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Simulation of the Effects of Rainfall and Groundwater Use
on Historical Lake Water Levels, Groundwater Levels, and
Spring Flows in Central Florida

By Andrew M. O'Reilly,' Edwin A. Roehl, Jr.2 Paul A. Conrads,' Ruby C. Daamen,? and Matthew D. Petkewich’

Abstract

The urbanization of central Florida has progressed sub-
stantially in recent decades, and the total population in Lake,
Orange, Osceola, Polk, and Seminole Counties more than qua-
drupled from 1960 to 2010. The Floridan aquifer system is the
primary source of water for potable, industrial, and agricul-
tural purposes in central Florida. Despite increases in ground-
water withdrawals to meet the demand of population growth,
recharge derived by infiltration of rainfall in the well-drained
karst terrain of central Florida is the largest component of the
long-term water balance of the Floridan aquifer system. To
complement existing physics-based groundwater flow models,
artificial neural networks and other data-mining techniques
were used to simulate historical lake water level, groundwater
level, and spring flow at sites throughout the area.

Historical data were examined using descriptive statistics,
cluster analysis, and other exploratory analysis techniques to
assess their suitability for more intensive data-mining analy-
sis. Linear trend analyses of meteorological data collected
by the National Oceanic and Atmospheric Administration at
21 sites indicate 67 percent of sites exhibited upward trends
in air temperature over at least a 45-year period of record,
whereas 76 percent exhibited downward trends in rainfall
over at least a 95-year period of record. Likewise, linear trend
analyses of hydrologic response data, which have varied
periods of record ranging in length from 10 to 79 years, indi-
cate that water levels in lakes (307 sites) were about evenly
split between upward and downward trends, whereas water
levels in 69 percent of wells (out of 455 sites) and flows in
68 percent of springs (out of 19 sites) exhibited downward
trends. Total groundwater use in the study area increased
from about 250 million gallons per day (Mgal/d) in 1958 to
about 590 Mgal/d in 1980 and remained relatively stable from
1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a

'U.S. Geological Survey.
2Advanced Data Mining, LLC, Greenville, South Carolina.

maximum of 773 Mgal/d in 2000. The change in ground-
water-use trend in the early 1980s and the following period of
relatively slight trend is attributable to the concomitant effects
of increasing public-supply withdrawals and decreasing use of
water by the phosphate industry and agriculture.

On the basis of available historical data and exploratory
analyses, empirical lake water-level, groundwater-level, and
spring-flow models were developed for 22 lakes, 23 wells,
and 6 springs. Input time series consisting of various frequen-
cies and frequency-band components of daily rainfall (1942
to 2008) and monthly total groundwater use (1957 to 2008)
resulted in hybrid signal-decomposition artificial neural net-
work models. The final models explained much of the variabil-
ity in observed hydrologic data, with 43 of the 51 sites having
coefficients of determination exceeding 0.6, and the models
matched the magnitude of the observed data reasonably well,
such that models for 32 of the 51 sites had root-mean-square
errors less than 10 percent of the measured range of the data.
The Central Florida Artificial Neural Network Decision Sup-
port System was developed to integrate historical databases
and the 102 site-specific artificial neural network models,
model controls, and model output into a spreadsheet applica-
tion with a graphical user interface that allows the user to
simulate scenarios of interest.

Opverall, the data-mining analyses indicate that the Flori-
dan aquifer system in central Florida is a highly conductive,
dynamic, open system that is strongly influenced by external
forcing. The most important external forcing appears to be
rainfall, which explains much of the multiyear cyclic vari-
ability and long-term downward trends observed in lake water
levels, groundwater levels, and spring flows. For most sites,
groundwater use explains less of the observed variability in
water levels and flows than rainfall. Relative groundwater-use
impacts are greater during droughts, however, and long-term
trends in water levels and flows were identified that are consis-
tent with historical groundwater-use patterns. The sensitivity
of the hydrologic system to rainfall is expected, owing to the
well-drained karst terrain and relatively thin confinement of
the Floridan aquifer system in much of central Florida. These
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characteristics facilitate the relatively rapid transmission of
infiltrating water from rainfall to the water table and contribute
to downward leakage of water to the Floridan aquifer system.
The areally distributed nature of rainfall, as opposed to the
site-specific nature of groundwater use, and the generally high
transmissivity and low storativity properties of the semicon-
fined Floridan aquifer system contribute to the prevalence of
water-level and flow patterns that mimic rainfall patterns. In
general, the data-mining analyses demonstrate that the hydro-
logic system in central Florida is affected by groundwater use
differently during wet periods, when little or no system storage
is available (high water levels), compared to dry periods, when
there is excess system storage (low water levels). Thus, by
driving the overall behavior of the system, rainfall indirectly
influences the degree to which groundwater use will effect
persistent trends in water levels and flows, with groundwater-
use impacts more prevalent during periods of low water levels
and spring flows caused by low rainfall and less prevalent
during periods of high water levels and spring flows caused

by high rainfall. Differences in the magnitudes of rainfall and
groundwater use during wet and dry periods also are important
determinants of hydrologic response.

