flynn,
2003a and b, and Archfield and others, 2010). In other studies
(Risley, 1994; Stuckey, 2006; Armstrong and others, 2008;
and Ahearn, 2010), BCFs were not used, likely because they
were generally very small. In this study, BCFs were also not
used, because if they were, then the streamflows estimated
from the regression equations would not have an equal chance
of being higher or lower than their actual values (Julie Kiang,
U.S. Geological Survey, oral commun., 2011).

Development of Regression Equations

In regional regression studies, explanatory and response
variables often need to be transformed before the regression
equation is created to ensure a linear relation. Scatterplots,
correlation tables, and linear regression analyses were done
by applying the statistical software Minitab (2003) to the
selected streamflow statistics at long-term and short-term
streamgages (table 3) and the basin characteristics (table 8)
to determine if variable transformations were needed. The
scatterplots indicated that a log transformation was needed to
meet the assumptions of linear regression. Thus, the loga-
rithmic (base-10) transformation was selected and applied to

streamflow statistics (response variables) and basin character-
istics (explanatory variables) to linearize the relation between
the explanatory variables and the response variables, to ensure
equal variance about the regression line, and to decrease the
spread of the data.

Several potential explanatory variables (basin characteris-
tics) for the drainage basin upstream of a few streamgages had
one or a few values of zero. The variables were generally lim-
ited to land-cover, land-use or surficial deposits characteristics
of the drainage basin, such as forested land, water bodies,
wetlands, impervious land, and sand and gravel deposits. To
logarithmically (base-10) transform all the values of that basin
characteristic, a constant value of 0.01, 0.10, or 1.00 (depend-
ing on the lowest values other than the zero values) was added
to all values of that basin characteristic.

Scatterplots of logarithmic (base-10) transformed basin
characteristics were then examined to determine if particular
characteristics were correlated with other characteristics ()
(table 10). If two basin characteristics were found to have a
moderate or strong correlation (an absolute value of Pearson’s
r greater than or equal to 0.50), then those basin characteristics
were tested separately in the variable-selection process of the
regression analyses. This separate testing was done to elimi-
nate redundant basin characteristics in the variable-selection
process. For example, the basin characteristics denoted as
“drainage area” and “total length of streams” had very strong
correlations of 7=0.98 and higher (table 10). For this rea-
son, these basin characteristics were tested separately in the
variable-selection process.

Table 10. Pearson’s correlation coefficients for basin
characteristics evaluated as potential explanatory variables for
regression equations for estimating selected streamflow statistics
for long- and short-term streamgages in Rhode Island.

[Available separately at http://pubs.usgs.gov/sir/2014/5010/
tables/sir2014-5010 _bent tablel0.xlsx]

For the initial regression analyses of the selected poten-
tial explanatory variables, the automated statistical procedures
called “best subsets” and “stepwise” were used in Minitab
(2003). Both selection procedures determined the statistical
contribution that was entered in the equation for each of the
explanatory variables (basin characteristics), and variables
were retained or deleted based on their statistical importance.

In the procedure “best subsets” (Minitab, 2003), the
two equations with the highest coefficients of determination
(R?), the Mallow’s Cp closest to the number of explanatory
variables plus the constant 1, and the lowest root mean square
errors were evaluated for each of the possible combinations of
selected explanatory variables to determine the best possible
combinations of the explanatory variables. The procedure
identified the best two combinations of explanatory variables
for models with a specified number of explanatory variables.
With this procedure, each explanatory variable can be included
or excluded independently of the other explanatory variables.


http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table10.xlsx
http://pubs.usgs.gov/sir/2014/5010/tables/sir2014-5010_bent_table10.xlsx

Efroymson’s stepwise selection procedure (Efroymson,
1960), is similar to forward selection, which involves test-
ing explanatory variables one by one and including them in
the equation if they are statistically significant; however, as
each new variable is added to the subset, partial correlations
are considered to determine whether any of the variables in
the subset should be dropped. In the procedure “stepwise”
(Minitab, 2003), the procedure essentially outputs the best
potential combination of explanatory variables (which have
T-statistic values whose absolute values are greater than or
equal to 2.00 and p-values less than or equal to 0.05) for
models with increasing numbers of explanatory variables until
no additional variables meet the criteria for 7-statistic values
and p-values. Additionally for each model, R?, Mallow’s Cp,
and s (root mean square error) are presented to assist in evalu-
ation of the models. In these analyses, basin characteristics
that were found to be highly correlated (absolute value of
greater than or equal to 0.50) were entered only one at a time
during the “best subsets” and “stepwise” procedures to prevent
regression problems.

If the two “best subsets” and “stepwise” procedures iden-
tified the same set of basin characteristics, then the top few
potential explanatory variables were further evaluated with
the ordinary-least-squares (OLS) regression procedure. For
the explanatory variables, the p-value, 7T-statistic value, and
VIF (variance inflation factor) statistics were evaluated. For
the model output parameters R?, s, PRESS statistic, unusual
observations (large standard residuals and (or) X values with
large influence), and the Durbin-Watson statistic were evalu-
ated. The histogram, normal probability, and graphs of the
residuals as functions of the fitted values and the order of the
data also were evaluated. Additionally, the statistic named
“high influence,” the Cook’s Distance statistic, and the DFITS
statistic were evaluated.

