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Simulation of the Effects of Rainfall and Groundwater Use 
on Historical Lake Water Levels, Groundwater Levels, and 
Spring Flows in Central Florida

By Andrew M. O’Reilly,1 Edwin A. Roehl, Jr.,2 Paul A. Conrads,1 Ruby C. Daamen,2 and Matthew D. Petkewich1

Abstract
The urbanization of central Florida has progressed sub-

stantially in recent decades, and the total population in Lake, 
Orange, Osceola, Polk, and Seminole Counties more than qua-
drupled from 1960 to 2010. The Floridan aquifer system is the 
primary source of water for potable, industrial, and agricul-
tural purposes in central Florida. Despite increases in ground-
water withdrawals to meet the demand of population growth, 
recharge derived by infiltration of rainfall in the well-drained 
karst terrain of central Florida is the largest component of the 
long-term water balance of the Floridan aquifer system. To 
complement existing physics-based groundwater flow models, 
artificial neural networks and other data-mining techniques 
were used to simulate historical lake water level, groundwater 
level, and spring flow at sites throughout the area. 

Historical data were examined using descriptive statistics, 
cluster analysis, and other exploratory analysis techniques to 
assess their suitability for more intensive data-mining analy-
sis. Linear trend analyses of meteorological data collected 
by the National Oceanic and Atmospheric Administration at 
21 sites indicate 67 percent of sites exhibited upward trends 
in air temperature over at least a 45-year period of record, 
whereas 76 percent exhibited downward trends in rainfall 
over at least a 95-year period of record. Likewise, linear trend 
analyses of hydrologic response data, which have varied 
periods of record ranging in length from 10 to 79 years, indi-
cate that water levels in lakes (307 sites) were about evenly 
split between upward and downward trends, whereas water 
levels in 69 percent of wells (out of 455 sites) and flows in 
68 percent of springs (out of 19 sites) exhibited downward 
trends. Total groundwater use in the study area increased 
from about 250 million gallons per day (Mgal/d) in 1958 to 
about 590 Mgal/d in 1980 and remained relatively stable from 
1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a 

1U.S. Geological Survey.
2Advanced Data Mining, LLC, Greenville, South Carolina.

maximum of 773 Mgal/d in 2000. The change in ground- 
water-use trend in the early 1980s and the following period of 
relatively slight trend is attributable to the concomitant effects 
of increasing public-supply withdrawals and decreasing use of 
water by the phosphate industry and agriculture.

On the basis of available historical data and exploratory 
analyses, empirical lake water-level, groundwater-level, and 
spring-flow models were developed for 22 lakes, 23 wells, 
and 6 springs. Input time series consisting of various frequen-
cies and frequency-band components of daily rainfall (1942 
to 2008) and monthly total groundwater use (1957 to 2008) 
resulted in hybrid signal-decomposition artificial neural net-
work models. The final models explained much of the variabil-
ity in observed hydrologic data, with 43 of the 51 sites having 
coefficients of determination exceeding 0.6, and the models 
matched the magnitude of the observed data reasonably well, 
such that models for 32 of the 51 sites had root-mean-square 
errors less than 10 percent of the measured range of the data. 
The Central Florida Artificial Neural Network Decision Sup-
port System was developed to integrate historical databases 
and the 102 site-specific artificial neural network models, 
model controls, and model output into a spreadsheet applica-
tion with a graphical user interface that allows the user to 
simulate scenarios of interest.

Overall, the data-mining analyses indicate that the Flori-
dan aquifer system in central Florida is a highly conductive, 
dynamic, open system that is strongly influenced by external 
forcing. The most important external forcing appears to be 
rainfall, which explains much of the multiyear cyclic vari-
ability and long-term downward trends observed in lake water 
levels, groundwater levels, and spring flows. For most sites, 
groundwater use explains less of the observed variability in 
water levels and flows than rainfall. Relative groundwater-use 
impacts are greater during droughts, however, and long-term 
trends in water levels and flows were identified that are consis-
tent with historical groundwater-use patterns. The sensitivity 
of the hydrologic system to rainfall is expected, owing to the 
well-drained karst terrain and relatively thin confinement of 
the Floridan aquifer system in much of central Florida. These 



2  Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida

characteristics facilitate the relatively rapid transmission of 
infiltrating water from rainfall to the water table and contribute 
to downward leakage of water to the Floridan aquifer system. 
The areally distributed nature of rainfall, as opposed to the 
site-specific nature of groundwater use, and the generally high 
transmissivity and low storativity properties of the semicon-
fined Floridan aquifer system contribute to the prevalence of 
water-level and flow patterns that mimic rainfall patterns. In 
general, the data-mining analyses demonstrate that the hydro-
logic system in central Florida is affected by groundwater use 
differently during wet periods, when little or no system storage 
is available (high water levels), compared to dry periods, when 
there is excess system storage (low water levels). Thus, by 
driving the overall behavior of the system, rainfall indirectly 
influences the degree to which groundwater use will effect 
persistent trends in water levels and flows, with groundwater-
use impacts more prevalent during periods of low water levels 
and spring flows caused by low rainfall and less prevalent 
during periods of high water levels and spring flows caused 
by high rainfall. Differences in the magnitudes of rainfall and 
groundwater use during wet and dry periods also are important 
determinants of hydrologic response.

An important implication of the data-mining analyses is 
that rainfall variability at subannual to multidecadal timescales 
must be considered in combination with groundwater use 
to provide robust system-response predictions that enhance 
sustainable resource management in an open karst aquifer 
system. The data-driven approach was limited, however, by 
the confounding effects of correlation between rainfall and 
groundwater use, the quality and completeness of the histori-
cal databases, and the spatial variations in groundwater use. 
The data-mining analyses indicate that available historical 
data when used alone do not contain sufficient information to 
definitively quantify the related individual effects of rainfall 
and groundwater use on hydrologic response. The knowledge 
gained from data-driven modeling and the results from phys-
ics-based modeling, when compared and used in combination, 
can yield a more comprehensive assessment and a more robust 
understanding of the hydrologic system than either of the 
approaches used separately.

Introduction
The urbanization of central Florida has progressed 

substantially in recent decades, with total population in Lake, 
Orange, Osceola, Polk, and Seminole Counties more than qua-
drupling from 590,000 in 1960 to 2,740,000 in 2010 (Florida 
Office of Economic and Demographic Research, 2012). This 
development has led to an increasing demand for water, which 
has been met primarily by groundwater withdrawals from 
the Floridan aquifer system. During the period 1965–2005, 
groundwater withdrawals increased 53 percent, and in 2005, 
groundwater supplied 762 million gallons per day (Mgal/d) 
in Lake, Orange, Osceola, Polk, and Seminole Counties, 

or 95 percent of total water withdrawals in central Florida 
(Marella, 1995, 2009). The population of central Florida is 
projected to grow 57 percent from 2011 to 2040 (Smith and 
Rayer, 2012), and the demand for water is expected to increase 
as a result. Despite important anthropogenic influences, 
recharge to groundwater by infiltration of rainfall in the well-
drained karst terrain of central Florida is the largest compo-
nent of the water budget for the Floridan aquifer system during 
years with normal rainfall (Sepúlveda and others, 2012). 
The variability in historical seasonal to multidecadal rainfall 
patterns in Florida can be attributed to both local/global and 
natural/anthropogenic factors (Obeysekera and others, 2011), 
and climate variability is predicted to become more extreme 
(Berry and others, 2011). Consequently, variations in both 
rainfall and groundwater use may influence surface and sub-
surface water-level and flow conditions, potentially affecting 
the ability of the regional water resources to meet both human 
and environmental needs.

In some areas of central Florida, declining water levels 
and increasing salinity of groundwater have led to concerns 
by local and State water managers. The area of concern has 
been designated as the Central Florida Coordination Area 
(CFCA) and includes the southern part of Lake County and 
all of Orange, Osceola, Polk, and Seminole Counties (fig. 1). 
An analysis of data collected for various periods from 1941 
to 2009 at 115 sites in the CFCA indicates that water levels at 
31 of 62 wells, flow at 4 of 6 springs, and water levels at 13 
of 47 lakes have exhibited statistically significant (80 percent 
confidence level) downward trends over their respective 
periods of record (Murch and Tara, 2010). The data indicate 
downward trends in water levels primarily in wells penetrat-
ing the Upper Floridan aquifer, which is the primary source 
of water for potable, industrial, and agricultural uses in the 
CFCA; these downward trends have been attributed to a 
combination of increases in groundwater withdrawals and 
long-term below-average rainfall (Spechler and Halford, 
2001). Increases in groundwater levels have been observed in 
some areas, particularly in Polk County, and were attributed 
to decreases in groundwater withdrawals due to changes in 
phosphate mining practices (Spechler and Kroening, 2007; 
Murch and Tara, 2010). Multiyear cyclic variations in rainfall 
may contribute to observed periods of generally increasing or 
decreasing lake levels (German and Adamski, 2005). Upward 
trends in the concentrations of chloride in groundwater have 
occurred in the vicinity of well fields in eastern Seminole and 
Orange Counties, suggesting the upward movement of saline 
water, possibly the consequence of groundwater withdraw-
als (Spechler and Halford, 2001; Adamski and German, 
2004). It is important to note, however, that observed trends 
in hydrologic data in the CFCA may be attributable to factors 
other than rainfall or groundwater withdrawals. For example, 
land application of reclaimed water has been shown to cause 
increases in water-table altitudes as well as water levels in the 
Upper Floridan aquifer (O’Reilly, 1998; Adamski and German, 
2004). Similarly, other land-use changes, such as increases 
in irrigated land areas and construction of drainage ditches to 
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lower the water table and make land more suitable for devel-
opment, have been suggested as possible causes of increased 
groundwater seepage to streams as inferred from observed 
long-term increases in 7-day low flow in some streams in 
urbanizing areas in Orange County (German and Adamski, 
2005). Complex feedback mechanisms among hydroclimatic 
processes can affect the response of the hydrologic system. 
For example, in an area where the water table is near land 
surface and groundwater is subject to loss by evapotranspira-
tion (ET), which occurs throughout much of the CFCA, small 
changes in water-table depth can result in changes in the water 
available for groundwater recharge (Knowles and others, 
2002). Additionally, land-cover changes, such as those caused 
by urban or agricultural development, can affect spatial ET 
patterns. Atmospheric model simulations performed by Pielke 
and others (1999) showed that land-cover changes from 1900 
to 1993 in south Florida potentially influenced local rainfall 
patterns, resulting in average summer rainfall as much as 
11 percent less than what would have occurred in the absence 
of any land-cover changes. The cumulative effects of changes 
in the hydroclimatic system in the CFCA caused by natural or 
anthropogenic factors may result in changes in the long-term 
balance between the recharge and discharge of groundwater. 
Over time, such changes could cause changes in groundwater 
levels, spring flows, and the position of the saline-water/fresh-
water interface.

The primary agencies that manage water resources in 
the region, the St. Johns River Water Management District 
(SJRWMD), the South Florida Water Management District 
(SFWMD), and the Southwest Florida Water Management 
District (SWFWMD), are concerned that the groundwater 
resource is managed to maintain sufficient water supplies to 
meet the needs of future population growth and the environ-
ment. To address these concerns, the Central Florida Water 
Initiative (CFWI) was undertaken. The CFWI is a collabora-
tive process—among the SJRWMD, SFWMD, SWFWMD, 
Florida Department of Environmental Protection, Florida 
Department of Agriculture and Consumer Services, central 
Florida water utilities, and other stakeholders—to assess 
whether the Floridan aquifer system is reaching its sustainable 
limits of use in the CFCA and to develop a regional water sup-
ply plan (http://cfwiwater.com/).

In 2005, the U.S. Geological Survey (USGS) began a 
3-year study in cooperation with the SJRWMD to compile and 
analyze historical lake water-level, groundwater-level, spring-
flow, rainfall, and groundwater-use data in Lake, Orange, and 
Seminole Counties to assess utility of artificial neural net-
works (ANNs) and other data-mining techniques for identify-
ing the effects of rainfall and groundwater use. On the basis of 
the effectiveness of the data-mining techniques demonstrated 
in the initial results, the original study was expanded in 2008 
to include an additional 4 years of investigation to address 
water-resource management concerns in the entire CFCA. The 
expanded USGS study was conducted in cooperation with 
SJRWMD, SFWMD, and SWFWMD to compile and assess 
historical lake water-level, groundwater-level, spring-flow, 

meteorological, and groundwater-use data in the entire CFCA 
with the purpose of quantifying, to the extent possible given 
the available data, the effects of weather variation and ground-
water use. In 2011, the USGS became a participant in the 
CFWI, collaborating with other stakeholders in the study and 
assessment of historical hydrologic data in the CFCA. In addi-
tion to providing supporting science for local water-resource 
managers and stakeholders, this study addresses Federal sci-
ence interests by assessing the status of and change in fresh-
water resources—part of the USGS science strategy direction 
“Water Census of the United States” (U.S. Geological Survey, 
2008).

Purpose and Scope

This report presents the results of an investigation in 
which the response of lake water levels, groundwater levels, 
and spring flows to changing rainfall and groundwater-use 
conditions over a multidecadal period was analyzed. The 
report documents the development of the Central Florida 
Artificial Neural Network Decision Support System (CFANN 
DSS) and provides examples of the application of the CFANN 
DSS to simulate hydrologic response to historical rainfall and 
groundwater use from 1965 through 2008. Additionally, the 
report provides examples of how the CFANN DSS may be 
used to simulate scenarios of interest based on user-specified 
rainfall and groundwater use. The compilation of hydrologic 
response data was limited to Lake, Orange, Osceola, Polk, and 
Seminole Counties, which includes all of the CFCA (fig. 1). 
Streamflow data were not analyzed in this study.

An important part of the USGS mission is to provide 
scientific information for the effective water-resources 
management of the Nation. To assess the quantity and qual-
ity of the Nation’s surface water and groundwater, the USGS 
collects hydrologic and water-quality data from rivers, lakes, 
and estuaries by using standardized methods and maintains 
the data from these stations in a national database. Addition-
ally, many local and State agencies collect and store such data 
in their respective institutional databases. These databases 
commonly are underutilized and underinterpreted for address-
ing contemporary hydrologic issues. The techniques described 
in this report demonstrate how valuable information can be 
extracted from existing disparate databases to assist local, 
State, and Federal agencies in understanding and managing 
complex hydrologic systems. The application of data-mining 
techniques, including ANN models, to the CFCA demonstrates 
how empirical models of complex hydrologic systems can be 
developed, disparate databases and models can be integrated, 
and study results can easily be disseminated to meet the needs 
of a broad range of end users.

http://cfwiwater.com/
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Description of Study Area

The study area encompasses Lake, Orange, Osceola, 
Polk, and Seminole Counties in central Florida (fig. 1). 
The Orlando metropolitan area, approximately centered on 
the Interstate 4 corridor from northern Osceola to western 
Seminole Counties, encompasses many smaller towns and 
cities and is the major urbanized area in central Florida. The 
remainder of the study area is predominantly rural with a few, 
mostly widely scattered, but steadily growing towns such as 
Clermont, Eustis, Lady Lake, Lakeland, Leesburg, Oviedo, 
and Winter Haven. Land-surface altitudes range from less 
than 5 feet (ft) along the St. Johns River (from Orange County 
downstream) to more than 300 ft in Polk and Lake Counties.

Climate
The climate of the study area is classified as subtropi-

cal and is characterized by warm, typically wet summers and 
mild, dry winters. Maximum daily temperatures typically 
exceed 90 degrees Fahrenheit (°F) during the summer, but 
may fall below freezing for several days in the winter. The 
mean annual air temperatures for 1981–2010 are 72.7 °F at the 
city of Sanford in the northern part of the CFCA and 73.6 °F 
at the city of Bartow in the southern part of the CFCA (fig. 1) 
(National Oceanic and Atmospheric Administration, 2011). In 
January, mean monthly air temperatures are 59.7 °F at Sanford 
and 61.8 °F at Bartow, and in July are 83.3 °F at Sanford and 
82.8 °F at Bartow. Mean annual rainfall at Sanford and Bartow 
is 53.04 and 52.08 inches (in.), respectively, for 1981–2010, 
with 55 and 59 percent, occurring during June through Sep-
tember (National Oceanic and Atmospheric Administration, 
2011). Frequent thunderstorms during the summer as well as 
occasional tropical storms and hurricanes during the sum-
mer and early fall can bring heavy rainfall to the area. Winter 
rainfall generally is associated with large, frontal-type, cold air 
masses from the north.

Hydrogeologic Setting
The study area generally is underlain by unconsoli-

dated sand and clay sediments that form the surficial aquifer 
system; less permeable clay and carbonate rocks that form 
the intermediate confining unit; more permeable carbonate 
rocks than those of the intermediate confining unit that form 
the intermediate aquifer system; a thick sequence of limestone 
and dolomitic limestone of variable permeability that forms 
the Floridan aquifer system; and low permeability dolomite 
and evaporite beds that form the sub-Floridan confining unit, 
which functions as the base of the fresh groundwater flow 
system (Miller, 1986). Generally the intermediate confining 
unit serves as a confining unit for the Floridan aquifer system, 
but where multiple permeable zones are present, the sequence 
of hydrogeologic units is referred to as the intermediate aqui-
fer system. The intermediate aquifer system in the CFCA is 

located in the southern two-thirds of Polk County (Sepúlveda 
and others, 2012, p. 28). For the purpose of this report, the 
intermediate confining unit and intermediate aquifer system 
are discussed collectively. The Floridan aquifer system—the 
principal source of groundwater in the study area—is divided 
into two aquifers of relatively high permeability, referred to 
as the Upper Floridan aquifer and the Lower Floridan aquifer 
(Miller, 1986). These aquifers are separated by a less perme-
able unit called the middle confining unit I in east-central Flor-
ida. In west-central Florida, these two aquifers are separated 
by the middle confining unit II, which is composed of gypsif-
erous dolomite and dolomitic limestone of considerably lower 
permeability than the middle confining unit I in east-central 
Florida (Miller, 1986; O’Reilly and others, 2002). The reader 
is referred to Sepúlveda and others (2012) for a more detailed 
description of the hydrogeologic framework in the CFCA.

The aquifer system in the study area is recharged primar-
ily by rainfall. Rainfall that exceeds ET, and does not become 
surface runoff, can recharge the aquifer system after infiltrat-
ing at land surface and percolating through the unsaturated 
zone. Sources of water to the aquifer system, in addition to 
net recharge from rainfall, are artificial recharge (for example, 
irrigation or rapid infiltration basins) and subsurface inflow 
from outside the study area. Inflow to the aquifer system in 
the study area is eventually discharged by springs, leakage to 
some surface-water bodies, well withdrawals, and subsurface 
outflow.

In a geologic setting where limestone is at or near land 
surface, net recharge interacts with the carbonate rocks, result-
ing in karst terrain. Karst is characterized by the absence of 
a well-defined surface drainage system and is drained inter-
nally, that is, rainfall not lost to ET infiltrates and recharges 
the aquifer. Internal drainage results in higher net recharge 
rates, which are conducive to the dissolution of limestone and 
the formation of such features as voids and conduits in the 
limestone and closed depressions at land surface. Numerous 
karst features, including sinkholes and springs, are present 
in the study area. Sinkholes in all stages of development are 
common throughout much of the study area and range from 
small depressions a few feet in diameter to large lakes. Sink-
holes can be dry or water-filled, and many are areas of high 
recharge to the underlying aquifers. Numerous springs, located 
in the northern half of the study area, discharge water from the 
Upper Floridan aquifer into rivers and streams that eventually 
flow into the Atlantic Ocean.

The well-drained karst terrain in the western and cen-
tral parts of the study area combined with the coastward 
topographic relief is sufficient to support regional flow in 
the Floridan aquifer system. In central Florida, the highest 
water levels in the Floridan aquifer system occur in the Upper 
Floridan aquifer in north Polk County; the lowest water levels 
occur in the Upper Floridan aquifer near springs, the St. Johns 
River, and the Atlantic Ocean. Water recharges the Upper 
Floridan aquifer at the highest rates in sandy ridge areas of 
west Orange, south Lake, and east-central Polk Counties as 
well as in more isolated, local areas where sandy soils with a 
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deep water table are common (Sepúlveda and others, 2012). 
In these recharge areas, water generally moves laterally in 
the Upper Floridan aquifer with a smaller amount moving 
downward into the Lower Floridan aquifer. In both the Upper 
and Lower Floridan aquifers, water generally flows to the 
northeast and east. Water exits the Lower Floridan aquifer by 
upward leakage to the Upper Floridan aquifer subsequently 
exiting the groundwater flow system by discharge at springs, 
upward leakage to the St. Johns River and other areas of lower 
land-surface altitude where it may contribute to streamflow or 
be removed by evaporation or withdrawal by plants (transpira-
tion), and lateral flow to the Atlantic Ocean. Water also exits 
the Upper and Lower Floridan aquifers by withdrawals from 
water-supply wells. The reader is referred to Sepúlveda and 
others (2012) for a more detailed description of the conceptual 
groundwater flow system and water budget in the CFCA.

Previous Studies

Studies on the status and trends of the groundwater 
system over long-term (multidecadal) periods are limited 
for central Florida. Murch and Tara (2010) analyzed hydro-
logic and rainfall data from 1941 to 2009 for 120 sites in 
the CFCA to determine if long-term statistically significant 
trends are present in groundwater levels, lake water levels, 
spring discharge, and rainfall measurements using exploratory 
data analysis, trend analysis, and cluster analysis techniques. 
Other earlier general water-resource studies include some 
qualitative or quantitative analyses of long-term behavior of 
the hydrologic system in parts of central Florida, including 
Osceola County (Schiner, 1993), Seminole County (Spechler 
and Halford, 2001), Lake County (Knowles and others, 2002), 
Orange County (Adamski and German, 2004; German and 
Adamski, 2005), and Polk County (Spechler and Kroening, 
2007). Basso (2003) examined the effects of groundwater 
withdrawals on groundwater levels and groundwater discharge 
to the upper Peace River Basin in south-central Polk County 
using estimated and measured data from the 1940s to the early 
2000s. Osburn and others (2006) compiled period-of-record 
discharge measurements and used locally weighted scatter-
plot smoothing to indicate possible patterns in discharge over 
time for springs in the SJRWMD; an updated, online version 
of this publication is available at http://floridaswater.com/
springs/ (accessed April 2013). Intera (2007a, 2007b) devel-
oped regression models to predict daily discharge, starting as 
early as 1949 and extending as late as 2005, at several springs 
in central Florida.

Approach

In central Florida, a need exists to identify and quantify 
the salient factors influencing the behavior of the groundwater 
system, and several physics-based models have been devel-
oped for this purpose (Knowles and others, 2002; McGurk and 
Presley, 2002; Sepúlveda, 2002; Environmental Simulations 

Inc., 2007; Sepúlveda and others, 2012). However, complex 
interactions between the surface and subsurface environments 
in a karst terrain are difficult to simulate with physics-based 
models. Alternatively, substantial historical hydrologic data, 
which are well suited for empirical modeling, are available 
for central Florida in the databases of local, State, and Federal 
agencies.

The emerging field of data mining involves extracting 
valuable knowledge from large databases (Weiss and Indur-
khya, 1998). Data mining comprises several technologies that 
include signal decomposition, advanced statistics, multidimen-
sional visualization, machine learning/artificial intelligence, 
and chaos theory. Data mining can provide insight into com-
plex problems and has been applied to an array of problems 
related to the interactions between natural and human-made 
systems. These interactions are becoming increasingly impor-
tant as growing populations and development place heavier 
burdens on the environment. The application of data-mining 
technologies to surface-water and groundwater systems has 
been particularly successful. Models of hydraulic and water-
quality parameters based in part on ANNs, a form of machine 
learning, have been accepted by State and Federal agencies for 
regulatory applications for streams in western Oregon (Ris-
ley and others, 2002), and the Beaufort (Conrads and others, 
2003), Lower Savannah (Conrads and others, 2006), and Pee 
Dee (Conrads and Roehl, 2007) estuaries in South Carolina 
and Georgia. Other studies have focused on groundwater, 
surface-water, and water-quality applications of ANNs, such 
as the simulation of groundwater levels in the surficial aquifer 
system and Upper Floridan aquifer (Coppola, Szidarovszky, 
and others, 2003) and the karstic Edward’s aquifer in Texas 
(Trichakis and others, 2011), groundwater management using 
multi-objective optimization (Coppola, Poulton, and others, 
2003), Everglades hydrology (Conrads and Roehl, 2006) and 
water quality (Conrads and Roehl, 2010), stream temperatures 
in Wisconsin for fisheries management (Stewart and others, 
2006), Upper Floridan aquifer water levels in the Suwan-
nee River valley (Roehl, Risley, and others, 2006), Lake 
Okeechobee inflow volumes (Trimble and others, 2006), fate 
and transport of volatile organic compounds in groundwater 
at the Savannah River nuclear site in South Carolina (Conrads 
and others, 2007), dam-regulated wetland hydrology in South 
Carolina (Conrads and others, 2008), prediction of Upper 
Floridan aquifer spring flows (Sepúlveda, 2009), and specific 
conductance and chloride concentration in a tidal tributary of 
the Savannah River (Conrads and others, 2011). These studies 
have demonstrated that ANN models, combined with other 
data-mining techniques, can provide an effective approach for 
simulating complex hydrologic systems.

The variability of lake water levels, groundwater levels, 
and spring flows in the CFCA is a result of many factors, 
including rainfall and groundwater-use conditions. As part of 
the CFWI, a variety of empirical and physics-based model-
ing approaches have been conducted. The empirical modeling 
approach described in this report used correlation functions 
that were synthesized directly from data to predict lake water 

http://floridaswater.com/springs/
http://floridaswater.com/springs/
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levels, groundwater levels, and spring flows at selected sites 
in the CFCA in order to simulate response to rainfall and 
groundwater-use conditions. Hydrologic datasets at daily to 
semiannual measurement frequencies were available. Empiri-
cal lake water-level, groundwater-level, and spring-flow 
models were developed directly from these data by using ANN 
models and other data-mining techniques, such as signal (time 
series) processing methods including clustering, filtering, and 
signal decomposition. Because the intent of this study was 
to ascertain the salient factors influencing the behavior of 
the groundwater system as inferred from available historical 
data, restraint was exercised in prescribing assumptions based 
on previous models, whether empirical or physical, in the 
development of the ANN models. Given the empirical nature 
of data-driven correlation-based modeling, however, data 
were prepared in such a way to limit the potential confounding 
effects of cross correlations among explanatory variables, and 
the ANN models were developed to be consistent with hydro-
logic principles and the basic components of a water budget.

The application of data-mining techniques to develop 
empirical models to simulate lake water levels, groundwater 
levels, and spring flows and analyze response to rainfall and 
groundwater-use conditions was undertaken in four phases:

1. obtaining and evaluating the suitability of historical lake 
water-level, groundwater-level, spring-flow, meteorologi-
cal, and groundwater-use data for developing the models;

2. developing ANN models to simulate the hydrologic 
response at selected sites with long-term record (at least 
25 years); 

3. developing the CFANN DSS to integrate historical data-
bases and the site-specific ANN models, model controls, 
and model output into a spreadsheet application with a 
graphical user interface (GUI) and simulating four hypo-
thetical scenarios to assess ANN model sensitivity; and

4. comparing results of the simulations made with the ANN 
models with those from the physics-based east-central 
Florida transient (ECFT) groundwater flow model devel-
oped by Sepúlveda and others (2012), using a spreadsheet 
application with a GUI that allows the user to select sites 
of interest for comparison.

Historical Data
Many Federal, State, and local agencies have collected 

data in the CFCA. For this study, data collected by the USGS, 
National Oceanic and Atmospheric Administration (NOAA), 
SJRWMD, SFWMD, SWFWMD, Orange County, and 
Seminole County were used for analysis and to develop ANN 
models. These data consist of hydrologic data, consisting of 
forcing (meteorological) and response (water level and flow), 
and groundwater-use data. Some meteorological data extend 

back to 1900 and some hydrologic response data extend back 
to the 1930s, whereas little groundwater-use data are available 
prior to 1957.

Hydrologic Data

Hydrologic data were compiled for sites in the CFCA 
(including all of Lake County) with a 10-year or greater period 
of record up through 2008, which includes data collected by 
the USGS, NOAA, SJRWMD, SFWMD, SWFWMD, Orange 
County, and Seminole County. One exception to this criterion 
is lake water levels measured by Seminole and Orange Coun-
ties. Owing to the lower frequency of collection of these data 
(typically monthly), only those lakes with a 20-year or greater 
period of record and six or more measurements per year were 
included in the analysis.

Historical Hydrologic Database
A Microsoft Access® database was created to store all his-

torical hydrologic data. The database contains information for 
963 sites comprising about 4.5 million records for 307 lakes, 
470 wells, 22 springs, 143 rain gages, and 21 air temperature 
measurement sites (fig. 2). Additionally, at the 21 air tempera-
ture measurement sites, computed potential evapotranspiration 
(PET) data were included in the database. It is important to 
note that the hydrologic database developed for this study was 
constructed from data received from the collecting agencies 
during 2008 and 2009. Data could be revised by the collect-
ing agency if changes in data processing techniques are made 
in the future. For this reason, it is noted here that spring-flow 
data were acquired from the SJRWMD (http://floridaswater.
com/toolsGISdata/) on September 22, 2011, for the six springs 
for which ANN models were developed. The hydrologic 
database was updated with these data, but not for the other 16 
springs. For future use of this database, the user is encouraged 
to verify that all data are consistent with those that are most 
recently published by the collecting agency.

Data in the hydrologic database were examined for 
apparent errors, and identified issues were resolved. Data for 
duplicate sites (sites monitored by more than one agency) 
were merged, where consistency in data quality among the 
collecting agencies could be verified, in order to increase data 
density and extend the period of record for individual sites. 
Duplicate sites generally had non-overlapping periods of 
record; however, when data were available for the same date 
at duplicate sites, the data value for the site with the longer 
period of record was retained. As a result, a single time series 
of data was created for each site. Simple statistics computed 
for the entire period of record for each site were examined for 
anomalies: period-of-record length in years, average number 
of measurements per year, minimum and maximum values, 
range, mean, linear slope, and Pearson product-moment corre-
lation coefficient (R). Errors in site coordinates were identified 
and resolved by verifying the coordinates against known site 

http://floridaswater.com/toolsGISdata/
http://floridaswater.com/toolsGISdata/
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locations. A conservative approach was taken in addressing 
anomalies attributable to apparent errors in the original data, 
in that erroneous data were deleted if a definitive correction 
could not be identified. Likewise, anomalous data that were 
not clearly erroneous were retained. Additional details on the 
organization of the hydrologic database in Access as well as 
information on how to obtain the database are provided in 
appendix 1, and a summary of the data contained in the data-
base is provided in the following sections.

Rainfall, Air Temperature, and Potential 
Evapotranspiration

Climate is an important external forcing factor that influ-
ences the behavior of the groundwater system in the CFCA. 
Meteorological data acquired and assessed for use in this study 
were rainfall, air temperature, and PET. The most complete set 
of long-term daily rainfall data were available from NOAA. 
Twenty-three NOAA weather stations exist in or near the 
CFCA. Both rainfall and air temperature data are collected 
at 21 of the stations, whereas only rainfall is measured at the 
other two stations (fig. 2). Rainfall data at six of the NOAA 
stations (station identification numbers 2229, 3137, 4502, 
6628, 7982, and 8942; see hydrologic database described in 
appendix 1) were provided by SJRWMD (David Clapp, writ-
ten commun., 2009), and data at the other 17 stations were 
provided by SWFWMD (Jill Hood, written commun., 2009). 
For NOAA rainfall data, periods of record start in the period 
1901–46 and end in the period 2006–08, and range in length 
from 61 to 108 years. For accumulated data values in the origi-
nal NOAA records, which represent rainfall that was accumu-
lated over 2 days to a month and reported as a single value, 
daily values were estimated by SJRWMD and SWFWMD by 
disaggregating using nearby rain gages. For station records 
provided by SJRWMD, periods of missing data were filled 
with estimates published by NOAA or computed by SJRWMD 
on the basis of data from nearby rain gages. For station records 
provided by SWFWMD, periods of missing data were filled 
with the estimates computed by Aly (2008). Rainfall data are 
also available for 120 additional sites operated by the SJR-
WMD, SFWMD, or SWFWMD (fig. 2). It is important to note 
that some of the SJRWMD, SFWMD, or SWFWMD rainfall 
sites report accumulated data that represent several days or 
even a month or more, which were not disaggregated into 
daily values. As a result, statistics computed for such rainfall 
sites would be skewed due to the treatment of accumulated 
data as daily data. All accumulated rainfall data are identified 
in the hydrologic database by a quality code assigned by the 
collecting agency (appendix 1).

Air temperature data were obtained directly from NOAA 
for the 21 weather stations (fig. 2). Daily measurements of 
minimum, maximum, and mean air temperature were avail-
able. Periods of record start in the period 1900–59 and end 
in the period 1961–2009, and range in length from 47 to 
109 years, with 252 to 365 measurements per year.

Direct measurements or estimates of actual ET are sparse 
in the study area, and data that are available do not extend 
prior to 1993 and generally have periods of record less than 
10 years (O’Reilly, 2007). As alternatives, PET data were 
acquired from the USGS Statewide ET dataset (http://fl.water.
usgs.gov/et/) (accessed July 2010) and were computed using 
the temperature-based Hargreaves equation (Hargreaves and 
Samani, 1985). Because the USGS Statewide ET dataset is a 
spatial product providing data at 2-kilometer (km) resolution 
across the entire land area of Florida (Mecikalski and others, 
2011), for the purposes of this study, data were extracted for 
the 2-km pixel overlying each of the 21 NOAA air temperature 
measurement sites. The USGS Statewide ET data are available 
from June 1, 1995, and data through 2009 were included in the 
hydrologic database. PET data estimated using the Hargreaves 
equation were computed using the entire period of record for 
the 21 NOAA air temperature measurement sites. Given its 
simplicity, Hargreaves-derived PET approximates actual ET 
reasonably well after multiplying by a crop factor (O’Reilly, 
2007).

Lake Water Level
Lake water-level measurements were available for 307 

lakes in the study area (fig. 2). Periods of record start in the 
period 1933–99 and end in the period 1968–2009, and range in 
length from 10 to 76 years, with an average of 5 to 365 mea-
surements per year. The water-level range for individual lakes 
varies from 2.38 to 32.96 ft for their respective periods of 
record. Lakes were classified as either flowthrough (containing 
at least one stream inflow or outflow) or closed basin (contain-
ing no stream inflow or outflow) on the basis of existing maps 
and interpretation of aerial imagery. Slightly more than half of 
the lakes (164) were classified as flowthrough, and the remain-
ing 143 were classified as closed basin (fig. 3).

Groundwater Level
Water-level measurements were available for 470 wells 

in the study area (fig. 2). Periods of record start in the period 
1930–2000 and end in the period 1981–2009, and range in 
length from 8 to 79 years, with an average of less than 1 to 
365 measurements per year. The water-level range for indi-
vidual wells varies from 2.57 to 62.87 ft for their respective 
periods of record. Well-construction information typically 
was incomplete, but total depths were available for all but 
27 wells. Of the remaining 443 wells, total depths ranged from 
4 to 2,090 ft. Wells were classified as being completed in the 
surficial aquifer system, intermediate confining unit/intermedi-
ate aquifer system, Upper Floridan aquifer, Lower Floridan 
aquifer, or Floridan aquifer system on the basis of records of 
the collecting agency and well depth. Thus, of the 470 wells, 
139 are in the surficial aquifer system, 40 are in the intermedi-
ate confining unit/intermediate aquifer system, 47 are in the 
Upper Floridan aquifer, 13 are in the Lower Floridan aquifer, 

http://fl.water.usgs.gov/et/
http://fl.water.usgs.gov/et/
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Figure 3. Lakes classified as either flowthrough or closed basin for which historical water-level data were acquired.
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and 231 are in the Floridan aquifer system (known to be in 
the Floridan aquifer system, but undetermined whether in the 
Upper Floridan aquifer, Lower Floridan aquifer, or both).

Spring Flow
Spring-flow measurements were available for 22 springs 

in the study area (fig. 2). Periods of record start in the period 
1931–91 and end in the period 1995–2009, and range in 
length from 18 to 79 years, with an average of less than 1 to 
40 measurements per year. Mean (arithmetic average) spring 
flow for individual springs ranges from 0.8 to 149 cubic feet 
per second (ft3/s), whereas the spring-flow range for individual 
springs varies from 0.6 to 169 ft3/s for their respective periods 
of record. The temporal data density for springs is extremely 
variable. For an individual spring, it is not unusual to have 
only one flow measurement per decade in the early part of the 
period of record and daily flow data for more recent periods.