An important implication of the data-mining analyses is
that rainfall variability at subannual to multidecadal timescales
must be considered in combination with groundwater use
to provide robust system-response predictions that enhance
sustainable resource management in an open karst aquifer
system. The data-driven approach was limited, however, by
the confounding effects of correlation between rainfall and
groundwater use, the quality and completeness of the histori-
cal databases, and the spatial variations in groundwater use.
The data-mining analyses indicate that available historical
data when used alone do not contain sufficient information to
definitively quantify the related individual effects of rainfall
and groundwater use on hydrologic response. The knowledge
gained from data-driven modeling and the results from phys-
ics-based modeling, when compared and used in combination,
can yield a more comprehensive assessment and a more robust
understanding of the hydrologic system than either of the
approaches used separately.

Introduction

The urbanization of central Florida has progressed
substantially in recent decades, with total population in Lake,
Orange, Osceola, Polk, and Seminole Counties more than qua-
drupling from 590,000 in 1960 to 2,740,000 in 2010 (Florida
Office of Economic and Demographic Research, 2012). This
development has led to an increasing demand for water, which
has been met primarily by groundwater withdrawals from
the Floridan aquifer system. During the period 1965-2005,
groundwater withdrawals increased 53 percent, and in 2005,
groundwater supplied 762 million gallons per day (Mgal/d)
in Lake, Orange, Osceola, Polk, and Seminole Counties,

or 95 percent of total water withdrawals in central Florida
(Marella, 1995, 2009). The population of central Florida is
projected to grow 57 percent from 2011 to 2040 (Smith and
Rayer, 2012), and the demand for water is expected to increase
as a result. Despite important anthropogenic influences,
recharge to groundwater by infiltration of rainfall in the well-
drained karst terrain of central Florida is the largest compo-
nent of the water budget for the Floridan aquifer system during
years with normal rainfall (Septlveda and others, 2012).

The variability in historical seasonal to multidecadal rainfall
patterns in Florida can be attributed to both local/global and
natural/anthropogenic factors (Obeysekera and others, 2011),
and climate variability is predicted to become more extreme
(Berry and others, 2011). Consequently, variations in both
rainfall and groundwater use may influence surface and sub-
surface water-level and flow conditions, potentially affecting
the ability of the regional water resources to meet both human
and environmental needs.

In some areas of central Florida, declining water levels
and increasing salinity of groundwater have led to concerns
by local and State water managers. The area of concern has
been designated as the Central Florida Coordination Area
(CFCA) and includes the southern part of Lake County and
all of Orange, Osceola, Polk, and Seminole Counties (fig. 1).
An analysis of data collected for various periods from 1941
to 2009 at 115 sites in the CFCA indicates that water levels at
31 of 62 wells, flow at 4 of 6 springs, and water levels at 13
of 47 lakes have exhibited statistically significant (80 percent
confidence level) downward trends over their respective
periods of record (Murch and Tara, 2010). The data indicate
downward trends in water levels primarily in wells penetrat-
ing the Upper Floridan aquifer, which is the primary source
of water for potable, industrial, and agricultural uses in the
CFCA; these downward trends have been attributed to a
combination of increases in groundwater withdrawals and
long-term below-average rainfall (Spechler and Halford,
2001). Increases in groundwater levels have been observed in
some areas, particularly in Polk County, and were attributed
to decreases in groundwater withdrawals due to changes in
phosphate mining practices (Spechler and Kroening, 2007,
Murch and Tara, 2010). Multiyear cyclic variations in rainfall
may contribute to observed periods of generally increasing or
decreasing lake levels (German and Adamski, 2005). Upward
trends in the concentrations of chloride in groundwater have
occurred in the vicinity of well fields in eastern Seminole and
Orange Counties, suggesting the upward movement of saline
water, possibly the consequence of groundwater withdraw-
als (Spechler and Halford, 2001; Adamski and German,
2004). It is important to note, however, that observed trends
in hydrologic data in the CFCA may be attributable to factors
other than rainfall or groundwater withdrawals. For example,
land application of reclaimed water has been shown to cause
increases in water-table altitudes as well as water levels in the
Upper Floridan aquifer (O’Reilly, 1998; Adamski and German,
2004). Similarly, other land-use changes, such as increases
in irrigated land areas and construction of drainage ditches to
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lower the water table and make land more suitable for devel-
opment, have been suggested as possible causes of increased
groundwater seepage to streams as inferred from observed
long-term increases in 7-day low flow in some streams in
urbanizing areas in Orange County (German and Adamski,
2005). Complex feedback mechanisms among hydroclimatic
processes can affect the response of the hydrologic system.
For example, in an area where the water table is near land
surface and groundwater is subject to loss by evapotranspira-
tion (ET), which occurs throughout much of the CFCA, small
changes in water-table depth can result in changes in the water
available for groundwater recharge (Knowles and others,
2002). Additionally, land-cover changes, such as those caused
by urban or agricultural development, can affect spatial ET
patterns. Atmospheric model simulations performed by Pielke
and others (1999) showed that land-cover changes from 1900
to 1993 in south Florida potentially influenced local rainfall
patterns, resulting in average summer rainfall as much as