After the evaluation of selected streamflow statistics
estimated for the short-term streamgages (table 3) and partial-
record stations (table 6), only the short-term streamgages were
selected for inclusion with the 41 long-term streamgages for
the regression analysis. Two of the 21 short-term streamgages
were not included in the regression analyses because the
record for another streamgage nearby on the same river
was longer, and the drainage areas and basin characteristics
of the two streamgages were similar. Exclusion of these
two streamgages removed redundancy of those streamflow
statistics and basin characteristics in the regression analyses.
The two short-term streamgages excluded were Chepachet
River near Gazzaville, R.I. (01111410), and Beaver River at
Shannock Hill Road near Shannock, R.I. (01117471) (fig. 2).

The partial-record stations were not included in the
regression analyses because of several factors:

1. The 135 partial-record stations had from 11 to 87 stream-
flow measurements for use in the MOVE.I relation with
an index streamgage for estimating long-term streamflow
statistics, whereas a 1-year of continuous record at a
streamgage would provide 365 daily mean streamflow
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values for use in the MOVE.]1 relation with an index
streamgage for estimating long-term statistics.

2. Weighting procedures for partial-record stations have
differed among previous studies. For example, Stuckey
(2006) assigned 1 year of record to partial-record sta-
tions for every year when a streamflow measurement was
made, whereas Ahearn (2010) assigned 5 years of record
to partial-record stations for every year when a measure-
ment was made. Either of these weighting procedures
could result in more years of record for a partial-record
station than for a short-term streamgage which was oper-
ated for 1 or more years. If the number of streamflow
measurements for a partial-record station were divided by
365 days, the partial-record station would have so little
weight that its effect in the regression analyses would be
negligible.

3. Boxplots of selected basin characteristics for partial-
record stations were compared with boxplots for the long-
term and short-term streamgages, and the comparison
showed that the partial records did not expand the range
of the basin characteristics.

4. The computer program entitled “Displaying Redundant
Partial Record Sites—drprs” (Charles Berenbrock and
Ken Eng, U.S. Geological Survey, written commun.,
2009) was used to evaluate the data from the partial-
record stations for possible use in the regional regression
analyses. Results showed that the range between the mini-
mum and maximum values for the basin characteristics
were adequately covered by data from the long- and short-
term streamgages. Additionally, the program showed that
there were no areal gaps within the study area that could
have been covered by the partial-record stations.

5. The regression equations might be overly influenced by
estimated streamflow statistics from a large number of
partial-record stations with small drainage areas.

6. The streamflow statistics for the index streamgages are
already included in the regression analyses, and they also
were used to estimate the long-term streamflow statistics
for the short-term streamgages that are also included in
the analyses.

Weighting Procedures

For flow-duration statistics, a weighted procedure similar
to that used by Ahearn (2010) in Connecticut and Stuckey
(2006) in Pennsylvania was used. The weight factor for the
record of each streamgage used in the regression analyses was
increased in proportion to the length of the record. The weight
was assigned by multiplying the number of years in the period
of record by the total number of streamgages in the study and
dividing the product by the total number of years of record
for all streamgages in the study. For example, the weight for
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the short-term streamgage Ashaway River at Ashaway, R.I.
(01118360), with the equivalent of 2 years of record would
be 0.0882 [(2 years x 60 streamgages) + (1,361 total years)],
whereas the weight for Adamsville Brook at Adamsville, R.1.
(01106000), with the equivalent of 38 years of record would
be 1.6752 [(38 years x 60 streamgages) ~ (1,361 total years)].

Final Regression Equations

The response variables (flow duration and low-flow-
frequency statistics) included some zero flows for the lower
flow statistics at some streamgages. Of the 60 streamgages’
statistics used in the regression analyses, 4 had zero flow
at the 7Q10, and 99- and 98-percent flow durations. Two
streamgages also had zero flow at the 7Q2 and 95-percent flow
duration (table 3). The value of zero cannot be logarithmically
transformed, but logarithmic transformation of streamflow sta-
tistics (that are not normally distributed) is needed to develop
regression equations.

The method of handling the zero values in a regression
analysis depends on the number of streamgages in the
dataset with response variables equal to zero. If the number
is sufficient, logistic regression or a Tobit model can be used
(Tasker, 1989; Ludwig and Tasker, 1993; Kroll and Stedinger,
1999; Hortness, 2006). If the number is small, left-censored
regression analysis, which uses an adjusted maximum-
likelihood estimation (Cohn, 1988, and Helsel, 2005) or a
method that adds a small constant value (0.01, 0.10, and
1.00) to all response variables in a dataset, is used (Kroll and
Stedinger, 1999).