Groundwater Use

Groundwater-use data were compiled for the categories 
public supply, citrus irrigation, non-citrus agricultural irriga-
tion, golf course irrigation, phosphate mining, and drainage 
well recharge. Monthly data were compiled for all categories, 
although for some categories only annual estimates were avail-
able and were disaggregated into monthly values. For sites for 
which data were available or could be estimated, data were 
compiled as far back as 1950, although for most categories 
data are sparse or poorly estimated for years prior to 1957. 
Groundwater use was not categorized by aquifer for this study, 
although Sepúlveda and others (2012) report that more than 
95 percent of the total groundwater withdrawn from 1995 
through 2006 in east-central Florida was from the Floridan 
aquifer system. Surface-water-use data were not analyzed in 
this study.

The various types of groundwater withdrawal rates or 
direct water inflow (drainage well recharge) data were pro-
vided by the SJRWMD, SFWMD, SWFWMD, and the Florida 
Department of Environmental Protection (FDEP) and supple-
mented with data available from the USGS. These data repre-
sent the best available data at the time of this study. For future 
analyses, the user is strongly encouraged to verify that all data 
are consistent with those that are most recently reported by the 
collecting agency. For some categories, the reported and esti-
mated water withdrawals and inflows represent amounts for all 
of the CFCA and small portions of surrounding areas. Further 
details are provided in the following sections on the reported 
data as well as the methodologies used to make estimates for 
categories without reported data or for periods of missing data.

Public Supply
The public water supply category includes all permit 

holders that pump from wells with a 4-inch or larger diameter 
at a rate equal to or greater than 100,000 gallons per day. This 
category represents all water distributed from the water-
treatment facilities for public water supply on a monthly basis. 
Reported data generally were available for the years 1978 to 
2008 at the water-treatment plants shown in figure 4, but such 
data were sparse prior to 1978 and were estimated for the 
years 1950 through 1977.

Data on groundwater withdrawals for public water sup-
ply for SJRWMD and SFWMD were gathered from FDEP 
Monthly Operating Reports (MORs) for 1978 through 2008, 
and periods of missing record were filled by linear interpola-
tion prorated by average monthly flow as a percentage of 
annual total flow for 1978–2008 (Katherine Graf, University 
of Florida, written commun., 2011). Groundwater withdraw-
als for public water supply in the SWFWMD area were 
compiled using reported data from the SWFWMD Water Use 
Permit (WUP) records for most water-treatment plants or 
from estimates for a few plants (Jill Hood, Southwest Florida 
Water Management District, written commun., 2010). These 
public water-supply groundwater withdrawal data for the 
CFCA and vicinity are provided by Munch (2014), includ-
ing documentation of the methods used to estimate missing 
data. As described later in the report, all groundwater-use data 
were spatially aggregated into 20 × 20-km grid cells for input 
into the ANN models; therefore, only total monthly water 
amounts delivered from a water-treatment plant were com-
piled and no attempt was made to distribute this total flow to 
active wells that supply the plant. After aggregating the data 
into 20 × 20-km grid cells, public water-supply groundwa-
ter withdrawal data from 1950 through 1977 were estimated 
by extrapolation and comparison with the limited amount 
of reported data during this period, as described later in the 
report.

Agricultural
Estimates of groundwater withdrawals for citrus irriga-

tion, non-citrus agricultural irrigation, and golf course irriga-
tion developed by McLeod and Munch (2012) for the CFCA, 
including all of Lake County, were used in this study. Even 
though golf course irrigation is not traditionally categorized as 
an agricultural water use, McLeod and Munch (2012) applied 
the same methodology to estimate groundwater withdrawals 
for golf course irrigation as that used to estimate withdraw-
als for citrus and non-citrus agricultural irrigation. Monthly 
groundwater withdrawal data were available for citrus and 
non-citrus agricultural irrigation for the period 1957–2010  
and for golf course irrigation for the period 1977–2010 in the 
areas shown in figure 5. The methodology applied by McLeod 
and Munch (2012) involved the following procedures:  
(1) aggregating annual total water use by county using data 
compiled by the SJRWMD, SFWMD, SWFWMD, and 
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Figure 4. Locations of water-treatment plants in the Central Florida Coordination Area and vicinity for which public water-supply 
groundwater withdrawal data from 1978 through 2008 were available.
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Figure 5. Locations of citrus, non-citrus agricultural, and golf course irrigation areas in the Central Florida Coordination Area and 
vicinity where groundwater withdrawal estimates were available. Areas denote where irrigation occurred sometime during the 
analysis period for each cover type (1957 to 2010 for citrus and non-citrus agriculture and 1977 to 2010 for golf course) as estimated by 
McLeod and Munch (2012); some areas did not receive irrigation during all years owing to changes in agricultural practices and land 
development.
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USGS; (2) interpolating and extrapolating the total water 
use into groundwater use based on the best available sources 
(generally the National Agricultural Statistics Service 
[NASS] for citrus irrigation and the SJRWMD, SFWMD, 
SWFWMD, and USGS for non-citrus agricultural and golf 
course irrigation); (3) disaggregating the total use spatially 
by proportionally distributing the use according to estimated 
acreage polygons, which were based on spatial land-use and 
land-cover data available from the Florida Geographic Data 
Library (http://www.fgdl.org), NASS, SJRWMD, SFWMD, 
SWFWMD, and USGS; and (4) disaggregating the data tem-
porally to yield monthly groundwater use based on monthly 
irrigation schedules for recommended crop irrigation require-
ments. Given the paucity of spatial data on historical irrigated 
acreage, McLeod and Munch (2012, p. v) state that “…only 
the groundwater use estimates generated from these models 
are considered to be accurate (on a semi-regional scale); not 
the polygon acreages.” This limitation of the data is another 
reason why all groundwater-use data were aggregated into 
20 × 20-km grid cells, as described later in the report.

Phosphate Mining
Phosphate mining in the CFCA has been confined to the 

southwestern part of Polk County (fig. 6). Water used by the 
phosphate industry consists of that required for the mining 
(ore extraction) and phosphate chemical production processes. 
Groundwater withdrawals for both categories of water use by 
the industry were compiled from reported data for 1978–2010 
on a monthly basis (Jill Hood, Southwest Florida Water Man-
agement District, written commun., 2011) and well locations 
from the SWFWMD WUP records (fig. 6). No WUP data were 
available for years prior to 1978, and groundwater withdraw-
als for mining and chemical production were estimated sepa-
rately on the basis of annual estimates of total water use by the 
phosphate industry, using the stepwise methodology described 
below (Jill Hood, Southwest Florida Water Management Dis-
trict, written commun., 2011): 

1. The 5-year average ratio of groundwater to surface-
water use of 96 percent was calculated for the phosphate 
industry using reported 1978–82 data from SWFWMD 
WUP records. This period was chosen on the basis of the 
assumption that as the phosphate industry started using 
alternative sources, the 5-year average ratio would change 
over time.

2. The average monthly variability of groundwater use for 
mining and chemical production WUPs were calculated 
separately. The use of water for mining generally showed 
more seasonal variations.

3. The 5-year average ratio of groundwater use for mining 
(69 percent) and chemical production (31 percent) to total 
groundwater use by the phosphate industry was calcu-
lated using reported 1978–82 data from SWFWMD WUP 
records.

4. The estimated annual water use for the phosphate 
industry for 1935–74 reported by Robertson and others 
(1978, p. 12) was used. The groundwater ratio (96 per-
cent) established in step one was applied to the 1935–74 
data, followed by linear interpolation between estimated 
1974 and reported WUP 1978 groundwater-use data.

5. Ratios were initially applied to the total annual ground-
water use for mining and chemical production from step 
three, followed by ratios representing monthly variability 
for mining and chemical production from step two.

6. For spatial distribution of chemical production groundwa-
ter use, the WUPs active in 1978 were assumed to have 
been active since 1935. The contributing ratio for each 
WUP was calculated and used to prorate the total chemi-
cal production groundwater use. The resulting estimated 
withdrawal was placed at the centroid of the wells associ-
ated with each WUP (fig. 6).

7. For estimating the spatial distribution of mining ground-
water use, spatial data from FDEP showing historical 
evolution of mining areas were used. These data were 
available for the periods up to 1930, 1940, 1950, 1960, 
1965, 1970, 1975, and 1980. The contributing ratio was 
calculated for each parcel with the same mining year. For 
years with no data, the ratio was assumed to be the same 
as that for the following year. The contributing ratio for 
each mining parcel was used to prorate the total mining 
groundwater use, and the resulting estimated withdrawal 
was associated with each respective parcel (fig. 6).

Drainage Wells

From the early 1900s to the 1960s, drainage wells were 
drilled in central Florida primarily for the purposes of dispos-
ing of stormwater runoff and controlling lake levels (Kim-
rey and Fayard, 1984; Bradner, 1996). In the CFCA, direct 
inflow to the Upper Floridan aquifer takes place through 210 
active drainage wells, which are concentrated in the Orlando 
metropolitan area (fig. 6). The status and locations of these 
wells were verified by Hartman and Associates, Inc. (2003). 
These wells, which are cased to the top of the Upper Floridan 
aquifer and then drilled open-hole into the Upper Floridan 
aquifer, either receive street runoff from storm drains (street 
drainage wells) or control lake water levels (lake-level control 
wells). The estimated monthly recharge to the Upper Floridan 
aquifer was computed for each drainage well using a water-
budget analysis and empirical runoff coefficients developed 
by Sepúlveda (2002, p. 34–35). The surface drainage areas of 
these wells, which were delineated by Sepúlveda and others 
(2012) on the basis of a digital elevation model, were used 
with monthly rainfall intensity (from the NOAA Orlando 
gage, station identification number 6628) and runoff coef-
ficients (0.478 for street drainage wells and 0.225 for lake-
level control wells) to compute the monthly volume of water 

http://www.fgdl.org
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Figure 6. Locations of phosphate industry wells for which reported groundwater withdrawal rates from 1978 through 2010 were 
available, phosphate mining areas and phosphate chemical plants where groundwater withdrawal estimates from 1935 through 1977 
were available, and drainage wells in the Central Florida Coordination Area and vicinity.



16  Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida

contributing recharge to the Upper Floridan aquifer from 1950 
through 2008. Therefore, the estimated recharge rates to the 
Upper Floridan aquifer at drainage wells are strongly corre-
lated to the amount of total rainfall for any period. Sepúlveda 
and others (2012) developed more refined drainage-well 
recharge rates using the Green-Ampt infiltration equations 
(Chow and others, 1988), but these data are only available for 
the period 1995–2006 and were not used in this study because 
of the short period of record. Due to the lack of historical data, 
for the purposes of the estimates used in this study, the number 
of drainage wells was not changed over time from the 210 
wells inventoried by Hartman and Associates, Inc. (2003).

Land Use and Land Cover

Landscape change resulting from urbanization may be 
an important determinant of hydrologic change (Renken and 
others, 2005). Because of paucity of historical data on land 
cover and the coarse temporal resolution of the data that are 
available, landscape change was not included as a quantita-
tive factor in this study. In order to illustrate the potential for 
landscape-change-induced impacts on central Florida hydrol-
ogy, however, a brief comparison of historical land-use and 
land-cover data was made.

Comparison of land-use and land-cover data for the years 
1977 and 2006 indicates substantial changes in the study area, 
particularly regarding the extent of developed areas (fig. 7). It 
is important to note that such changes may be due in part to 
differences in land-use and land-cover data sources as well as 
to differences in the interpretation and classification tech-
niques. The 1977 data were compiled from high-altitude aerial 
photographs and the minimum digitized polygon size gener-
ally was 4 hectares (U.S. Geological Survey, 1990), whereas 

the 2006 data were derived from Landsat images and released 
in a raster format at 30-meter resolution (equivalent to 
0.09 hectare) (Fry and others, 2011). For this reason, only the 
following more generalized land-use and land-cover catego-
ries were directly compared: developed areas (low-, medium-, 
and high-intensity urban areas and associated open areas, 
such as lawns, parks, and aesthetic landscaping), cropland/
pasture, open water, and other areas (barren land, forest, scrub/
grassland, and wetland). In 1977, the study area (6,019 square 
miles (mi2) covering all of Lake, Orange, Osceola, Polk, 
and Seminole Counties) consisted of 7 percent developed 
land, 35 percent cropland/pasture, 9 percent open water, and 
49 percent other areas. In 2006, the study area consisted 
of 18 percent developed land, 21 percent cropland/pasture, 
9 percent open water, and 52 percent other areas. These results 
indicate the extent of increased urbanization for this 29-year 
period during which the area of developed land increased by 
about 680 mi2, representing a change of about 160 percent, 
and the area of cropland/pasture decreased by about 810 mi2, 
representing a change of about –40 percent (fig. 7). During a 
similar 30-year period (1980–2010), population in the study 
area increased from about 1.12 million to 2.74 million, or 
about 140 percent (Florida Office of Economic and Demo-
graphic Research, 2012). Increases in the area of developed 
land are particularly important because such changes could 
cause an increase in runoff as a result of reduced infiltration 
through impervious surfaces, soil compaction during develop-
ment activities, or installation of stormwater drainage systems. 
In contrast, depending in part on the design of the stormwater 
management system, such as the use of stormwater infiltra-
tion basins rather than detention basins or ditch/canal systems 
that eventually direct overland runoff to surface-water bodies, 
urbanization could result in an average increase in infiltration 
on an areal basis.
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Figure 7. Generalized land use and land cover in the study area for A, 1977 (U.S. Geological Survey, 1990), and B, 2006 (Fry and others, 
2011).
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Characterization of Historical Data  19

Characterization of Historical Data
Historical data were examined using descriptive statistics, 

cluster analysis, and other exploratory analysis techniques to 
assess their suitability for more intensive data-mining analy-
sis. Based on these analyses and input from SJRWMD and 
SWFWMD on sites of priority water management concern, a 
subset of lakes, wells, and springs (51 sites in all) was selected 
for the development of ANN models.

Hydrologic Data

Hydrologic data were available for a wide range of time 
periods and temporal resolutions. These data were examined 
by computing range and linear trend for the entire period 
of available data for each site with at least 10 years of data 
consisting of at least 10 measurements. Cluster analyses were 
performed for sites with longer periods of record.

Range and Linear Trend
In order to better understand long-term variability in the 

historical hydrologic data, ranges and linear trends of the time 
series were computed. The range of a time series is a measure 
of the maximum fluctuation in an observed parameter over a 
specified period and is computed as the difference between 
maximum and minimum values. For each site, ranges were 
computed for the period of record for the purposes of qual-
ity assuring the dataset, wherein an anomalous value could 
be identified from an unusually large range. For rainfall 
sites, unusually large maximum values can be present in data 
accumulated over long periods, such as in some of the rainfall 
datasets collected by SJRWMD, SFWMD, or SWFWMD. 
Thus, for the purposes of further analysis in this study, only 
NOAA daily rainfall data were examined. The linear trend of a 
time series is the slope of a linear regression line computed for 
the period of record data. For this simple exploratory analysis, 
no attempt was made to identify cyclical, nonmonotonic, or 
statistically significant trends.

Ranges of water-level data (in lakes or wells) varied 
widely across the study area. Variation in lake water lev-
els ranged from 2.38 to 32.96 ft with a mean of 8.43 ft and 
median of 7.22 ft. Some spatial trends are apparent. Of all 
307 lakes, 59 percent are in ridge physiographic regions com-
prising 32 percent closed-basin and 27 percent flowthrough 
lakes (figs. 8, 9). In contrast, 26 percent of the 307 lakes have 
a historical range in water level greater than 10 ft, of which 
19 percent are in ridge physiographic regions comprising 
12 percent closed-basin lakes and 7 percent flowthrough lakes 
(fig. 9). These results indicate that closed-basin lakes in ridge 
areas consistently have greater variation in water levels than 
do flowthrough lakes in ridge areas (fig. 9), perhaps as a result 
of the lack of surface-water inflows or outflows. Addition-
ally, both closed-basin and flowthrough lakes in ridge areas 
generally have greater variation in water levels than lakes in 

non-ridge areas, suggesting that lakes in ridge areas are more 
susceptible to large changes in water level as a result of greater 
hydraulic connection with the Floridan aquifer system. Ranges 
of groundwater levels exhibit larger variations, from 2.57 to 
62.87 ft with a mean of 13.23 ft and median of 10.41 ft. Spa-
tial trends in groundwater levels are due to spatial variations 
in groundwater withdrawals, recharge, and hydrogeologic 
conditions (fig. 10). The largest ranges of groundwater levels 
occurred in southwest Polk County, likely attributable in part 
to historical changes in water-use practices by the phosphate 
industry (Basso, 2003; Spechler and Kroening, 2007).

Variation in spring flows ranged from 0.9 to 169 ft3/s 
with a mean of 32.8 ft3/s and median of 13.8 ft3/s. The range 
of flow for an individual spring generally is greater for large 
magnitude springs relative to that for small springs (fig. 11). 
However, spring-flow ranges as a percentage of mean flow are 
not strongly correlated with mean flows (R of –0.15).

Linear trend statistics of time series for each data type 
computed for the respective periods of record indicate a mix-
ture of upward and downward trends (table 1). Meteorological 
data indicate 67 percent of sites exhibited upward trends in air 
temperature, whereas 76 percent exhibited downward trends 
in rainfall. Hydrologic response data indicate about an even 
split between upward and downward trends in lake water lev-
els, whereas water levels in 69 percent of wells and flows in 
68 percent of the springs exhibited downward trends. Spatial 
patterns are apparent in some data. Upward trends in air tem-
perature occur throughout the study area, but downward trends 
occur only at some sites in the central portion of the study 
area (fig. 12). Downward rainfall trends occur throughout the 
study area, and upward trends occur only at five sites scattered 
across the study area (fig. 13). For lake water levels, closed-
basin lakes in ridge areas consistently have stronger linear 
trends, whether upward or downward, than flowthrough lakes 
in ridge areas, perhaps a result of lack of surface-water inflows 
or outflows (figs. 14, 15). Additionally, both closed-basin 
and flowthrough lakes in ridge areas generally have stronger 
upward or downward trends in water levels than lakes in 
non-ridge areas, suggesting that lakes in ridge areas are more 
susceptible to long-term changes in water level as a result of 
greater hydraulic connection with the Floridan aquifer system 
(figs. 14, 15). Trends in groundwater levels generally are more 
pronounced than those in lake water levels, with downward 
trends throughout the study area (fig. 16). Upward trends in 
groundwater levels, although fewer in number, also occur 
throughout the study area. The strongest upward trends were 
computed for wells in southwest Polk County (fig. 16), likely 
attributable in part to historical changes in water-use practices 
by the phosphate industry (Basso, 2003; Spechler and Kroen-
ing, 2007). The linear trend in flow for an individual spring, 
whether upward or downward, generally is greater for large 
magnitude springs than for small springs (fig. 17). However, 
the magnitudes of spring flow trends (absolute values of the 
slopes of the linear trend lines for each spring) as a percentage 
of mean flow are weakly inversely correlated with mean flows 
(R = –0.33), indicating smaller springs tend to have trends in 
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Figure 9. Exceedance probability of range in daily lake water 
level by lake type (closed basin or flowthrough) and physiography 
(ridge or non-ridge physiographic region) for lakes in the study 
area with at least 10 measurements and a period of record of at 
least 10 years.

flow, whether upward or downward, that are proportionately 
greater on the basis of flow magnitude than those of larger 
springs. The analyst must exercise caution in comparing trends 
among these sites because of large differences in periods 
of record, measurement frequency, and hydrologic setting. 
Furthermore, the intent of the linear trend analysis described 
here is for exploratory purposes only and should not be con-
strued as a statistical analysis. No attempt was made to assess 
normality of the data or imply statistical inference. Murch and 

Table 1. Linear trend statistics for air temperature, rainfall, lake water levels, groundwater levels, and spring flow for study area 
sites in central Florida.

[Temperature sites have periods of record of at least 45 years; rainfall sites have periods of record of at least 95 years; other sites have periods of record of at 
least 10 years; °F/yr, degrees Fahrenheit per year; (in/d)/yr, inches per day per year; in/yr, inches per year; (ft3/s)/yr, cubic feet per second per year]

Number
of sites

Percentage of sites Linear trend

Increasing Decreasing Minimum Maximum Mean Median

Temperature, °F/yr 21 66.7 33.3 –0.014 0.052 0.007 0.003

Rainfall, (in/d)/yr 21 23.8 76.2 –1.36 x 10–4 4.72 x 10–4 –6.56 x 10–6 –4.02 x 10–5

Lake water level, in/yr 307 48.5 51.5 –2.85 13.26 0.305 –0.0111

Groundwater level, in/yr 455 31.4 68.6 –25.83 22.97 –0.431 –0.381

Spring flow, (ft3/s)/yr 19 31.6 68.4 –0.599 0.238 –0.075 –0.036

Tara (2010) presented a thorough statistical analysis of trends 
in hydrologic data for 115 sites in the CFCA. Nevertheless, 
the data ranges and linear trends described above indicate that 
substantial variability exists in the hydrologic system in the 
study area.

Time-Series Cluster Analysis
A time-series cluster analysis was performed for each 

type of hydrologic response data (lake water level, ground-
water level, and spring flow) to identify dynamic similarities 
and differences among sites of the same type. The criteria 
for selection of sites for cluster analysis was that the site had 
at least 30 years of data and that no more than 25 percent of 
the record was missing during the period 1976–2008 (data 
collection at some sites began well before 1976). For wells, 
daily values of water level were required, but for springs and 
lakes, monthly or more frequent data values were permitted. 
A total of 176 sites—consisting of 121 lakes, 46 wells, and 
9 springs—were used for cluster analysis.

A multistep process was followed to prepare and cluster 
each type of data. First, each time series was processed by 
applying a smoothing function, consisting of a trailing running 
average hereafter called a moving window average (MWA). 
The window size was selected on the basis of the original 
data frequency: a 15-day MWA with 15-day resampling for 
wells and a 30-day MWA with 30-day resampling for lakes 
and springs. Next, the data were centered by computing the 
difference from a “standard” time series (arithmetic average 
by time step of all the time series for that data type), leav-
ing the residuals that accentuate differences between signals. 
Finally, a correlation matrix (values of R) of the residuals was 
constructed as a measure of the dynamic similarity among 
sites, and the k-means clustering technique was applied to 
the matrix. The k-means clustering technique provided in the 
Data Miner Software Kit of Weiss and Indurkhya (1998) was 
implemented, which is based on the algorithm of Hartigan and 
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Figure 10. Range of daily groundwater level for wells in the study area with at least 10 measurements and a period of record of at least 
10 years.
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Figure 12. Linear trend in daily average air temperature for sites in the study area with a period of record of at least 45 years.
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Figure 13. Linear trend in daily rainfall for sites in the study area with a period of record of at least 95 years (1901 or 1914 through 2008).
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Figure 14. Exceedance probability of linear trend in daily 
lake water level by lake type (closed basin or flowthrough) and 
physiography (ridge or non-ridge physiographic region) for lakes 
in the study area with at least 10 measurements and a period of 
record of at least 10 years.

Wong (1979). For k number of groups, the k-means algorithm 
optimizes which members of the overall group should be in 
groups 1 through k. The optimal partitioning of groups is 
determined by using the root-mean-square error (RMSE) as a 
measure of the difference in distance between each member 
and the mean of the group such that movement of any point 
from one group to another will not decrease the RMSE for 
either group. The k-means clustering technique was repeated 
for a range of group sizes (k values), and a mean RMSE for all 
groups was computed for each k value and plotted (fig. 18). In 
some cases the optimal number of groups can be selected at 
the inflection point between a sharp vertical decline in mean 
RMSE and a horizontal plateau, for example, for the spring 
results showing a distinct break at three groups (fig. 18). In 
other cases a more gradual reduction in RMSE with increas-
ing number of groups occurs, for example, for the lake results 
showing breaks at two and six groups (fig. 18).

Cluster analyses were performed for several differ-
ent time periods: 31 years (1978–2008) for lakes, 31 years 
(1978–2008) and 41 years (1968–2008) for wells, and 41 years 
(1969–2009) for springs. For lakes, the optimal number of 
groups selected was six (fig. 18). There is no apparent geo-
graphic association among these lake groups, as each group 
has members generally located throughout the study area 
(fig. 19). However, groups 2 and 3 have proportionately 
more closed-basin lakes (10 of 22 for group 2 and 9 of 20 
for group 3) than all groups combined (32 of 121), whereas 

groups 4 and 5 have proportionately more flowthrough lakes 
(20 of 21 for group 4 and 19 of 22 for group 5) than all groups 
combined (89 of 121) (fig. 20). For wells, the optimal num-
ber of groups selected was three for both the 31- and 41-year 
cluster analyses (fig. 18). For the 31-year cluster analysis, 
wells generally are associated geographically (fig. 21). Group 
1 wells are in southwest Polk County and comprise all Flori-
dan aquifer system wells and two intermediate aquifer system 
wells in this area. Group 2 wells are generally in south Lake 
and Orange Counties, east Polk County, and all of Osceola 
County, and include all but one of the surficial aquifer system 
wells used in the analysis. Group 3 wells are generally in the 
central and northern parts of the study area. Wells from the 
31-year cluster analysis with long periods of record were used 
in the 41-year cluster analysis and generally were associated 
into similar groups (fig. 22). For springs, the optimal num-
ber of groups selected was three (fig. 18). Spring groups are 
loosely characterized by geographic location and magnitude of 
flow. Group 1 springs comprise Alexander and Blue Springs, 
both of which are first magnitude springs. Group 2 springs 
comprise Miami, Palm, Sanlando, and Starbuck Springs, 
which are small second magnitude or third magnitude springs 
where all but Miami Springs are in close proximity to each 
other (fig. 22). Group 3 springs comprise Bugg, Rock, and 
Wekiwa Springs, where both Rock are Wekiwa are second 
magnitude springs.

Time-series cluster analyses also were performed on 
long-term meteorological data reported by NOAA. The period 
1942–2008 was selected for analysis because it had the least 
amount of missing data. However, large amounts of data were 
missing for 5 of the 23 NOAA rainfall sites and 1 of the 21 
NOAA air temperature measurement sites; the data for these 
sites were not used in the analyses. Estimates of missing 
rainfall data were included in the hydrologic database (appen-
dix 1), but most of these estimates were developed by Aly 
(2008) for long-term rainfall analyses, such as those used in 
the calculation of long-term water budgets, and not for event-
based predictions; thus, a daily prediction from this method 
may have a large error (Aly, 2008, p. 97–98). Therefore, the 
relatively small amounts of missing data in the remaining 18 
rainfall time series and 20 PET time series were filled using 
“IF-THEN-ELSE” rules in which a missing value at a gage 
is filled using values from one or more neighboring stations. 
Missing rainfall data in particular are difficult to fill because of 
their “spiky,” spatially discontinuous nature; therefore, these 
filling rules were selected to maintain consistent temporal vari-
ability in the data. Figure 23 shows how data were propagated 
across the network, with the arrows indicating the direction 
of flow. The order of filling emphasized the use of gages with 
the most abundant data to fill the records for gages with the 
next most abundant data and so on. In some instances filled 
data at one gage were used to fill the record for another gage. 
Data for three additional rain gages (sites 510206, 540106, 
and 1880101 monitored by the SJRWMD and located in 
Indian River County; fig. 23) were used to fill the record for 
NOAA site 2936. The rainfall filling rules also were used for 
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Figure 15. Linear trend in daily water level for lakes in the study area with at least 10 measurements and a period of record of at least 
10 years.
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Figure 16. Linear trend in daily groundwater level for wells in the study area with at least 10 measurements and a period of record of at 
least 10 years.
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Figure 18. Root-mean-square error for k-means cluster analysis of water-level data for lakes and wells and flow data for springs in the 
study area.

filling missing PET data rather than developing a new set of 
rules unique to the PET data. This approach is expected to be 
sufficient given the more spatially and temporally consistent 
nature of PET data. To assess the longer-term variability in 
rainfall and PET data, cluster analyses were performed using 
1,440-day (approximately 4-year) MWAs computed from the 
filled datasets.

Cluster analysis of rainfall data from 18 NOAA gages 
indicates 4 groups of sites with relatively similar dynamic 
behavior exhibiting north-south and east-west geographic 
associations (fig. 24). Comparisons with the long-term linear 
trend analysis (fig. 13) show the rain gages in the western 
half of the study area belonging to cluster groups 3 and 4 had 
downward trends, with the exception of NOAA gage 1641, 
which had a slightly upward trend. In contrast, rain gages in 
the eastern half of the study area belonging to cluster groups 
1 and 2 had a mix of upward and downward long-term trends 
(fig. 13). Such spatial patterns in long-term trends may poten-
tially affect the hydrologic system, especially the groundwater 
flow system because most of the areas of high groundwa-
ter recharge within the study area occur in the western half 
(Sepúlveda and others, 2012), and long-term downward trends 
are apparent in groundwater levels and spring flows (figs. 16, 
17; table 1). Closer examination of 4-year MWAs of the daily 
time series, however, indicates that substantial intragroup 
differences exist (fig. 25), because rainfall data commonly 
are highly variable in space and time. Therefore, for develop-
ing empirical models such as ANNs, the use of data from all 
18 rain gages rather than generalizing into 4 groups should 
improve model predictive capability.

Cluster analysis of Hargreaves PET data computed from 
air temperature at 20 NOAA gages indicates 3 groups of 
sites with relatively similar dynamic behavior and a gener-
ally east-west geographic association (fig. 26). The PET data 
generally are more smoothly varying in time than the rainfall 
data, although some intragroup differences indicate spatial 
variation (figs. 25, 27). These results are consistent with those 
of Sumner (2006) and O’Reilly (2007), who noted that the 
temporal variability of ET in central Florida is considerably 
less than that of rainfall for a wide range of time scales (from 
daily to annual). Such differences in the stochastic charac-
teristics of rainfall and ET lead to rainfall explaining more 
than 90 percent of the temporal variability in available water 
(rainfall minus ET) (O’Reilly, 2007, p. 15). Because available 
water drives the hydrologic system and its variability is con-
trolled by rainfall, PET time series were not further analyzed 
in this study and were excluded as explanatory variables for 
ANN modeling.

Groundwater Use

To view general spatial trends in groundwater use 
over time, an application was developed that aggregates 
the monthly data using a grid cell size of approximately 
20 × 20 km (fig. 28). This application—called the Ground-
water-Use Data Viewer (GUDV)—is described in further 
detail in appendix 2. The relatively large grid cell size was 
selected because the effects of groundwater use can propa-
gate over fairly long distances in a karst aquifer, such as the 
Floridan aquifer system. Murray (2010) analyzed the effects 
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Figure 19. Locations of lakes in the study area identified by group number based on the 31-year cluster analysis of lake water-level 
data from 1978 through 2008.
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Figure 20. Distribution of lakes in the study area identified by lake type (closed basin or flowthrough) and physiography (ridge or non-
ridge physiographic region) based on the 31-year cluster analysis of lake water-level data from 1978 through 2008.

of groundwater withdrawals and water levels at two monitor-
ing well sites in central Florida and reported no changes in 
correlation between groundwater levels and withdrawals at 
a range of radial distances from 2.5 to 10 miles, suggesting 
that that the GUDV cell width of 20 km (12.4 miles) is not 
too large. The grid structure of the GUDV also was used to 
estimate missing data for public-supply groundwater with-
drawals. Data reported on water distributed by public-supply 
water-treatment plants in the study area (fig. 4) are sparse prior 
to 1978; therefore, data from 1950 through 1977 were esti-
mated by hindcasting measured data. Hindcasting consisted 
of linear extrapolation of log-transformed 1978–2008 data 
with average monthly variations from 1978 to 2008 added 
back in.  Hindcasting was done per GUDV grid cell (fig. 28), 
not for individual users, and only for cells where 1978 total 
public-supply groundwater withdrawals exceeded 0.1 Mgal/d. 
Also, five cells for which public-supply data were missing in 
the early part of the 1978–2008 period were filled in the same 
way. Hindcasted data compare better with the limited amount 
of reported data in the period 1965–77, when percentage dif-
ferences generally were less than 10 percent. Results compare 
more poorly with data for the period 1950–64, when percent-
age differences generally exceeded 10 percent. The paucity 
of measured data affects the accuracy of such comparisons, 
however, and the hindcasted data have a similar upward trend 
as the public-supply data estimated by Munch (2014) for the 
same period.

Spatial and temporal trends in groundwater-use data 
were examined using the GUDV. Long-term patterns in 
total groundwater use exist in both monthly and annual data 
for all water-use categories (fig. 29). Seasonal variations in 
groundwater use are apparent in the monthly data, especially 
in the citrus and non-citrus agricultural irrigation categories 
(fig. 29A). Examination of annual data clearly indicates that 
all categories of groundwater withdrawal were increasing 
during the 1950s and throughout most of the 1960s, with 
the largest quantities from the phosphate mining category 
increasing from 44 Mgal/d in 1951 to 252 Mgal/d in 1966 
(fig. 29B). Groundwater withdrawals by the phosphate mining 
industry began to decline in 1967 and generally have contin-
ued to decline, reaching a minimum of 44 Mgal/d in 2006. 
Groundwater withdrawals for citrus and non-citrus agricultural 
irrigation have increased from 63 and 50 Mgal/d, respectively, 
in 1957 to a maximum of 225 Mgal/d for citrus in 1981 and 
139 Mgal/d for non-citrus agricultural in 1984. Since the early 
1980s, however, citrus and non-citrus agricultural groundwater 
withdrawals generally have decreased, reaching a minimum 
of 126 Mgal/d for citrus irrigation in 2008 and 29 Mgal/d 
for non-citrus agricultural irrigation in 2002. The amount of 
water used for golf course irrigation is small relative to that in 
other categories but has shown a slight upward trend since the 
earliest available records, from 3 Mgal/d in 1977 to 18 Mgal/d 
in 2008 and a maximum of 34 Mgal/d in 2000. As expected, 
drainage well recharge generally follows rainfall patterns with 



Characterization of Historical Data  33

MARION
COUNTY

PUTNAM
COUNTY

LAKE
COUNTY

VOLUSIA
COUNTY

FLAGLER
COUNTY

ORANGE
COUNTY

POLK
COUNTY

OSCEOLA
COUNTY

INDIAN
RIVER

COUNTY

OKEECHOBEE
COUNTY

HIGHLANDS
COUNTYMANATEE

COUNTY

SUMTER
COUNTY

PASCO
COUNTY

H
IL

L
SB

O
R

O
U

G
H

 
C

O
U

N
T

Y

BREVARD
COUNTY

SEMINOLE
COUNTY

HARDEE
COUNTY

EXPLANATION

Cluster-analysis groups, well 
    locations and aquifer

Central Florida Coordination 
    Area boundary

Water Management District 
    boundary

Intermediate aquifer system

Floridan aquifer system

Surficial aquifer system

Floridan aquifer system

Group 2

Surficial aquifer system

Intermediate aquifer system

Floridan aquifer system

Group 3

Group 1

0 10 20 MILES

0 20 KILOMETERS10

81°00'82°00'

29°00'

28°00'

Base from U.S. Geological Survey digital data, 
Universal Transverse Mercator projection, zone 17

ATLANTIC O
CEAN

Figure 21. Locations of wells in the study area identified by group number and aquifer based on the 31-year cluster analysis of 
groundwater-level data from 1978 through 2008.
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Figure 22. Locations of springs in the study area identified by group number based on the 41-year cluster analysis of spring-flow data 
from 1969 through 2009 and locations of wells by group number and aquifer based on the 41-year cluster analysis of groundwater-level 
data from 1968 through 2008.
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Figure 24. Locations of National Oceanic and Atmospheric Administration (NOAA) rain gages in the study area identified by group 
number based on the 67-year cluster analysis of rainfall data from 1942 through 2008. Information and data for each site are included in 
the hydrologic database (described in appendix 1) and can be referenced by the station identification label.
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Figure 25. Moving window averages (1,440 days ≈ 4 years) of rainfall data for the individual National Oceanic and Atmospheric 
Administration (NOAA) rain gages in the study area composing the four groups derived from the 67-year cluster analysis. Site locations 
are shown in figure 24.
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Figure 26. Locations of National Oceanic and Atmospheric Administration (NOAA) air temperature measurement sites in the study 
area identified by group number based on the 67-year cluster analysis of computed Hargreaves potential evapotranspiration (PET) data 
from 1942 through 2008. Information and data for each site is included in the hydrologic database (described in appendix 1) and can be 
referenced by the station identification label.
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Figure 27. Moving window averages (1,440 days ≈ 4 years) of computed Hargreaves potential evapotranspiration (PET) data for the 
individual National Oceanic and Atmospheric Administration (NOAA) air temperature measurement sites in the study area composing 
the three groups derived from the 67-year cluster analysis. Site locations are shown in figure 26.
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Characterization of Historical Data  41

EXPLANATION
Total

Citrus irrigation

Non-citrus irrigation

Golf course irrigation

Drainage well recharge

Phosphate mining

Public supply

EXPLANATION
Total

Citrus irrigation

Non-citrus irrigation

Golf course irrigation

Drainage well recharge

Phosphate mining

Public supply

–200

0

200

400

600

800

1,000

1,200

1,400

1,600

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

2010

2010

M
on

th
ly

 a
ve

ra
ge

 fl
ow

, i
n 

m
ill

io
n 

ga
llo

ns
 p

er
 d

ay

–100

0

100

200

300

400

500

600

700

800

An
nu

al
 a

ve
ra

ge
 fl

ow
, i

n 
m

ill
io

n 
ga

llo
ns

 p
er

 d
ay

Year

Year

A

B

Figure 29. Total groundwater use in the Central Florida Coordination Area and vicinity by category from 1950 through 2008 based on 
the Groundwater-Use Data Viewer for A, monthly data, and B, annual average data. Drainage well recharge depicted as negative values 
because these flows represent inputs to, rather than withdrawals from, the aquifer system.
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a minimum of 25 Mgal/d in 2000, maximum of 56 Mgal/d 
in 1960, and mean of 41 Mgal/d for 1950–2008. In contrast 
to these other categories, public-supply groundwater with-
drawals have increased substantially from 22 Mgal/d in 1950 
to 437 Mgal/d in 2008, although short periods of decrease 
occurred in 1981–82, 1990–91, 2000–2001, and 2006–08. 
The net result is that total groundwater use in the study area 
(excluding 1950–57 due to missing data) increased from 
about 250 Mgal/d in 1958 to about 590 Mgal/d in 1980 and 
has remained relatively stable in the period 1981–2008 with 
a minimum of 559 Mgal/d in 1994, maximum of 773 Mgal/d 
in 2000, and mean of 636 Mgal/d. The change in trend in 
the early 1980s and the following period of relatively slight 
trend is attributable to the concomitant effects of increasing 
public-supply withdrawals and decreasing phosphate mining 

and citrus and non-citrus agricultural irrigation (fig. 29B). A 
comparison of aggregated data for a dry period (May 2000) 
and a wet period (August 2004) using the GUDV shows the 
effect of rainfall on all water-use categories, with generally 
high groundwater withdrawals and low drainage well recharge 
in May 2000 (fig. 30) and low groundwater withdrawals and 
high drainage well recharge in August 2004 (fig. 31). May 
2000 was a dry period with only 0.53 in. of rainfall, whereas 
August 2004 was a wet period with 13.07 in. of rainfall, based 
on average data for the 18 rain gages shown in figure 24. 
During wet periods, the effect of drainage well recharge in 
offsetting public-supply withdrawals in the Orlando area is 
substantial, resulting in a net inflow to the aquifer in one area 
(fig. 31). Such insight provided by the GUDV was used to 
guide the development of ANN models described in the fol-
lowing section.
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Notes: (1) Positive values
indicate aquifer withdrawals and
negative values indicate aquifer
inflows; and (2) Cells denoted 
with a “.” symbol represent no
reported groundwater use in that
cell for that month.
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DATE

5/2000

Column

606

0 1 2 3 4 5 6 7

0 . . 0.0 0.0 . . . .