11 percent less than what would have occurred in the absence
of any land-cover changes. The cumulative effects of changes
in the hydroclimatic system in the CFCA caused by natural or
anthropogenic factors may result in changes in the long-term
balance between the recharge and discharge of groundwater.
Over time, such changes could cause changes in groundwater
levels, spring flows, and the position of the saline-water/fresh-
water interface.

The primary agencies that manage water resources in
the region, the St. Johns River Water Management District
(SJRWMD), the South Florida Water Management District
(SFWMD), and the Southwest Florida Water Management
District (SWFWMD), are concerned that the groundwater
resource is managed to maintain sufficient water supplies to
meet the needs of future population growth and the environ-
ment. To address these concerns, the Central Florida Water
Initiative (CFWI) was undertaken. The CFWI is a collabora-
tive process—among the SIRWMD, SFWMD, SWFWMD,
Florida Department of Environmental Protection, Florida
Department of Agriculture and Consumer Services, central
Florida water utilities, and other stakeholders—to assess
whether the Floridan aquifer system is reaching its sustainable
limits of use in the CFCA and to develop a regional water sup-
ply plan (http://cfwiwater.com/).

In 2005, the U.S. Geological Survey (USGS) began a
3-year study in cooperation with the STRWMD to compile and
analyze historical lake water-level, groundwater-level, spring-
flow, rainfall, and groundwater-use data in Lake, Orange, and
Seminole Counties to assess utility of artificial neural net-
works (ANNs) and other data-mining techniques for identify-
ing the effects of rainfall and groundwater use. On the basis of
the effectiveness of the data-mining techniques demonstrated
in the initial results, the original study was expanded in 2008
to include an additional 4 years of investigation to address
water-resource management concerns in the entire CFCA. The
expanded USGS study was conducted in cooperation with
SIRWMD, SFWMD, and SWFWMD to compile and assess
historical lake water-level, groundwater-level, spring-flow,

meteorological, and groundwater-use data in the entire CFCA
with the purpose of quantifying, to the extent possible given
the available data, the effects of weather variation and ground-
water use. In 2011, the USGS became a participant in the
CFWI, collaborating with other stakeholders in the study and
assessment of historical hydrologic data in the CFCA. In addi-
tion to providing supporting science for local water-resource
managers and stakeholders, this study addresses Federal sci-
ence interests by assessing the status of and change in fresh-
water resources—part of the USGS science strategy direction
“Water Census of the United States” (U.S. Geological Survey,
2008).

Purpose and Scope

This report presents the results of an investigation in
which the response of lake water levels, groundwater levels,
and spring flows to changing rainfall and groundwater-use
conditions over a multidecadal period was analyzed. The
report documents the development of the Central Florida
Artificial Neural Network Decision Support System (CFANN
DSS) and provides examples of the application of the CFANN
DSS to simulate hydrologic response to historical rainfall and
groundwater use from 1965 through 2008. Additionally, the
report provides examples of how the CFANN DSS may be
used to simulate scenarios of interest based on user-specified
rainfall and groundwater use. The compilation of hydrologic
response data was limited to Lake, Orange, Osceola, Polk, and
Seminole Counties, which includes all of the CFCA (fig. 1).
Streamflow data were not analyzed in this study.