Given the small number of streamgage in this study with
zero-flow statistics for the 7Q10 and 7Q2 and 99-, 98-, and
95-percent flow durations, left-censored regression analy-
ses were used to develop the regression equations for these
streamflow statistics. The left-censored regression analy-
ses were done by using USGS library S—Plus for Windows
(Lorenz and others, 2011) in the program TIBCO Spotfire S—
Plus (TIBCO Software, Inc., 2008). This procedure in S—Plus
uses the adjusted maximum-likelihood estimation, which is
recommended for data that is log-normally distributed. The
adjusted maximum-likelihood estimation is described by Cohn
(1988) and Helsel (2005).

For the flow-duration statistics 90-, 85-, 80-, 75-, 70-,
60-, 50-, 40-, 30-, 25-, 20-, 15-, 10-, 5-, 2-, and 1-percent,
the final regression equations were developed by using the
user-weighted least-squares (WLS) regression technique in the
weighted-multiple-linear regression (WREG) program (Eng
and others, 2009).

The regression analyses determined that drainage arca
(represented by the variable DRNAREA) (mi?) was a signifi-
cant explanatory variable in all 21 of the regression equations.
Drainage area generally is the most significant explanatory
variable in all regional streamflow regression equations,
whether for low flows, peak flows, mean annual, mean
monthly, or median monthly statistics. The final regression
equations for the 21 streamflow statistics are listed in table 11.

Stream density (STRDENED) (mi/mi?), which is the
total length of streams (mi) divided by the drainage area (mi?),
also was a significant explanatory variable in all but 3 of the
21 regression equations. The three streamflow statistics for
which STRDENED was not significant were the 20-, 15-, and
10-percent flow durations. Stream density is less commonly
a significant explanatory variable than drainage area but has
been used in low-flow regression equations for a region of
Pennsylvania (Stuckey, 2006), logistic regression equations
for estimating the probability of a stream flowing perennially
in Massachusetts (Bent and Archfield, 2002), and peak-flow
equations for Rhode Island (Zarriello and others, 2012).

Stream density had a negative coefficient in several
regression equations for estimating low flows in Pennsylvania
(Stuckey, 2006) and in the logistic regression equation for
estimating the probability of streams flowing perennially in
Massachusetts (Bent and Archfield, 2002). Zarriello and others
(2012) found stream density to have a positive coefficient in
the regression equations for estimating peak flows in Rhode
Island. The coefficient for STRDENED in this study changed
from negative in the low-flow regression equations to posi-
tive in the high-flow equations. For example, the coefficient
for STRDENED decreased from -2.29 in the equation for
the 99-percent flow duration to -0.18 in the equation for the
25-percent flow duration, and then increased from +0.18 at the
S-percent flow duration to +0.49 at the 1-percent flow duration
(table 11). At high-flow durations, a greater stream density
allows runoff to be quickly routed out of the basin (less water
being available during lower flows) through its larger network
of flow paths; the increasing streamflow is represented by the
positive coefficient. STRDENED is not a significant explana-
tory variable between the 20- and 10-percent flow durations
because the coefficient is changing from positive to negative;
as a result, its effect on streamflow is minimal. At low-flow
durations, a greater stream density in a basin allows base flow
to be routed out of the basin earlier in the runoff recession
(less base flow being available during lower flows) through
its larger network of flow paths intercepting the water table;
the decreasing streamflow is represented by the negative
coefficient.

The standard error of the estimate for the 21 regression
equations ranged from 17.58 to 141.83 percent (table 11). The
low-flow statistics—the 99- to 85-percent flow durations and
7Q2 and 7Q10—had higher standard errors of the estimate,
ranging from 48.68 to 141.83 percent. The standard error
of the estimate for the medium- to high-flow statistics—the
80- to 1-percent flow durations—ranged from 17.58 to
37.65 percent, with the standard errors for the 60- to 1-percent
flow durations all being less than about 21 percent. Although
the standard errors of the estimate are high for the low-flow
statistics, they are similar to those calculated for regional
regression equations developed to estimate low-flow statistics
in Connecticut (Ahearn, 2010) and Massachusetts (Ries
and Friesz, 2000). Additionally, high standard errors of the
estimate for low-flow equations are common in statewide
studies throughout the U.S. The user-WLS regression



Table 11.
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Summary of regression equations and measures of model accuracy for estimating selected streamflow statistics in

[DRNAREA, drainage area in square miles; STRDENED, drainage density in miles per square mile; WLS, weighted-least-squares regression; WREG,
weighted-multiple-linear regression (Eng and others, 2009); S+, statistical software program in S programming language (TIBCO Software, Inc., 2008); --, no

data available]