1 0.1 11.3 9.2 2.8 15.3 . . .

2 2.1 32.7 32.7 49.4 30.8 6.7 . .

3 0.7 23.1 21.5 109.6 102.6 14.2 . .

4 . 0.3 37.7 84.4 9.9 38.3 0.1 .

5 7.0 7.3 26.3 27.6 23.5 2.5 1.9 .

6 36.9 22.4 73.3 6.6 7.3 18.0 0.9 .

7 27.9 44.8 44.2 45.6 5.9 7.8 0.1 .

8 21.2 14.2 29.8 17.6 . 6.8 1.6 .

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . . . . . . . .

1 0.1 8.5 4.8 2.5 0.0 0.0 0.0 0.0 1 0.0 1.3 3.7 0.3 0.0 0.0 0.0 0.0 1 0.0 1.4 0.7 . . . . .

2 0.5 20.0 13.9 3.4 8.9 4.5 0.0 0.0 2 0.0 5.8 5.6 0.7 5.4 2.0 0.0 0.0 2 0.0 1.7 1.1 5.9 1.9 . . .

3 0.3 5.8 3.4 3.4 3.7 10.1 0.0 0.0 3 0.2 8.1 7.0 1.6 1.4 3.2 0.0 0.0 3 . 1.0 1.1 2.3 5.3 0.2 . .

4 0.0 0.0 0.4 0.1 5.7 9.8 0.1 0.0 4 0.0 0.3 11.5 1.1 2.3 0.6 0.0 0.0 4 . 0.0 4.4 6.9 0.9 . . .

5 0.6 0.3 0.5 1.1 0.7 2.4 1.2 0.0 5 1.0 5.0 16.5 4.3 18.5 0.1 0.8 0.0 5 0.0 0.0 2.4 2.1 0.1 . . .

6 1.7 0.6 1.5 0.0 7.2 0.4 0.6 0.0 6 1.6 12.6 46.9 3.1 0.1 17.5 0.3 0.0 6 0.0 0.0 4.1 0.7 . . . .

7 0.4 1.4 1.0 1.5 3.0 5.8 0.1 0.0 7 0.1 20.2 39.2 42.8 1.3 2.0 0.0 0.0 7 . 0.0 0.0 0.1 1.5 . . .

8 0.0 0.0 3.1 0.1 0.0 3.2 0.1 0.0 8 2.2 5.6 26.4 16.9 0.0 3.6 1.5 0.0 8 . . 0.0 . . . . .

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . . . . . . . .

1 0.0 0.0 0.0 0.0 15.3 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 . . . . . . . .

2 1.7 5.1 12.0 39.4 14.6 0.1 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 . . . . . . . .

3 0.2 8.1 10.6 109.1 93.8 0.6 0.0 0.0 3 0.0 0.0 -0.7 -6.8 -1.6 0.0 0.0 0.0 3 . . . . . . . .

4 0.0 0.0 21.3 76.8 1.1 27.8 0.0 0.0 4 0.0 0.0 0.0 -0.6 0.0 0.0 0.0 0.0 4 . . . . . . . .

5 3.7 2.0 6.9 20.0 4.3 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 1.7 0.0 . . . . . .

6 33.7 9.2 20.7 2.7 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 . . . . . .

7 0.6 5.3 4.0 1.2 0.2 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 26.8 17.9 0.0 . . . . .

8 0.0 0.0 0.2 0.6 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 19.1 8.6 0.0 . . . . .

SUM, Mgal/day

Non-Citrus Agricultural, Mgal/day Citrus, Mgal/day Golf, Mgal/day

Public Supply, Mgal/day Drainage, Mgal/day Phosphate, Mgal/day

Figure 30. Screen capture of the Groundwater-Use Data Viewer showing groundwater use by category and sum total in million gallons 
per day (Mgal/day) for a dry period (May 2000).
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0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . . . . . . . .

1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 1 0.0 0.3 1.0 0.1 0.0 0.0 0.0 0.0 1 0.0 1.0 0.5 . . . . .

2 0.0 0.9 1.1 0.6 2.7 0.2 0.0 0.0 2 0.0 1.4 1.3 0.1 3.5 0.9 0.0 0.0 2 0.0 1.3 0.8 1.0 0.1 . . .

3 0.0 0.2 0.2 0.4 0.8 0.3 0.0 0.0 3 0.1 2.1 1.3 0.4 0.6 1.2 0.0 0.0 3 . 0.8 1.1 0.7 1.0 0.1 . .

4 0.0 0.0 0.1 0.0 0.7 1.6 0.0 0.0 4 0.0 0.1 2.8 0.3 0.7 0.1 0.0 0.0 4 . 0.0 1.4 2.5 0.5 . . .

5 0.0 0.0 0.0 0.2 0.1 0.3 0.1 0.0 5 0.2 0.8 3.3 1.4 5.9 0.0 0.2 0.0 5 0.0 0.0 0.6 0.5 0.1 . . .

6 0.1 0.0 0.1 0.0 1.0 0.1 0.1 0.0 6 0.2 2.0 7.5 0.5 0.0 5.6 0.1 0.0 6 0.0 0.0 0.8 0.2 . . . .

7 0.0 0.1 0.1 0.1 0.4 0.8 0.0 0.0 7 0.0 3.2 6.3 6.8 0.3 0.6 0.0 0.0 7 . 0.0 0.0 0.0 0.3 . . .

8 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 8 0.3 0.9 4.2 2.7 0.0 1.0 0.0 0.0 8 . . 0.0 . . . . .

0 1 2 3 4 5 6 7

0 . . 0.0 0.0 . . . .

1 0.0 1.4 1.6 0.2 8.5 . . .

2 2.6 7.0 10.1 24.2 15.5 1.2 . .

3 0.1 7.9 2.0 -34.1 45.9 2.2 . .

4 . 0.1 22.9 52.9 2.7 25.2 . .

5 4.0 2.1 9.3 19.7 9.6 0.4 0.4 .

6 23.6 11.3 22.1 3.5 1.0 5.6 0.2 .

7 15.6 23.8 8.9 7.3 1.2 1.4 0.0 .

8 11.1 2.7 4.7 3.1 . 1.2 0.0 .

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . . . . . . . .

1 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 . . . . . . . .

2 2.6 3.5 7.0 22.4 9.2 0.1 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 . . . . . . . .

3 0.1 4.7 9.1 64.8 67.4 0.7 0.0 0.0 3 0.0 0.0 -9.7 -100.4 -23.9 0.0 0.0 0.0 3 . . . . . . . .

4 0.0 0.0 18.5 58.4 1.3 23.6 0.0 0.0 4 0.0 0.0 0.0 -8.4 -0.5 0.0 0.0 0.0 4 . . . . . . . .

5 1.9 1.2 5.3 17.7 3.5 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 1.9 0.0 . . . . . .

6 23.2 9.3 13.7 2.8 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 . . . . . .

7 0.5 0.9 2.6 0.4 0.2 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 15.1 19.6 0.0 . . . . .

8 0.0 0.0 0.3 0.4 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 10.7 1.9 0.0 . . . . .

Notes: (1) Positive values
indicate aquifer withdrawals and
negative values indicate aquifer
inflows; and (2) Cells denoted 
with a “.” symbol represent no
reported groundwater use in that
cell for that month.

SUM, Mgal/day

Golf, Mgal/dayNon-Citrus Agricultural, Mgal/day Citrus, Mgal/day

Public Supply, Mgal/day Drainage, Mgal/day Phosphate, Mgal/day
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Figure 31. Screen capture of the Groundwater-Use Data Viewer showing groundwater use by category and sum total in million gallons 
per day (Mgal/day) for a wet period (August 2004).
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Methods for Simulation of Historical 
Lake Water Levels, Groundwater 
Levels, and Spring Flows

Water levels and flows in a hydrologic system typically 
are simulated using dynamic deterministic models that incor-
porate the mathematical descriptions of the physics of surface 
and subsurface flow. Although physics-based models have 
been the state of the practice for resource management evalua-
tions of anthropogenic effects on hydrologic systems, devel-
opments in the field of advanced statistics, machine learning, 
and data mining offer opportunities to develop empirical ANN 
models that often more closely replicate observed conditions. 
ANN models also have the capability to reliably predict sys-
tem response if the full range of input variables was consid-
ered during the model development and training process.

Limitations of Datasets

The reliability of all mathematical models, whether 
empirical or physics based, is dependent on the quality of 
the data and range of measured conditions used for training 
or calibrating the model. The available period of record for 
forcing variables (such as rainfall and groundwater use) and 
hydrologic response variables can limit the range of lake water 
levels, groundwater levels, and spring flows that a model can 
accurately simulate. A long period of continuous record and 
large range of historical conditions are critical for developing 
accurate empirical models; therefore, only the sites used in 
cluster analyses, which satisfied these conditions, were consid-
ered for potential ANN modeling.

To assist in the selection of potential sites for more 
detailed analysis, SJRWMD and SWFWMD provided a list of 
“priority sites” that are of important management or regula-
tory concern, such as a well with a long period of water-level 
record or a lake for which a regulatory minimum water level 
must be established. Priority sites with longer periods of 
record, as well as other sites included in the cluster analysis 
with long-term data records, were initially selected. For the 
groups of sites exhibiting similar behavior as indicated by 
cluster analysis, representative priority sites were selected 
for ANN modeling. Owing to the sparseness of spring-flow 
data, only priority springs that also have a relatively long and 
complete data record were selected for ANN modeling. A 
final dataset of 51 sites, consisting of 22 lakes, 23 wells, and 
6 springs, was selected for intensive analysis and development 
of ANN models [fig. 32; table 2 (table 2 in back of report)].

System Dynamics and Analysis

The behavior, or dynamics, of a natural system results 
from the cause-and-effect relations between multiple physi-
cal forces. For example, temporal variations in water-table 
altitude at a fixed location are subject to weather conditions, 
such as rainfall and solar radiation, and anthropogenic influ-
ences, such as artificial recharge and groundwater withdraw-
als, over a range of time scales from daily to multiyear. For the 
application of ANN models to sites in the CFCA, data-mining 
techniques were applied to maximize the information content 
in raw data while diminishing the influence of poor or miss-
ing measurements. Methods included digital filtering; the use 
of time derivatives, time delays, and moving averages; and 
comparison of differences between stations.

Signals, or time series, manifest three types of behavior: 
periodic, noise, and chaotic (Conrads and others, 2006). Peri-
odic behavior is precisely predictable. Examples of periodic 
behavior are the diurnal sunlight and temperature patterns 
caused by the rising and setting sun or fluctuations in tidal 
water levels attributed to orbital mechanics. Noise is unpre-
dictable. Noise refers to unexplained variations in data values 
and commonly is attributed to measurement error. Chaotic 
behavior is neither totally periodic nor noise and always has a 
physical cause. Variations in weather conditions, such as fluc-
tuations in rainfall or air temperature, are examples of chaotic 
behavior. Chaotic behavior is to an extent predictable, espe-
cially over short time frames and prediction horizons. Such 
a short prediction horizon points to a classic characteristic of 
chaos that small permutations in the initial state of a determin-
istic system can lead to large changes in a later state (Motter 
and Campbell, 2013, p. 27).

Signal Filtering and Decomposition
Signal filtering involves removal of certain frequencies 

or range of frequencies from an input signal, preserving all 
other frequencies in the output signal. A MWA is a form of 
low-pass filter, which preserves the low-frequency variations 
of the input signal and removes the high-frequency variations, 
where larger window sizes lead to greater smoothing of the 
input signal. All MWAs in this study were trailing moving 
averages such that, for example, a 30-day MWA was com-
puted as the arithmetic average of data for the current and 
preceding 29 days. Daily rainfall data at the 18 NOAA rain 
gages (fig. 24) were used to compute MWAs for a “standard” 
rainfall signal (arithmetic average by time step of all gages) 
using the following window sizes: 30; 90; 270; 630; 1,440; 
and 2,250 days. Using these same window sizes, MWAs of 
normalized rainfall (gage rainfall minus standard rainfall) 
also were computed for each NOAA rain gage. Multiyear 
trends in rainfall (for example, a 630-day MWA, fig. 33A) 
and seasonal variations in rainfall (for example, a 90-day 
MWA, fig. 33B) are clearly evident in the study area as 
manifest in the standard rainfall signal. Likewise, monthly 
groundwater-use data (fig. 29A) were used to compute MWAs 
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Figure 32. Sites in central Florida for which artificial neural network models were developed. Information for each site is referenced in 
table 2 by the site number.
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Figure 33. Average daily and low-pass filtered rainfall for the standard rainfall time series for A, 1945 through 2008, and B, 1997 through 
2001. The standard rainfall time series represents the arithmetic average of daily rainfall at the 18 National Oceanic and Atmospheric 
Administration (NOAA) rain gages shown in figure 24.
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for total groundwater-use flow rates for the study area using 
the following window sizes: 3, 6, 12, 24, 48, and 96 months. 
Similar to rainfall, multiyear trends in groundwater use (for 
example, 24-month MWA, fig. 34A) and seasonal variations 
in groundwater use (for example, 3-month MWA, fig. 34B) 
are clearly evident in the study area. Unlike rainfall, however, 
a notable long-term upward trend in groundwater use existed 
prior to the mid-1980s, with a steeper upward trend during the 
1960s and a milder upward trend during the 1970s and early 
1980s (48-month MWA, fig. 34A). From about the mid-1980s 
through 2008, long-term trends in groundwater use were 
slight, and during this period multiyear variability on the scale 
of 5 to 10 years was more common (fig. 34A).

Signal decomposition involves splitting a signal into 
subsignals, called “components,” which are independently 
attributable to different physical forces (Conrads and others, 
2006). A moving window difference (MWD) is a form of 
band-pass filter, which preserves variations of the input signal 
within a certain range of frequencies and removes variations 
of frequencies outside this range. Therefore, MWDs can be 
used to represent various frequency-band components of the 
forces that modulate water-level or spring-flow behavioral 
dynamics. In this study, all MWDs were computed from suc-
cessive pairs of MWAs, for example, the 2,250-day MWA was 
subtracted from the 1,440-day MWA, the 1,440-day MWA was 
subtracted from the 630-day MWA, and so on. This process 
transforms the raw input signal, such as rainfall or groundwa-
ter use, into a waveform that may be more strongly correlated 
(than the raw input signal) with a water-level or spring-flow 
signal and more representative of the input-output behavior 
of the physical process. The behavioral dynamics manifest in 
the rainfall and groundwater use as represented by MWAs and 
MWDs were used to assess correlations with system response 
(lake water levels, groundwater levels, and spring flows) and 
ultimately for incorporation in ANN models.

Correlation Analysis
The relations between the forcing variables, response 

variables, and their various low-pass filtered signals are ascer-
tained through correlation analyses to provide greater under-
standing of system dynamics. For example, spring flow is 
dependent, in part, on rainfall and groundwater use, and corre-
lation analysis provides a measure of the relative contribution 
of each variable. Sensitivity analysis quantifies the relations 
between a dependent variable of interest and causal variables. 
Computing sensitivities requires defining the relation between 
variables through modeling.

Using statistical and (or) ANN software, correlations 
can be computed between factors that most influence system 
characteristics of interest (for example, groundwater level) 
and candidate combinations of controlled and uncontrolled 
variables (for example, rainfall and groundwater use). Correla-
tion methods based on statistics as well as ANNs are applied. 
Promising results identified by the analysis are validated by 
comparing them to known patterns of behavior. For the current 

study, correlations among rainfall, groundwater use, and 
hydrologic response (lake water level, groundwater level, and 
spring flow) were computed. Daily time series extending from 
1942 (or the first year of hydrologic response record) through 
2008 were used for identifying correlations between rain-
fall and hydrologic response. Because groundwater-use data 
were available only at monthly resolution and over a shorter 
period of record, monthly averages of rainfall and hydrologic 
response were computed and correlations were identified for 
time series extending from 1957 through 2008.

The correlations between 3 rainfall signals (270-, 630-, 
and 1,440-day MWAs) at the 18 NOAA rain gages (fig. 24) 
were compared to the hydrologic response at 51 sites (fig. 32; 
table 2). These three rainfall signals were selected because 
they generally showed the highest correlations with hydrologic 
response based on preliminary analyses using a greater num-
ber and wider range of MWAs. Correlation coefficients were 
computed for all rain gage and rainfall-signal pairs, yielding 
a total of 54 values of R for each site (3 MWAs for each of 
the 18 rain gages). Maximum correlations ranged from 0.35 
to 0.90, and average correlations (for all 54 R values) ranged 
from –0.03 to 0.61, whereas for most sites negative values 
were found for minimum correlations ranging from –0.45 to 
0.27 (fig. 35). Negative correlations likely are spurious and 
have no direct causative significance; however, the relatively 
high correlations suggest that rainfall is an important control 
on hydrologic response.

Relatively high correlations exist for many rain gages and 
rainfall signals. For example, groundwater level at site number 
469 (ROMP 59 Avon Park well, table 2; fig. 32) is most highly 
correlated (R values range from 0.68 to 0.76) with rainfall at 
three relatively nearby rain gages (NOAA gages 5973, 7205, 
and 9401; see figure 24 for rain gage locations) and rainfall at 
two distant rain gages (NOAA gages 4502 and 6628) at rela-
tively short time scales (270- and 630-day MWAs). Ground-
water level at site number 602 (Bay Lake Floridan well, 
table 2; fig. 32) is most highly correlated (R values range from 
0.38 to 0.56) with one nearby rain gage (NOAA gage 1641) 
and two distant rain gages (NOAA gages 1163 and 8942) at 
various time scales (270-, 630-, and 1,440-day MWAs).

Correlations between rainfall and hydrologic response 
also were examined as a function of distance between the 
sites and the rain gages. Fairly high correlations between 
rainfall and hydrologic response were found for both nearby 
and distant rain gages as illustrated at three lake, well, and 
spring sites (fig. 36). With some exceptions, correlations tend 
to decrease with increasing distance between the site and 
the rain gage, as indicated by the negative trends shown in 
figure 36 and by the predominantly negative R values shown 
in figure 37. Correlations that have an upward trend with 
distance (positive R value in figure 37) may be a consequence 
of other factors such as groundwater use. If groundwater 
use is a significant factor affecting water levels and flows, 
it is possible that low positive correlations or even negative 
correlations with nearby rainfall may actually represent the 
confounding effects of inverse correlation between rainfall and 
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Figure 34. Average monthly and low-pass filtered groundwater use in the Central Florida Coordination Area and vicinity for the sum 
total of all water-use categories for A, 1957 through 2008, and B, 1997 through 2001. Data for individual water-use categories shown in 
figure 29A.
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Figure 35. Pearson product-moment correlation coefficient (R) between rainfall (for each rain gage and rainfall-signal pair) and 
hydrologic response at each site. Ranges are depicted indicating those values falling between the minimum and average R for the 
site and those values falling between the average and maximum R for the site. Rainfall signals are 270-, 630-, and 1,440-day moving 
window averages of rainfall at each of the 18 National Oceanic and Atmospheric Administration (NOAA) rain gages (locations shown 
in figure 24). Site information and locations are shown in table 2 and figure 32.

nearby groundwater use. Such spurious correlations may be 
more common at nearby rain gages than at distant rain gages 
where groundwater-use effects may tend to be attenuated 
by distance. In general, however, correlations with distance 
are weak, where 78 percent of sites have R values less than 
0.3 in absolute value (fig. 37). A possible explanation for the 
generally weak correlations with distance is that rainfall at the 
location of the hydrologic response may be correlated with 
rainfall at a distant location. Rainfall signals (30-, 90-, 270-, 
630-, 1,440-, and 2,250-day MWAs) from the 18 NOAA gages 
are correlated between sites, where R values range from –0.31 
to 0.91. Only 25 percent of the rainfall signals among all 18 
NOAA gages have R values greater than 0.5 and 6 percent 
have R values exceeding 0.75, suggesting that correlation of 
rainfall between gages is not particularly strong (consistent 
with the cluster analysis that indicated rainfall data are highly 
variable in space and time). All these results taken together 
suggest an “interconnectedness” of the hydrologic system in 
which rainfall forcing may possibly be transmitted over long 
distances (up to about 100 miles based on the extent of the 
current study area). Such behavior is not inconsistent with 
that of a semiconfined or confined karst aquifer, such as the 
Floridan aquifer system in central Florida, where pressure 
transients move relatively quickly through the system owing 
to the high transmissivity and low storativity properties of the 
hydrogeologic units.

Groundwater use is a potentially important forcing that 
may influence behavior of the hydrologic system. Correlations 
were examined between groundwater-use signals (monthly 
values and 3-, 6-, 12-, 24-, 48-, and 96-month MWAs for 
the sum total of all groundwater-use types; fig. 34A) and the 
hydrologic response at 51 sites (fig. 32; table 2). The correla-
tion was computed for each groundwater-use signal, yielding 
a total of seven R values for each site (monthly signal plus six 
MWAs). Correlations generally are negative because water 
levels and flows will decrease in response to an increase in 
groundwater withdrawals. Maximum correlations ranged 
from –0.57 to 0.49 and average correlations (for all seven R 
values) ranged from –0.73 to 0.30, whereas minimum cor-
relations were negative for nearly all sites and ranged from 
–0.82 to 0.12 (fig. 38). Positive correlations likely are spuri-
ous and have no direct causative significance. The relatively 
strong negative correlations suggest that groundwater use is an 
important control on hydrologic response, although correla-
tions with groundwater use generally are lower (in absolute 
value) than with rainfall. However, cross correlation with 
rainfall may affect the relative explanatory strength of ground-
water use or rainfall for modeling hydrologic response.

Correlated variation between groundwater use and 
rainfall for a range of time scales was examined to ascer-
tain the degree to which there may be confounding interac-
tions between these two fundamental forcing variables and 
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Figure 36. Comparison of the Pearson product-moment 
correlation coefficients (R) between rainfall (for each rain gage 
and rainfall-signal pair) and hydrologic response and the distance 
between the site and each rain gage for A, Lake Clinch (site 
number 50), B, ROMP 60 Floridan well (site number 472), and  
C, Rock Springs (site number 309). Site information and locations 
are shown in table 2 and figure 32.

hydrologic response. Correlations were examined between 
rainfall signals (30-, 90-, 270-, 630-, 1,440-, and 2,250-day 
MWAs) at the 18 NOAA rain gages (fig. 24) and groundwater-
use signals (monthly values and 3-, 6-, 12-, 24-, 48-, and 
96-month MWAs for the sum total of all groundwater-use 
types; fig. 34A). The correlation was computed for each rain 
gage and rainfall-signal pair using monthly averages computed 
from the MWAs of daily rainfall data (fig. 33A), yielding a 
total of 42 values of R for each rain gage (6 rainfall MWAs for 
each of the 7 groundwater-use MWAs). Correlations between 
rainfall and groundwater use tended to be negative, likely 
attributable to rainfall control of certain types of water use 
(for example, irrigation) such that groundwater withdraw-
als increase in response to a decrease in rainfall (fig. 39). For 
example, the strongest negative correlation of –0.76 occurs for 
NOAA gage 1163 (2,250-day MWA of rainfall) for a ground-
water-use 24-month MWA. At all rain gages, however, posi-
tive correlations were found for at least some rainfall signals. 
For example, the strongest positive correlation of 0.71 occurs 
for NOAA gage 2229 (2,250-day MWA of rainfall) for a 
groundwater-use 96-month MWA. Positive correlations tend 
to be more prevalent for rain gages in the eastern part of the 
study area (cluster analysis groups 1 and 2, figs. 24, 39), 
where several gages had upward trends in long-term rainfall 
(fig. 13). Conversely, negative correlations tend to be more 
prevalent for rain gages in the western part of the study area 
(cluster analysis groups 3 and 4, figs. 24, 39), where several 
gages showed downward trends in long-term rainfall (fig. 13). 
Correlations tend to be stronger (both negative and positive) 
with increasing groundwater-use MWA size (see correlations 
composited for all rain gages shown for each MWA size in 
figure 39), reflecting long-term trends in both rainfall and 
groundwater use. It is important to note, though, that there 
may not be a causative relation at this time scale. Other fac-
tors, such as trends in population, likely influence long-term 
trends in groundwater use more than do weather variations.

State-Space Reconstruction
Achieving accurate predictions of the behavior of 

dynamic systems can be notoriously difficult owing to chaotic 
behavior (Motter and Campbell, 2013). Difficulties range 
from microscale problems of computing point velocities in 
turbulent pipe flow to macroscale problems of computing 
mass and energy flows in regional hydrologic systems. Chaos 
theory provides a conceptual framework called “state-space 
reconstruction” for representing dynamic relations in systems 
with inherent chaotic behaviors (Kugiumtzis and others, 1994; 
Conrads and others, 2006). Data collected at a point in time 
can be organized as a vector of measurements; for example, 
element one of the vector might be the water level, element 
two the rainfall, and so on. Engineers assert that a process 
evolves from one state to another, through time, and that a 
vector of measurements, also referred to as a “state vector,” 
represents the process state at the moment the measurements 
were taken. A sequence of state vectors represents a “state 
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Figure 37. Pearson product-moment correlation coefficient (R) between the R shown in figure 35 (between rainfall and hydrologic 
response) and the distances between the site and each rain gage for each site. Site information and locations are shown in table 2 and 
figure 32.
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Figure 38. Pearson product-moment correlation coefficient (R) between groundwater-use signals and hydrologic response at each 
site. Ranges are shown for those values falling between the minimum and average R for the site and those values falling between 
the average and maximum R for the site. Groundwater-use signals are the monthly data and 3-, 6-, 12-, 24-, 48-, and 96-month moving 
window averages of the sum total groundwater use (fig. 34A). Site information and locations are shown in table 2 and figure 32.
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history.” Mathematicians define the state vector as a point 
in a “state space” with a number of dimensions equal to the 
number of elements in the vector. For example, eight vector 
elements equate to eight dimensions. Engineers, mathemati-
cians, and scientists use this conceptual framework to develop 
empirical models of the behavior of dynamic systems. Empiri-
cal modeling is the fitting of a multidimensional surface to the 
points arrayed in state space.

Chaos theory proposes that a process can be optimally 
represented (reconstructed) by a collection of state vectors, 
Y(t), using an optimal number of measurements equal to “local 
dimension” dL that are spaced in time by integer multiples of 
an optimal time delay, τd (Abarbanel, 1996, p. 4–12, 39). The 
sets of k parameters {dLi

} and {τdi
} for i = 1,2,..., k are called 

“dynamical invariants,” which characterize the behavior of a 
process in state space similar to how the amplitude, frequency, 
and phase angle can be used to define a periodic time series. 
Thus, for a multivariate process of k independent variables:
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where each xi(t,τdi
) for i is 1,2,..., k represents a different 

dimension in state space and, therefore, a different element in 
a state vector. Values of {dLi

} and {τdi
} are estimated analyti-

cally or experimentally from the data. The mathematical 
formulations for models are derived from these state vectors. 
To predict a dependent variable of interest y(t) from prior 
measurements (also known as forecasting) of k independent 
variables (Roehl and Conrads, 2006):
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for i = 1,2,..., k is another time delay. For each variable, {τpi
} 

is specified according to one of the following constraints: 
time delay at which an input variable becomes uncorrelated 
to all other inputs, but can still provide useful information 

where F is an empirical function such as an ANN, each 
xi(t,τpi

, τdi
) for i = 1,2,..., k is a different input to F, and {τpi

} 

, (1)
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about y(t); time delay of the most recent available measure-
ment of xi; or time delay at which an input variable is most 
highly correlated to y(t). In equation 2, the state-space local 
dimension {dLi

} of equation 1 is replaced with a model input 
variable dimension {dMi

}, which is determined experimentally. 
It is noted that {dMi

} ≤ {dLi
} for i = 1,2,..., k, and {dMi

} tends to 
decrease with increasing k. The final model for the predicted 
variable y(t) can be a superposition of disparate behaviors, 
yj(t), originating from n different forcing functions (Roehl and 
Conrads, 2006):

 ∑ ∑= =
= =

y t y t F( ) ( )
j

n

j

n

1 1
j j . (3)

In different terms, a goal of state-space reconstruction 
is to determine the optimal temporal spacing (time delays) 
and number of successive measurements (dimension) of an 
input signal required to satisfactorily predict an output signal, 
which amounts to solution of an inverse problem (Lillekjend-
lie and others, 1994). State-space reconstruction is focused on 
univariate systems, that is, the system is described by a single 
time-series variable and the prediction being made is the sys-
tem’s state at a near-future time. This “delays and dimension” 
conceptual framework is applied in this study to a complex 
multivariate system where multicollinearity among input 
signals (rainfall and groundwater use) is common. Rather than 
explicit identification of time delays and dimensions, however, 
signals and frequency-band components that best predict the 
observed hydrologic response are selected from candidate 
MWAs and MWDs of rainfall and groundwater use using a 
method to minimize correlated inputs. Ultimately, the synthe-
sis of one or more empirical functions (formalized by equa-
tions 2 and 3 in the context of state-space reconstruction) by 
judicious construction and training of an ANN is the key task 
in developing a model useful for simulating system behavior 
and is discussed in further detail in the following sections.

Input-Output Mapping and Problem 
Representation

The development of ANN models to predict the water 
level or flow at the 51 sites (table 2) was undertaken in two 
phases, resulting in a two-stage model architecture (fig. 40). 
The two-stage approach was motivated in part by the differ-
ent temporal resolutions of the forcing time series, consisting 
of daily rainfall and monthly groundwater use. The first phase 
was to train a daily resolution ANN for each site to simulate 
the observed hydrograph using daily rainfall inputs, herein 
called the “rainfall model.” The second phase was to train a 
monthly resolution ANN, herein called the “groundwater-use 
model,” for each site to simulate the residual error time series 
from the rainfall model using monthly groundwater-use inputs. 
At a few sites, the predicted water level or flow from the rain-
fall model also was used as an input. The final simulated water 

level or flow is the sum of the predictions of both ANNs for 
the site (fig. 40), thus following the superposition approach of 
equation 3 where each ANN represents the empirical function 
F of equation 2. The residual error, also called “the residuals,” 
is a model’s prediction error and represents variability in an 
output that is not accounted for by variability in the inputs. 
Residuals are simply calculated by subtracting the predicted 
values from the measured data. By predicting variability in 
the residuals, a groundwater-use model predicts hydrograph 
variability that is unaccounted for by rainfall, but can be 
accounted for by groundwater use.

The decision to place the rainfall model first in the two-
stage model sequence, rather than model groundwater use 
first or both rainfall and groundwater use simultaneously, was 
based on the following constraints and rationale:

• rainfall data records generally are more complete 
(fewer missing data), and the data are of higher quality 
(more measured and fewer estimated values) and finer 
temporal resolution than the groundwater-use data;

• a paucity of previously compiled historical monthly 
water-use data in the CFCA required a substantial 
effort by SJRWMD and SWFWMD to compile 
reported data and estimate missing values, most of 
which is reported by McLeod and Munch (2012) and 
Munch (2014), resulting in the groundwater-use data 
not being available until late in the study;

• groundwater return flows—groundwater withdrawals 
that subsequently are returned to the aquifer system, 
such as by land application of treated wastewater or 
deep percolation of irrigation—are poorly known, and 
few data are available to enable estimation of historical 
temporal and spatial patterns of these return flows;

• water-budget analyses derived from physics-based 
model simulations for central Florida (Knowles 
and others, 2002; McGurk and Presley, 2002; and 
Sepúlveda and others, 2012) indicate groundwater 
recharge at the water table (from rainfall and artificial 
recharge) is the largest inflow to the aquifer system  
(79 to 97 percent of total inflow for the combined sur-
ficial and Floridan aquifer systems), and groundwater 
withdrawals are a small percentage (6 to 12 percent) 
of flow in the aquifer system (combined surficial and 
Floridan aquifer systems) during years with normal 
rainfall; and

• the variability of rainfall is much greater (more than an 
order of magnitude)  than the variability of groundwa-
ter use over a wide range of time scales from monthly 
to multiyear.