Standard

Standard

Stream- Number error of the Standard error of Standard
flow Regression equation of estimate oo of the prediction error ?f Regression method
statistic stations (base-10 estimate (base-10 prediction
logarithm) (percent) logarithm) (percent)
Flow duration
9.3325(DRNAREA)*4STRDENED)*# 60 0.0909 21.15 0.0915 21.31 User WLS-WREG
2 7.4131(DRNAREA)*(STRDENED)** 60 0.0820 19.06 0.0827 19.21 User WLS-WREG
5.4954(DRNAREA)*¥(STRDENED)"!® 60 0.0840 19.52 0.0846 19.67 User WLS-WREG
10 4.3652(DRNAREA)"® 60 0.0758 17.58 0.0762 17.67 User WLS-WREG
15 3.4674(DRNAREA)"" 60 0.0766 17.78 0.0770 17.87 User WLS-WREG
20 2.7542(DRNAREA)'* 60 0.0785 18.22 0.0789 18.32 User WLS-WREG
25 2.6915(DRNAREA)!"3(STRDENED)*! 60 0.0768 17.83 0.0774 17.96 User WLS-WREG
30 2.3442(DRNAREA)"*(STRDENED)* 60 0.0789 18.31 0.0795 18.45 User WLS-WREG
40 1.8621(DRNAREA)"(STRDENED)** 60 0.0778 18.07 0.0784 18.20 User WLS-WREG
50 1.4791(DRNAREA)"5(STRDENED)** 60 0.0803 18.65 0.0809 18.79 User WLS-WREG
60 1.0715(DRNAREA)"(STRDENED) 60 0.0887 20.65 0.0894 20.80 User WLS-WREG
70 0.6761(DRNAREA)""3(STRDENED) ¢ 60 0.1080 25.25 0.1088 25.44 User WLS-WREG
75 0.5243(DRNAREA)""(STRDENED) % 60 0.1304 30.72 0.1314 30.96 User WLS-WREG
80 0.4074(DRNAREA)'*'(STRDENED) ! 60 0.1581 37.65 0.1593 37.95 User WLS-WREG
85 0.2951(DRNAREA)'*(STRDENED) 18 60 0.2003 48.68 0.2025 49.27 User WLS-WREG
90 0.1995(DRNAREA)!*5(STRDENED) 48 60 0.2894 74.76 0.2915 75.45 User WLS-WREG
95 0.1006(DRNAREA)'*(STRDENED) % 60 0.3659 101.67 -- -- Left censored—S+
98 0.0591(DRNAREA)*(STRDENED)2* 60 0.4018 116.35 - - Left censored—S+
99 0.0441(DRNAREA)"*(STRDENED)2% 60 0.4560 141.83 - - Left censored—S+

Low-flow frequency

7Q2
7Q10

0.1104(DRNAREA)(STRDENED)'*! 60
0.0311(DRNAREA)'7(STRDENED)>% 60

0.3918
0.4537

112.10 - -
140.65 - -

Left censored—S+
Left censored—S+

technique in the WREG program or in the left-censored
regression analyses do not calculate the R°.

A review of areal plots of the residuals (differences
between streamflow statistics estimated from measured
streamflow and those estimated from the regression equations)
for the 7Q10 low-flow frequency and the 95-, 75-, 50-, 25-,
and 5-percent flow-duration statistics at the 60 streamgages
did not indicate any strong regional biases (clear groups of
negative or positive residuals) (figs. 11A—F). Additionally,
plots of the streamflow statistics estimated from measured
streamflow (observed data) as functions of the same statistics
estimated from the regression equations (predicted data) are
presented in figures 12A-F. For the lower flows (7Q10 and
95-percent flow duration), the range of the data is clearly
wider than that for medium and higher flows—for example,

at the 50-percent flow duration (at which the flow is equal or
exceeded 50 percent of the time). Again, a wide range between
observed and predicted data is generally found in all stud-

ies to develop regional regression equations for estimating
low flows; the higher standard errors of the estimate—48.68
to 141.83 percent—for the 99- to 85-percent flow durations
and 7Q2 and 7Q10 regression equations also reflect this wide
range (table 11). In figures 12A and B (7Q10 and 95-percent
flow durations, respectively), the data for streamflows less
than 0.10 ft*/s clearly show a wide range. For streamflows
less than 0.10 ft*/s there is possibly a small bias towards the
regression equations, which generated values higher than the
measured streamflows. In addition, the values for streamflows
greater than about 50 ft/s indicate a small amount of bias
towards the regression equations. In the other plots for the
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Figure 12. Comparisons of the A, 7210 low-flow frequency, and B, 95-, C, 75-, D, 50-, E, 25-, and F, 5-percent flow durations estimated
from measured streamflow and regression equations for long-term and short-term streamgages in and near Rhode Island.
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Figure 12. Comparisons of the A, 7Q10 low-flow frequency, and B, 95-, C, 75-, D, 50-, E, 25-, and F, 5-percent flow durations estimated
from measured streamflow and regression equations for long-term and short-term streamgages in and near Rhode Island.—Continued
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Figure 12. Comparisons of the A, 7Q10 low-flow frequency, and B, 95-, C, 75-, D, 50-, E, 25-, and F, 5-percent flow durations estimated
from measured streamflow and regression equations for long-term and short-term streamgages in and near Rhode Island.—Continued
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75-, 50-, 25-, and 5-percent flow durations (figs. 12C—F), no
clear bias of the streamflow values generated by regression
equations with respect to measured streamflows is evident.
Maps showing the residuals between measured streamflows
and streamflows calculated by regression equations for the
A, 7Q10 low-flow frequency, and B, 95-, C, 75-, D, 50-,

E, 25-, and F, 5-percent flow durations for long-term and
short-term streamgages in and near Rhode Island.

Prediction Intervals

Prediction intervals indicate the uncertainty inherent
in use of the equations. At the 90-percent confidence level,
prediction intervals can be calculated for estimates obtained
from the regression equations. The assurance is 90 percent
that the true value of the streamflow statistic for an ungaged
site will be within the prediction interval. The lower and
upper boundaries of the 90-percent prediction intervals can be
computed by

QLP[Z(%j—QS(QXT):QUPI, ™)
where
(0] is the estimated streamflow statistic for the
site,
0,,, s the estimated lower boundary of the
90-percent prediction interval,
O, s the estimated boundary of the upper
90-percent prediction interval, and
T isthe 90-percent prediction interval
determined from equation 8 below.
T = 1qltenens] ®)
where
L atans) is the critical value from the student’s ¢

distribution,

o is the alpha level (o= 0.10 for 90-percent

prediction intervals),

is the number of degrees of freedom with n

data values (for 60 streamgages) used in
the regression analysis,

p  is the number of parameters in the equation
(equal to the number of explanatory
variables or basin characteristics plus one),
and

S is computed from equation 9 below.

n-p

Critical values from the student’s ¢ distribution are listed
in many introductory statistics textbooks.
The value of S, is computed using the equation

S, =[ 7 +(x xUxx)]” 9)

where

is the model-error variance (equal to the root

mean square error (RMSE) squared),

X is a row vector of the logarithms of the basin
characteristics for site 7 which has been
augmented by a 1 as the first element,

U  isthe covariance matrix for the regression
coefficients, and

X, is the transpose of x, (Ludwig and Tasker,

1993).

The values of 7, o) and U needed for equations 8 and 9

for the 21 regression equations are presented in table 12. The

values of v’ needed in equation 9 can be calculated by squar-
ing the value of the user-weighted WLS-RMSE or the left-

censored regression-RMSE (base-10 logarithm) in table 12.

Example Computations

Two example computations of selected regression
equations and the 90-percent prediction intervals of the
estimates are provided. The first computation is provided for
Dunderry Brook at Meetinghouse Lane at Little Compton,
R.I. (01106110) (fig. 8 and table 4, in back of report). The
values of the explanatory variables used in the regression
equation for the 90-percent flow duration (table 11) were a
drainage area (DRNAREA) of 1.26 mi” (x,) and a stream
density (STRDENED) of 2.96 mi/mi® (x,) (table 9). Substitut-
ing the values in the equation for the 90-percent flow duration
produces

0,,=0.1995 x (1.26 mi2)'* x (2.96 mi/mi2)"#=0.055 ft'/s.

Calculation of the 90-percent prediction intervals use
equations 7-9. The calculation starts with equation 9, then
goes to equation 8, and then equation 7. Data needed for equa-
tions 8 and 9 are in table 12.

For equation 9 the model error variance, y°, equals the
user-weighted WLS—RMSE (base-10 logarithm) (table 12)
squared, y’= (0.2894)? = 0.0838, and U also comes from
table 12.



0.225593836 —0.070349579 —0.395675480
U =|-0.070349579  0.053112461  0.021187091
—0.395675480  0.021187091  1.175994738
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x x U xx =(((1x0.225593836) + ((log10 (1.26 mi*)) x -0.070349579) + ((log10 (2.96 mi/mi’ )
x 0.395675480)) x 1) + (((1 x -0.070349579) + ((log10 (1.26 mi)) x 0.053112461)
+ ((log10 (2.96 mi/mi%)) x 0.021187091)) x (log10 (1.26 mi))) + (1 x -0.395675480)
+((log10 (1.26 mi*)) x 0.021187091) + ((log10 (2.96 mi/mi®)) x 1.175994738))

x ((log10 (2.96 mi/mi*))

x, X U x x =(((0.2256) + (-0.0071) + (-0.1865)) x 1) + (((-0.0703) + (0.0053) + (0.0010)) x 0.1004)
+(((-0.3957) + (0.0021) + (0.5542)) x 0.4713))

x, XU xx, = (0.0320x1)+(~0.0640 x 0.1004) + (0.1606 X 0.4713)

x, XU xx, = (0.0320)+(-0.0064)+(0.0757) = 0.1013

1105
S, =[7" +(xxUxx)]" = [0.0838+0.1013]° = [0.1851]° = 0.4302

For equation 8, the value of # from the student’s ¢ distribution
=t =1.672 (table 12).