For empirical correlation-based models such as ANNs, 
the use of independent knowledge is essential to constrain 
model results to established or hypothesized physics. The cor-
relation analyses indicated that hydrologic response was corre-
lated with both rainfall (fig. 35) and groundwater use (fig. 38), 
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and that rainfall and groundwater use were correlated with 
each other (fig. 39). Additionally, other factors, such as popu-
lation growth and landscape change, can confound interpreta-
tion of the actual causative relations. In this study, previous 
independent water-budget analyses provided a physics-based 
constraint on ANN development and influenced the selection 
of the two-stage model architecture. Several physics-based 
models based on the USGS three-dimensional, finite-differ-
ence groundwater flow model code MODFLOW (Harbaugh 
and McDonald, 1996; Harbaugh and others, 2000; Harbaugh, 
2005) have been developed for central Florida that cover part 
or nearly all of the CFCA. The models were developed to sim-
ulate either steady-state conditions, where model inputs and 
outputs are constant over time, or transient conditions, where 
model inputs and outputs vary over a selected time period and 
changes in water stored in the aquifer are simulated. The Lake 
County/Ocala National Forest (LCONF) model developed by 
Knowles and others (2002) covers all of Lake County and the 
Ocala National Forest and parts of adjoining counties, and 
simulates steady-state, groundwater flow for average 1998 
conditions (December 1997 to December 1998). The east-cen-
tral Florida (ECF) model developed by McGurk and Presley 
(2002) covers all of Orange and Seminole Counties, most of 
Brevard and Lake Counties, and parts of adjoining counties, 
and simulates steady-state, groundwater flow for average 1995 
conditions (January 1995 to December 1995). The east-central 
Florida transient (ECFT) model developed by Sepúlveda and 
others (2012) covers all of the CFCA (except the westernmost 

edge in Polk County) and parts of adjoining counties, and 
simulates monthly groundwater flow, lake and stream water 
levels, and streamflow from January 1995 through December 
2006. All these models actively simulate the surficial and 
Floridan aquifer systems; therefore, water budgets of the entire 
aquifer system could be compared for their respective simula-
tion periods (fig. 41). It is important to note that the ECFT 
model simulates changes in groundwater storage that consti-
tute substantial components of aquifer inflow (release of water 
stored in the aquifer) and outflow (increase in volume of water 
stored in the aquifer). These storage changes can influence 
the temporal dynamics of the aquifer system even though the 
net change in storage over long periods typically is small; for 
example, the difference in storage between inflow and outflow 
in the ECFT model from 1995 through 2006 was 0.08 inch 
per year (in/yr) (6.32 in/yr storage inflow minus 6.24 in/yr 
storage outflow, fig. 41). In contrast, the steady-state LCONF 
and ECF models do not simulate storage changes, and only 
average conditions during the respective simulation periods 
are represented by the model based on the assumption that net 
storage effects are small. Despite these differences in concep-
tual model, simulation period, and geographic area, all three 
models indicate that groundwater recharge is the largest inflow 
(79 to 97 percent) to the aquifer system (fig. 41A). Ground-
water recharge is nearly exclusively derived from infiltration 
of rainfall because artificial recharge (land based application 
of reclaimed water) constitutes only 0.1 to 0.4 in/yr. Ground-
water withdrawals are a relatively small component of aquifer 
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Sepúlveda and others, 2012) models for A, inflows, and B, outflows. Flows expressed in equivalent inches per year based on surface 
area of surficial aquifer system simulated by the model (approximately 4,800 square miles (mi2) for the LCONF model, 6,480 mi2 for the 
ECF model, and 9,004 mi2 for the ECF model). Surface leakage simulated by the ECFT model conceptually represents groundwater 
seepage at model cells where the water table rises above land surface and drains to lakes, streams, wetlands, and closed basins. 
Sepúlveda and others (2012, p. 124 and 128) report that 24 percent of surface leakage is to cells in closed basins or cells draining to 
streams or lakes outside the model area. Thus total leakage to cells draining to lakes, streams, and wetlands within the model area 
would be the sum of lake and stream leakage and 76 percent of surface leakage, or 4.05 inches per year, which is comparable to lake 
and stream leakage rates simulated by the LCONF and ECF models.
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outflow (6 to 12 percent), and ET is the largest loss of water 
(47 to 60 percent of aquifer outflow) (fig. 41B). Because rain-
fall-derived recharge is the largest component of the aquifer 
water budget, the two-stage model architecture was developed 
using rainfall first followed by groundwater use (fig. 40). This 
approach provided models more consistent with generally well 
accepted physics-based models and mitigated potential spuri-
ous results of a pure correlation-based approach.

Hydrologic response is driven by variability in system 
forcings in addition to the relative magnitudes of the forc-
ings. Therefore, a comparison of the temporal variability of 
rainfall and groundwater use was made over a range of time 
scales. In order to make an even comparison, monthly rainfall 
was computed as an arithmetic average of daily values (based 
on standard rainfall, fig. 33A), and monthly groundwater use 
(fig. 34A) was converted to a flux by dividing the volumetric 
rate by the total area where withdrawals historically have 
occurred, which corresponds to 53 grid cells of the  GUDV 
(appendix 2) or 8,415 mi2. The standard deviation was com-
puted for each monthly signal and for 3-, 6-, 12-, 24-, 48-, and 
96-month MWAs. For the period of contemporaneous monthly 
data extending from 1957 through 2008, the standard devia-
tion of rainfall was 37.62 in/yr compared to 0.59 in/yr for 
groundwater use (table 3). Likewise, over longer time scales, 
the variability of rainfall is much greater than that of ground-
water use based on the standard deviations of low-pass filtered 
signals (table 3). Even if groundwater use were distributed 
over an area only one-tenth the size of the historical coverage 
(making the standard deviations for groundwater use in table 3 
ten times larger), only for the 96-month MWA would the vari-
ability of groundwater use exceed that of rainfall. Therefore, 
not only is rainfall-derived groundwater recharge the largest 
component of the water budget for the groundwater system 
in central Florida for years with normal rainfall, but also the 
temporal variability of rainfall far exceeds that of groundwater 
use over a wide range of time scales from monthly to multi-
year. These factors provide further basis for modeling rainfall 
first followed by groundwater use for the two-stage model 
architecture (fig. 40).

Other potential causes of variability in hydrologic 
response include meteorological forcing and groundwater use 
outside the study area as well as changes in land use and land 
cover. It was beyond the scope of the current study to explore 
many of the other potential explanatory variables, but experi-
ments were conducted that evaluated the use of air temperature 
and estimated PET in simulating the observed hydrographs. 
The estimated PET was computed using the temperature-based 
Hargreaves equation and, therefore, is not independent of air 
temperature. Additionally, air temperature is highly correlated 
to MWAs of rainfall in the study area. The experiments found 
that model output sensitivities to inputs representing air tem-
perature and estimated PET were low compared to those repre-
senting rainfall. Thus, including air temperature and estimated 
PET as explanatory variables did not substantially improve 
prediction accuracy, and these variables were not included in 
the final ANN models.

Table 3. Standard deviation of rainfall and groundwater-use 
signals in central Florida.

[MWA, moving window average; --, not available; rainfall signals based 
on standard rainfall shown in figure 33A; groundwater-use signals based on 
sum total of all water use categories shown in figure 34A; groundwater use 
converted to a flux by dividing by the total area where withdrawals histori-
cally have occurred, which corresponds to 53 grid cells of the  Ground-
water-Use Data Viewer (appendix 2) or 8,415 square miles]

Data range Data type

Standard deviation, in 
inches per year

Rainfall
Ground-

water use

1942–2008 monthly 37.98 --

1957–2008 monthly 37.62 0.59

1965–2008 monthly 37.57 0.54

1965–2008 3-month MWA 26.75 0.40

1965–2008 6-month MWA 18.11 0.26

1965–2008 12-month MWA 8.10 0.19

1965–2008 24-month MWA 5.64 0.19

1965–2008 48-month MWA 3.52 0.20

1965–2008 96-month MWA 2.13 0.24

Artificial Neural Network Models

ANN models are empirical models that are developed 
directly from data. The most common empirical modeling 
approach is a linear model fit using least squares (Hastie and 
others, 2001), which relates variables using straight lines, 
planes, or hyper-planes, whether the actual relations are linear 
or not. Sahoo and Jha (2013) conducted a comparison of linear 
and ANN models and noted the superior performance of the 
ANN technique over multiple linear regression for the simula-
tion of transient groundwater levels. The principal advantages 
of empirical models, such as ANN models, over physics-based 
models are that they can be developed faster and typically are 
more accurate provided that the modeled systems are well 
characterized by data (Conrads and others, 2006). Empirical 
models, however, are prone to problems when poorly applied. 
Overfitting and multicollinearity caused by correlated input 
variables can lead to invalid “mappings,” or relations, between 
input and output variables (Roehl and others, 2003).

An ANN model is a flexible mathematical structure capa-
ble of describing complex nonlinear relations between input 
and output datasets (Conrads and others, 2006). The structure 
of ANN models is loosely based on the biological nervous 
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system with interconnections of neurons and synapses (Hin-
ton, 1992). Although numerous types of ANN models exist, 
the most commonly used type of ANN model is the multilayer 
perceptron, which is used in this study and described in detail 
by Jensen (1994). Multilayer perceptron ANNs can synthe-
size functions to fit multidimensional, nonlinear data. Devine 
and others (2003) and Roehl and Conrads (1999) describe 
the application of multilayer perceptron ANNs to simulate 
and control combined manmade and natural systems, includ-
ing disinfection byproduct formation, industrial air emissions 
monitoring, and surface-water systems affected by point- and 
nonpoint-source pollution.

Multilayer perceptron ANNs are constructed from layers 
of interconnected processing elements called neurons that 
execute a simple “transfer function” (fig. 42). All input-layer 
neurons are connected to all hidden-layer neurons, and all hid-
den-layer neurons are connected to all output-layer neurons. 
Multiple hidden layers are possible, but a single hidden layer 
as shown in figure 42 is sufficient to address most problems 
(Bishop, 1995, p. 132).

Typically, as well as for this study, linear transfer func-
tions are used to scale input values from the input layer to 
the hidden layer, yielding values that generally fall within the 
range that corresponds to the most linear part of the s-shaped 
sigmoid transfer functions (hyperbolic tangent) used to scale 
values from the hidden layer to the output layer (fig. 42). Each 
connection has a “weight,” wi, associated with it, which scales 
the output received by a neuron from a neuron in an anteced-
ent layer. The output of a neuron is a simple combination of 
the values it receives through its input connections and the 
associated weights, as well as the neuron’s transfer function.

An ANN is “trained” by iteratively adjusting its weights 
to minimize the error by which it maps inputs to outputs 
for a dataset composed of input/output vector pairs. Predic-
tion accuracy, during and after training, can be measured by 
several metrics, including coefficient of determination (R2) 
and RMSE. An algorithm that is commonly used to train 
multilayer perceptron ANNs is the error back-propagation 
training algorithm (Rumelhart and others, 1986; Bishop, 1995, 
p. 140–141). This algorithm optimally minimizes the error in 
the objective function by adjusting the weights into and out of 
the hidden layer of the model (fig. 42).

Experimentation with various ANN model architectural 
and training parameters is a typical part of the modeling pro-
cess. For correlation analysis or predictive modeling appli-
cations, a number of potential ANN models are trained and 
evaluated for their statistical accuracy and their representation 
of dynamics of the system. Interactions between combinations 
of variables are considered. The models here were calibrated 
using a form of K-fold cross-validation, which involves parti-
tioning the data into K approximately equal-size subsets and 
training the model recursively on K – 1 subsets starting with 
subset 1 up to K (Hastie and others, 2001, p. 214). A value of 
2 was used for K (2-fold cross-validation), resulting in a train-
ing dataset that is evaluated with a testing dataset. Rather than 
using equal-size training and testing datasets, however, the 

data were partitioned based on the characteristics of data. For 
models with a large amount of data that adequately represents 
the range of historical behaviors, a small percentage of the 
data (10–30 percent) was selected for the training dataset, 
with the balance assigned to a testing dataset. For models 
with limited data, a larger percentage of the data (greater than 
75 percent) was used in the training dataset. In some cases, the 
data were too sparse to allow use of a training dataset. There 
are many strategies for selecting the individual data points 
composing the training and testing datasets, but a common 
method is random selection of a specified percentage of the 
total population of measurements (Hastie and others, 2001). 
Serial correlation, which is common in hydrologic time-series 
data, influences the degree of independence between the train-
ing and testing datasets and can result in overly optimistic 
error statistics for the testing dataset potentially causing poor 
generalization (or overfitting) of the model. Using disjoint 
time periods for the training and testing datasets can miti-
gate this effect, but such an approach also limits the range 
of historical behaviors to which the model is trained. For the 
ANN models developed here, the goal was representing to 
the fullest extent possible the effects of the limited number of 
permutations of extended high and low forcing events (rainfall 
and groundwater use); thus, random selection throughout the 
historical period of record was used to populate the training 
and testing datasets. Other measures taken to guard against 
overfitting are described in a later section on ANN model 
construction and training.

To mitigate extrapolation and data sparseness issues, 
the ANN models were conservatively trained using a method 
called “stop training” or “early stopping” (Bishop, 1995, 
p. 343), thus allowing the ANN to both fit the data and 
extrapolate in a minimally nonlinear and, therefore, predict-
able manner. Stop training simply means stopping the training 
process before the ANN has fit the data to the maximum extent 
possible. Training is commonly stopped when the testing 
dataset, rather than the training dataset, R2 or RMSE values 
cease to improve with additional training. Adjusting model 
architectural and training parameters allows the modeler to 
control the geometric complexity of the surface that the ANN 
fits to the data. In general, a high-quality predictive model 
can be obtained and a satisfactory model can be exported for 
implementation in an end-user application when the following 
conditions are satisfied (Conrads and others, 2006):

• the data are well distributed throughout the state space 
of variables describing the physical system of interest;

• the input variables selected by the modeler share 
mutual information about the output variables; and

• the functional form “prescribed” or “synthesized” by 
the model to “map” (correlate) input variables to out-
put variables is a good one, that is, the model closely 
matches observed data but is sufficiently generalized 
to not overfit the data as guided by the training method 
and the modeler’s knowledge of the real-world system 
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Figure 42. Multilayer perceptron artificial neural network architecture (modified from Conrads and Roehl, 2007).

and relevant physical principles. Machine-learning 
techniques, like ANN models, synthesize a best fit to 
the data. Techniques such as ordinary least squares and 
physics-based models prescribe the functional form of 
the model’s fit to the calibration data.

Subdividing a complex modeling problem into subprob-
lems and then addressing each is an effective means of achiev-
ing the optimal results. A collection of submodels whose cal-
culations are coordinated by a computer program constitutes 
a “super-model” (Daamen and others, 2006). For the study 
described here, ANN models (submodels) were first developed 
to predict water level or flow at a particular gaging station. 
These submodels were then incorporated into the CFANN 
DSS super-model that integrated the model controls, model 
database, and model outputs. The ANN models described in 
this report were developed using the iQuestTM data-mining 
software3 (Version 2.03C DM Rev31). The ANN models were 
deployed in the DSS using the Visual Basic run-time library of 
the iQuest R/TTM software.

3 The iQuestTM software is exclusively distributed by Advanced Data Min-
ing, LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615-5044 Phone: 
864–616–9876, email: ruby.daamen@advdmi.com, http://www.advdmi.com.

Statistical Measures of Prediction Accuracy

Statistical measures of prediction accuracy were com-
puted for the final water-level and flow estimates (output from 
the two-stage model architecture) and for the individual ANN 
models. The statistics for the final predicted values capture the 
capability of the two-stage modeling approach to accurately 
estimate the water levels or flows at the site. The statistics for 
the individual models (rainfall and groundwater-use ANNs) 
document these intermediate models. Because two models 
are used, the statistics for the individual models may not be 
an indication of the quality of the final water-level or flow 
estimates.

The R2, the mean error (ME), RMSE, and percent model 
error (PME) were computed for the training and testing data-
sets for both the rainfall and groundwater-use ANN models 
for each site. In addition to these statistics, the Nash-Sutcliffe 
coefficient of efficiency was computed for the final water-level 
and flow estimates. Model performance often is evaluated in 
terms of R2, which commonly is interpreted as a measure of 
the “goodness of the fit” of a model. A second interpretation is 
one of answering the question, “How much information does 
one variable or group of variables provide about the behavior 
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of another variable?” In the first context, an R2 of 0.6 might be 
disappointing, whereas in the latter, it is merely an accounting 
of how much information is shared by the variables being used 
as defined by the selected model. As a correlation statistic, R2 
is insensitive to additive and proportional differences between 
predicted and measured values, and thus should not be used as 
the sole measure of the goodness of fit of hydrologic models 
(Legates and McCabe, 1999).

The ME and RMSE statistics provide a measure of model 
prediction accuracy. The ME is a measure of the bias of model 
predictions—whether the model over- or underpredicts the 
measured data. The ME is presented as the adjustment needed 
to make the simulated values equal to the measured values. 
Therefore, a negative ME indicates an overprediction by the 
model and a positive ME indicates an underprediction by 
the ANN model. Mean errors near zero may be misleading 
because negative and positive discrepancies in the simulations 
can cancel each other. As an absolute-error statistic, RMSE 
addresses the limitations of ME by computing the magnitude, 
rather than the direction (sign) of the discrepancies. The units 
of the ME and RMSE statistics are the same as those of the 
simulated variable of the model.

The accuracy of the models, as indicated by RMSE, 
should be evaluated with respect to the range of the output 
variable. A model may have a low RMSE, but if the range of 
the output variable is small, the model may be accurate only 
for a small range of conditions and the model error may be a 
relatively large percentage of the model response. Likewise, a 
model may have a large RMSE, but if the range of the output 
variable is large, the model error may be a relatively small per-
centage of the total model response. The PME was computed 
by dividing the RMSE by the range of the measured data.

Nash and Sutcliffe (1970) developed an efficiency index 
to evaluate the goodness of fit of hydrologic models, com-
monly referred to as the Nash-Sutcliffe coefficient of effi-
ciency (NSCE). The NSCE can range from minus infinity to 
1. A value of 1 corresponds to a perfect match of predicted 
values to the observed data. A value of 0 indicates that the 
model predictions are as accurate as the mean of the observed 
data used to develop the model, whereas a value less than 0 
indicates that the observed mean is a better predictor than the 
model. In summary, models with an NSCE from 0 to 1 provide 
a better estimate than the mean of the observed data, and the 
higher the value, the better the estimates. McCuen and others 
(2006) noted that only subjective evaluations of the NSCE 
were possible and that the index is influenced by sample size, 
model bias, timing errors, and outliers. Legates and McCabe 
(1999) recommend using a combination of correlation-based 
and absolute-error statistics as well as graphical analysis to 
evaluate model goodness of fit.

Development of Artificial Neural 
Network Models in Central Florida

The following sections describe how the ANN models 
were developed for predicting hydrologic response at each of 
the 51 lake, well, and spring sites. Development of models for 
all types of sites—lake water level, groundwater level, and 
spring flow—followed a similar approach, which is described 
in the section below on model construction and training. 
Following this discussion is a section on prediction accuracy 
of the final, trained models, including sections on the mod-
els for each type of site. Finally, a general description of the 
performance of all the models for each type of site is provided 
followed by a discussion of two example models.

Model Construction and Training

The ANN models were developed iteratively starting 
with selecting a candidate pool of input variables, training the 
ANN, and then using prediction accuracy statistics, such as R2 
and input-output sensitivities, to cull the least important input 
variables. Effectively, a hybrid modeling approach was applied 
that combines signal decomposition with ANN models, 
whereby rainfall and groundwater-use data are decomposed to 
capture variability in time series of these key forcing variables 
over a variety of frequency ranges and ANN models are used 
to reconstruct the original time series of response variable 
(water level or flow) using these decomposed subsignals. This 
approach is conceptually similar to wavelet-neural network 
hybrid models, which combine wavelet transforms and ANN 
models, such as those developed to forecast monthly ground-
water levels and daily river flow (Wang and Ding, 2003), the 
Palmer drought severity index (Kim and Valdés, 2003), daily 
intermittent streamflow (Kişi, 2009), and monthly river flow 
(Wei and others, 2013). Additionally, Özger and others (2012) 
developed a wavelet fuzzy logic model to forecast the Palmer 
modified drought index that combined wavelet transforms 
with a fuzzy logic model. In the current study, in place of the 
wavelet analysis, signal decomposition was conducted using 
MWDs computed from MWAs of prescribed window sizes. 
It is left to the ANN to learn which explanatory variables and 
associated frequency ranges are the best predictors of behav-
iors that are manifest in the hydrologic signal. As previously 
described, two-stage model architecture was used that mod-
eled rainfall and groundwater-use effects separately (fig. 40). 
Summaries of the rainfall and groundwater-use ANN models 
for each of the 51 sites, including model construction details 
and prediction accuracy statistics, are listed in appendix 3, 
and descriptions of the explanatory variables used in the final 
ANNs are provided in appendix 4.

The quality and completeness of both the forcing and 
response data are critical for any empirical modeling approach, 
such as that applied in the current study. In terms of accuracy, 
completeness, and representativeness of physical process 
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behavior, the rainfall data are better than the hydrologic 
response data, which in turn are much better than the ground-
water-use data. Some of the hydrologic response data yield 
hydrographs that exhibit late starts, long periods of missing 
data, sporadic sampling, and values that appear to be anoma-
lous from inspection. In general, the groundwater-level hydro-
graphs are better than the lake water-level and spring-flow 
hydrographs. More consistent data frequency led to the ability 
to use random sampling to partition all groundwater-level and 
most lake water-level hydrographs into training and testing 
datasets. For some lakes and one spring (sites 5, 207, 209, 221, 
239, 277, 289, 297, and 313; table 2; appendix 3), sparse data 
necessitated using all data for the training dataset. The spring-
flow hydrographs are the most problematic. The springs were 
measured sporadically for most of the study period, but more 
frequent measurements were made in the last decade. The 
disparate data frequency was particularly pronounced for three 
springs (sites 311, 312, and 314; table 2; appendix 3), and data 
collected during the last decade were subsampled so as not 
to be disproportionately represented when combined with the 
earlier sparse sampling period to partition the hydrographs into 
training and testing datasets. Spring flow “flat-lining” (consec-
utive days of identical flows), which were apparent anomalies 
in some datasets, are possibly artifacts of procedures used to 
estimate daily data from direct measurements, and data during 
these periods were removed from the dataset. Some of the lake 
and well hydrographs have occasional short duration (60 days 
or shorter) gaps when data are missing. For sites where there 
was little submonthly cyclic variability in the hydrographs, 
these data gaps were filled using simple linear interpolation 
prior to training the ANN models so as not to bias the training 
dataset toward some periods over others. At these sites, most 
of the variability is due to seasonal (3-month) and longer term 
trends. In addition, the final predictions generated by the two-
stage modeling approach use a 1-month time step; therefore, 
interpolating over a period of 60 days or less means estimat-
ing across only one time step. Notes are included in the model 
summaries (appendix 3) for the sites where 60-day or shorter 
gaps were filled in this way.

The majority of the groundwater-use data were estimates 
and, by a wide margin, lacked the accuracy, representative-
ness, and temporal and spatial resolution of the meteorological 
and hydrologic response data. Data that describe the extent to 
which groundwater withdrawals are returned to the hydrologic 
system are also largely unavailable. Given these limitations, 
a single total groundwater-use signal was created by aggre-
gating all of the categories of groundwater use (figs. 29, 34). 
Potential inaccuracies introduced by this approach are likely 
reduced by the generally highly permeable nature of the study 
area’s karst terrain (Kuniansky and others (2012) mapped 
large values of transmissivity for the Upper Floridan aquifer in 
much of the study area), which would tend to dissipate spatial 
variability in responses to groundwater use, and the 1-month 
simulation time step, which is longer than the short-term 
fluctuations in groundwater use. Using the two-stage model 
architecture (fig. 40), separate ANN models were developed 

for rainfall and groundwater use and are described in detail in 
the following sections.

Rainfall Models
The rainfall models were developed using a 1-day time 

step (fig. 40) enabled by daily rainfall (available from 1942 
through 2008) and hydrologic response data (available for the 
periods of record shown in table 2). To varying extents, the 
rainfall data from the 18 NOAA sites are correlated between 
sites (R values range from –0.31 to 0.91; 25 percent have R 
values greater than 0.5). The general approach to developing 
accurate models of dynamic processes involves filtering each 
candidate input time series into signals representing a range of 
frequencies and decomposing the filtered signals into multiple 
frequency-band components. Then the supervised machine 
learning of the ANN model is allowed to determine which 
combination of input signals and components are the best 
predictors while culling poor predicting inputs.

Given the large number of candidate input signals and 
components, it was necessary to employ an input representa-
tion and model development approach that mitigated problems 
associated with so many potentially correlated inputs. The 
approach includes the following steps:

1. A “standard” rainfall signal was created for each hydro-
graph. The standard signal was the same for all of the 
wells and springs and was computed as the arithmetic 
average by time step of the values for the 18 NOAA sites 
for each day (fig. 33). As a starting point, the standard for 
each lake was a weighted average of the rainfall within 
the lake drainage basin based on Thiessen polygons fit-
ted to the NOAA sites. For some lakes, the standard was 
modified to use fewer or other nearby NOAA sites to 
improve prediction accuracy. The formula used to com-
pute the rainfall standard for each lake is provided in the 
model summary table for the respective lake (appendix 3).

2. A “normalized” rainfall signal was created for each of 
the 18 NOAA rainfall gages by subtracting the standard 
rainfall signal from the individual gage rainfall.

3. The standard and normalized rainfall signals were pro-
cessed as follows:

• Low-pass filters represented by MWAs of 30; 90; 
270; 630; 1,440; and 2,250 days were applied 
to the standard rainfall signal (fig. 33) as well as 
each normalized rainfall signal. The selection of 
the 270-, 630-, and 1,440-day MWAs followed 
an analysis that determined the window sizes 
at which correlations peaked between different 
rainfall MWAs and hydrologic response at a vari-
ety of sites; this analysis used the super tau tool 
described by Conrads and Roehl (2010, p. 19–20). 
The other three MWAs provide for computation 
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of additional higher and lower frequency-band 
components.

• The standard rainfall signal’s frequency-band 
components were computed using MWDs of suc-
cessive MWA pairs. It should be noted that one 
MWA plus the MWDs completely represent any 
of the defined low-pass signals without loss of 
information.

• Subtracting the standard rainfall signals from the 
individual NOAA rainfall signals decorrelates 
the resulting MWAs from the standard signal. 
The resulting normalized signals, however, are 
not consequentially decorrelated from each other, 
because, for example, two highly correlated pre-
normalized signals will still be correlated after 
normalization. The effects of such cross-correla-
tions are addressed in item 4 below. Combining 
the 6 MWAs for the standard rainfall signal and 
each of the 18 normalized rainfall signals with the 
5 MWDs of standard rainfall results in a total of 
119 candidate input variables for an ANN model.

4. An ANN model was iteratively developed for each site to 
simulate hydrologic response. During the ANN develop-
ment and training process, input variables were culled 
according to the procedure described below, resulting 
in a final set of variables for each site (appendixes 3, 4). 
This process is purposefully conservative with regard to 
overtraining, resulting in relatively simple ANNs with 
limited numbers of parameters (weights; for example, 
see figure 42) relative to the size of the training datas-
ets. Furthermore, Amari and others (1996) note that a 
large testing dataset for cross-validation stop training is 
not necessary when the training dataset is greater than 
30 times larger than the number of ANN parameters—a 
criterion that was met by each of the final ANN models—
and use of a large testing dataset at the expense of a small 
training dataset may result in undertraining of the ANN. 
The goal of the ANN development and training process 
was to maximize R2 under the following constraints:

• Retain input variables representing standard rain-
fall signals and frequency-band components.

• Disallow input variables with an R value exceed-
ing 0.4 in order to minimize confounding effects 
attributable to cross-correlations.

• Allow only positive input-output sensitivities, 
such that increasing or decreasing any individual 
rainfall input variable correspondingly increases 
or decreases the predicted value, in order to 
remove input variables that may yield a predicted 
value at odds with known physics (in particu-
lar, principles of mass conservation). Imposing 
constraints on the basis of plausible physics 

is important, because relying solely on cross-
validation training techniques does not assure a 
satisfactory ANN that reasonably approximates 
the behavior of the physical system (Kingston and 
others, 2005).

• Avoid overfitting. The hydrologic response data 
were partitioned, where the data quantity allowed, 
into training and testing datasets by random 
selection. The prediction accuracy statistics for 
the training and testing data should be similar to 
verify model accuracy and ensure that the train-
ing data were not overfitted. Training datasets 
as small as 10 percent of the available data were 
used where possible, although 31 percent or less 
was used for 39 sites and greater than 80 percent 
was used for the remaining 12 sites. Several of 
the hydrographs were not partitioned because of 
sparse data and concern that using a testing data-
set would exclude important data for training. The 
size of the training and testing datasets for each 
ANN model are listed in appendix 3.

• Limit the ANN models to one hidden-layer 
neuron (instead of four neurons shown in the 
hidden layer of the generic multilayer perceptron 
ANN depicted in figure 42), thereby allowing the 
enforcement of only positive input-output sensi-
tivities and minimizing overfitting. This constraint 
prevents fitting multivariate data with non-mono-
tonic surfaces (surfaces with saddle points), which 
would cause the signs of sensitivities to change 
as inputs are ranged. The constraint is appropri-
ate because hydrograph values should always 
increase with rainfall increases (and decrease with 
groundwater-use increases), and the constraint 
mitigates the problem of unavailable testing data 
for some sites.

Groundwater-Use Models
The groundwater-use models were developed using a 

1-month time step (fig. 40), which was the minimum resolu-
tion of the groundwater-use data (available from 1957 through 
2008). The rainfall data and the rainfall model predictions and 
residuals had be converted to the same time step, which was 
done by applying 1-month MWAs and subsampling the last 
day of each month. The amount of the available data for train-
ing and testing the ANN models was reduced substantially as 
a result of the monthly time step; therefore, testing datasets 
were small or eliminated completely for the groundwater-use 
models to maximize the amount of data for model training 
(appendix 3).

The groundwater-use models simulate the residual error 
signal (residuals) for each of the rainfall models and were 
developed similarly to the rainfall models. The window sizes 
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of the MWAs applied to total groundwater use were 3, 6, 12, 
24, 48, and 96 months (fig. 34), and MWDs were computed 
for successive MWA pairs by subtracting each MWA from the 
MWA with the next smaller window size. A total of 13 poten-
tial inputs for an ANN model were available, considering the 
original monthly data, 6 MWAs, and 6 MWDs. A single MWA 
was selected on the basis of the highest negative correlation 
to the residuals, thus enforcing a known physical constraint 
that an increase in groundwater use causes a decrease in water 
level or flow (that is, negative input-output sensitivity). An 
ANN model with only one hidden-layer neuron was used to 
allow enforcement of only negative input-output sensitivity. 
Other potential inputs to the model included the MWDs and 
the monthly average of the predicted signal (water level or 
flow) from the respective rainfall model. ANN training was 
an iterative process wherein only those inputs with a negative 
input-output sensitivity were included. The rainfall-model pre-
dicted water level or flow was used as an input for a ground-
water-use model only when it resulted in an increase in R2 of 
at least 0.01 for the final model (the combined rainfall and 
groundwater-use models) or when it was needed to maintain a 
negative input-output sensitivity. In addition, collinear inputs 
with an R value exceeding 0.5 were excluded. After train-
ing, the largest groundwater-use frequency-band components 
retained were MWDs using 96-month MWAs for some sites. 
Hence, even though groundwater-use estimates were available 
from 1957 onward and even earlier rainfall data were available 
(from 1942 onward), the simulation period for the final two-
stage model architecture began in 1965 in order to accommo-
date the shorter period of record for groundwater use and an 
8-year background period required by the 96-month MWA.

Model Prediction Accuracy and Example Model 
Simulations

Statistical measures of prediction accuracy were com-
puted for the final water-level and flow estimates based on the 
monthly simulated values from January 1965 through Decem-
ber 2008. The statistics for the final predicted values demon-
strate the generally good to excellent capability of the two-
stage architecture that uses the hybrid signal-decomposition 
ANN models to accurately estimate the water levels or flows 
at each site. The models explained much of the variability in 
observed data, with models for 43 of the 51 sites having R2 
values exceeding 0.6, as well as matching well the magnitude 
of the observed data, with models for 32 of the 51 sites having 
PME values less than 10 percent (fig. 43). Generally, ground-
water-level models (R2 averaging 0.774 and PME averaging 
8.90 percent) performed slightly better than lake water-level 
models (R2 averaging 0.718 and PME averaging 9.96 percent). 
Spring-flow models had the poorest model fit (R2 averaging 
0.546 and PME averaging 13.14 percent). Summary statis-
tics of both measured and simulated data and model fit are 
provided in appendix 5 for each site. The lake water-level, 
groundwater-level, and spring-flow models are described in 

more detail in the following sections. For each type of site, 
a general description of the performance of all the models is 
provided, followed by a discussion of two example models—
one with good model-fit statistics and one with a relatively 
poor match to the observed data—in order to provide a sense 
of the range in model performance. By discussing model con-
struction (input variables) and model performance in detail for 
six sites, example interpretation techniques are provided that 
can be applied by the reader to the models for any of the other 
45 sites of interest using data in appendixes 3, 4, and 5 and the 
CFANN DSS.

Lake Water-Level Models
The lake water-level models explained from 43 to 

89 percent of the variability in the observed data and matched 
observed water levels quite well (RMSE ranged from 0.39 to 
2.25 ft). Values of PME ranged from 7.44 to 13.3 percent, and 
values of ME generally were near zero (median of 0.009 ft 
for 22 lakes) and ranged from –0.26 to 0.14 ft. Because the 
absolute errors were generally small, values of the NSCE were 
nearly identical to those of R2, ranging from 0.431 to 0.894.

Crooked Lake near Babson Park
Of all the lake water-level models, the model for Crooked 

Lake near Babson Park (southeast Polk County; site 49, 
table 2; fig. 32) had the most complete data record (no missing 
data from 1965 to 2008) and the second highest set (ranked in 
terms of accuracy) of model-fit statistics (R2 of 0.887, ME of 
0.02 ft, RMSE of 1.28 ft, PME of 7.44 percent, and NSCE of 
0.881; appendix 5). The model simulates well multidecadal 
trends (for example, the generally downward trend from 1965 
to 1991 and the generally upward trend from 1991 to 2008; 
fig. 44A) and shorter term multiyear trends (for example, the 
downward trend from 1979 to 1981; fig. 44A). The simulation 
of intraannual variability tends to be less accurate; seasonal 
dry- to wet-period changes were sometimes overpredicted (for 
example, the September 1976 to May 1977 simulated water-
level drop was 4.08 ft and the measured drop was 2.24 ft) and 
sometimes underpredicted (for example, the April to October 
1992 simulated water-level rise was 2.69 ft and the measured 
rise was 3.76 ft). Lake water level was measured at approxi-
mately weekly intervals, resulting in a large amount of data 
for training the rainfall model. Therefore, 30 percent of the 
data were randomly selected and used for the training dataset, 
and the remaining 70 percent were used for the testing dataset. 
Model-fit statistics for the daily rainfall model for the training 
and testing datasets were virtually the same, with R2 of 0.863 
and 0.864 and PME of 8.23 and 8.13 percent, respectively 
(appendix 3).

The final model for Crooked Lake near Babson Park is 
relatively simple, with four inputs for the rainfall model and 
two for the groundwater-use model. The rainfall model uses 
the following inputs: 1,440-day MWA and a 630-day minus 
1,440-day MWD of standard rainfall, a 2,250-day MWA of 
normalized rainfall at NOAA gage 4502 in south Osceola 
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Figure 43. Model-fit statistics for the final water-level or flow models for each site for the 1965 to 2008 simulation period: A, coefficient 
of determination (R2), B, root-mean-square error (RMSE), and C, and percent model error (RMSE divided by the range of data). Site 
information and locations are shown in table 2 and figure 32.



Development of Artificial Neural Network Models in Central Florida  65

EXPLANATION

EXPLANATION

A

B

104

106

108

110

112

114

116

118

120

122

124

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

W
at

er
 le

ve
l, 

in
 fe

et
 N

GV
D 

29

Measured

Simulated (RM + UM)

–4

–3

–2

–1

0

1

2

3

4

1965 1970 1975 1980 1985
Year

1990 1995 2000 2005 2010

W
at

er
 le

ve
l r

es
id

ua
l, 

in
 fe

et

RM + UM

RM

Linear (RM + UM)

Linear (RM)

R = –0.26 

R = –0.11

Figure 44. Results of lake water-level simulation for Crooked Lake near Babson Park (site number 49; table 2; fig. 32) showing  
A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-
use model (RM + UM) with associated linear regression lines. R is the Pearson product-moment correlation coefficient for the linear 
regression of residuals and time.

County (fig. 24), and a 630-day MWA of normalized rain-
fall at NOAA gage 9401 in north Hardee County (fig. 24) 
(appendix 3). The standard rainfall for Crooked Lake was 
computed as the weighted average of values from the NOAA 
rain gages 5973 (96.2 percent) and 369 (3.8 percent) within  
the lake’s drainage basin (fig. 24). The sensitivity of the 
rainfall model to lower frequency rainfall signals is consis-
tent with the model accuracy over longer time scales noted 
above and indicative of the nature of the lake water-level 
response where lower-frequency variability is more evident in 
the observed water-level data than subannual frequencies at 
this site. A bias exists in the rainfall model residuals, leading 

to a downward trend (linear correlation) in residual error 
(R = –0.26; fig. 44B), which is qualitatively consistent with 
possible decreases in lake water level attributable to increases 
in groundwater use.

Because of the bias in rainfall model residuals, the 
groundwater-use model was included in the two-stage model 
architecture (fig. 40) in order to better explain the observed 
hydrologic response. Inputs for the groundwater-use model for 
this site are a 24-month MWA and a 3-month minus 6-month 
MWD of total groundwater use (appendix 3). Addition of the 
groundwater-use model explained about 18 percent of the vari-
ability in the rainfall model residuals (R2 = 0.177; appendix 3) 
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and eliminated much of this bias, such that the long-term 
trend in residuals for the final model (rainfall plus groundwa-
ter use) is only slightly downward (R = –0.11; fig. 44B). The 
groundwater-use model tended to mitigate negative residuals 
from the rainfall model, indicating overpredicted water levels 
from the rainfall model were reduced by the groundwater-
use model (fig. 44B). The overall average absolute residual 
error decreased 0.11 ft from the rainfall model to the final 
model, indicating that inclusion of the groundwater-use model 
improved final model accuracy.

Prevatt Lake
Of all the lake water-level models, the model for Prevatt 

Lake (northwest Orange County; site 5, table 2; fig. 32) had 
one of the most incomplete data records (42.8 percent missing 
data from 1965 to 2008) and the lowest set (ranked in terms 
of accuracy) of model-fit statistics (R2 of 0.432, ME of 0.03 ft, 
RMSE of 1.80 ft, PME of 12.20 percent, and NSCE of 0.431; 
appendix 5). Little long-term trend is apparent in the measured 
data, and the model focuses more on attempting to repli-
cate shorter-term variability with limited success (fig. 45A). 
Intraannual variability attributable to seasonal dry- and 
wet-period cycles is reflected in the simulated water levels, 
although the simulated water levels often did not coincide in 
magnitude with measured data (fig. 45A). Multiyear trends 
are simulated fairly well, such as during drought and recovery 
periods in the early 1980s and early 2000s (fig. 45A). Lake 
water level was measured sporadically prior to 1982. After 
1982, lake water level generally was measured at monthly 
intervals with a short period (April 2004 to December 2008) 
of daily data. Nevertheless, the more complete record after 
1982 was interspersed with numerous periods of missing data 
ranging from 1 to 14 months in duration. Given these sporadic 
data, 100 percent of the data were used for the training dataset.

The final model for Prevatt Lake is relatively simple, 
with five inputs for the rainfall model and two for the 
groundwater-use model. The rainfall model uses the following 
inputs: 630-day MWA, a 90-day minus 270-day MWD, and 
270-day minus 630-day MWD of standard rainfall; a 630-day 
MWA of normalized rainfall at NOAA gage 3137 in northeast 
Okeechobee County (fig. 24); and a 630-day MWA of normal-
ized rainfall at NOAA gage 6414 in south Marion County 
(fig. 24) (appendix 3). The standard rainfall for this lake was 
set equal to that of NOAA rain gage 7982 in north Seminole 
County (fig. 24). The sensitivity of the rainfall model to higher 
frequency rainfall signals and frequency-band components is 
indicative of the nature of the lake water-level response at this 
site where high-frequency variability is more evident in the 
observed water-level data than low frequency multidecadal 
variability. A bias exists in the rainfall model residuals, leading 
to a slight upward trend (linear correlation) in residual error 
(R = 0.10; fig. 45B), which is qualitatively consistent with pos-
sible increases in lake water level attributable to decreases in 
groundwater use.

The groundwater-use model was used to better explain 
the observed hydrologic response by addressing the bias in 

rainfall model residuals. Inputs for the groundwater-use model 
for this site are a 12-month MWA and a 48-month minus 
96-month MWD of total groundwater use (appendix 3). Addi-
tion of the groundwater-use model explained about 5 percent 
of the variability in the rainfall model residuals (R2 = 0.0463; 
appendix 3) and eliminated some of this bias such that the 
long-term trend in residuals for the final model (rainfall plus 
groundwater use) is slightly less upward (R = 0.088; fig. 45B). 
The long-term trend in total groundwater use is slight since 
the early 1980s (fig. 34A), which coincides with the period of 
greatest data availability for model training at this site. The 
low frequency 48- and 96-month groundwater-use MWAs 
show smooth upward and downward trends but little long-
term trend over this period (fig. 34A); these smooth variations 
in groundwater use may correlate, by way of the 48-month 
minus 96-month MWD, with measured lake water-level varia-
tions. The groundwater-use model tended to mitigate negative 
residuals from the rainfall model, indicating that overpredicted 
water levels from the rainfall model were reduced by the 
groundwater-use model (fig. 45B). The overall average abso-
lute residual error decreased 0.03 ft from the rainfall model to 
the final model, indicating that inclusion of the groundwater-
use model slightly improved final model accuracy. The large 
amount of missing data and irregular measurement frequency 
are important factors that contributed to the relatively poor fit 
of the water-level model for Prevatt Lake by limiting the rep-
resentation of complete cyclical patterns in the model training 
dataset.

Groundwater-Level Models
The groundwater-level models explained from 54 to 

89 percent of the variability in the observed data and matched 
observed water levels well (RMSE ranged from 0.62 to 
5.44 ft). Values of PME ranged from 7.33 to 15.5 percent, and 
values of ME generally were near zero (median of –0.02 ft 
for 23 wells) and ranged from –1.17 to 0.08 ft. Because the 
absolute errors were generally small, values of the NSCE were 
nearly identical to those of R2, ranging from 0.540 to 0.894.

OR-47 Floridan Well
Of all the groundwater-level models, the model for the 

OR-47 Floridan well (west-central Orange County; site 648, 
table 2; fig. 32) had a nearly complete data record (6.3 percent 
missing data from 1965 to 2008) and the third highest (ranked 
in terms of accuracy) set of model-fit statistics (R2 of 0.840, 
ME of 0.02 ft, RMSE of 1.50 ft, PME of 7.69 percent, and 
NSCE of 0.836; appendix 5). The model simulates well mul-
tidecadal trends (for example, the generally downward trend 
from 1965 to 2008; fig. 46A) and shorter term multiyear trends 
(for example, the drought and recovery periods in the early 
1980s and early 2000s; fig. 46A). Intraannual variability also 
is simulated well, but the model sometimes underpredicts (for 
example, August 1994 to March 1995; fig. 46A) or overpre-
dicts (for example, March 1981 to January 1982; fig. 46A) the 
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Figure 45. Results of lake water-level simulation for Prevatt Lake (site number 5; table 2; fig. 32) showing A, measured and simulated 
water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model (RM + UM) with 
associated linear regression lines. For the residuals, lines connecting points indicate periods of consecutive monthly data. R is the 
Pearson product-moment correlation coefficient for the linear regression of residuals and time.

seasonal dry- and wet-period water-level extremes. Ground-
water level was measured at daily intervals, and, given this 
large amount of data for the rainfall model, 30 percent of the 
data were randomly selected and used for the training dataset 
and the remaining 70 percent were used for the testing dataset. 
Model-fit statistics for the daily rainfall model were virtually 
the same, with R2 of 0.905 and 0.906 and PME of 4.80 and 
4.81 percent for the training and testing datasets, respectively 
(appendix 3).

The model for the OR-47 Floridan well is relatively 
complex, with 18 inputs for the rainfall model and 3 for the 
groundwater-use model. The rainfall model uses the following 

5 inputs based on the standard rainfall: 630-day MWA, 30-day 
minus 90-day MWD, 90-day minus 270-day MWD, 270-
day minus 630-day MWD, and 1,440-day minus 2,250-day 
MWD. In addition, the rainfall model uses 13 inputs with 
MWAs (ranging from 270 to 2,250 days in length) of normal-
ized rainfall at NOAA gages 369, 478, 1163, 4502, 4625, 
5076, 5612, 5973, 6414, 6628, 7205, 7982, and 9401 (see 
appendix 3 for further details). The standard rainfall for this 
well (and all other wells) was computed as the arithmetic aver-
age of the values for the 18 NOAA rain gages (fig. 33). The 
sensitivity of the rainfall model to a wide variety of rainfall 
frequency-band components is indicative of the nature of the 
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Figure 46. Results of groundwater-level simulation for the OR-47 Floridan well (site number 648; table 2; fig. 32) showing A, measured 
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residuals and time.

groundwater-level response in which variability over a range 
of time scales, from multidecadal to subannual, is evident at 
this site. A slight bias exists in the rainfall model residuals, 
leading to a downward trend (linear correlation) in residual 
error (R = –0.042; fig. 46B), which is qualitatively consistent 
with possible decreases in groundwater level attributable to 
increases in groundwater use.

The groundwater-use model was used to better explain 
the observed hydrologic response by addressing the bias 
in rainfall model residuals. Inputs for the groundwater-use 
model for this site are a 12-month MWA, 1-month minus 
3-month MWD, and 24-month minus 48-month MWD of 

total groundwater use (appendix 3). Addition of the ground-
water-use model eliminated this negative bias such that the 
long-term trend in residuals for the final model (rainfall plus 
groundwater use) is slightly upward (R = 0.027; fig. 46B). 
Such a small change may not be significant, however, and 
suggests that long-term (multidecadal) trends in groundwater 
level at this site attributable to groundwater use are small or 
cannot be definitively inferred from the available data. The 
sensitivity of the groundwater-use model to a higher frequency 
signal and frequency-band component of total groundwater 
use (12-month MWA and 1-month minus 3-month MWD) is 
indicative of the lesser importance of low-frequency variations 
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in groundwater use for explaining measured groundwater-
level fluctuations. The groundwater-use model explained 
about 3 percent of the variability in the rainfall model residu-
als (R2 = 0.0279; appendix 3) and tended to mitigate negative 
residuals from the rainfall model, indicating that overpredicted 
water levels from the rainfall model were reduced by the 
groundwater-use model (fig. 44B). The overall average abso-
lute residual error decreased 0.02 ft from the rainfall model to 
the final model, indicating that inclusion of the groundwater-
use model slightly improved final model accuracy.

Taft Surficial Well
Of all the groundwater-level models, the model for the 

Taft surficial well (south-central Orange County; site 712, 
table 2; fig. 32) had about an average amount of missing 
data (21.6 percent missing data from 1965 to 2008) and the 
lowest (ranked in terms of accuracy) set of model-fit statis-
tics (R2 of 0.543, ME of –0.03 ft, RMSE of 0.73 ft, PME of 
15.53 percent, and NSCE of 0.540; appendix 5). Variability 
in groundwater level at this site predominantly occurred at 
higher frequencies, from multiyear to subannual time scales, 
and the model focused on attempting to replicate this short-
term variability but with limited success (fig. 47A). Intraan-
nual variability attributable to seasonal dry- and wet-period 
cycles is reflected in the simulated water levels, but often does 
not coincide in magnitude with measured data (fig. 47A). The 
water-level record for this well has extended periods of miss-
ing data at the beginning (January 1965 to May 1969) and end 
of the simulation period (August 2004 to December 2008), but 
groundwater level was measured at daily intervals during the 
intervening 35-year period. Given this large amount of data 
for the rainfall model, 30 percent of the data were randomly 
selected and used for the training dataset and the remaining 
70 percent were used for the testing dataset. Model-fit statis-
tics for the daily rainfall model were nearly equal, with R2 of 
0.573 and 0.557 and PME of 13.44 and 13.64 percent for the 
training and testing datasets, respectively (appendix 3).

The model for the Taft surficial well is relatively com-
plex, having 13 inputs for the rainfall model and 3 for the 
groundwater-use model. The rainfall model uses 2 inputs 
based on the standard rainfall consisting of a 90-day MWA 
and a 30-day minus 90-day MWD. In addition, the rainfall 
model uses 11 inputs with MWAs (30 or 90 days in length) of 
normalized rainfall at NOAA gages 1163, 1641, 4502, 4625, 
5076, 5973, 6414, 6628, 7205, 7982, and 8942 (see appendix 3 
for further details). The standard rainfall was computed as the 
arithmetic average of the values for the 18 NOAA rain gages 
(fig. 33). The sensitivity of the rainfall model to only high fre-
quency rainfall signals and a high frequency frequency-band 
component is indicative of the nature of the groundwater-level 
response in which variability over short time scales, 30 and 90 
days, dominates at this site. A bias exists in the rainfall model 
residuals, leading to a downward trend (linear correlation) 
in residual error (R = –0.28; fig. 47B), which is qualitatively 

consistent with possible decreases in groundwater level attrib-
utable to increases in groundwater use.

The groundwater-use model was used to better explain 
the observed hydrologic response by addressing the bias 
in rainfall model residuals. Inputs for the groundwater-use 
model for this site are a 6-month MWA, 3-month minus 
6-month MWD, and 24-month minus 48-month MWD of total 
groundwater use (appendix 3). Addition of the groundwater-
use model eliminated some of the negative bias such that the 
long-term downward trend in residuals for the final model 
(rainfall plus groundwater use) (R = –0.17; fig. 47B) was less 
than that for the rainfall model residuals. The sensitivity of 
the groundwater-use model to higher frequency (6-month 
MWA) signals as well as both higher and lower frequency 
frequency-band components (3-month minus 6-month MWD 
and 24-month minus 48-month MWD) of total groundwater 
use is indicative of the importance of short- and long-term 
variations in groundwater use for explaining measured 
groundwater-level fluctuations at this site. The groundwater-
use model explained about 15 percent of the variability in the 
rainfall model residuals (R2 = 0.153; appendix 3) and tended 
to mitigate negative residuals from the rainfall model, indicat-
ing that overpredicted water levels from the rainfall model 
were reduced by the groundwater-use model (fig. 47B). The 
overall average absolute residual error decreased 0.04 ft from 
the rainfall model to the final model, indicating that inclusion 
of the groundwater-use model slightly improved final model 
accuracy. Data collected at the Taft surficial well represent the 
altitude of the water table that is near land surface (well depth 
of 7 ft; site 712, table 2); therefore, other physical processes 
not represented in the two-stage model architecture but that 
may affect the dynamics of a shallow water table, such as spe-
cific yield variability caused by gas bubble entrapment (Fayer 
and Hillel, 1986; Faybishenko, 1995) and ponding of surface 
runoff, likely contribute to the relatively poor fit of this model.

Spring-Flow Models
The spring-flow models explain from 38 to 72 percent 

of the variability in the observed data and matched observed 
flows fairly well (RMSE ranged from 0.66 to 4.76 ft3/s). 
Values of PME ranged from 9.85 to 15.0 percent, and values 
of ME generally were near zero (median of 0.01 ft3/s for six 
springs) and ranged from –0.17 to 0.07 ft3/s. Because the 
absolute errors were generally small, values of the NSCE 
were close to those of R2, ranging from 0.345 to 0.721. The 
flow data for all six springs were sparse (missing data range 
from 43.8 to 67.8 percent for 1965 to 2008; appendix 5). The 
springs were sporadically measured, and quality of the flow 
data was poor compared to the water-level data for the lakes 
and wells. As a result, spring-flow model training focused 
on lower frequency variability in an attempt to match multi-
decadal and multiyear trends, resulting in a generally poorer 
match to seasonal variability.
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and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model 
(RM + UM) with associated linear regression lines. R is the Pearson product-moment correlation coefficient for the linear regression of 
residuals and time.

Figure 47. Results of groundwater-level simulation for the Taft Surficial well (site number 712; table 2; fig. 32) showing A, measured 

Rock Springs

Of all the spring-flow models, the model for Rock 
Springs (site 309, table 2; fig. 32) had the most complete 
data record (43.8 percent missing data from 1965 to 2008) 
and the highest (ranked in terms of accuracy) set of model-fit 
statistics (R2 of 0.725, ME of –0.08 ft3/s, RMSE of 3.79 ft3/s, 
PME of 9.85 percent, and NSCE of 0.724; appendix 5). The 
model simulates well multidecadal trends (for example, the 
generally downward trend from 1965 to 1990; fig. 48A) and 
shorter term multiyear trends (for example, the drought and 
recovery periods in the early 1980s and the late 1990s to 

early 2000s; fig. 48A). Intraannual variability attributable to 
seasonal dry- and wet-period cycles is reflected in the simu-
lated flows, although simulated flows often did not coincide 
in magnitude with measured data (fig. 48A). Spring-flow data 
were available at irregular intervals ranging from daily to once 
per year or even less frequent. The daily spring-flow data, 
however, are not field measurements and were computed from 
model-derived (rating curve) estimates made by the collecting 
agency. Given the relatively large amount of data available for 
the rainfall model (considering the spring-flow models were 
developed to replicate multiyear and longer trends), 29 percent 
of the data were randomly selected and used for the training 
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Figure 48. Results of spring-flow simulation for Rock Springs (site number 309; table 2; fig. 32) showing A, measured and simulated 
water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model (RM + UM) with 
associated linear regression lines. For the residuals, lines connecting points indicate periods of consecutive monthly data. R is the 
Pearson product-moment correlation coefficient for the linear regression of residuals and time.

dataset and the remaining 71 percent were used for the testing 
dataset. Model-fit statistics for the daily rainfall model were 
close in value, with R2 of 0.796 and 0.777 and PME of 8.04 
and 8.44 percent for the training and testing datasets, respec-
tively (appendix 3).

The final model for Rock Springs is relatively complex, 
having 12 inputs for the rainfall model and 4 for the ground-
water-use model. The rainfall model uses 2 inputs based on the 
standard rainfall consisting of a 630-day MWA and a 270-day 
minus 630-day MWD. In addition, the rainfall model uses 
10 inputs with MWAs (270, 630, or 1440 days in length) of 
normalized rainfall at NOAA gages 1163, 2229, 3137, 5973, 

6414, 6628, 7205, 7982, 8942, and 9401 (see appendix 3 for 
further details). The standard rainfall for this spring (and all 
other springs) was computed as the arithmetic average of the 
values for the 18 NOAA rain gages (fig. 33). A bias exists in 
the rainfall model residuals, leading to a downward trend (lin-
ear correlation) in residual error (R = –0.49; fig. 48B), which 
is qualitatively consistent with possible decreases in ground-
water level attributable to increases in groundwater use.

The groundwater-use model was used to better explain 
the observed hydrologic response by addressing the bias in 
rainfall model residuals. Inputs for the groundwater-use model 
for this site are a 48-month MWA, 12-month minus 24-month 
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MWD, and 24-month minus 48-month MWD of total ground-
water use; the predicted spring flow from the rainfall model 
was also used (appendix 3). Addition of the groundwater-use 
model eliminated this negative bias such that the long-term 
trend in residuals for the final model (rainfall plus groundwa-
ter use) is slightly upward (R = 0.14; fig. 48B). This relatively 
large improvement suggests that long-term (multidecadal) 
trends in spring flow at this site attributable to groundwater 
use are important. The sensitivity of the groundwater-use 
model to a lower frequency signal (48-month MWA) and 
lower frequency frequency-band components (12-month 
minus 24-month MWD and 24-month minus 48-month MWD) 
of total groundwater use is indicative of the importance of 
low-frequency variations in groundwater use for explaining 
measured spring-flow fluctuations. The inclusion of predicted 
spring flow from the rainfall model as an input parameter 
resulted in an increase in R2 from 0.329 to 0.477 for the 
groundwater-use model, although an increase of only 0.03 
was realized in R2 for the final model (combined rainfall and 
groundwater-use models). The groundwater-use model was 
most sensitive to the 48-month MWA of total groundwater 
use and less sensitive to predicted spring flow. These two 
input parameters were inversely correlated such that periods 
of lower predicted spring flow tended to occur during periods 
of greater groundwater use. Therefore, predicted spring flow 
may be acting as a surrogate for some error in the current 
input parameters, such as poorly estimated groundwater use, 
or some unaccounted for factor in the current groundwater-use 
model, such as spatial variations in groundwater withdraw-
als masked by using total groundwater use. Nevertheless, 
the groundwater-use model explained about 48 percent of 
the variability in the rainfall model residuals (R2 = 0.477; 
appendix 3) and tended to mitigate negative residuals from 
the rainfall model, indicating that overpredicted water levels 
from the rainfall model were reduced by the groundwater-
use model (fig. 48B). The overall average absolute residual 
error decreased 0.72 ft3/s from the rainfall model to the final 
model, indicating that inclusion of the groundwater-use model 
improved final model accuracy.

Sanlando Springs
Of all the spring-flow models, the model for Sanlando 

Springs (site 312, table 2; fig. 32) had an above average 
amount of missing data (64.0 percent missing data from 1965 
to 2008) and the lowest (ranked in terms of accuracy) set of 
model-fit statistics (R2 of 0.376, ME of 0.05 ft3/s, RMSE of 
3.56 ft3/s, PME of 14.88 percent, and NSCE of 0.375; appen-
dix 5). Little long-term trend is apparent in the measured data, 
and the model attempts to replicate shorter-term variability, 
although with limited success (fig. 49A). Multiyear trends 
are roughly simulated, such as during drought and recov-
ery periods in the early 1980s and late 1990s to early 2000s 
(fig. 49A). Intraannual variability attributable to seasonal 
dry- and wet-period cycles is reflected in the simulated flows, 
although simulated flows often did not coincide in magnitude 

with measured data (fig. 49A). Spring-flow data were available 
at irregular intervals ranging from daily to once per year; the 
first measurement made after the beginning of the model simu-
lation period (1965) was in April 1972. The daily spring-flow 
data, however, are not field measurements and were computed 
from model-derived (rating curve) estimates made by the col-
lecting agency. The data available for the rainfall model were 
sparse until a 6-year period at the end of the record (2003–08), 
when daily data exhibited high frequency variability having 
a range less than that of the previous 24 years of sparse data. 
The training dataset was hand assembled and incorporated all 
of the earlier sparse data and a subsample from the later period 
of daily data, thereby removing bias in the training dataset 
(caused by oversampling the daily-data period) to better repre-
sent the long-term record. The testing dataset incorporates data 
only from the daily-data period and poorly represents the full 
historical record. The overall split between training and testing 
datasets is 90 and 10 percent, respectively. Model-fit statistics 
for the daily rainfall model were substantially different, with 
R2 of 0.521 and 0.190 and PME of 10.26 and 13.68 percent 
for the training and testing datasets, respectively (appendix 3), 
which is a direct result of the peculiarities of the datasets.

The final model for Sanlando Springs is relatively 
complex, with 10 inputs for the rainfall model and 5 for the 
groundwater-use model. The rainfall model uses one input 
based on the standard rainfall consisting of a 270-day MWA. 
In addition, the rainfall model uses nine inputs with MWAs 
(90, 270, 630, or 1,440 days in length) for normalized rainfall 
at NOAA rain gages 1641, 2229, 3137, 5076, 5612, 5973, and 
6628 (see appendix 3 for further details). The standard rainfall 
was computed as the arithmetic average of the values for 
the 18 NOAA rain gages (fig. 33). A slight bias exists in the 
rainfall model residuals, leading to a downward trend (linear 
correlation) in residual error (R = –0.021; fig. 49B), which is 
qualitatively consistent with possible decreases in groundwater 
level attributable to increases in groundwater use.

The groundwater-use model was used to better explain 
the observed hydrologic response by addressing the bias in 
rainfall model residuals. Inputs for the groundwater-use model 
for this site are a 12-month MWA, 1-month minus 3-month 
MWD, 3-month minus 6-month MWD, and 24-month minus 
48-month MWD of total groundwater use; the predicted spring 
flow from the rainfall model also was used (appendix 3). 
Addition of the groundwater-use model eliminated this nega-
tive bias such that the long-term trend in residuals for the 
final model (rainfall plus groundwater use) is slightly upward 
(R = 0.043; fig. 49B). Such a small change may not be sig-
nificant, however, and suggests that long-term (multidecadal) 
trends in spring flow at this site attributable to groundwater 
use are small or cannot be definitively inferred from the avail-
able data. The groundwater-use model explained only about 
4 percent of the variability in the rainfall model residuals 
(R2 = 0.0417; appendix 3). The inclusion of predicted spring 
flow from the rainfall model as an input parameter caused an 
insignificant change in R2, but was necessary in order to obtain 
a model with negative input-output sensitivity (an increase or 
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Figure 49. Results of spring-flow simulation for Sanlando Springs (site number 312; table 2; fig. 32) showing A, measured and simulated 
water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model (RM + UM) with 
associated linear regression lines. For the residuals, lines connecting points indicate periods of consecutive monthly data. R is the 
Pearson product-moment correlation coefficient for the linear regression of residuals and time.

decrease in groundwater-use causes a decrease or increase, 
respectively, in spring flow). These poor correlations and 
difficulty maintaining correct input-output sensitivity suggest 
either that there is little impact of groundwater use on spring 
flow or that such a relation cannot be discerned with the avail-
able data. Nevertheless, the groundwater-use model tended to 
mitigate negative residuals from the rainfall model, indicating 
that overpredicted water levels from the rainfall model were 
reduced by the groundwater-use model (fig. 49B). The overall 

average absolute residual error decreased 0.004 ft3/s from 
the rainfall model to the final model, indicating that inclu-
sion of the groundwater-use model slightly improved final 
model accuracy. The large amount of missing data, irregular 
measurement frequency, and differences in data variability 
between the sparse older data and the later period of daily data 
are important factors that contributed to the relatively poor fit 
of the spring-flow model for Sanlando Springs.
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Development of the Decision Support 
System

Dutta and others (1997, p. 912) define decision support 
systems, or DSSs, as “...systems helping decision-makers 
to solve various semi-structured and unstructured problems 
involving multiple attributes, objectives, and goals. Histori-
cally, the majority of DSSs have been either computer imple-
mentations of mathematical models or extensions of database 
systems and traditional management information systems.” 
DSS technology can help provide the knowledge and tools 
required for informed decision making (Roehl, Conrads, and 
Daamen, 2006). Even though the collective interests and com-
puter skills within the community of water-resource manag-
ers, scientists, and other stakeholders are wide ranging and 
unequal, equal access to the broad scope of current scientific 
knowledge is needed to make the best possible decisions.

The CFANN DSS integrates historical databases and the 
site-specific ANN models, model controls, and model output 
into a spreadsheet application with a GUI that allows the user 
to simulate water-resource scenarios of interest. Scenarios can 
consist of adjustments to rainfall and groundwater-use data, 
whereby predictions of lake water levels, groundwater levels, 
and spring flows are provided by the CFANN DSS. Develop-
ment of the DSS required the following: (1) merging all the 

data into a single comprehensive database; (2) developing 
rainfall and groundwater-use ANN models; and (3) developing 
a Microsoft Excel® application that integrates the new data-
base, ANN models, model inputs and outputs, and graphical 
display routines into a single package that is easy to use and 
disseminate. The user’s manual for the installation and opera-
tion of the CFANN DSS is provided in appendix 6.

System Architecture

The basic architectural elements, or functional compo-
nents, of the CFANN DSS are shown in figure 50. The DSS 
reads and writes files for the various run-time options that can 
be selected by the user through the system’s GUI. A histori-
cal database, containing 59 years (1950 to 2008) of monthly 
average rainfall, hydrologic response data (lake water level, 
groundwater level, and spring flow), and groundwater-use 
data, is read into the simulator along with the ANN models at 
the start of a simulation. By using GUI controls, the user can 
evaluate scenarios for alternative rainfall and groundwater use. 
The outputs generated by the simulator are written to files for 
post processing in Microsoft Excel® or other analysis software 
packages. During simulations of lake water level, groundwater 
level, or spring flow response by the ANN models, the DSS 
provides a tabular display of simulated values for the current 
computational time step for all sites and streaming graphics 
for one selected site.

Input-output files

Historical database

Rainfall, Groundwater use, Water level, Flow

Models

102 ANN models

User-defined inputs

Simulation output files

Simulator controls

iQuestTM, Visual Basic 
for Applications

Streaming graphics G
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Figure 50. Architectural elements of the Central Florida Artificial Neural Network Decision Support System.
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Model Simulation Control and Graphics

The simulator in the CFANN DSS integrates the histori-
cal database with the 102 ANN models. The date/time controls 
on the user control panel (fig. 51) are used to adjust the start 
and end dates and graphical and tabular output for a simula-
tion. The simulator allows the user to run “what-if” simula-
tions by varying the rainfall and groundwater-use inputs from 
the historical values. The user has two simulation options 
for changing rainfall inputs and three options for changing 
groundwater-use inputs: 

• as a percentage of historical rainfall or groundwater-
use values, 

• as a constant offset from historical rainfall or 
groundwater values, and

• as a user-defined time series of groundwater use. 

Explanations of how each of the options in the CFANN DSS 
can be implemented are provided in the user’s manual  
(appendix 6).

The top of the CFANN DSS control panel (fig. 51) shows 
the simulation period, output options, and user-setting buttons 
that allow specifications of changes to rainfall and ground-
water-use values. The CFANN DSS also shows streaming 
graphics on the control panel while a simulation is running. 
The graphs display the historical measured data, simulated 
historical conditions (to show model accuracy), the simulated 
output using the input option set by using the GUI controls or 
an input file, and the difference in simulated outputs between 
user-specified and historical conditions (fig. 51).

System and the associated graphical display.
Figure 51. DiagramSimulator controls used to run a simulation of the Central Florida Artificial Neural Network Decision Support 
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Comparison of Rainfall and 
Groundwater-Use Effects

To help understand the effects of rainfall and groundwa-
ter use on hydrologic response in central Florida, the CFANN 
DSS can be used to facilitate a sensitivity analysis and as a 
component of a vulnerability assessment. In the following 
sections, the results of sensitivity analyses are described and 
the potential for application of the forcing-response behavior 
represented by the CFANN DSS to assessments of vulnerabil-
ity is discussed

Sensitivity Analysis

The CFANN DSS was used to simulate four scenarios, 
representing hypothetical changes in historical rainfall and 
groundwater use, to determine changes in lake water level, 
groundwater level, and spring flow simulated by the ANN 
models. The scenarios consist of using time series of rainfall 
and groundwater use at 70 and 130 percent of historical val-
ues. These adjustments were effected by using the appropriate 
controls in the CFANN DSS to apply a constant multiplier to 
uniformly increase or decrease historical rainfall and ground-
water-use time series by 30 percent (see sections 3.3 and 3.4.3 
in appendix 6). The resulting simulated hydrologic response is 
indicative of the sensitivity of the model for each site to equal 
percentage changes in rainfall and groundwater use that are 
constant over time. Actual changes in rainfall and groundwa-
ter use are not likely to be equal even on a percentage basis 
and likely would vary over a range of short- and long-term 
time scales; thus, these simulations should not be interpreted 
as representing expected changes. Analysis of hypothetical 
scenarios, however, can be an effective tool for understand-
ing model sensitivity to changes in model inputs, and the user 
can interpret results accordingly to determine if the model is 
appropriate for a particular application.

Results of the rainfall and groundwater-use scenarios 
indicate a wide range of responses in water levels at lakes 
and wells and flows at springs (figs. 52, 53). Most sites show 
a greater response to a 30-percent change in rainfall than a 
30-percent change in groundwater use (for both maximum and 
minimum changes in water level or flow). Lakes and wells 
generally show a larger response to rainfall than groundwater 
use, whereas springs generally show a mixed response, with 
some springs showing a larger response to rainfall and some 
springs showing a larger response to groundwater use. For 
lakes, the median maximum changes in water level were a 
5.07 ft increase for 130 percent rainfall, a 6.33 ft decrease for 
70 percent rainfall, a 0.95 ft increase for 70 percent ground-
water use, and a 1.22 ft decrease for 130 percent groundwater 
use. For wells, the median maximum changes in water level 
were a 2.39 ft increase for 130 percent rainfall, a 3.23 ft 
decrease for 70 percent rainfall, a 0.54 ft increase for 70 per-
cent groundwater use, and a 0.51 ft decrease for 130 percent 

groundwater use. For springs, the median maximum changes 
in flow were a 3.57 ft3/s increase for 130 percent rainfall, a 
4.80 ft3/s decrease for 70 percent rainfall, a 4.54 ft3/s increase 
for 70 percent groundwater use, and a 3.60 ft3/s decrease for 
130 percent groundwater use.

Site specific differences exist, whereby some individual 
lakes, wells, and springs show a greater response to a 30-per-
cent change in groundwater use than a 30-percent change in 
rainfall. Comparison of the ratios between maximum change 
in water level or flow due to increases or decreases in ground-
water use and maximum change due to increases or decreases 
in rainfall indicates that these ratios typically exceed 1.0 for 
one lake (Lake Apopka, site 170), one well (Cocoa P Floridan 
well, site 622) and three springs (Wekiwa, Rock, and Palm 
Springs; sites 308, 309, and 313, respectively). Some vari-
ability in these ratios occurs because of asymmetric sensitiv-
ity where positive responses are not equal in absolute value 
to negative responses. For example, a 30-percent increase 
in rainfall generally caused smaller water-level increases 
for individual lakes and wells than the water-level decreases 
caused by a 30-percent decrease in rainfall (figs. 52A, 53A). 
Asymmetric sensitivity is common in complex natural systems 
and is simply the manifestation of nonlinearity in the input-
output dynamics of the hydrologic system in central Florida. 
As a result of these nonlinearities, ratios of groundwater-use 
response to rainfall response more often exceeded 1.0 for 
rainfall increases than for rainfall decreases. The follow-
ing 12 sites show a greater response to a 30-percent increase 
in groundwater use than a 30-percent increase in rainfall: 
Lake Clinch (site 50), Lake Deeson (site 77), Lake Apopka 
(site 170), Lake Howell (site 207), Lake Anderson (site 221), 
Lake Sue (site 297), Bay Lake Floridan well (site 602), Cocoa 
P Floridan well (site 622), Mascotte Surficial well (site 643), 
Wekiwa Springs (site 308), Rock Springs (site 309), and Palm 
Springs (site 313). The following nine sites show a greater 
response to a 30-percent decrease in groundwater use than a 
30-percent increase in rainfall: Lake Apopka (site 170), Lake 
Howell (site 207), Lake Anderson (site 221), Cocoa P Floridan 
well (site 622), Lake Sawyer Floridan well (site 630), Taft 
Surficial well (site 712), Wekiwa Springs (site 308), Rock 
Springs (site 309), and Palm Springs (site 313). Of the sites 
showing a larger relative response, Lake Howell and the Taft 
Surficial well have small absolute responses to groundwater 
use where the maximum water-level increase or decrease was 
less than 1 ft (fig. 52B).

Before drawing specific inferences on rainfall and 
groundwater-use effects for individual sites, the CFANN 
DSS should be used to examine the simulated time series for 
the sites of interest. Two sites were selected for illustrative 
purposes: the ROMP 60 Floridan well (site 472), which shows 
a much larger response to a 30-percent change in rainfall 
compared to the same percentage change in groundwater use, 
and the Cocoa P Floridan well (site 622), which shows a larger 
response to a 30-percent change in groundwater use com-
pared to the same percentage change in rainfall (figs. 52, 53). 
Discussion of the results from the two selected sites illustrates 
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Figure 52. Sensitivity of lake water-level, groundwater-level, and spring-flow models as indicated by the maximum change in water 
level or flow simulated during 1965 to 2008 caused by changes in A, rainfall, and B, groundwater use. Rainfall and groundwater-use 
changes were simulated separately using the Central Florida Artificial Neural Network Decision Support System and specifying values 
of 130 percent for the increase and 70 percent for the decrease, which were applied to all historical values. Site information and 
locations are shown in table 2 and figure 32.
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Figure 53. Sensitivity of lake water-level, groundwater-level, and spring-flow models as indicated by the minimum change in water 
level or flow simulated during 1965 to 2008 caused by changes in A, rainfall, and B, groundwater use. Rainfall and groundwater-use 
changes were simulated separately using the Central Florida Artificial Neural Network Decision Support System and specifying values 
of 130 percent for the increase and 70 percent for the decrease, which were applied to all historical values. Site information and 
locations are shown in table 2 and figure 32.
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appropriate interpretation, and potential limitations, of the 
hypothetical rainfall and groundwater-use scenarios.

Groundwater level at the ROMP 60 Floridan well was 
highly variable, exhibiting fluctuations exceeding 10 ft over 
time scales ranging from seasonal to multidecadal (fig. 54A). 
In fact, many wells in southwest Polk County show large 
ranges in water level (fig. 10), and the five wells for which 
groundwater-level models were developed that show the larg-
est responses to rainfall (sites 446, 469, 472, 478, and 516; 
figs. 52A, 53A) are located in this area (fig. 32). The history of 
the phosphate industry (both the mining and processing of ore) 
in southwest Polk County (fig. 6) and associated groundwater 
withdrawals (fig. 29) have been suggested previously as a 
factor affecting historical groundwater-level fluctuations in the 
area (Spechler and Kroening, 2007, p. 46). Variations in rain-
fall and agricultural groundwater use also have been suggested 
as contributing to reported groundwater-level trends (Spechler 
and Kroening, 2007, p. 46).

Linear correlation analyses indicated that correlations 
between rainfall and groundwater level at these five wells 
tended to be stronger (R ranged from 0.19 to 0.76 with an 
average of 0.54, fig. 35) than correlations with total ground-
water use (R ranged from –0.55 to 0.49 with an average of 
–0.20, fig. 38). Consideration of spatial variations in ground-
water use, which are not realized by using data for total 
groundwater use, may contribute to the differences in correla-
tions. To investigate this possibility further, a linear correlation 
analysis was performed using the 12-month MWA of ground-
water use (the sum of all categories) for each GUDV grid cell 
(fig. 28) and hydrologic response at each site. For GUDV grid 
cells in Polk County, the strongest correlations with ground-
water-level for the five wells in question (sites 446, 469, 472, 
478, and 516; fig. 32) were with groundwater use in grid cells 
RC70, RC71, and RC81 (fig. 28) (R ranged from –0.40 to 
–0.52 with an average of –0.46). These correlations gener-
ally are slightly stronger than those for total groundwater use 
on which the groundwater-use ANN models were developed 
(R between groundwater level and 12-month MWA of total 
groundwater use at these five wells ranged from –0.48 to 0.06 
with an average of –0.30).