(0.10/2, 60-3)

T= 10[% 2 Sil 1011672 % 0.4302] = ()0.7193] = 5 2396
For equation 7,

0,,,= 0,/T=0.055/5.2396 = 0.010 ft*/s
Oy = Oy ¥ T =0.055 x 5.2396 = 0.288 ft'/s
0,5 = 05y = 0y, = 0.010 ft*/s < 0.055 ft*/s < 0.288 ft'/s.

The second example computation is provided for
Fisherville Brook at Liberty Church Rd. near Exeter, R.I.
(01117360) (fig. 8 and table 4, in back of report). The values
of the explanatory variables used in the regression equation

for the 7Q10 low-flow frequency (table 11) were a drain-
age area (DRNAREA) of 8.09 mi® (x,) and a stream density
(STRDENED) of 1.51 mi/mi” (x,) (table 9). Substituting
the values in the equation for the 7Q10 low-flow frequency
produces

0,910 = 0.0311 x (8.09 mi?)'7* x (1.51 mi/mi?)>¥= 0.391 ft¥/s

The calculation starts with equation 9, then goes to equa-
tion 8, and then equation 7. Data needed for equations 8 and 9
are in table 12.

For equation 9 the model error variance, y°, equals the
left-censored regression-RMSE (base-10 logarithm) (table 12)
squared, y’= (0.4853)? = 0.2355, and U also comes from
table 12.
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0.225593836 —-0.070349579 —0.395675480
U =|-0.070349579  0.053112461  0.021187091
—0.395675480  0.021187091  1.175994738

x x U xx =(((1x0.225593836) + ((log10 (8.09 mi*)) x -0.070349579) + ((log10 (1.51 mi/ mi’))
x 0.395675480)) x 1) + (((1 x -0.070349579) + ((log10 (8.09 mi® )) x 0.053112461)
+((log10 (1.51 mi/mi®)) x 0.021187091)) x (log10 (8.09 mi%))) + (((1 * -0.395675480)
+((log10 (8.09 mi*)) x 0.021187091) + ((log10 (1.51 mi/mi®)) x 1.175994738))

x ((log10 (1.51 mi/mi*))

x xUxx, =(((0.2256) + (-0.0639) + (-0.0708)) x 1) + (((-0.0703) + (0.0482) + (0.0038)) x 0.9079)
+(((-0.3957) + (0.0192) + (0.2105)) x 0.1790))

x, XU xx, =(0.0909x1)+(~0.0183x 0.9079) + (~0.1660 % 0.1790)

X, XU xx, = (0.0909)+(=0.0166) +(=0.0297) = 0.0446

1705
S, =[7" +(xxUxx)]" = [0.2355 +0.0446]°5 = [0.28011° = 0.5292

The value of ¢ from the student’s ¢ distribution = ¢
1.672 (table 12).

(0.10/2,60-3)

T= 10“‘“ 20-p) < Sl — 1001:672x 052921 = 1 ()[088481 = 7 6701
For equation 7,

0,,,= 0,/T=0.391/7.6701= 0.051 ft'/s
Op = Oy X T=10.391 x 7.6701 = 3.00 ft'/s
0,/ < 01510 < Oy = 0.051 ft¥/5 < 0.391 ft¥/s <3.00 ft'/s.

Limitations of Regression Equations

Use of the regression equations presented in this report
in determining selected streamflow statistics is limited by the
range of the basin-characteristics data used to develop the
equations and by the accuracy of the estimates. These equa-
tions should not be used for the determination of streamflow
statistics at ungaged sites for which the basin characteristics
are outside the range of those used to develop the regression
equations. The ranges of the basin-characteristics data used
as explanatory variables to develop the flow-duration and
low-flow-frequency regression equations are listed in table 13,
and the corresponding accuracies of the estimates calculated
by these equations are in table 11. The use of these regression
equations requires that the physical and climatic basin char-
acteristics be determined in a GIS based on the same datasets
(table 13) that were used to develop the equations outlined in
this report.

The equations, which are based on data from streams
with little to no flow alteration, will give estimates only
of the natural flows for a selected site. They will not give
estimates of altered flow for sites where the flow is affected
by structures and artificial processes such as dams, surface-
water withdrawals, groundwater withdrawals (pumping wells),
diversions, and wastewater discharges. To apply the equations
to streamflow data for such sites, the user should adjust the
estimates for the alterations accordingly. The equations are
not applicable in areas of Rhode Island where groundwater
contributing areas and surface-water drainage areas to stream
sites differ appreciably. In these areas, groundwater can flow
from one surface-water drainage area into another; therefore,
for basins whose groundwater contributing areas are larger
than their surface-water drainage areas, the equations would
likely underestimate streamflows. Conversely, for areas
whose groundwater-contributing areas are smaller than their
surface-water drainage areas, the equation would likely
overestimate streamflows. Several areas in Rhode Island
where groundwater contributing areas and surface-water
drainage areas to stream sites differ appreciably include
Queens Fort Brook in the Usquepaug-Queen River Basin
(Allen and others, 1966; Dickerman and others, 1997; Barlow
and Dickerman, 2001; Granato and others, 2003; Zarriello
and Bent, 2004; and Bent and others, 2011), Mishnock River
and Old Hickory Brook in the Big River Basin (Granato and
others, 2003; and Granato and Barlow, 2005), several coastal
rivers in the Hunt-Annaquatuck-Pettaquamscutt River Basin
(Rosenshein and others, 1968; Barlow and Dickerman, 2001;
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Table 13. Range of basin characteristics used as explanatory
variables in the regression equations for estimating selected
streamflow statistics in Rhode Island.