The relatively small responses to changes in groundwater 
use predicted by the groundwater-level models for the ROMP 
60 Floridan well (fig. 54B) and the other four wells in this 
area (sites 446, 469, 478, and 516; figs. 52, 53) may be at least 
partly attributable to spatial variability not accounted for in the 
groundwater-use ANN models. Therefore, not accounting for 
spatial variations in groundwater use could result in under-
estimation of the effects of phosphate industry groundwater 
withdrawals. Groundwater use in the grid cells with stron-
ger correlations (RC70, RC71, and RC81; fig. 28) primar-
ily consists of phosphate industry withdrawals. Time series 
of groundwater use in grid cells RC71 and RC81 generally 
resemble the pattern of total phosphate industry groundwater 
use with an upward trend from 1950 to the mid-1960s fol-
lowed by a more gradual downward trend to 2008 (fig. 29), 
whereas for grid cell RC70 the upward trend in groundwater 

use extended to the mid-1970s followed by a downward 
trend to 2008. In contrast, time series of groundwater use for 
other GUDV grid cells in the phosphate mining area (RC60, 
RC61, RC72, RC80, RC82; fig 28) show different patterns 
reflecting contributions from public supply and agricultural 
(predominantly citrus) groundwater withdrawals. In summary, 
groundwater-level fluctuations at the ROMP 60 Floridan well 
(site 472), and likely at the other four wells in southwest Polk 
County (sites 446, 469, 478, and 516; fig. 32), are attributable 
to a combination of fluctuations in rainfall, phosphate industry 
groundwater use, and other categories of groundwater use.

Groundwater levels at the Cocoa P Floridan well 
(site 622) show a slight but continuous downward trend from 
the beginning of the simulation period (1965) to the early 
1980s, followed by a period of relatively flat trend to the end 
of the simulation period (fig. 55A). Superimposed on these 
long-term patterns are shorter multiyear periods of decline 
and recovery in the late 1960s, early 1980s, late 1980s to early 
1990s, late 1990s to early 2000s, and the late 2000s (fig. 55A). 
These groundwater-level fluctuations correlate well with long-
term trends and high frequency variability in both rainfall and 
groundwater-use. As a result, the groundwater-level model 
shows comparable responses to rainfall and groundwater use, 
with a slightly greater sensitivity to a 30-percent change in 
groundwater use, exhibiting a 1.43- to 4.07-ft increase or a 
1.65- to 3.32-ft decrease in groundwater level, compared to 
a 30-percent change in rainfall, exhibiting a 0.35- to 1.91-ft 
increase or a 0.34- to 2.56-ft decrease in groundwater level 
(fig. 55B). The Cocoa P Floridan well is in east-central 
Orange County (site 622, fig. 32) in the expanding Orlando 
metropolitan area, which has experienced substantial urban-
ization (fig. 7) and the increases in groundwater withdrawals 
that accompany such population growth. When interpreting 
the time series of hydrologic responses from the hypotheti-
cal scenarios, it is important to note that applying constant 
percentage changes to rainfall and groundwater use results in 
variable absolute changes. For example, for the Cocoa P Flori-
dan well, the smaller responses to rainfall changes in 2000 are 
at least partly attributable to the low rainfall totals that year 
(fig. 33B), and the long-term upward and downward responses 
to groundwater-use changes are at least partly attributable to 
long-term trends in groundwater use (fig. 34A).

Overall, results of the simulations of the hypothetical 
scenarios indicate that the flow of springs tends to be more 
sensitive to groundwater use than are the water levels of lakes 
or wells when compared on the basis of equal percentage 
changes in rainfall. Interestingly, the predominant sources 
of inflow to Lake Apopka (site 170) are surface-water runoff 
(average 1995 rate of 61 ft3/s simulated by the ECFT model; 
Nicasio Sepúlveda, U.S. Geological Survey, written commun., 
2013) and Apopka Spring (1971–2009 mean flow of 28 ft3/s), 
and the hypothetical scenarios show a lake water-level 
response to groundwater use comparable to that of rainfall. 
Even though the absolute simulated water-level changes are 
relatively small (0.20 to 1.62 ft; figs. 52, 53) for Lake Apopka, 
the similar relative sensitivity to rainfall and groundwater-use 
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Figure 54. Simulated water levels at the ROMP 60 Floridan well (site 472; table 2; fig. 32) for historical conditions and hypothetical 
rainfall and groundwater-use scenarios showing A, water-level altitude for historical and scenario conditions, and B, the change in 
water level between historical and scenario conditions. Historical conditions are represented by using 100 percent rainfall (R) and  
100 percent groundwater use (U). Scenarios are represented by increases and decreases of 30 percent in historical values of rainfall 
and groundwater use.

changes and the presence of Apopka Spring inflow sug-
gest that the sensitivity of lake water-level response may be 
affected by changes in flow from the spring. Springs are com-
monly considered to reflect the integrated effects of hydrologic 
conditions over large areas. Additionally, from a long-term, 
steady-state, water-balance perspective, increases in ground-
water withdrawals from an aquifer system are balanced by 
increases in aquifer recharge or decreases in aquifer discharge, 
with reductions in natural discharge typically being the most 
important (Bredehoeft, 1997).

In central Florida, spring flow represents a substan-
tial outflow from the aquifer system, totaling 68 percent of 
groundwater withdrawals for 1995 (ECF model; McGurk 
and Presley, 2002) and 38 percent of groundwater withdraw-
als for 1995 to 2006 (ECFT model; Sepúlveda and others, 
2012) (fig. 41B). Accordingly, increases in groundwater 
withdrawals over time are likely to eventually result in some 
degree of decreases in spring flows as the hydrologic system 
moves toward a long-term balance, and the sensitivities of 
the spring-flow ANN models to the hypothetical rainfall and 
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Figure 55. Simulated water levels at the Cocoa P Floridan well (site 622; table 2; fig. 32) for historical conditions and hypothetical 

groundwater-use scenarios are at least qualitatively consis-
tent with this equilibrium-seeking process. Compared to the 
springs, the lower sensitivities of most lakes and wells to the 
same hypothetical rainfall and groundwater-use scenarios are 
likely attributable in part to the simple hydraulic principle that 
a small change in water level can cause a large change in flow 
rate if such a water-level change results in a large percentage 
change in hydraulic gradient. Thus, modulation by the hydro-
logic system of the relations between water-level changes and 
flow rates determines the degree to which the water balance 

responds to changes in the primary system forcings of rainfall 
and groundwater use.

Comparison of the predictive accuracies of the rainfall 
and groundwater-use ANN models indicates that the hydro-
logic system in central Florida generally is affected by ground-
water use differently during wet periods than during dry peri-
ods. During wet periods, when little or no system storage is 
available (high water levels), groundwater-use effects are less 
evident. By contrast, during dry periods, when there is excess 
system storage (lower water levels), groundwater-use effects 



82  Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida

are clearly noticeable in the historical record of hydrologic 
response. The residual error time series of the final water-level 
and spring-flow models (combined rainfall and groundwater-
use ANN models) were compared to the residual error time 
series of the respective rainfall ANN models—a reduction in 
residual error of the final combined model compared to the 
rainfall model indicates the improvement in predictive accu-
racy gained by addition of the groundwater-use model. This 
improvement in predictive accuracy varied with the magni-
tude of the hydrologic response, where a larger reduction in 
residual error coincided with periods of lower water levels or 
flows (bottom 25 percent of observed 1965–2008 data) and 
a smaller reduction in residual error coincided with periods 
of higher water levels or flows (upper 25 percent of observed 
1965–2008 data). The reduction in residual error generally 
was greater for months with lower than higher water levels 
or spring flows, for example: 0.20 ft for Prevatt Lake (site 5), 
0.087 ft for the OR-47 Floridan well (site 648), and 0.16 ft3/s 
for Sanlando Springs (site 312). Extended periods of lower 
water levels or spring flows occur during drought periods, 
such as experienced throughout central Florida in the early 
1980s and late 1990s to early 2000s (for example, figs. 45A, 
46A, 49A). Thus, by driving the overall behavior of the sys-
tem, rainfall indirectly influences the degree to which ground-
water use will drive persistent trends in water levels and flows, 
with groundwater-use effects more prevalent during periods of 
low water levels and spring flows caused by low rainfall and 
less prevalent during periods of high water levels and spring 
flows caused by high rainfall. Differences in the magnitudes of 
rainfall and groundwater use during wet and dry periods also 
are important determinants of hydrologic response.

Potential Application to Vulnerability 
Assesment

Assessment of vulnerability of the hydrologic system 
in central Florida to environmental change, whether natural 
or human derived, is a potential application of the forcing-
response behavior learned through the data-mining analyses. 
Vulnerability has many working definitions, but Füssel (2007) 
describes four fundamental dimensions needed to characterize 
a vulnerable situation: system of concern, valued attributes 
of the system, hazards to which the system is subject, and 
time period for which assessment is desired. Luers and others 
(2003) describe vulnerability as “...the degree to which human 
and environmental systems are likely to experience harm due 
to a perturbation or stress...,” and they developed a vulnerabil-
ity metric as the ratio of the system sensitivity to the system 
state relative to a threshold below which harm would occur 
times the occurrence probability of the forcings of concern. 
Adger (2006) notes that in the framework of Luers and others 
(2003), sensitivity may be a physical parameter of the sys-
tem or a social parameter that measures well being. Thus, the 
quantification of system sensitivity factors prominently into 
an assessment of vulnerability. The CFANN DSS provides an 

easy-to-use tool for sensitivity analysis that could facilitate 
vulnerability assessments. Results of the CFANN DSS could 
be incorporated either directly into vulnerability assessments 
based on water-level or flow conditions or indirectly if rela-
tions between predicted water-level or flow sensitivities and 
some measure of system well being (for example, social or 
economic effect) are established. On the basis of a range of 
scenarios of interest to water-resource managers, sensitivities 
derived from the CFANN DSS could be used to identify the 
contribution of rainfall and groundwater use to the hydrologic 
system’s overall vulnerability. Considerable uncertainty can 
exist in quantifying the forcing-response behavior of a system, 
and results may need to be interpreted somewhat qualitatively. 
Luers (2005) recognized that some systems cannot be defini-
tively quantified and presented a framework whereby the rela-
tive vulnerability of a system to forcings of concern under dif-
ferent scenarios can be identified; such an approach may prove 
beneficial to water-resource management decision making.

Limitations of Artificial Neural 
Network Models

Several factors potentially limit the application of the 
ANN models: confounding effects of correlation between 
rainfall and groundwater use, quality and completeness of the 
historical databases, and spatial variations in groundwater use. 
These factors should be considered when interpreting results 
of simulations made with the ANN models and are discussed 
in more detail below.

Often, explanatory variables share information about the 
behavior of a response variable. It is difficult, if not impos-
sible, to distinguish the individual effects of these variables 
(sometimes known as confounded or correlated variables) 
on a response variable. For the ANN models, rainfall and 
groundwater use are correlated to some degree because rainfall 
patterns partly determine when and how much groundwater is 
withdrawn by utilities, industry, and agriculture. Correlation 
analysis of rainfall and groundwater use and results herein 
indicate that groundwater use tends to be negatively correlated 
with rainfall, with R values ranging from –0.76 to 0.71 and 
an average of –0.14 (fig. 39). Application of the two-stage 
modeling architecture, whereby hydrologic response was first 
modeled with rainfall and then with groundwater use (fig. 40), 
allowed the possibility during the model training process that 
the correlation between rainfall and groundwater use was 
incorporated into the rainfall ANN model, causing alias-
ing of this interaction between groundwater-use and rainfall 
effects by the rainfall model inputs. Aliasing is caused by 
confounded variables, which may lead the analyst to attribute 
the effects to a particular variable or combination of variables 
when the actual causative behavior is due to another vari-
able or combination of variables. It was necessary to use this 
two-stage approach for the reasons described in the Input-
Output Mapping and Problem Representation section, with the 
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primary reasons being the limited availability and quality of 
the groundwater-use data and the findings of the current and 
previous studies that indicate rainfall was the predominant fac-
tor affecting the water budget and the variability of hydrologic 
response. For the rainfall ANN models, the likelihood of alias-
ing increases as the model is more closely trained to match the 
observed data. Therefore, overfitting of the ANN models was 
mitigated by using a conservative training process, namely by 
limiting the ANN to one hidden-layer neuron, culling inputs 
with input-output sensitivities at odds with principles of mass 
conservation, retaining only those inputs that are not highly 
correlated with each other, and using 2-fold cross-validation 
where possible. An important characteristic of aliasing is that, 
whereas the individual effects of the confounded variables 
cannot be unambiguously separated, the combined effect can 
be accurately modeled. Although, significant changes in the 
underlying causative relations between the confounded vari-
ables, such as a change in water-management practices that 
affect water-use patterns, may result in poor performance of 
the model for predictive scenario simulations. Stronger alias-
ing causes greater ambiguity in separating the effects, and thus 
the higher the correlation between rainfall and groundwater 
use, the greater will be the potential for rainfall and groundwa-
ter-use interactions to alias rainfall effects.

Empirical models, such as ANNs, are especially sensi-
tive to the quality and completeness of the data from which 
they were developed. Much of the groundwater-use data was 
estimated owing to a paucity of historical measurement data. 
Additionally, groundwater return flows (return of groundwater 
withdrawals to the aquifer system) are difficult to quantify, 
but available data indicate they could be important to an 
understanding of the water resources of central Florida. For 
example, a total of 151 Mgal/day of treated wastewater (from 
municipal and privately owned treatment facilities) was dis-
posed of by land application in Lake, Orange, Osceola, Polk, 
and Seminole Counties in 2000, accounting for 86 percent of 
the total wastewater discharged by municipal and private sys-
tems in these counties (Marella, 2004, p. 37). For these same 
five counties in 2000, 424 Mgal/day of groundwater was with-
drawn for public supply (from a publicly or privately owned 
community water system) (Marella, 2004, p. 14). As a result, 
assuming all municipal and privately owned wastewater-treat-
ment facilities receive water originally supplied by a publicly 
or privately owned facility, about 36 percent of public-supply 
groundwater withdrawals in 2000 were returned by land appli-
cation of treated wastewater. Although some of this water is 
lost to ET, much of it likely recharges the groundwater system 
depending on the particular land application methods used. 
Additionally, 25 to 75 percent of domestic public-supply water 
typically is used for irrigation (Marella, 2009, p. 15), which 
provides additional potential groundwater recharge. The lack 
of quantitative historical data on groundwater return flows 
could have affected correlations identified with the ground-
water-use data, because hydrologic response is affected by the 
net effects of anthropogenic withdrawals and inputs, which for 
the current study were all groundwater withdrawals with the 
exception of drainage well recharge.

By contrast, the NOAA rain gage data were of high qual-
ity with few missing data, but only 18 gages were within or in 
the vicinity of the study area. Cluster analysis of the NOAA 
rain gage data showed that rainfall is highly variable in time 
and space (figs. 24, 25), and if additional long-term rainfall 
measurement sites had been available they likely would have 
provided valuable information to further define the tempo-
ral and spatial variability of rainfall. Missing hydrologic 
response data, which exceeded 25 percent for 22 of the sites 
(appendix 5), can lead to model inaccuracy owing to a lack 
of information on which to train the model (for example, the 
model for Prevatt Lake; fig. 45). In addition to incomplete 
records, relatively short periods of record for both groundwa-
ter-use data as well as hydrologic response data for some sites 
necessitated limitation of the simulation period to 43 years 
(1965 to 2008). Despite this multidecadal dataset, the hydro-
logic system was subject to only a limited number of large 
impact events, such as droughts and El Niño/La Niña periods, 
onto which the long process of human development is super-
imposed. Large impact events often provide the highest value 
input-output responses for evaluation. Increasing population 
and the associated land development and groundwater with-
drawals in central Florida clearly predate 1965, but data dur-
ing a period of predevelopment or modest development were 
simply too sparse or nonexistent to develop models represent-
ing a larger range in anthropogenic influences. For models to 
represent the fullest ranges of variability, they must be trained 
on the most complete and longest-term datasets available that 
encompass a comprehensive range of field conditions.

The effects of the spatial variability in groundwater use 
warrant further analysis to determine if sufficient informa-
tion is present in the historical groundwater-use and hydro-
logic response data to quantify such effects. Examination of 
historical groundwater-use data using the GUDV shows that 
spatial variations are present (figs. 30, 31). Likewise, spatial 
variations in the hydraulic properties of the Floridan aquifer 
system are common, such as areas of relatively low transmis-
sivity for the Upper Floridan aquifer in east Polk County 
and south Osceola County (Kuniansky and others, 2012) and 
may accentuate hydrologic responses to spatial variations 
in groundwater use. For some sites, such as the five wells in 
southwest Polk County (sites 446, 469, 472, 478, and 516; 
fig. 32) discussed in the previous section, linear correlations 
with groundwater use from individual GUDV grid cells were 
slightly stronger than correlations with total groundwater use. 
Overall, however, linear correlations with the MWAs of total 
groundwater use, which were the inputs used in the ground-
water-use ANN models, were similar in magnitude to correla-
tions with groundwater use for individual GUDV grid cells. 
Also, uncertainty exists in the locational information for some 
categories of groundwater use. Information on the historical 
spatial distributions of citrus irrigation, non-citrus agricul-
tural irrigation, and golf course irrigation were limited, and 
these data should be interpreted only on a semi-regional scale 
(McLeod and Munch, 2012). Trichakis and others (2011), 
in a study of groundwater-level fluctuations in the Edward’s 
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aquifer in Texas using ANNs, noted the importance of accurate 
and complete groundwater-use data for the prediction of 
abrupt changes in groundwater levels characteristic of karstic 
aquifers. Limitations on the availability of such groundwater-
use data during the current study and uncertainty in ground-
water return flows that may offset some of the groundwater 
withdrawals contributed to the need to model groundwater use 
on the basis of a single (spatially totaled) time series for the 
study area.

Given the limitations that have been described, care 
should be exercised to interpret the results of the ANN models 
carefully within the context of the assumptions, approach, 
and analyses documented herein. The final lake water-level, 
groundwater-level, and spring-flow models incorporated in 
the CFANN DSS should not be used alone to quantify the 
individual effects of rainfall and groundwater use for water-
supply planning or management purposes. Examination of 
other lines of evidence, including physics-based models and 
other data such as quantified land-use and land-cover changes 
not examined during the present study, is not only warranted 
but may be indispensable. The knowledge gained from data-
driven modeling and the results from physics-based modeling, 
when compared and used in combination, can yield a more 
comprehensive assessment and a more robust understanding 
of the hydrologic system than either of the approaches used 
separately.

Comparison of Artificial Neural 
Network Models With a Physics-
Based Model

The recent completion of the ECFT groundwater flow 
model (Sepúlveda and others, 2012), which encompasses 
nearly the entire CFCA with the exception of a small portion 
of western Polk County,  provides an opportunity to compare 
results between this physics-based model and the data-driven 
ANN models. Of the 51 sites for which ANN models were 
developed and incorporated in the CFANN DSS, 48 sites are 
simulated in the ECFT model. The three remaining sites—
Island Lake at Longwood, Lake Anderson at Orlando, and 
Crooked Lake at Orlando (sites 209, 221, and 239, respec-
tively; fig. 32)—were not included in the ECFT model. For the 
48 sites common to the ANN and ECFT models, a Microsoft 
Excel® spreadsheet called the Model Data Viewer (MDV) was 
developed to facilitate comparison of model performance for 
both models. The MDV provides tabular and graphical dis-
plays of descriptive statistics for measured, ANN-simulated, 
and ECFT-simulated data and model-fit statistics for ANN- 
and ECFT-simulated data. Further details on the functionality 
and application of the MDV are provided in appendix 7.

The MDV was used to compute model-fit statistics 
(R2, NSCE, RMSE, and PME) for the overlapping simula-
tion period of the ANN and ECFT models, consisting of 

144 monthly values from January 1995 to December 2006 
(figs. 56, 57). Additionally, a complete tabular listing derived 
from the MDV of descriptive and model-fit statistics for mea-
sured and simulated data is provided in appendix 8. The ANN 
models generally had better model-fit statistics than the ECFT 
model, indicating that the ANN models were able to more 
closely match the measured data for most sites. The greatest 
differences between the ANN and ECFT models generally 
are present in water levels for the wells and to a lesser degree 
the lakes. The larger error for the ECFT model is attributable 
to underrepresenting variability in the data (as indicated by, 
for example, R2), but often to a larger degree the error also is 
caused by larger absolute error (as indicated by, for example, 
PME and ME) compared to the ANN models. For example, 
for the Lake Oliver Surficial well (site 579), R2 is 0.848 for the 
ECFT model and 0.864 for the ANN model (figs. 57A, 56A, 
respectively), whereas the ME is 2.62 ft for the ECFT model 
and 0.11 ft for the ANN model (appendix 8). As a result, the 
NSCE for the ECFT model (–1.18) is much lower than the 
NSCE for the ANN model (0.86) for this well (figs. 57B, 56B, 
respectively). Such differences in absolute error are attribut-
able in part to differences in how ANN and ECFT models 
are constructed. Because of the spatially distributed nature of 
groundwater flow models, simulated conditions and any error 
at individual sites may affect other sites, causing, for example, 
the simulated water level at a well to be consistently offset 
from the measured values. In contrast, the ANN models are 
site-specific models; therefore, simulated conditions or errors 
at one site cannot affect other sites.

For the springs, the ANN and ECFT models generally 
had similar accuracy. For example, the ECFT model had better 
model-fit statistics for Palm Springs (site 313) than the ANN 
model—although both models had difficulty accurately simu-
lating flow at this spring (figs. 56, 57). Issues with the quality 
and completeness of the spring-flow data described previously 
likely contributed to inaccuracies in the simulation of flow 
at springs for the ANN models as well as the ECFT model. 
For some sites, the model-fit statistics for the CFANN DSS 
simulation period (1965 to 2008; fig. 43) differ substantially 
from those shown in figure 56 for the period 1995 to 2006. 
For example, for the spring-flow model for Palm Springs, R2 
is 0.627 for 1965 to 2008 (fig. 43A, appendix 5) and 8.9 × 10–5 
for 1995 to 2006 (fig. 56A, appendix 8). These differences are 
simply the result of the different simulation periods and inabil-
ity of the ANN model, or any model, to match all data equally 
well. Had the ANN and ECFT models been calibrated using 
only contemporaneous data, the ANN models likely would 
have had comparatively better model-fit statistics for all sites. 
The capability of ANN models to accommodate a large num-
ber of degrees of freedom (adjustable model parameters) con-
tributes to its flexibility in replicating observed data, whereas 
physics-based groundwater models are limited internally to the 
hydraulic parameters of the hydrogeologic units.

Further insight into how simulated results for each model 
compare at an individual site can be obtained using the graphi-
cal display functionality of the MDV. Graphs of time-series 
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data, cumulative z-scores, percentile rank curves, and scatter 
plots of measured data and simulated values from the ANN 
and ECFT models are displayed by the MDV (appendix 7). 
For example, for Crooked Lake near Babson Park (site 49), 
percentile rank curves indicate that the ANN model underpre-
dicts low altitude water levels (the bottom 25 percent of data), 
whereas the ECFT model overpredicts low altitude water lev-
els (the bottom 15 percent of data) (appendix 7). In contrast, 
both the ANN and ECFT models underpredict high altitude 
water levels by 1 ft or more for the upper 5 percent of data.

Even though the ANN models generally replicate the 
observed historical data more closely than does the ECFT 
model, ANN models may not more accurately predict system 
behavior under a different set of conditions. Each model has a 
unique set of assumptions and limitations, described herein for 
the ANN models and by Sepúlveda and others (2012) for the 
ECFT model. By applying machine learning artificial intel-
ligence techniques, ANN models have a greater mathemati-
cal capability to replicate observed data than does the ECFT 
model. Physics-based models attempt to fit given equations 
based on prior definition of a conceptual model of the system. 
The groundwater flow equations used by the ECFT model sub-
stantially reduce the degrees of freedom available to explain 
head and flow variability. These limitations are not imposed 
in the ANN models. In short, ANNs synthesize the interac-
tions among the model inputs and outputs to best match the 
observed response, whereas physics-based models prescribe 
such interactions based on first principles and associated 
approximations.

Both approaches have potential advantages and disad-
vantages. Where data are sparse or of poor quality, an ANN 
model may provide poor predictions or synthesize an incorrect 
mathematical input-output relation, whereas a physics-based 
groundwater flow model may provide poor predictions but 
will be constrained by the principles of mass conservation 
and the formulation prescribed for relating flow to the driving 
potential-energy gradient (most commonly a porous media 
model based on hydraulic head gradients and Darcy’s law). 
Where data are plentiful and of high quality, however, an ANN 
model may synthesize a mathematical input-output relation 
that differs from that of a physics-based model in order to 
more closely replicate the observed data. Under such condi-
tions, a physics-based model may be adversely constrained 
by the prescribed mathematical relation, resulting in a poorer 
capability to replicate the observed data. Some of the physics 
of groundwater flow in karst aquifers may not follow the com-
monly applied equivalent porous media concept, such as that 
used in the ECFT model, especially at the site scale. Under 
those conditions, different and more advanced models—such 
as dual porosity or conduit flow models (Shoemaker and oth-
ers, 2008)—may be more accurate (Hill and others, 2008). The 
ultimate difficulty with these more advanced physics-based 
models for karst aquifers is that the fine-scale rock lithology 
and structure, which is what fundamentally controls the travel 
times and pathways of flowing groundwater, are effectively 
unmappable over any area of regional water management 

concern. The effects of such fine-scale features may be mani-
fest in the observed hydrologic response and could be rela-
tively easily simulated using ANN or other empirical modeling 
techniques. Hydrologic models, whether data-driven or 
physics-based, often more accurately predict changes in, rather 
than the absolute magnitude of, a simulated response, such as 
drawdown in groundwater level caused by increased ground-
water withdrawals. Comparisons of model sensitivities and 
predictions under the same set of conditions would provide 
additional insight on the similarities and differences between 
the ANN and ECFT models. Hypothetical scenarios, such as 
those used for the ANN model sensitivity analyses, as well as 
more realistic projected future conditions, could be used for 
comparing the ANN and ECFT models. Combined applica-
tions of both physics-based and data-driven models provide 
another avenue for leveraging the strengths of both types of 
model. Improvement in the predictive accuracy of a physics-
based groundwater model has been demonstrated by using 
data-driven models, including ANNs, to predict systematic 
errors in the physics-based model and then combining each 
model’s results in an error-correcting complementary manner 
(Demissie and others, 2009). More robust models should yield 
predictions that have been derived over a wide range of condi-
tions and are consistent with known physical principles and 
data on system behavior from other independent sources.

Summary and Conclusions
In central Florida, variations in both rainfall and ground-

water use may affect surface and subsurface water-level and 
flow conditions, potentially affecting the ability of the hydro-
logic system to meet both human and environmental needs. 
Many long-term records of historical hydrologic data for the 
area are available in the databases of local, State, and Fed-
eral agencies, which are well suited for empirical modeling. 
On the basis of these data, the response of lake water levels, 
groundwater levels, and spring flows to changing rainfall and 
groundwater-use conditions over a multidecadal period was 
analyzed using artificial neural network (ANN) and other data-
mining techniques. 

The data consist of forcing (meteorological and ground-
water use) and response (water level and flow) data from sites 
in Lake, Orange, Osceola, Polk, and Seminole Counties and 
the vicinity. Some meteorological data extend back to 1900 
and some hydrologic response data extend back to the 1930s, 
whereas little groundwater-use data are available prior to 
1957. A database was created to store all historical hydrologic 
records, which consist of daily data on rainfall (143 sites), air 
temperature (21 sites), potential evapotranspiration (21 sites), 
lake water level (307 sites), groundwater level (470 sites), and 
spring flow (22 sites). Reported or estimated monthly ground-
water-use data were compiled for the categories public supply, 
citrus irrigation, non-citrus agricultural irrigation, golf course 
irrigation, phosphate mining, and drainage well recharge.
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Historical data were evaluated using descriptive statistics, 
cluster analysis, and other exploratory analysis techniques to 
assess their suitability for more intensive data-mining analy-
sis. A linear trend analysis was performed on the data for the 
sites in the hydrologic database with at least 10 measurements 
and a period of record of at least 10 years. Daily rainfall data 
from only 21 rain gages operated by the National Oceanic and 
Atmospheric Administration (NOAA) with 95-year or longer 
periods of record were analyzed owing to the presence of 
accumulated data (rainfall that was accumulated over multiple 
days and reported as a single value) in the record of other 
rain gages. For this initial exploratory analysis, no attempt 
was made to identify cyclical or nonmonotonic trends or to 
establish statistically significant upward or downward trends. 
Meteorological data indicate 67 percent of sites exhibited 
upward trends in air temperature over at least a 45-year period 
of record, whereas 76 percent exhibited downward trends in 
rainfall over at least a 95-year period of record. Analyses of 
hydrologic response data, which have varied periods of record 
ranging in length from 10 to 79 years, indicate that the water 
levels of lakes were about evenly split between upward and 
downward trends, whereas water levels in 69 percent of wells 
and flows in 68 percent of springs exhibited downward trends. 
For lake water levels, both closed-basin and flowthrough 
lakes in ridge areas generally have greater upward or down-
ward trends in water levels than do lakes in non-ridge areas, 
suggesting that lakes in ridge areas are more susceptible to 
long-term changes in water level as a result of greater hydrau-
lic connection with the Floridan aquifer system.

For sites with periods of record exceeding 30 years and 
relatively few missing data, a time-series cluster analysis 
was performed for each type of hydrologic response data 
(water levels at 121 lakes and 46 wells and flow at 9 springs) 
to identify dynamic similarities and differences among sites 
of the same type based on a correlation matrix (Pearson 
product-moment). For lakes, there is no apparent geographic 
association among the resulting six cluster analysis groups. 
Compared to all groups combined, however, two groups have 
proportionately more closed-basin lakes and two other groups 
have proportionately more flowthrough lakes, suggesting dif-
ferences in the dynamic behavior of historical water levels in 
these different types of lakes. Cluster analysis results indicate 
that wells generally are associated geographically. Spring 
groups are loosely associated geographically and by magni-
tude of flow. Time-series cluster analyses also were performed 
on 1942–2008 meteorological data, consisting of rainfall at 
18 NOAA gages and potential evapotranspiration computed 
from air temperature data at 21 NOAA gages. Results indicate 
four groups of rain gages with north-south and east-west geo-
graphic associations; with the exception of one gage, all gages 
belonging to the two groups in the western half of the study 
area had downward trends in rainfall. Substantial intragroup 
differences indicate that rainfall is highly variable in space 
and time. Cluster analysis of potential evapotranspiration data 
indicates three groups of relatively similar dynamic behavior 
with a generally east-west geographic association.

To enable viewing of general spatial trends in ground-
water use over time, a spreadsheet application called the 
Groundwater-Use Data Viewer was developed that aggre-
gates the monthly data using a grid cell size of approximately 
20 × 20 kilometers. Spatial patterns and long-term trends in 
groundwater use are evident in both monthly and annual data 
for all water-use categories. Total groundwater use in the 
study area (excluding 1950–57 due to missing data) increased 
from about 250 million gallons per day (Mgal/d) in 1958 to 
about 590 Mgal/d in 1980 and remained relatively stable dur-
ing 1981–2008, with a minimum of 559 Mgal/d in 1994 and 
a maximum of 773 Mgal/d in 2000. The change in trend in 
the early 1980s and the following period of relatively slight 
trend is attributable to the concomitant effects of increasing 
public-supply withdrawals and decreasing use of water by the 
phosphate industry and for citrus and non-citrus agricultural 
irrigation.

On the basis of the exploratory analyses of the histori-
cal data, empirical lake water-level, groundwater-level, and 
spring-flow models were developed for 51 sites by using 
ANN models and other data-mining techniques, such as signal 
(time series) processing methods including filtering and signal 
decomposition. The sites consist of 22 lakes, 23 wells, and 
6 springs, with data records beginning as early as 1942 and 
extending to 2008. Input time series consisting of decomposed 
daily rainfall (1942 to 2008) and monthly total groundwater 
use (1957 to 2008) resulted in a hybrid signal-decomposition 
ANN model. Moving window averages (MWAs) having suc-
cessively increasing window sizes, and differences between 
them called moving window differences (MWDs), were used 
to represent various frequencies and frequency-band compo-
nents of the rainfall and groundwater-use forces that modulate 
water-level or spring-flow behavioral dynamics. Daily rainfall 
data at the 18 NOAA rain gages were used to compute MWAs 
for the standard rainfall (arithmetic average by time step of all 
gages) as well as normalized rainfall (individual gage rainfall 
minus the standard rainfall) at each gage using the following 
window sizes: 30; 90; 270; 630; 1,440; and 2,250 days. For 
the standard rainfall, MWDs also were computed. Likewise, 
monthly groundwater-use data were used to compute MWAs 
and MWDs for total groundwater-use flows for the study 
area using the following window sizes: 3, 6, 12, 24, 48, and 
96 months.

To provide insight into the input-output system dynam-
ics and to guide development of the ANN models, linear 
associations among rainfall, groundwater use, and hydrologic 
response (lake water level, groundwater level, and spring 
flow) were computed using the Pearson product-moment cor-
relation coefficient (R). Results for all sites indicate that the 
strongest correlations between rainfall signals (270-, 630-, and 
1,440-day MWAs) and hydrologic response averaged 0.66 
and average correlations for all rainfall signals averaged 0.40. 
In contrast, the strongest correlations between groundwater-
use signals (3-, 6-, 12-, 24-, 48-, and 96-month MWAs) and 
hydrologic response averaged –0.48 and average correlations 
for all groundwater-use signals averaged –0.31 for all sites. 
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Correlations of hydrologic response with groundwater use 
generally were negative because water levels and flows will 
decrease in response to an increase in groundwater with-
drawals. The relatively strong negative correlations suggest 
that groundwater use is an important control on hydrologic 
response, although correlations of hydrologic response with 
groundwater use generally are weaker than those with rainfall. 
Additionally, long-term downward trends in rainfall were 
prevalent in the western half of the study area, where most 
of the areas of high groundwater recharge occur, and are 
potentially associated with downward trends in groundwater 
levels and spring flows. Correlations between hydrologic 
response and rainfall were fairly high for both nearby and 
distant rain gages, suggesting an “interconnectedness” of the 
hydrologic system in which the effects of rainfall forcing on 
the hydrologic system could propagate over long distances. 
Correlations between rainfall signals (30-, 90-, 270-, 630-, 
1,440-, and 2,250-day MWAs) at the 18 NOAA gages and 
groundwater-use signals (3-, 6-, 12-, 24-, 48-, and 96-month 
MWAs) tended to be negative, where the strongest correlations 
averaged –0.46 and average correlations for all rainfall and 
groundwater-use signal combinations averaged –0.14 for all 
NOAA rain gage sites. These negative correlations are likely 
attributable to rainfall control of certain types of water use 
(for example, irrigation) such that groundwater withdrawals 
increase in response to a decrease in rainfall. Such cross cor-
relation between rainfall and groundwater use may affect the 
relative explanatory strength of groundwater use or rainfall for 
modeling hydrologic response.

The development of the hybrid signal-decomposition 
ANN models for the 51 sites in the study was undertaken in 
two phases, resulting in a two-stage model architecture. The 
first phase was to train an ANN for each site to simulate the 
observed hydrograph using decomposed rainfall signals as 
inputs. The second phase was to train a second ANN for each 
site to simulate the residual error time series from the first 
model using decomposed groundwater-use signals as inputs 
and, at a few sites, using the predicted water level or flow 
from the first model as an additional input. The final simulated 
water level or flow is the sum of the predictions of both ANN 
models for the site. Final models were limited to the 1965 
to 2008 period to accommodate the limited period of record 
of groundwater-use data and the computation of MWAs and 
MWDs.

Training of the ANN models was performed iteratively 
to select the MWAs and MWDs that were the best predictors 
for each output hydrograph, while culling inputs that were col-
linear or had input-output sensitivities at odds with principles 
of mass conservation. The final models explained much of the 
variability in observed data, with models for 43 of the 51 sites 
having coefficient of determination (R2) values exceeding 
0.6, and the models matched the magnitude of the observed 
data reasonably well, such that models for 32 of the 51 sites 
had percent model error (PME) less than 10 percent (PME is 
root-mean-square error divided by the range of the measured 
data). Generally, groundwater-level models, with R2 averaging 

0.774 and PME averaging 8.90 percent, performed slightly 
better than lake water-level models, with R2 averaging 0.718 
and PME averaging 9.96 percent. Spring-flow models had the 
poorest model fit, with R2 averaging 0.546 and PME averaging 
13.14 percent.

The Central Florida Artificial Neural Network Decision 
Support System (CFANN DSS) was developed to simulate 
hydrologic response to historical or user-specified rainfall and 
groundwater use from 1965 through 2008. The CFANN DSS 
integrates historical databases and the 102 site-specific ANN 
models, model controls, and model output into a spreadsheet 
application with a graphical user interface that allows the 
user to simulate scenarios of interest. The CFANN DSS was 
used to run four scenarios, representing hypothetical changes 
in historical rainfall and groundwater use, to determine 
changes in lake water level, groundwater level, and spring 
flow simulated by the ANN models. The scenarios consist of 
using time series of rainfall and groundwater use at 70 and 
130 percent of historical values. Lakes and wells generally 
show a larger response to a 30-percent change in rainfall than 
a 30-percent change in groundwater use (for both maximum 
and minimum changes in water level or flow), whereas springs 
generally show a mixed response, with some springs showing 
a larger response to rainfall and some springs showing a larger 
response to groundwater use.

From a long-term, steady-state, water-balance perspec-
tive, increases in groundwater withdrawals from an aquifer 
system are balanced by increases in aquifer recharge or 
decreases in aquifer discharge, with reductions in natural 
discharge (for example, springs) typically most important. In 
central Florida, spring flow constitutes a substantial outflow 
from the aquifer system. Accordingly, increases in ground-
water withdrawals over time are likely to eventually result 
in decreases in spring flows as the hydrologic system moves 
toward a long-term balance; such behavior would be magni-
fied under prolonged low-recharge conditions. The sensitivity 
of spring-flow ANN models to the hypothetical rainfall and 
groundwater-use scenarios are at least qualitatively consis-
tent with this equilibrium-seeking process. Compared to the 
sensitivity of the flow of springs, the lower sensitivities of the 
water levels of most lakes and wells to the same hypothetical 
rainfall and groundwater-use scenarios are likely attributable 
in part to the simple hydraulic principle that a small change in 
water level can cause a large change in flow rate if the water-
level change results in a large percentage change in hydraulic 
gradient.

Overall, the data-mining analyses described herein 
indicate that the Floridan aquifer system in central Florida is 
a highly conductive, dynamic, open system that is strongly 
influenced by external forcing. The most important external 
forcing appears to be rainfall, which explains much of the 
multiyear cyclic variability and long-term downward trends 
observed in lake water levels, groundwater levels, and spring 
flows. For most sites, groundwater use explains less of the 
observed variability in water levels and flows than rainfall. 
Relative groundwater-use effects are greater, however, during 
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droughts, and long-term trends consistent with historical 
groundwater-use patterns were identified. The sensitivity of 
the hydrologic system to rainfall is consistent with the hydro-
geology of central Florida where the Floridan aquifer system 
is thinly confined; the overlying confining unit (intermediate 
confining unit/intermediate aquifer system) is less than 130 ft 
thick throughout most of the study area (Sepúlveda and others, 
2012). The well-drained karst terrain in central Florida largely 
coincides with these areas of thin confinement and facilitates 
relatively rapid transmission of infiltrating water from rainfall 
to the water table.

Previous physics-based modeling and independent 
water-budget analyses indicated that groundwater recharge 
from rainfall and artificial recharge is the largest inflow to the 
groundwater system in central Florida. The areally distrib-
uted nature of rainfall, as opposed to the site-specific nature 
of groundwater use, and the generally high transmissivity 
and low storativity properties of the Floridan aquifer system 
contribute to the prevalence of water-level and flow patterns 
that mimic rainfall patterns. The effects of development activi-
ties, such as groundwater withdrawals, are superimposed on 
the natural rainfall-driven system, which may affect both the 
short-term and the long-term water balance of the hydrologic 
system.

The dynamic nature of the groundwater system in central 
Florida is characterized by constant adjustments to changing 
hydrologic inflows and outflows. An aquifer responds to such 
adjustments through a combination of storage gains and losses 
that induce positive feedback from system boundaries—when 
inflows or reduced outflows from system boundaries match 
groundwater withdrawals, a hydrologic balance is achieved 
(Balleau, 2013). The effects of such behavior are reflected by 
changing water levels and flows. A hydrologic system with 
multiple forcings and positive feedbacks may have multiple 
stable states, that is, the system may not return to the same 
water-level and flow conditions (the same point in state space) 
after a transient disturbance (Peterson and others, 2009). This 
hysteretic behavior depends on the magnitude and interactions 
of the system inputs and outputs, and contributes to dynamic 
behavior of the system. In general, the data-mining analyses 
demonstrate that the hydrologic system in central Florida is 
affected by groundwater use differently during wet periods, 
when little or no system storage is available (high water lev-
els), than during dry periods, when there is excess system stor-
age (lower water levels). Thus, by driving the overall behavior 
of the system, rainfall indirectly influences the degree to 
which groundwater use will drive persistent trends in water 
levels and flows, with groundwater-use effects more prevalent 
during periods of low water levels and spring flows caused by 
low rainfall and less prevalent during periods of high water 
levels and spring flows caused by high rainfall. Differences 
in the magnitudes of rainfall and groundwater use during wet 
and dry periods also are important determinants of hydrologic 
response.

The data-mining analyses provided insight on salient 
processes influencing system behavior as gleaned from a long 

period of historical data representing a wide variety of hydro-
climatic conditions. This insight may not be easily acquired 
with physics-based models, which commonly are developed 
by using relatively short calibration periods. The analysis 
methods inherent in data mining are particularly well suited 
for karst aquifer systems having good hydraulic communica-
tion between surface and subsurface environments, such as 
the Floridan aquifer system in central Florida. In contrast, 
for deeply buried or well-confined aquifer systems, in which 
surface forcing signals are substantially attenuated and system 
behavior evolves over a longer time period, development of 
empirical models may be more difficult owing to the often 
sparse or nonexistent data for 50- to 100-year or greater peri-
ods. An important implication of the data-mining analyses is 
that rainfall variability at subannual to multidecadal timescales 
must be considered in combination with groundwater use to 
provide robust system-response predictions that benefit sus-
tainable resource management in an open karst aquifer system.

Assessment of vulnerability of the hydrologic system 
in central Florida to environmental change, whether natural 
or human derived, is a potential application of the forcing-
response behavior learned through the data-mining analyses. 
The CFANN DSS provides an easy-to-use tool for sensitiv-
ity analysis that could facilitate vulnerability assessments. 
Even though considerable uncertainty can exist in quantify-
ing the forcing-response behavior of a system, assessment of 
the relative vulnerability of a system to forcings of concern 
represented by the CFANN DSS under different scenarios 
may prove beneficial to water-resource management decision 
making.

Determining the effects of rainfall and groundwater use 
on hydrologic response in central Florida using empirical 
modeling is limited by the confounding effects of correlation 
between rainfall and groundwater use, quality and complete-
ness of the historical databases, and spatial variations in 
groundwater use. The data-mining analyses presented herein 
indicate that the available historical data alone do not contain 
sufficient information to allow definitive quantification of 
cause-and-effect relations of rainfall and groundwater-use on 
hydrologic response. As a result, the final lake water-level, 
groundwater-level, and spring-flow models incorporated in the 
CFANN DSS should not be used alone to quantify the indi-
vidual effects of rainfall and groundwater use for water-supply 
planning or management purposes.

Results of the ANN models were compared with those of 
a physics-based groundwater flow model. The ANN models 
were able to more closely match the measured data for most 
sites compared to the physics-based model. The greatest dif-
ferences between the ANN and physics-based models gener-
ally are present in water levels for the wells and to a lesser 
degree the lakes; both types of models generally had similar 
accuracies for flows at springs. Both approaches have poten-
tial advantages and disadvantages. Where data are sparse or 
of poor quality, an ANN model may provide poor predictions 
or synthesize an incorrect mathematical input-output relation, 
whereas a physics-based groundwater flow model may provide 
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poor predictions but will be constrained by the principles of 
mass conservation and Darcy’s law. The knowledge gained 
from data-driven modeling and the results from physics-based 
modeling, when compared and used in combination, can 
yield a more comprehensive assessment and a more robust 
understanding of the hydrologic system than either of the 
approaches used separately.
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Appendix 1. Description of hydrologic database 

The hydrologic database was developed using Microsoft Access 2010® to store all historical hydrologic data compiled dur-
ing this study and is available for download from the U.S. Geological Survey (USGS) (http://dx.doi.org/10.3133/sir20145032). 
The database comprises nine tables. The “README” Access table contains two fields, VERSION_DATE and COMMENTS, 
which document revisions to the database and the corresponding date the change was made. The “Station List” Access table 
contains site-specific information about each of the 963 sites. Table A1-1  lists the field names, type of field, and a brief descrip-
tion of the data in the fields for the “Station List” Access table. The STATION_ID field serves as the unique identifier by which 
the site record in the “Station List” Access table can be related to records in other Access tables. The other seven Access tables 
contain the time-series data for all sites for each type of data; the tables listed below provide the field names, type of field, and a 
brief description of the data in the field for each of the Access data tables. 

• “GOES_ET” Access table contains potential and reference daily evapotranspiration data (extracted for the 2-kilometer 
pixel overlying each of the 21 National Oceanic and Atmospheric Administration (NOAA) air temperature measure-
ment sites) from the USGS Statewide Evapotranspiration dataset (http://fl.water.usgs.gov/et/) (Mecikalski and others, 
2011) (table A1-2 );

• “Hargreaves_PET” Access table contains daily potential evapotranspiration data (at each of the 21 NOAA air tempera-
ture measurement sites) computed by using the Hargreaves equation (Hargreaves and Samani, 1985) (table A1-3 );

• “Lakes” Access table contains daily lake water-level data (table A1-4 );

• “Rainfall” Access table contains daily rainfall data, with the caveat that sites not operated by NOAA may contain data 
accumulated over periods from 2 days to a month or more (table A1-5 );

• “Springs” Access table contains daily spring-flow data (table A1-6 );

• “Temperature” Access table contains daily minimum, maximum, and mean air temperature data at 21 NOAA sites 
(table A1-7 ); and 

• “Wells” Access table contains daily groundwater-level data (table A1-8 ).
Codes denoting the quality of the data were assigned to many individual data values by the St. Johns River Water Manage-

ment District, South Florida Water Management District, and Southwest Florida Water Management District and are defined in 
tables A1-9, 1-10, and 1-11, respectively). Separate quality codes are provided for rainfall data as explained in table A1-5 .

Data for duplicate sites (sites monitored by more than one agency) were merged, where consistency in data quality among 
the collecting agencies could be verified. When data were available for the same date at duplicate sites, the data value for 
the site with the longer period of record was retained. As a result, a single time series of data was created for each site. In the 
STATION_ID field, sites with an “_M” appended at the end of the station identifier denote duplicate sites with different station 
identifiers that were merged and assigned the station identifier for the station with the longest period of record. Merged sites with 
the same station identifier are not denoted with an “_M” and use the original station identifier.

Two Access queries are included in the hydrologic database for updating the site-specific statistics in the Station List 
Access table. First, the “Build Station List (Step 1)” query is executed to delete all existing records in the Station List Access 
table. Second, the “Build Station List (Step 2)” query is executed to compute all statistics on the basis of the data currently 
stored in Lakes, Rainfall, Springs, Temperature, and Wells Access tables and repopulate all the fields in the Station List Access 
table. In this way, should it be necessary to add or remove data records, the Station List Access table can easily be updated.

http://dx.doi.org/10.3133/sir20145032
http://fl.water.usgs.gov/et/
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Table A1-1 . Description of fields in the “Station List” table of the hydrologic database.

[ft, feet; cfs, cubic feet per second; in, inches, deg F, degrees Fahrenheit; yr, year]

Field name Data type Description

STATION_ID Text Unique identifier assigned by collecting agency

STATION_NM Text Station name assigned by collecting agency

AGENCY Text Collecting agency

TYPE Text Data type: GW, groundwater level, ft; LK, lake level, ft; SP, spring flow, cfs; RN, rainfall, in; TM, mini-
mum, maximum, and mean daily air temperature, deg F

AQUIFER Text Aquifer tapped by open interval of well; SAS, surficial aquifer system; IM, intermediate aquifer system; 
FA, Floridan aquifer system; UFA, Upper Floridan aquifer; LFA, Lower Floridan aquifer

DEPTH Number Total depth of well, in feet

POR_START Date/Time Start date of period of record

POR_END Date/Time End date of period of record

YEARS Number Length of period of record, in years

COUNT Number Number of measurements (total)

COUNTS_PER Number Number of measurements per year

MIN Number Minimum measurement value; For TM, statistic computed on Mean Temperature

MAX Number Maximum measurement value; For TM, statistic computed on Mean Temperature

RANGE Number Maximum minus minimum measurement value; For TM, statistic computed on Mean Temperature

MEAN Number Arithmetic mean of measurement value; For TM, statistic computed on Mean Temperature

SLOPE Number Linear trend:  in/yr for GW, LK, RN; cfs/yr for SP; deg F/yr for TM

R Number Pearson product-moment correlation coefficient for linear trend

R_SQUARED Number Coefficient of determination for linear trend

T Number Student’s t statistic computed from COUNT and R

LAT_DD Number Latitude, decimal degrees

LON_DD Number Longitude, decimal degrees

PRIORITY Text Classification assigned by SJRWMD and SWFWMD
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Table A1-2. Description of fields in the “GOES_ET” table of the hydrologic database.

[km, kilometer; mm/d, millimeters per day]

Field name Data type Description

Station_ID Text
Unique identifier assigned by collecting agency; for GOES_ET sites this is equal 

to the NOAA identification number followed by a “G” for the  2-km pixel 
overlying the NOAA station

Measurement_Date Date/Time Date measurement was made

PET_Value Number Potential evapotranspiration, in mm/d

RET_Value Number Reference evapotranspiration, in mm/d

Table A1-3. Description of fields in the “Hargreaves_PET” table of the hydrologic database.

[mm/d, millimeters per day]

Field name Data type Description

Station_ID Text
Unique identifier assigned by collecting agency; for Hargreaves_PET 

sites this is equal to the Station_ID for the corresponding air tempera-
ture site

Measurement_Date Date/Time Date measurement was made

PET_Value Number Potential evapotranspiration, in mm/d

Table A1-4. Description of fields in the “Lakes” table of the hydrologic database.

Field name Data type Description

Station_ID Text Unique identifier assigned by collecting agency

Measurement_Date Date/Time Date measurement was made

Lake_Value Number Lake water level, in feet

Code Text
Quality code assigned by collecting agency (see tables A1-

9, A1-10, and A1-11); blank if no quality code specified 
by collecting agency
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Table A1-5. Description of fields in the “Rainfall” table of the hydrologic database.

[NOAA, National Oceanic and Atmospheric Administration; SJRWMD, St. Johns River Water Management Distric; SWFWMD, Southwest Florida Water 
Management District]

Field name Data type Description

Station_ID Text Unique identifier assigned by collecting agency

Measurement_Date Date/Time Date measurement was made

Rainfall_Value Number Rainfall total, in inches

Error Number

An error value computed by the algorithm developed by Aly (2008) 
for NOAA records coded as “E”; a value of 0.00 indicates a rain-
fall data value used by Aly (2008) that was coded as “G”; blank if 
rainfall data value not used by Aly (2008)

Code Text

Quality code assigned by collecting agency: A, accumulated data 
at NOAA station disaggregated to daily data by SJRWMD; E, 
estimated data at NOAA station computed by Aly (2008); G, good 
data reported by NOAA or accumulated data disaggregated to daily 
data by SWFWMD; M, missing data at NOAA station estimated 
by SJRWMD; blank if no quality code specified by collecting 
agency

Table A1-6. Description of fields in the “Springs” table of the hydrologic database.

[cfs, cubic feet per second]

Field name Data type Description

Station_ID Text Unique identifier assigned by collecting agency

Measurement_Date Date/Time Date measurement was made

Springflow_Value Number Spring flow, in cfs

Code Text
Quality code assigned by collecting agency (see tables A1-

9, A1-10, and A1-11); blank if no quality code specified 
by collecting agency
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Table A1-7. Description of fields in the “Temperature” table of the hydrologic database.

[deg F, degrees Fahrenheit]

Field name Data type Description

Station_ID Text
Unique identifier assigned by collecting agency; for tem-

perature sites this is equal to the NOAA identification 
number followed by a “T”

Measurement_Date Date/Time Date measurement was made

Tmax Number Maximum temperature, in deg F

Tmin Number Minimum temperature, in deg F

Tmean Number Mean temperature, in deg F

Table A1-8. Description of fields in the “Wells” table of the hydrologic database.

Field name Data type Description

Station_ID Text Unique identifier assigned by collecting agency

Measurement_Date Date/Time Date measurement was made

Groundwater_Value Number Groundwater level, in feet

Code Text
Quality code assigned by collecting agency (see tables A1-9, 

A1-10, and A1-11); blank if no quality code specified by col-
lecting agency
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Table A1-9. Description of quality codes assigned by the St. Johns River Water Management District for data 
obtained from their database.

Code Description

1 Good quality records

2 Good quality, edited data

3 Good quality data obtained from USGS

5 Good quality data obtained from SWFWMD

72 Correlation w/other station - high confidence

74 Correlation w/ other station - see documentation regarding confidence

79 Records partly estimated

85 Estimated by contractor high confidence see documentation

111 Estimate based on correlation with neighboring station

112 Estimated Discharge

130 Unverifiable—quality unknown

140 Provisional data—quality unknown

Table A1-10. Description of quality codes assigned by the 
South Florida Management District for data obtained from their 
database.

Code Description

E Estimated

P Summary computed from partial record

Table A1-11. Description of quality codes assigned by the 
Soutwest Florida  Water Management District for data obtained 
from their database.

Code Description

1 Good continuous record

2 Good quality edited data

79 Records partly estimated

95 Estimated

96 Override

97 Surveyed

Aly, Alaa, 2008, An assessment of interpolation methods 
for estimating missing daily precipitation records for rain 
gauges in central and south Florida: Niwot, Colo., INTERA 
Inc., 111 p. 

Hargreaves, G.H., and Samani, Z.A., 1985, Reference crop 
evapotranspiration from temperature: Applied Engineering 
in Agriculture, v. 1, no. 2, p. 96–99.

Mecikalski, J.R., Sumner, D.M., Jacobs, J.M., Pathak, C.S., 
Paech, S.J., and Douglas, E.M., 2011, Use of visible geo-
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Appendix 2 . Description of Groundwater-Use Data Viewer

The Groundwater-Use Data Viewer (GUDV) is a Microsoft Excel 2010® workbook created as part of this study to allow 
graphical review of the groundwater-use data compiled during the study and is available for download from the U.S. Geologi-
cal Survey (http://dx.doi.org/10.3133/sir20145032). Data were aggregated into a 72-cell gridded representation of the study 
area using ArcGIS® and point and polygon geographic information system (GIS) data. Each grid cell is 19.67 kilometers (east to 
west) by 20.90 kilometers (north to south) (64,544 by 68,578 feet) and the 72-cell grid encompasses the groundwater-use data 
in the Central Florida Coordination Area and vicinity (see figure 28 of the main report). Groundwater use consists of six types: 
public supply, phosphate mining, citrus irrigation, non-citrus agricultural irrigation, golf course irrigation, and drainage well 
recharge. The GUDV grid and associated groundwater-use data were used to guide development of the artificial neural network 
models and the Central Florida Artificial Neural Network Decision Support System.

The workbook consists of 10 worksheets containing the groundwater-use data, summary results, maps, and the interactive 
graphical display. Additionally, the “Info” worksheet contains a history of GUDV version releases and updates. Six worksheets 
contain monthly groundwater withdrawal or inflow data in million gallons per day reported for the study area: “AG_Summed” 
contains the non-citrus agricultural irrigation withdrawal data, “Citrus_Summed” contains the citrus irrigation withdrawal data, 
“Golf_Summed” contains the golf course irrigation withdrawal data, “Phosphate_Summed” contains the phosphate mining 
withdrawal data (comprising water used for ore extraction and chemical plants), “Drainage_Summed” contains the drainage well 
recharge (inflow) data, and “WU_Summed” contains the public-supply (water utility) withdrawal data. Withdrawals are reported 
as positive values and inflows are reported as negative values. The reported period of record varies for each groundwater-use 
type; however, for consistency, each type was tabulated in these worksheets for months between January 1950 and December 
2008.  Data not reported for a given month are indicated by a cell with contents equal to “#N/A.” The “ALL_SUMMED” work-
sheet collates the data for all the types of groundwater use and includes a summation of all types in a format that can be easily 
graphed.

The “Summary” worksheet presents summary descriptive statistics for the summation of all groundwater-use types for each 
cell in the GUDV. The descriptive statistics include the count, minimum, maximum, and summed values of monthly reported 
groundwater use per cell. The statistics are shown in four graphs and an associated table on a per-cell basis.

The “Maps” worksheet contains 11 maps of the study area showing the GUDV grid and groundwater-use distribution dis-
played by type. The maps show that non-citrus agricultural, citrus, golf, and phosphate mine locations were polygon GIS data. 
The remaining maps show that the other datasets—public-supply water-treatment plants in SJRWMD and SFWMD compiled by 
SJRWMD, public-supply water-treatment plants in SWFWMD, drainage wells, and phosphate chemical plants—were point GIS 
data.

The “Viewer” worksheet is used interactively to display/review the groundwater-use data on a type and monthly basis 
(see figures 30 and 31 of the main report). The worksheet contains six grids of the different groundwater-use types that show 
the groundwater use per cell for a given month and are overlain with a simple base map. Additionally, a separate map showing 
the location of the grid on a base map is included to orient the user to the grid cell numbers and the pumping distribution in the 
study area. The grid in the center of the worksheet is a summation by cell of groundwater use for all types for the given month. 
A toggle button located to the left of this “SUM” grid allows the user to change the month forward or backward by 1-month 
increments. The selected date (month and year) is displayed below the toggle button. Months are numbered sequentially starting 
with January 1950, and the corresponding “month column number” is displayed below the date. The user can “jump” to a spe-
cific month and year by entering the month column number directly. Month column numbers range from 2 for January 1950 to 
709 for December 2008. Grid cells are automatically shaded using a color ramp of green to red to indicate relative water use in 
the study area for the selected month. With the exception of drainage well inflows, dark red colors indicate the highest reported 
water use and dark green colors indicate the lowest reported water use. Because drainage well inflows are reported as negative 
values, dark red indicates the lowest inflow and dark green indicates the highest inflow. If no groundwater use was reported for a 
cell, the cell is not colored.

http://dx.doi.org/10.3133/sir20145032


Appendix 3. Summary of artificial neural network models 

The rainfall artificial neural network (ANN) models were developed using daily rainfall, lake water levels, groundwater 
levels, and spring flows. The dataset includes daily data from 1942 to 2008. Below are nomenclature examples for input vari-
able names for the rainfall models (a complete list of all input variable names with descriptions is provided in appendix 4, 
table A4-1):

• RS-FA630 = standard rainfall (RS) from gap-filled data (F) that has been moving window averaged (A) over specified 
number of days (630 days in this example);

• RS-FA90D = RS-FA90 – RS-FA270, where “D” denotes a difference from the moving window average (MWA) of the 
next larger window size (270 days in this example); the MWAs used are 30; 90; 270; 630; 1,440; and 2,250 days; and

• R5973-FA1440DS = R5973-FA1440 – RS-FA1440, where “DS” denotes the difference between rainfall (R) at the 
National Oceanic and Atmospheric Administration (NOAA) gage (number 5973 in this example) and the standard rain-
fall to which a MWA of the same window size (1,440 days in this example) has been applied.

Groundwater-use ANN models were developed using monthly groundwater-use estimates and monthly water-level and 
flow residuals. The daily predictions and residuals were converted to monthly values by calculating the monthly average. Below 
are nomenclature examples for input variable names for the groundwater-use models (a complete list of all input variable names 
with descriptions is provided in appendix 4, table A4-2):

• USE-TOT_A12 = Summation of all monthly groundwater-use data (USE-TOT) that has been moving window averaged 
(A) over specified number of months (12 months in this example);

• USE-TOT_D12 = USE-TOT_A12 – USE-TOT_A24, where “D” denotes a difference from the moving window average 
(MWA) of the next larger window size (24 months in this example); the MWAs used are 3, 6, 12, 24, 48, and 96 months; 
and

• P_W-2759590-M = predicted (P) values from the specified rainfall model (W-2759590 in this example) converted to 
monthly (M) values.

Input variable names, statistics, and other notes (for example, whether raw data were interpolated and how standard rainfall 
was computed) for both the rainfall and groundwater-use ANN models for each of the 51 sites are included below. Statistics for 
the rainfall ANN models include the period 1942 to 2008. Statistics for the groundwater-use ANN models include the period 
1950 to 2008. Statistics for the final models (combined rainfall and groundwater-use ANN models) include the period 1965 to 
2008. For two lakes (L-1547081, L-7583) and four springs (S-2234600, S-2234650, S-2234991, and S-2234997), rainfall and 
groundwater-use ANN model outputs exhibit considerably lower coefficients of determination (R2) when converted to monthly 
averaged data. These six sites all have sparse data for the period of record up to and including 2003 and exhibit considerably 
higher R2 for the period 2004 to 2008. Detailed information about the ANN models for each is provided in table A3-1 [accessible 
from the publication Web site (http://dx.doi.org/10.3133/sir20145032)].

http://dx.doi.org/10.3133/sir20145032


Appendix 4. Input variables used in artificial neural network models 

For the rainfall artificial neural network (ANN) models, a total of 119 rainfall input variables were computed, consisting 
of 6 moving window averages (MWAs) of the standard rainfall, 5 moving window differences (MWDs) of the standard rainfall, 
and 6 MWAs for normalized rainfall at each of the 18 National Oceanic and Atmospheric Administration (NOAA) rain gages. 
For the groundwater-use ANN models, a total of 13 groundwater-use input variables were computed, consisting of 6 MWAs, 
6 MWDs, and the original monthly data. For some of the groundwater-use ANN models, the predicted water level or flow 
from the respective rainfall ANN model also was used as an input variable. Listings of the variables retained in the rainfall and 
groundwater-use models after training of the ANNs are provided in table A4-1 and A4-2.
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Table A4-1. Input variables used in rainfall artificial neural network models.—Continued

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable Description

RS-FA30 30-day MWA of standard rainfall

RS-FA90 90-day MWA of standard rainfall

RS-FA270 270-day MWA of standard rainfall

RS-FA630 630-day MWA of standard rainfall

RS-FA1440 1440-day MWA of standard rainfall

RS-FA2250 2250-day MWA of standard rainfall

RS-FA30D Moving window difference: 30-day MWA minus 90-day MWA of standard rainfall

RS-FA90D Moving window difference: 90-day MWA minus 270-day MWA of standard rainfall

RS-FA270D Moving window difference: 270-day MWA minus 630-day MWA of standard rainfall

RS-FA630D Moving window difference: 630-day MWA minus 1440-day MWA of standard rainfall

RS-FA1440D Moving window difference: 1440-day MWA minus 2250-day MWA of standard rainfall

R369-FA30DS 30-day MWA of normalized rainfall at NOAA gage 369

R369-FA270DS 270-day MWA of normalized rainfall at NOAA gage 369

R369-FA630DS 630-day MWA of normalized rainfall at NOAA gage 369

R369-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 369

R369-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 369

R478-FA90DS 90-day MWA of normalized rainfall at NOAA gage 478

R478-FA270DS 270-day MWA of normalized rainfall at NOAA gage 478

R478-FA630DS 630-day MWA of normalized rainfall at NOAA gage 478

R478-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 478

R478-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 478

R1163-FA30DS 30-day MWA of normalized rainfall at NOAA gage 1163

R1163-FA90DS 90-day MWA of normalized rainfall at NOAA gage 1163

R1163-FA630DS 630-day MWA of normalized rainfall at NOAA gage 1163

R1163-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 1163

R1163-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 1163

R1641-FA30DS 30-day MWA of normalized rainfall at NOAA gage 1641
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Table A4-1. Input variables used in rainfall artificial neural network models.—Continued

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable Description

R1641-FA90DS 90-day MWA of normalized rainfall at NOAA gage 1641

R1641-FA270DS 270-day MWA of normalized rainfall at NOAA gage 1641

R1641-FA630DS 630-day MWA of normalized rainfall at NOAA gage 1641

R1641-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 1641

R2229-FA270DS 270-day MWA of normalized rainfall at NOAA gage 2229

R2229-FA630DS 630-day MWA of normalized rainfall at NOAA gage 2229

R2229-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 2229

R2229-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 2229

R3137-FA90DS 90-day MWA of normalized rainfall at NOAA gage 3137

R3137-FA270DS 270-day MWA of normalized rainfall at NOAA gage 3137

R3137-FA630DS 630-day MWA of normalized rainfall at NOAA gage 3137

R3137-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 3137

R4502-FA30DS 30-day MWA of normalized rainfall at NOAA gage 4502

R4502-FA90DS 90-day MWA of normalized rainfall at NOAA gage 4502

R4502-FA270DS 270-day MWA of normalized rainfall at NOAA gage 4502

R4502-FA630DS 630-day MWA of normalized rainfall at NOAA gage 4502

R4502-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 4502

R4502-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 4502

R4625-FA30DS 30-day MWA of normalized rainfall at NOAA gage 4625

R4625-FA90DS 90-day MWA of normalized rainfall at NOAA gage 4625

R4625-FA270DS 270-day MWA of normalized rainfall at NOAA gage 4625

R4625-FA630DS 630-day MWA of normalized rainfall at NOAA gage 4625

R4625-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 4625

R4625-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 4625

R5076-FA90DS 90-day MWA of normalized rainfall at NOAA gage 5076

R5076-FA270DS 270-day MWA of normalized rainfall at NOAA gage 5076

R5076-FA630DS 630-day MWA of normalized rainfall at NOAA gage 5076
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Table A4-1. Input variables used in rainfall artificial neural network models.—Continued

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable Description

R5076-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 5076

R5076-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 5076

R5612-FA90DS 90-day MWA of normalized rainfall at NOAA gage 5612

R5612-FA270DS 270-day MWA of normalized rainfall at NOAA gage 5612

R5612-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 5612

R5612-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 5612

R5973-FA30DS 30-day MWA of normalized rainfall at NOAA gage 5973

R5973-FA90DS 90-day MWA of normalized rainfall at NOAA gage 5973

R5973-FA270DS 270-day MWA of normalized rainfall at NOAA gage 5973

R5973-FA630DS 630-day MWA of normalized rainfall at NOAA gage 5973

R5973-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 5973

R5973-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 5973

R6414-FA30DS 30-day MWA of normalized rainfall at NOAA gage 6414

R6414-FA90DS 90-day MWA of normalized rainfall at NOAA gage 6414

R6414-FA270DS 270-day MWA of normalized rainfall at NOAA gage 6414

R6414-FA630DS 630-day MWA of normalized rainfall at NOAA gage 6414

R6414-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 6414

R6414-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 6414

R6628-FA30DS 30-day MWA of normalized rainfall at NOAA gage 6628

R6628-FA270DS 270-day MWA of normalized rainfall at NOAA gage 6628

R6628-FA630DS 630-day MWA of normalized rainfall at NOAA gage 6628

R7205-FA30DS 30-day MWA of normalized rainfall at NOAA gage 7205

R7205-FA90DS 90-day MWA of normalized rainfall at NOAA gage 7205

R7205-FA270DS 270-day MWA of normalized rainfall at NOAA gage 7205

R7205-FA630DS 630-day MWA of normalized rainfall at NOAA gage 7205

R7205-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 7205

R7205-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 7205
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Table A4-1. Input variables used in rainfall artificial neural network models.—Continued

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable Description

R7982-FA30DS 30-day MWA of normalized rainfall at NOAA gage 7982

R7982-FA90DS 90-day MWA of normalized rainfall at NOAA gage 7982

R7982-FA270DS 270-day MWA of normalized rainfall at NOAA gage 7982

R7982-FA630DS 630-day MWA of normalized rainfall at NOAA gage 7982

R7982-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 7982

R7982-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 7982

R8942-FA90DS 90-day MWA of normalized rainfall at NOAA gage 8942

R8942-FA270DS 270-day MWA of normalized rainfall at NOAA gage 8942

R8942-FA630DS 630-day MWA of normalized rainfall at NOAA gage 8942

R8942-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 8942

R8942-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 8942

R9401-FA90DS 90-day MWA of normalized rainfall at NOAA gage 9401

R9401-FA270DS 270-day MWA of normalized rainfall at NOAA gage 9401

R9401-FA630DS 630-day MWA of normalized rainfall at NOAA gage 9401

R9401-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 9401

R9401-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 9401

R9707-FA90DS 90-day MWA of normalized rainfall at NOAA gage 9707

R9707-FA270DS 270-day MWA of normalized rainfall at NOAA gage 9707

R9707-FA630DS 630-day MWA of normalized rainfall at NOAA gage 9707

R9707-FA1440DS 1440-day MWA of normalized rainfall at NOAA gage 9707

R9707-FA2250DS 2250-day MWA of normalized rainfall at NOAA gage 9707
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Table A4-2 . Input variables used in groundwater-use artificial neural network models.

[MWA, moving window average]

Input variables Description

USE-TOT_A3 3-month MWA of total groundwater use

USE-TOT_A6 6-month MWA of total groundwater use

USE-TOT_A12 12-month MWA of total groundwater use

USE-TOT_A24 24-month MWA of total groundwater use

USE-TOT_A48 48-month MWA of total groundwater use

USE-TOT_A96 96-month MWA of total groundwater use

USE-TOT_D1 Moving window difference: 1-month MWA minus 3-month MWA of total groundwater use

USE-TOT_D3 Moving window difference: 3-month MWA minus 6-month MWA of total groundwater use

USE-TOT_D6 Moving window difference: 6-month MWA minus 12-month MWA of total groundwater use

USE-TOT_D12 Moving window difference: 12-month MWA minus 24-month MWA of total groundwater use

USE-TOT_D24 Moving window difference: 24-month MWA minus 48-month MWA of total groundwater use

USE-TOT_D48 Moving window difference: 48-month MWA minus 96-month MWA of total groundwater use

P_L-2310950-M Predicted water levels from the L-2310950 rainfall model converted to monthly values

P_L-ANDERSON-M Predicted water levels from the L-ANDERSON rainfall model converted to monthly values

P_L-ROSE-M Predicted water levels from the L-ROSE rainfall model converted to monthly values

P_L-SUE-NEW-M Predicted water levels from the L-SUE rainfall model converted to monthly values

P_S-2234600-M Predicted flows from the S-2234600  rainfall model converted to monthly values

P_S-2234610-M Predicted flows from the S-2234610  rainfall model converted to monthly values

P_S-2234650-M Predicted flows from the S-2234650  rainfall model converted to monthly values

P_S-2234991-M Predicted flows from the S-2234991  rainfall model converted to monthly values

P_W-2759590-M Predicted water levels from the W-2759590 rainfall model converted to monthly values

P_W-2810080-M Predicted water levels from the W-2810080 rainfall model converted to monthly values

P_W-2826230-M Predicted water levels from the W-2826230 rainfall model converted to monthly values



Appendix 5. Summary statistics for lake water-level, groundwater-level, and 
spring-flow models 

The data presented in table A5-1  are summary statistics for both measured and simulated data for the final lake water-level, 
groundwater-level, and spring-flow models. Statistics were computed using monthly data from January 1965 through December 
2008; a measured time series consists of arithmetic averages of available measured daily data for each month and a simulated 
time series consists of the final predicted values from the two-stage model (combined rainfall and groundwater-use artificial neu-
ral network models). Values of statistics reported for the individual model summaries provided in appendix 3 will be different 
than those reported here because of different periods of record and time step used for the rainfall artificial neural network models 
and (or) the inclusion of 60-day interpolated estimates in the training datasets for some sites that also were used in the computa-
tion of model-fit statistics in appendix 3.
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1. Introduction
This document describes how to install and operate the 

Central Florida Artificial Neural Network Decision Support 
System (CFANN DSS), which is available for download 
from the U.S. Geological Survey (http://dx.doi.org/10.3133/
sir20145032). The CFANN DSS is a decision support system 
(DSS) built around a suite of empirical hydrologic models for 
the simulation of lake water levels, groundwater levels, and 
spring flow at discrete sites in central Florida.

2. CFANN DSS Installation, Removal, 
and Technical Assistance

NOTE: The CFANN DSS requires a 64-bit Microsoft 
Windows® operating system. The CFANN DSS was developed 
using Microsoft Excel 2010® (32-bit installation) and may not 
work with other versions.

2.1 Installation

1. Copy the CFANN_DSS folder to your computer 
hard drive. The user may rename this folder, which 
contains the following subdirectories and files:

• ANN-Lakes – a folder containing all ANN models 
used by CFANN DSS to predict lake water levels;

• ANN-Springs – a folder containing all ANN mod-
els used by CFANN DSS to predict spring flows;

• ANN-Wells – a folder containing all ANN models 
used by CFANN DSS to predict well water levels;

• Images – a folder containing all images used 
by CFANN DSS to display site locations and 
Groundwater-Use Data Viewer (GUDV) grid 
cells;

•  Output – a folder containing all output files writ-
ten by CFANN DSS;

• ADMQuestRT.dll – a custom Microsoft Excel® 
Add-in required to execute the ANN models;

• CFANN_DSS-yyyymmdd.xlsm1 – a Microsoft 
Excel® workbook application; and

• CFANN_DSS_UserManual-yyyymmdd.pdf – an 
Adobe® Portable Document Format document of 
the appendix you are reading now.