[DRNAREA, drainage area; STRDENED, drainage density; mi?, square
miles; mi/mi?, miles per square mile]

. Minimum  Maximum
Explanatory variable
value value
Drainage area (DRNAREA) (mi?) 0.52 294
Drainage density (STRDENED) (mi/mi?) 0.94 3.49

and Barlow and Ostiguy, 2007), and the South Coastal Basin
(Friesz, 2004; Masterson and others, 2007; and Friesz, 2010).
The regression equations are not applicable to other areas of
Rhode Island having known appreciable differences between
surface-water drainage areas and groundwater contributing
areas. Additionally, the equation is not applicable to streams
with losing reaches. Losing streams are defined as streams

or stream reaches that lose water to the groundwater system
(Winter and others, 1998, p. 9-10 and 16—-17). Generally,

a stream reach is losing where the groundwater table does

not intersect the streambed in the channel (the water table is
below the streambed) during low-flow periods. Losing stream
reaches commonly begin where the stream flows from an area
of the basin underlain by till or bedrock onto an area underlain
by stratified deposits (where hillsides meet river valleys).

At such junctures, a stream can lose a substantial amount of
water through its streambed. The accuracies of the regression
equations are functions of the quality of the data used in to
develop the equations. These data include the streamflow
data used to estimate the statistics, information about possible
unknown flow alterations to the stream above a site, and the
measured basin characteristics. Basin characteristics used in
the development of the regression equations are limited by
the accuracy of the digital data layers available and used at
the time (2014) of this study. In the future, geospatial data
layers of basin characteristics (table 7) likely will be more
detailed and accurate and at higher resolution, for stream
networks from the USGS NHD (http://nhd.usgs.gov/);
elevation from USGS NED (http://ned.usgs.gov/); land cover,
land use, and surficial geology from RIGIS (http://www.edc.
uri.edu/rigis/default.html), MassGIS (http://www.mass.gov/
anf/research-and-tech/it-serv-and-support/application-serv/
office-of-geographic-information-massgis/), MAGIC (http://
magic.lib.uconn.edu/), and University of Connecticut CLEAR
(http://clear.uconn.edu/projects/landscape/); soils from NRCS
SSURGO (http://soils.usda.gov/survey/geography/ssurgo/);
and climate from the PRISM Climate Group, Oregon State
University (http://www.prism.oregonstate.edu/).

StreamStats Application and Considerations for
Additional Study

The USGS National StreamStats Web-based application
(at http://water.usgs.gov/osw/streamstats/; Ries, 2007, and
Turnipseed and Ries, 2007) includes a map-based interface
that allows a user to click on the centerline for any stream site,
which causes the application to calculate selected streamflow
statistics and the 90-percent prediction intervals from the
equations for that ungaged stream site. The application also
provides the user with the basin-characteristic values that
were used to calculate the regression equations. The regres-
sion equations’ basin-characteristic values for a user-selected
stream site are determined by the use of digital map data from
ArcGIS (geographic information system software from the
Environmental Systems Research Institute, Inc. (Esri)
(http://www.esri.com/)). The output includes a map of the
drainage-basin boundary determined for the stream site, the
values of the GIS-measured basin characteristics, the esti-
mated streamflow statistics, and prediction intervals for the
estimates. The user can also click on streamgage and partial-
record station symbols and be provided selected streamflow
statistics and basin characteristics from a database for that site.

As considerations for additional study, the 21 selected
regression equations for streamflow statistics (table 11),
as well as the 90-percent prediction intervals, could be
incorporated into the USGS National StreamStats Web-based
application. The at-site estimates of the selected streamflow
statistics at the long- and short-term streamgages and
partial-record stations could also be put into the StreamStats
database for retrieval. Another consideration is that new basin
characteristics that were not available for this study could be
tested as potential explanatory variables. These digital data
layers likely would improve the accuracy of the measured
basin characteristics used as explanatory variables to estimate
selected streamflow statistics in Rhode Island but only after
re-examination of the regression equations.