1yyyymmdd is the version date of the CFANN DSS image to be installed.

2. Install ADMQuestRT.dll by following the directions 
in section 5 of this user’s manual (appendix 6 of the 
main report).

3. Set the macro security level of Microsoft Excel® 
to “Disable all macros with notification” using the 
Developer > Macro Security > Macro Settings menu. 
The CFANN DSS uses Microsoft Visual Basic for 
Applications® (VBA) macros for a variety of pur-
poses and must be able to execute them to operate 
correctly.

4. Open CFANN_DSS-yyyymmdd.xlsm to run simula-
tions. When the Microsoft Excel® security warning 
reports macros have been disabled, click “Enable 
Content,” otherwise CFANN DSS will not operate 
properly.

2.2 Removal

Uninstall the ADMQuestRT dynamic link library by 
entering the following command at the command (DOS) 
prompt:

regsvr32 /u c:admquestrt\admquestrt.dll
 

Delete the folder containing the application and its contents. 
Consider removing the add-ins and reverting to the default 
Microsoft Excel® security settings.

2.3 Technical Assistance

Please contact Andy O’Reilly of the U.S. Geological Sur-
vey at aoreilly@usgs.gov, if you have questions or problems 
with the CFANN DSS. If unavailable, you may contact the 
U.S. Geological Survey Florida Water Science Center using 
the “Contact” webpage at http://fl.water.usgs.gov/.

3. CFANN DSS Features and Operation
The CFANN DSS runs monthly simulations of the effects 

of rainfall and groundwater use on water levels at 22 lakes 
and 23 wells and flows at 6 springs within the Central Florida 
Coordination Area (CFCA) for the period 1965–2008. Each 
site is modeled using artificial neural networks (ANNs). 
A two-stage model architecture is used with the first ANN 
model set (MS1) predicting a water level or flow using rainfall 
inputs from rainfall measured at 18 National Oceanic and 
Atmospheric Administration (NOAA) sites. The residual 
(difference between the measured and predicted output from 
MS1) is then modeled using groundwater-use (usage) inputs. 
Usage inputs—as collated by type, month, and million gallons 
per day in the GUDV (see appendix 2 of main report)—are 
calculated from the summation of all usages in the GUDV grid 
(denoted as USETOT). The two submodels are then summed 
and denoted as ANN model set 2 (MS2).

http://dx.doi.org/10.3133/sir20145032
http://dx.doi.org/10.3133/sir20145032
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Users can make changes to the rainfall and (or) usage 
inputs to run “what-if” scenarios. Rainfall can be set for each 
of the 18 NOAA sites as a percentage of historical, or bias 
(constant offset) in inches per year. Although usage is only 
incorporated in the ANNs as USETOT, the user can adjust the 
usage in the following ways:

• Percentage of historical or a constant monthly bias in 
million gallons per day (MGD/month) for USETOT;

• Percentage of historical or a constant monthly bias 
in million gallons per day (MGD/month) for each 
usage type and GUDV grid cell; or

• User-specified time series for any GUDV grid cell or 
usage type.

The CFANN DSS is opened like any standard Microsoft 
Excel® workbook. Simply open the CFANN_DSS-yyyymmdd.
xlsm file and begin. When the workbook is closed, it may be 
saved to keep any changes made to the simulation control 
settings, such as rainfall or usage adjustments made for a 
particular scenario; otherwise select “Don’t Save” to retain the 
original simulation control settings. The CFANN DSS and its 
graphical user interface (GUI) comprise a number of work-
sheets. Detailed descriptions of each worksheet are provided 
below in section 3, followed in section 4 by an outline of the 
basic steps, or “Quick Start” guide, to facilitate running a 
simulation.

3.1 “Info” Worksheet

The “Info” worksheet is automatically displayed when 
the CFANN DSS is first loaded (fig. A6-1 ). The worksheet 
shows a map of the study area and gives the application’s ver-
sion date and the contact information of its developers.

3.2 “Controls” Worksheet

The “Controls” worksheet is the GUI component that lets 
the user set up and run simulations. The worksheet provides 
numerical and streaming graphical information that can be 
observed during simulations or when incrementally stepping 
through time. This allows the user to examine in detail specific 
periods and behaviors of interest. The worksheet is divided 
into multiple sections that are described below.

3.2.1 Simulation Section
The Simulation section (fig. A6-2) is used to set “Start” 

and “Stop” dates for a simulation using the scroll bars. The 
scroll bars can change the date in monthly (clicking on arrows) 
or yearly (clicking inside the scroll bar) increments. The end 

date must be more recent than the start date. The “Sim Date” 
text box indicates the time stamp that is providing the current 
input values to  the ANN models. The “<<Step” and “Step>>” 
buttons move the current time stamp backward or forward 
one time step with each click. The “Sim Time=Start” button 
sets the current time stamp to the simulation “Start” date. The 
“RUN” button will start and run a simulation between the 
dates indicated by the simulation “Start” and “End” dates. A 
simulation may be stopped at any time during an execution by 
pressing the “Esc” key twice, after which a message will be 
written in the Simulation section (fig. A6-3).

3.2.2 User Settings Section
The User Settings section (fig. A6-4) contains the “App 

Path” textbox that displays the location of the CFANN DSS 
application files. The “Set User Rain” and “Set User Usage” 
buttons take the user to the appropriate worksheet for setting 
the user-specified values.

 3.2.3 Output Section
The Output Section (fig. A6-5) is used to turn on and off 

the display of graphs and writing of output files. Additional 
details on graph and output options are provided below.

1. Graph Options: If graphs are turned off (“Graphs 
ON” check box is unchecked), no graphical display 
of the output is available within the application 
during a simulation run or after run completion. If 
graphs are turned on (“Graphs ON” check box is 
checked), the user can select a site to be dynamically 
displayed during the simulation run. In addition, 
the user can choose to display model set 1 (MS1), 
which are the rainfall models, output on the graph. 
Additional details on graphical display are provided 
in section 3.2.5.

2. Output Options: If “Write Output” is turned off, no 
output will be saved for the run. If turned on, the 
user also can select which type of sites to output. 
The options are all wells, all lakes, and all springs. 
The default setting is for all sites to be included in 
the output.

 3.2.4 View Sites on Grid Section
The View Sites on Grid section (fig. A6-6) allows users 

to view an image of the GUDV grid and the locations of the 
wells, lakes, and springs within the grid by selecting the asso-
ciated button. The image will display in a separate window 
that can be moved around the screen and closed by clicking on 
the X in the top right corner.
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Figure A6-1. “Info” worksheet.

step forward and backward through the data.
Figure A6-2. Simulation section of the “Controls” worksheet used to set the “Start” and “Stop” dates for simulation, initiate a run, or 

pressing the “Esc” key twice.
Figure A6-3. Simulation section of the “Controls” worksheet showing the message that appears when a simulation is interrupted by 
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adjustments to rainfall and groundwater use inputs.
Figure A6-4. User Settings section of the “Controls” worksheet used to navigate to the worksheets for making user-specified 

Figure A6-5. Output section of the “Controls” worksheet used to set graphing and output options.

Data Viewer (GUDV) grid displayed when “View selected”.
Figure A6-6. View Sites on Grid section of the “Controls” worksheet used to view images of site locations within the Groundwater Use 
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3.2.5 Graphical Display Section
The Graphical Display section (fig. A6-7) is used to 

create hydrographs for a site. If “Graphs ON” is checked in 
the Output section (see section 3.2.3) the focus will move to 
the Graphical Display section when a simulation is run. The 
user-selected site displayed in the drop-down box will be 
dynamically displayed during a simulation. Upon simulation 
completion the user can scroll forward and backward through 
the sites using the spin control or select specific sites using the 
drop-down box. The time series displayed on the graph can be 
selected by using the check boxes located below the graph:

1. Primary Axis

• Display m: Monthly averaged historical measured 
value

• Display pm: Predicted output using historical 
measured inputs

• Display pu: Predicted output using user-specified 
inputs

• Display m + (pu – pm): Sum of measured value 
and the difference between user-specified and 
measured output

• Display pm (MS1): Predicted output using histori-
cal inputs for model set 1 (rainfall models). MS1 
outputs will be displayed if the user has selected 
option to include them in the Output section (see 
section 3.2.3).

• Display pu (MS1): Predicted output using user 
inputs for model set 1 (rainfall models)

2. Secondary Axis

• Display pu – pm: Difference between user-speci-
fied and measured output

• Display pu – pm (MS1): Difference between 
user-specified and measured output for model set 
1 (rainfall models)

3.2.6 Tabular Display Section
The Tabular Display section (fig. A6-8) has three tables 

showing measured and predicted output for wells, lakes, and 
springs. Moving the mouse over the red caret immediately 
above and to the right of a header in any of these tables will 
provide a description of the header variable. Similarly, moving 
the mouse over the red caret immediately above and to the 
right of the ANN model label will provide a short name of the 
well, lake, or spring. In addition, double clicking on any ANN 
model label will cause a pop-up window to appear displaying 
an image of the site location within the GUDV grid. To facili-
tate locating individual sites, images shown in this pop-up 

window provide a close-up view compared to the study area 
view shown in the View Sites on Grid section (see section 
3.2.4). If “Graphs ON” is unchecked in the Output section (see 
section 3.2.3), the focus will move to the Tabular Display sec-
tion when a simulation is run. Each table dynamically displays 
the following data for the current simulation time:

• meas (m): Monthly averaged historical measured 
value

• pred-meas (pm): Predicted output using historical 
measured inputs

• pred-user (pu): Predicted output using user-specified 
inputs

• pu – pm: Difference between user-specified and 
measured output

• MEAS + d(pu –pm): Sum of measured value and 
the difference between user-specified and measured 
output

3.2.7 Current User Settings Section
The Current User Settings section (fig. A6-9) displays 

the current user-specified settings for rainfall and usage. The 
user-specified values are listed in the columns labeled “User 
SP” followed by a column displaying the appropriate units. 
No changes can be made in this area. The user must go to the 
User Settings section to make any changes to the settings (see 
section 3.2.2).  

3.3 “Rain_UserSetpoints” Worksheet

All adjustments to user rainfall settings are made on the 
“Rain_UserSetpoints” worksheet (fig. A6-10). Each of the 18 
NOAA sites can be adjusted individually. In addition, all sites 
can be adjusted globally to the same user setting. Follow the 
steps below to adjust sites individually or globally.

1. Select User Option using the appropriate “User Opt” 
scroll bar:

• %: Percentage of historical value

• bias: Constant offset added or subtracted from 
historical value

2. Set user setting using the “%” scroll bar or the 
“bias in/yr” scroll bar based on “User Opt” selected 
in step 1. To make a global change to all sites, use 
the “Set ALL NOAA SITES” scroll bars followed by 
clicking the “Set ALL NOAA Sites” button to update 
the setting for each site. To make changes to individ-
ual sites, use the scroll bars beneath the respective 
NOAA site numbers. Refer to the map to the right of 
the scroll bars for site locations, which are grouped 
according to a time-series cluster analysis based on 



Appendix 6  129

shown in the drop-down box is the site currently displayed.
Figure A6-7. Graphical Display section of the “Controls” worksheet used to display measured and predicted hydrographs. The site 

simulation time.
Figure A6-8. Tabular Display section of the “Controls” worksheet showing measured and predicted data for the current 
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Figure A6-9. Current User Settings section of the “Controls” worksheet showing user settings for rainfall and usage.

Figure A6-10. “Rain_UserSetpoints” worksheet used to make user-specified adjustments to rainfall model inputs.
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1,440-day moving window averages (see figure 24 
of the main report). Allowable ranges are

• For %: minimum of –50%, maximum of 50%. 
The scroll bars can change the percentage in 1% 
(clicking on arrows) or 10% (clicking inside the 
scroll bar) increments.  

• For bias: minimum of –15 in/yr, maximum of 
15 in/yr. The scroll bars can change the bias in 
1 in/yr (clicking on arrows) or 5 in/yr (clicking 
inside the scroll bar) increments.

3. Once all rainfall user-specified settings are complete, 
select the “Return to Controls Worksheet” button to 
return control to the “Controls” worksheet. User-
specified settings made in step 2 will be displayed 
in Current User Settings section of the “Controls” 
worksheet (see section 3.2.7). It is important to note 
that only the settings for the user option selected in 
step 1 will be displayed in this section and used by 
the CFANN DSS.

3.4 “Usage_UserSetpoints” Worksheet

All adjustments to the usage user settings are made on the 
“Usage_UserSetpoints” worksheet. The worksheet is divided 
into four sections. A detailed description of each worksheet 
section is provided below.

3.4.1 SELECT USER OPTION Section
The SELECT USER OPTION section on the far left of 

the “Usage_UserSetpoints” worksheet remains visible and is 
used to set the user usage option (User Opt) by using the drop-
down menu as well as to view the GUDV (usage) grid and 
return to the “Controls” worksheet (fig. A6-11). Once a user 
usage selection is made, focus will move to one of the three 
sections in the right portion of the worksheet. Each of the four 
sections of the worksheet contains important notes that should 
be consulted on how to make user-specified adjustments. The 
user usage options and their corresponding worksheet section 
are listed below.

• %-type: USAGE BY TYPE/CELL

• bias-type: USAGE BY TYPE/CELL

• %-utot: TOTAL USAGE (U-TOT)

• bias-utot: TOTAL USAGE (U-TOT)

• user-ts: USER TIME SERIES
It is important to note that while the USAGE BY TYPE/CELL 
and USER TIME SERIES sections allow the user to adjust 
usage inputs by type or individual GUDV cell, all usage data 
are summed into a single total usage time series for signal 

decomposition and input to the groundwater-use ANN models. 
The ability to adjust usage spatially is provided only to facili-
tate conceptualization and implementation of user-specified 
changes. Identical predictions can be made globally by adjust-
ing total summed usage using the TOTAL USAGE (U-TOT) 
section, although doing so for more complex spatial adjust-
ments would require preprocessing of the appropriate %-utot 
and bias-utot values. The temporal adjustment of usage, 
whether made globally or only for specific GUDV cells, must 
be made using the USER TIME SERIES section.

After all user-specified usage settings have been made in 
one of the three sections described below (see sections 3.4.2, 
3.4.3, and 3.4.4), select the “Return to Controls Worksheet” 
button to return control to the “Controls” worksheet. User-
specified settings will be displayed in the Current User Set-
tings section of the “Controls” worksheet (see section 3.2.7). 
It is important to note that only the settings for one of the five 
user options selected in the SELECT USER OPTION section 
will be displayed in the Current User Settings section of the 
“Controls” worksheet and used by the CFANN DSS.

3.4.2 USAGE BY TYPE/CELL Section
The USAGE BY TYPE/CELL section (fig. A6-12) is 

used to adjust groundwater-use model inputs. This section 
contains a table that is organized into rows and columns 
corresponding to GUDV grid cells and usage types, respec-
tively. Each GUDV grid cell is listed as a separate row and 
labeled with a unique identifier, RC##, where the first # is the 
GUDV grid row number (from 0 to 8) and the second # is the 
GUDV grid column number (from 0 to 7). Click on the “View 
Usage Grid” button in the SELECT USER OPTION section 
(fig. A6-11) to display an image of the GUDV grid.  The table 
contains six columns with the following headings representing 
specific usage types:

• AG Grid Cells: Groundwater withdrawals for non-
citrus agricultural irrigation

• Citrus Grid Cells: Groundwater withdrawals for 
citrus irrigation

• Golf Grid Cells: Groundwater withdrawals for golf 
course irrigation

• WU Grid Cells: Groundwater withdrawals public-
supply water utilities

• Drain Grid Cells: Groundwater recharge for drainage 
wells

• PHOS Grid Cells: Groundwater withdrawals for 
phosphate mining (ore extraction and chemical 
plants)

The table has a blank gray background for those GUDV grid 
cells that contain no historical usage for a given usage type. 
The table has scroll bars for each usage type that has historical 
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select one of five user usage options.
Figure A6-11. The SELECT USER OPTION section of the “Usage_UserSetpoints” worksheet is always visible and is used to 

or bias-type option.
Figure A6-12. Partial view of the USAGE BY TYPE/CELL section of the “Usage_UserSetpoints” worksheet used for setting the %-type 
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usage data for a given GUDV grid cell. Adjustments can be 
a user percentage or bias specified in the SELECT USER 
OPTION section (see section 3.4.1) and may be made by 
usage type or for individual GUDV grid cells as explained 
below.

1. %-type: Percentage of historical value. To set all 
cells for a given usage type, first use the scroll bar 
at the top of each column to change the percent-
age in 1% (clicking on arrows) or 10% (clicking 
inside the scroll bar) increments, and second click 
the “SET ALL” button below the scroll bar to apply 
the change to the cells below (fig. A6-12). To set an 
individual cell, use the scroll bar in the row cor-
responding to the desired GUDV grid cell identifier 
and the column corresponding to the desired usage 
type. The percentage can be changed in 1% (clicking 
on arrows) or 10% (clicking inside the scroll bar) 
increments. Note that individual adjustments can 
only be made for those GUDV cells with historical 
data for a given type.

2. bias-type: Constant offset added or subtracted from 
historical value. To set an individual cell, use the 
scroll bar in the row corresponding to the desired 
GUDV grid cell identifier and the column cor-
responding to the desired usage type. Because the 
magnitude of usage varies substantially from cell to 
cell, the bias adjustment increments vary by cell, and 
changes in bias to all cells of the same usage type 
are not permitted. The scroll bar effects a change 
in bias in increments equivalent to 5% of historical 
range (clicking on arrows) or 50% of historical range 
(clicking inside the scroll bar). The minimum and 
maximum bias limits are equivalent to –50% and 
50%, respectively, of the historical range (maximum 
usage minus minimum usage) for that cell.

3.4.3 TOTAL USAGE (U-TOT) Section
Regardless of which worksheet section is used to make 

usage adjustments, all usage data are summed into a single 
total usage time series (U-TOT) for signal decomposition 
and input to the groundwater-use ANN models. The TOTAL 
USAGE (U-TOT) section (fig. A6-13) is used for making 
direct adjustments to this total summed usage time series as 
described below.

1. %-type: Percentage of historical value. Use the 
scroll bar to change the percentage in 1% (clicking 
on arrows) or 10% (clicking inside the scroll bar) 
increments. The minimum and maximum percentage 
limits are –50% and 50%, respectively.

2. bias-type: Constant offset added or subtracted from 
historical value. Use the scroll bar to change the bias 
in increments equivalent to 5% of historical (clicking 

on arrows) or 50% of historical (clicking inside the 
scroll bar). The minimum and maximum bias limits 
are equivalent to –50% and 50%, respectively, of the 
historical range (maximum U-TOT minus minimum 
U-TOT).

3.4.4 USER TIME SERIES Section
The USER TIME SERIES section (fig. A6-14) is used 

to input any user-specified usage data. This section contains a 
table with rows representing months (708) from January 1950 
through December 2008 and columns representing each usage 
type (6) for each GUDV grid cell (72), for a total of 305,856 
data values. Table headings are labeled consistent with the 
naming convention used for the USAGE BY TYPE/CELL 
section (see section 3.4.2). For example, the column labeled 
“RC34_Drain” contains drainage well recharge data for row 3 
and column 4 of the GUDV grid. Date stamps used in the table 
correspond to the last day of each month, indicating that data 
represent monthly values in million gallons per day per month. 
Groundwater withdrawals are represented by positive values 
and groundwater recharge is represented by negative values. It 
is important to note that date stamps are provided in this table 
from January 1950 through December 1956, but these data 
are not currently used by the CFANN DSS. Data for citrus 
irrigation, non-citrus agricultural irrigation, and golf course 
irrigation prior to 1957 were not available for this study, and 
estimates for public supply and phosphate mining become 
increasingly uncertain for older data during the earlier histori-
cal period; therefore, the current version of the CFANN DSS 
uses usage data from only 1957 through 2008.

Unlike the USAGE BY TYPE/CELL section, by using 
the user-ts option (see section 3.4.1) all cells can be populated 
in the USER TIME SERIES section. A column header with 
a gray background indicates no historical usage was avail-
able for that GUDV grid cell, but users can input usage data 
in these cells and these data will be used by the ANN models. 
Data can be entered by typing or by copying and pasting from 
another spreadsheet. To restore historical usage data for a 
given usage type, select the appropriate command button. For 
example, “Copy Historical AG” will replace any user time 
series in the AG cells with the historical data (fig. A6-14). This 
allows for the use of a combination of historical and user time-
series data. It is important to note that while much latitude is 
provided to enter data in this section, it is the responsibility of 
the user to check the correctness of the user-defined input data 
and its synchronization with the given date stamps.

Time-series graphs of historical and user-specified 
usage can be displayed in a pop-up window by clicking the 
“Display Usage Chart” button (fig. A6-15). The graphical 
display is blank until a view option is selected. The CFANN 
DSS currently uses only the total summed usage (USETOT) 
for input to the groundwater-use ANN models, but plots can 
be displayed of measured and user-specified usages by type. 
The plots apply only to the data entered in the USER TIME 
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bias-utot options.
Figure A6-13. The TOTAL USAGE (U-TOT) section of the “Usage_UserSetpoints” worksheet used for setting the %-utot and 

Figure A6-14. Partial view of USER TIME SERIES section of the “Usage_UserSetpoints” worksheet used for setting the user-ts option. 
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Figure A6-15. Graph of historical and user-specified usage time series displayed using the “Display Usage Chart” button in the 
USER TIME SERIES section of the “Usage_UserSetpoints” worksheet.

SERIES section. If changes are made to the time series, select 
the “Refresh Chart” button to update the graphical display. 
Select the “Exit” command to close the graphical display 
window.

3.5 “Database-Rain-M,” “Database-Hyd-M,”  
and “Database_UsageCells” Worksheets

The “Database-Rain-M,” “Database-Hyd-M,” and “Data-
base_UsageCells” worksheets contain the monthly historical 
data for rainfall at the 18 NOAA sites, water level or flow at 
the 51 study sites, and usage by type and GUDV grid cell, 
respectively. Rainfall (in inches per day), water level (in feet 
NGVD 29), and flow (in cubic feet per second) data were con-
verted from daily to monthly values by calculating monthly 

averages. Monthly average rainfall is included for each gage 
for 30-; 90-; 270-; 630-; 1,440-; and 2,250-day moving win-
dow averages of the filled, daily data. Usage data (in million 
gallons per day) was originally available in monthly intervals 
and was stored as such after spatial aggregation using the 
GUDV grid.

3.6 “Output-MS2,” “Output-MS1,” and “Output-
UserSettings” Worksheets

The “Output-MS2,” “Output-MS1,” and “Output-
UserSettings” worksheets contain simulation time-series data 
from each run of the CFANN DSS when the “Write Output” 
check box is selected (see section 3.2.3). Data are written from 
the “Start” date to the “End” date specified in the Simulation 
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section (see section 3.2.1). Data in each worksheet are also 
written to three corresponding ASCII files stored in the “Out-
put” folder (see section 2.1). Data in each of these worksheets 
are described below.

1. The “Output-MS2” worksheet contains the output 
for the combined rainfall and groundwater-use mod-
els for each site. The corresponding ASCII file cre-
ated will be named “CFCA-yyyymmdd-hhmm.txt” 
where “yyyymmdd-hhmm” is the year, month, day, 
hour, and minute when the file was created. Each 
column heading consists of the ANN model label 
(for example, W-2745470) denoting the site concat-
enated with one of the following suffixes denoting 
the type of data [for example, W-2745470(m+dp)]:

• m: Monthly averaged historical measured value

• pm: Predicted output using historical measured 
inputs

• pu: Predicted output using user-specified inputs

• (pu–pm): Difference between user-specified and 
measured output

• (m+dp): Sum of measured value and the differ-
ence between user-specified and measured output

2. The “Output-MS1” worksheet contains the output 
for model set 1 (MS1), which are the rainfall models, 
for each site. The corresponding ASCII file created 
will be named “CFCA-yyyymmdd-hhmm-MS1.txt” 
where “yyyymmdd-hhmm” is the year, month, day, 
hour, and minute when the file was created. Each 
column heading consists of the ANN model label 
(for example W-2745470) denoting the site concate-
nated with one of the following suffixes denoting the 
type of data (for example, W-2745470(m+dp)-MS1):

• m-MS1: Monthly averaged historical measured 
value

• pm-MS1: Predicted output using historical mea-
sured inputs for rainfall model

• pu-MS1: Predicted output using user-specified 
inputs for rainfall model

•  (pu–pm)-MS1: Difference between user-specified 
and measured output for rainfall model

• (m+dp)-MS1: Sum of measured value and the 
difference between user-specified and measured 
output for rainfall model

3. The “Output-UserSettings” worksheet contains 
user setting information for rainfall and usage. The 
corresponding ASCII file created will be named 
“CFCA-yyyymmdd-hhmm-UserSettings.txt” where 
“yyyymmdd-hhmm” is the year, month, day, hour, 

and minute when the file was created. The specific 
rainfall and usage information are as follows:

• For each NOAA rain gage, monthly average 
of 30-day moving window average of daily 
historical measured data (from the “Database-
Rain-M” worksheet) and user-specified rainfall 
data are provided. Each column heading con-
tains the NOAA site number with an “m” suf-
fix denoting historical measured data or a “u” 
suffix denoting user-specified data (for example, 
R369-FA30M-m).

• For total summed usage (USETOT), historical 
measured total summed usage (column heading 
USETOT-m) and user-specified total summed 
usage (column heading USETOT-u) are provided. 

3.7 “ReleaseNotes” Worksheet

The “ReleaseNotes” worksheet maintains a history of 
CFANN DSS updates.

4. Quick Start Guide for the CFANN 
DSS

The following steps outline the basic procedure to run a 
CFANN DSS simulation. Please refer to section 3 for more 
detailed instructions.

1. Select the “Controls” worksheet.

2. Use the scroll bars on the “Controls” worksheet to 
set a start date and end date for the simulation run.

3. Use the “Set User Rain” command button to go to 
the “Rain_UserSetpoints” worksheet. Use the scroll 
bars to set the user rain as

a.  percentage of historical; or

b.  bias (constant offset in inches per year)
Each rain site can be changed individually OR all sites 

can be set to a common value. Return to the Controls work-
sheet by selecting the “Return to Controls Worksheet” com-
mand button.

4. Use the “Set User Usage” command button to go to 
the “Usage_UserSetpoints” worksheet and set user 
usage values. 

a. Use the drop-down combo box to select a user 
option. Once selected the screen focus will move 
to that area of the worksheet. Options are

i.  %-type (percentage of historical by usage 
type);
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ii.  bias-type (constant offset in million gallons 
per day by usage type);

iii.  %-utot (percentage of historical for total 
usage);

iv.  bias-utot (constant offset in million gallons 
per day for total usage); or

v.  user-ts (user-specified time series in million 
gallons per day per month).

b. Use the scroll bars to set usage values for options 
i–iv. For option v, paste the time series in the 
appropriate columns; a combination of histori-
cal time series and user-specified time series 
can be used.  

Return to the Controls worksheet by selecting the 
“Return to Controls Worksheet” command button.

5. Turn graphs On or Off using the “Graphs ON” check 
box. The drop-down combo box to the right of the 
check box can be used to select which site to display 
during the simulation if graphs are turned on.

6. Turn Write Output On or Off using the “Write 
Output” checkbox. Use the “Write Wells Output,” 
“Write Lakes Output,” and “Write Springs Output” 
check boxes to select which sites to include in the 
output.

7. Start run by selecting the “Run” Command button.

8. Upon run completion, three files will be saved to the 
Output subdirectory if Write Output is turned On. 
The three files are

a. CFCA-yyyymmdd-hhmm.txt – Output for each 
location selected for output which includes for 
each monthly time stamp

i. Monthly average historical measured data 
(m)

ii. Predicted using measured inputs (pm)

iii. Predicted using user inputs (pu)

iv. Predicted measured minus predicted user 
(pu–pm)

v. Measured + pu-pm

b. CFCA-yyyymmdd-hhmm-MS1.txt – Same as 
above, but only includes the rainfall models 
(MS1) predictions.

c. CFCA-yyyymmdd-hhmm-UserSettings.txt 

i. Measured (m) and user-specified (u) 
monthly average of 30-day moving win-
dow average of daily historical measured 
data for each NOAA rain station

ii. Measured (m) and user-specified (u) USE-
TOT (sum of all usages for a given month)

5. Installing ADMQuestRT Dynamic Link 
Library

Follow the steps below to install the ADMQuestRT 
dynamic link library (DLL).

1. Install vcredist_x86.exe by downloading (fig. A6-16) 
from http://www.microsoft.com/download/en/details.
aspx?id=26999. Click Yes if you get the prompt, “Do 
you want to allow the following program to make 
changes to this computer?” (fig. A6-17). This ensures 
that the proper runtime components of Visual C++ 
2010 are installed. 

2. If the install prompts to repair or remove, select 
repair; this will re-copy the 32 bit DLLs (fig. A6–18).

3. Create the following folder on your c: drive:  
c:\ADMQuestRT

4. Copy the file ADMQuestRT.dll  into the newly create 
folder.

5. Run the following command as administrator 
(fig. A6-19): regsvr32 /v c:\admquestrt\admquestrt.dll 
To run as administrator, right click on the Command 
Prompt (found in All Programs/Accessories) and 
select “Run as administrator.”

6.  There should be no errors from the previous step. If 
an error occurs, take a screenshot of the error mes-
sage and email to ruby.daamen@advdmi.com

ruby.daamen@advdmi.com

http://www.microsoft.com/download/en/details.aspx?id=26999
http://www.microsoft.com/download/en/details.aspx?id=26999
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Figure A6-16. Download vcredist_x86.exe.

Figure A6-17. If the above message is received, select Yes and continue with the installation.

Figure A6-18. If the above message is received, select Repair and continue with the installation.
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Figure A6-19. Screenshot of command used to register the ADMQuestRT dynamic link library (DLL). The message in the lower 
right corner of the above screenshot should appear (with the message title “RegSvr32’) when the DLL has been successfully 
registered.



Appendix 7. Description of Model Data Viewer 

The Model Data Viewer (MDV) is a Microsoft Excel 2010® workbook created to allow quick review and analysis of data 
and results collated during this study, consisting of measured data, data simulated by the east-central Florida transient (ECFT) 
MODFLOW model (Sepúlveda and others, 2012), and data simulated by the Central Florida Artificial Neural Network Decision 
Support System (CFANN DSS) described in appendix 6. The MDV is available for download from the U.S. Geological Survey 
(http://dx.doi.org/10.3133/sir20145032). The workbook consists of six worksheets that contain the measured and simulated 
data, provide statistical and graphical output for one to six sites, and allow user adjustment of certain specifications that con-
trol processing of the data. The worksheets titled “Setup,” “Measured,” “MODFLOW,” “ANN_DSS,” “Station_analysis,” and 
“Multi-Station_analysis” are used interactively to review, compare, and analyze measured and simulated data. Each worksheet is 
described in more detail below. Additionally, the “Info” worksheet contains a history of MDV version releases and updates.

The “Setup” worksheet consists of six columns listing the naming convention for the 51 sites included in the MDV, which 
are the same 51 sites included in the CFANN DSS. The MDV uses the column titled “COMMON_NAME” as the name that is 
populated in the output worksheets. In addition, the “Setup” worksheet contains four columns of data that are used during the 
interactive process to populate the output worksheets. The “Data_type” column (spreadsheet column K) describes how the MDV 
processes the measured data in the viewer. The “Data_type” can be set to “Average” to calculate monthly averaged data or “Last 
Day” to use the last day of every month to populate the output worksheets. In general, if the user agrees with the current setting 
of the “Data_type” column, the user will not need to make any modifications to the “Setup” worksheet to use the MDV. The 
user, however, can view the “Setup” worksheet to review the various sites included in the MDV. To make any changes to the 
“Setup” worksheet, the user must first “unprotect” the worksheet by selecting that option under the Microsoft Excel® “Review” 
tab.

The “Measured,” “MODFLOW,” and “ANN_DSS” worksheets contain the data and results for the 51 sites. The “Mea-
sured” worksheet contains daily observed data from 9/30/1930 to 12/31/2009. The “MODFLOW” and “ANN_DSS” work-
sheets contain monthly data listed for the last day of each month for the ECFT model and CFANN DSS, respectively. The 
“MODFLOW” data were simulated from 1/31/1995 to 12/31/2006. The “ANN_DSS” data were simulated from 1/31/1965 to 
12/31/2008. Three sites were not simulated by the ECFT model—Island Lake (Longwood), Lake Anderson (Orlando), and 
Crooked Lake (Orlando)—therefore, if these sites are selected, no statistical or graphical output will be displayed for the  
“MODFLOW” data.

The “Station_analysis” and “Multi-Station_analysis” worksheets contain the statistical and graphical output and require 
user interaction to select the site(s) and dates of interest. The period of MODFLOW simulation was from 1/31/1995 to 
12/31/2006, so users should always be attentive to date ranges when comparing MODFLOW results to Measured or ANN_DSS 
data that extend outside the MODFLOW simulation period. The “Station_analysis” worksheet consists of four graphs show-
ing comparisons of the sets of data including time-series data, cumulative z-scores, percentile rank curves, and a scatter plot of 
the MODFLOW and ANN_DSS data (y-axis) versus the measured data on the x-axis (fig. A7-1). The cumulative z-score of a 
time series is calculated by subtracting the mean of the time series from each data point, dividing the resulting dividend by the 
standard deviation of the time series, and computing a running sum of this quotient starting with the first data point. Breaks in 
slope in a time-series graph of cumulative z-score indicate points in time when changes in hydrologic behavior occurred, such 
as a change from falling to rising water levels indicating the beginning of a drought recovery. The site displayed on the graphs 
in the “Station_analysis” worksheet may be selected using the drop-down menu to the right of the cell labeled “Station Analysis 
– Select the station:” located at the top left corner of the worksheet. The start and end dates for the graphs and statistical results 
may be selected using the drop-down menu to the right of the cells labeled “Choose START Date:” and “Choose END Date:” 
located below the site selection menu. The “Multi-Station_analysis” worksheet consists of bar graphs for up to six sites show-
ing the fit of the simulated data to the measured data by graphing the coefficients of determination (R2), percent model errors, 
and the Nash-Sutcliffe coefficients of efficiency (fig. A7-2). The start and end dates for the graphs and statistics may be selected 
using the drop-down menu to the right of the cells labeled “Choose START Date:” and “Choose END Date:” located in the top 
left corner of the worksheet. The six sites displayed on the graphs may be selected using the six drop-down menus located to the 
right of the cell labeled “Choose Sites:”. Both the “Station_analysis” and “Multi-Station_analysis” worksheets present the fol-
lowing statistical results in tabular form: minimum, maximum, mean, median, mode, range, standard error, standard deviation, 
sample variance, kurtosis, skewness, sum, count, R2, mean error, root mean square error (RMSE), percent model error, and the 
Nash-Sutcliffe coefficient of efficiency (Nash and Sutcliffe, 1970).

http://dx.doi.org/10.3133/sir20145032
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Figure A7-1. Screen capture showing the “Station_analysis” worksheet of the Model Data Viewer.

Figure A7-2. Screen capture showing the “Multi-Station_analysis” worksheet of the Model Data Viewer.

Nash, J.E., and Sutcliffe, J.V., 1970, River flow forecasting 
through conceptual models, Part 1—A discussion of prin-
ciples: Journal of Hydrology, v. 10, no. 3, p. 282–290.

Sepúlveda, Nicasio, Tiedeman, C.R., O’Reilly, A.M., Davis, 
J.B., and Burger, Patrick, 2012, Water budget and ground-
water flow in the surficial and Floridan aquifer systems 
in east-central Florida: U.S. Geological Survey Scientific 
Investigations Report 2012–5161, 214 p.



Appendix 8. Summary statistics for measured, ANN-simulated, and MODFLOW-
simulated data

The data presented in table A8-1 are summary statistics for measured data; simulated data for the final lake water-level, 
groundwater-level, and spring-flow artificial neural network (ANN) models executed by the Central Florida Artificial Neural 
Network Decision Support System described in this report; and simulated data for the east-central Florida transient (ECFT) 
MODFLOW model developed by Sepúlveda and others (2012). Statistics were computed using monthly data from January 1995 
through December 2006, where a measured time series consists of arithmetic averages of available measured daily data for each 
month, and simulated ANN and ECFT data consist of the final predicted monthly values from the respective models. Statistics 
were computed using the Model Data Viewer described in appendix 7.
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