Summary and Conclusions

The equations for estimating selected streamflow statis-
tics may be used by Federal, State, and local water managers
in addressing numerous water issues. This report documents
the development of regression equations by the U.S. Geologi-
cal Survey (USGS), in cooperation with the Rhode Island
Water Resources Board, that can be used statewide for deter-
mining selected statistics for streamflows unaffected by altera-
tions at ungaged sites in Rhode Island. Multiple and simple
linear regression equations were developed to estimate the 99-,
98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-,
15-, 10-, 5-, 2-, and 1-percent flow durations and the frequency
statistics 7Q2 (7-day, 2-year) and 7Q10 (7-day, 10-year). An
additional 49 selected statistics also were estimated for long-
and short-term streamgages and partial-record stations for flow
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durations between the 99.99 and 0.01 percent, and the mean
annual, mean monthly, and median monthly streamflows. Data
also are provided to allow the user to calculate the 90-percent
prediction intervals for the 21 streamflow statistics.

A total of 70 selected streamflow statistics were deter-
mined for 41 long-term streamgages (with 8 or more water
and climatic years of record), 21 short-term streamgages (with
1 to 7 water and climatic years of record), and 135 partial-
record stations (with more than 11 miscellaneous streamflow
measurements) in Rhode Island, eastern Connecticut, and
southeastern and south-central Massachusetts. Estimates of the
long-term streamflow statistics for 21 short-term streamgages
and 135 partial-record stations were developed by using
the Maintenance of Variance Extension, type 1 (MOVE.1),
technique. This technique involved fitting the MOVE.1 equa-
tion for daily mean streamflows at short-term streamgages
and miscellaneous streamflow measurements at partial-record
stations to concurrent daily mean streamflows at the 16 index
streamgages. In general, the index streamgage which provided
the relation with the highest Pearson’s correlation coefficient
(r) and the most linear plot of the data was selected.

The regression analyses for developing equations to
estimate selected streamflow statistics related the 19 flow-
duration and 2 low-flow frequency statistics to 31 different
drainage-basin characteristics (physical, land-cover, and
climatic characteristics) for 41 long-term and 19 of 21 short-
term streamgages (60 total streamgages) in Rhode Island
and nearby in Connecticut and Massachusetts. Two of the
21 short-term streamgages were excluded from the regression
analyses because the period of record for another streamgage
nearby on the same river was longer; this longer record was
used in the analyses. In addition, the drainage areas and basin
characteristics of the two streamgages were similar. Use of the
streamflow records, drainage areas, and basin characteristics
for both sites would have produced redundant data points in
the regression analyses. The 135 partial-record stations were
not used in the regression analyses.

A user-weighted least-squares (WLS) regression tech-
nique in the weighted-multiple-linear regression (WREG)
program was used in the regression analyses for the 90- to
1-percent flow durations. Left-censored regression analyses
were used to account for zero flows at the 99- and 98-percent
and 7Q10 flow durations (for four streamgages) and at the
95-percent and 7Q2 flow durations (for two streamgages).
Coefficients of determination (R?) are not determined when
the user-WLS regression technique is used in WREG or in the
left-censored regression analyses.

The regression analyses determined that the basin charac-
teristics drainage area (DRNAREA) and stream density (total
length of streams divided by the drainage area) (STRDENED)
were the only significant explanatory variables for 16 of the
19 flow-duration and the 2 low-flow-frequency regression
equations. For the other three flow-duration (10-, 15-, and
20-percent) equations, drainage area was the only significant
explanatory variable.
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The standard error of the estimate for the 21 regression
equations ranged from 17.58 to 141.83 percent. The low-flow
statistics for the 99- to 85-percent flow durations and 7Q2 and
7Q10 had the highest standard errors of the estimate, rang-
ing from 48.68 to 141.83 percent. The standard error of the
estimate for the medium- to high-flow statistics—the 80- to
1-percent flow durations—ranged from 17.58 to 37.65 percent,
with the standard errors for the 60- to 1-percent flow durations
all being less than about 21 percent.

The equations, which are based on data from streams
with little to no flow alteration, will give an estimate of only
the natural flows at a selected site. They will not give an esti-
mate of altered flows at a site where the streamflow is affected
by structures and artificial processes such as dams, surface-
water withdrawals, groundwater withdrawals (pumping wells),
diversions, and wastewater discharges. If the equations are
used to estimate statistics for sites where streamflow has been
altered, the user should adjust the estimates accordingly. The
regression equations should be used only for ungaged sites
with drainage areas between 0.52 and 294 square miles (mi?)
and stream densities between 0.94 and 3.49 miles per square
miles (mi/mi?). The equations are not applicable (1) for Block
Island because there are no streams on the island, (2) in areas
where groundwater-contributing areas and surface-water
drainage areas to stream sites differ appreciably, and (3) for
losing stream reaches where the stream may flow from of a till
and bedrock hillside into a sand and gravel river valley.

As considerations for additional study, the 21 regression
equations developed for this study, as well as the 90-percent
prediction intervals of the estimate, could be added to the
USGS National StreamStats Web-based application
(http://water.usgs.gov/osw/streamstats/). The 21 selected
streamflow statistics, plus the additional statistics: 24 flow
durations between the 99.99 and 0.01 percent, mean annual
flow, and 12 mean and median monthly flows estimated for the
long- and short-term streamgages and partial-record stations
also could be incorporated into the StreamStats database.
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