An important part of the USGS mission is to provide
scientific information for the effective water-resources
management of the Nation. To assess the quantity and qual-
ity of the Nation’s surface water and groundwater, the USGS
collects hydrologic and water-quality data from rivers, lakes,
and estuaries by using standardized methods and maintains
the data from these stations in a national database. Addition-
ally, many local and State agencies collect and store such data
in their respective institutional databases. These databases
commonly are underutilized and underinterpreted for address-
ing contemporary hydrologic issues. The techniques described
in this report demonstrate how valuable information can be
extracted from existing disparate databases to assist local,
State, and Federal agencies in understanding and managing
complex hydrologic systems. The application of data-mining
techniques, including ANN models, to the CFCA demonstrates
how empirical models of complex hydrologic systems can be
developed, disparate databases and models can be integrated,
and study results can easily be disseminated to meet the needs
of a broad range of end users.
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Description of Study Area

The study area encompasses Lake, Orange, Osceola,
Polk, and Seminole Counties in central Florida (fig. 1).
The Orlando metropolitan area, approximately centered on
the Interstate 4 corridor from northern Osceola to western
Seminole Counties, encompasses many smaller towns and
cities and is the major urbanized area in central Florida. The
remainder of the study area is predominantly rural with a few,
mostly widely scattered, but steadily growing towns such as
Clermont, Eustis, Lady Lake, Lakeland, Leesburg, Oviedo,
and Winter Haven. Land-surface altitudes range from less
than 5 feet (ft) along the St. Johns River (from Orange County
downstream) to more than 300 ft in Polk and Lake Counties.

Climate

The climate of the study area is classified as subtropi-
cal and is characterized by warm, typically wet summers and
mild, dry winters. Maximum daily temperatures typically
exceed 90 degrees Fahrenheit (°F) during the summer, but
may fall below freezing for several days in the winter. The
mean annual air temperatures for 1981-2010 are 72.7 °F at the
city of Sanford in the northern part of the CFCA and 73.6 °F
at the city of Bartow in the southern part of the CFCA (fig. 1)
(National Oceanic and Atmospheric Administration, 2011). In
January, mean monthly air temperatures are 59.7 °F at Sanford
and 61.8 °F at Bartow, and in July are 83.3 °F at Sanford and
82.8 °F at Bartow. Mean annual rainfall at Sanford and Bartow
is 53.04 and 52.08 inches (in.), respectively, for 1981-2010,
with 55 and 59 percent, occurring during June through Sep-
tember (National Oceanic and Atmospheric Administration,
2011). Frequent thunderstorms during the summer as well as
occasional tropical storms and hurricanes during the sum-
mer and early fall can bring heavy rainfall to the area. Winter
rainfall generally is associated with large, frontal-type, cold air
masses from the north.

Hydrogeologic Setting

The study area generally is underlain by unconsoli-
dated sand and clay sediments that form the surficial aquifer
system; less permeable clay and carbonate rocks that form
the intermediate confining unit; more permeable carbonate
rocks than those of the intermediate confining unit that form
the intermediate aquifer system; a thick sequence of limestone
and dolomitic limestone of variable permeability that forms
the Floridan aquifer system; and low permeability dolomite
and evaporite beds that form the sub-Floridan confining unit,
which functions as the base of the fresh groundwater flow
system (Miller, 1986). Generally the intermediate confining
unit serves as a confining unit for the Floridan aquifer system,
but where multiple permeable zones are present, the sequence
of hydrogeologic units is referred to as the intermediate aqui-
fer system. The intermediate aquifer system in the CFCA is
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located in the southern two-thirds of Polk County (Septlveda
and others, 2012, p. 28). For the purpose of this report, the
intermediate confining unit and intermediate aquifer system
are discussed collectively. The Floridan aquifer system—the
principal source of groundwater in the study area—is divided
into two aquifers of relatively high permeability, referred to
as the Upper Floridan aquifer and the Lower Floridan aquifer
(Miller, 1986). These aquifers are separated by a less perme-
able unit called the middle confining unit I in east-central Flor-
ida. In west-central Florida, these two aquifers are separated
by the middle confining unit II, which is composed of gypsif-
erous dolomite and dolomitic limestone of considerably lower
permeability than the middle confining unit I in east-central
Florida (Miller, 1986; O’Reilly and others, 2002). The reader
is referred to Sepulveda and others (2012) for a more detailed
description of the hydrogeologic framework in the CFCA.

The aquifer system in the study area is recharged primar-
ily by rainfall. Rainfall that exceeds ET, and does not become
surface runoff, can recharge the aquifer system after infiltrat-
ing at land surface and percolating through the unsaturated
zone. Sources of water to the aquifer system, in addition to
net recharge from rainfall, are artificial recharge (for example,
irrigation or rapid infiltration basins) and subsurface inflow
from outside the study area. Inflow to the aquifer system in
the study area is eventually discharged by springs, leakage to
some surface-water bodies, well withdrawals, and subsurface
outflow.

In a geologic setting where limestone is at or near land
surface, net recharge interacts with the carbonate rocks, result-
ing in karst terrain. Karst is characterized by the absence of
a well-defined surface drainage system and is drained inter-
nally, that is, rainfall not lost to ET infiltrates and recharges
the aquifer. Internal drainage results in higher net recharge
rates, which are conducive to the dissolution of limestone and
the formation of such features as voids and conduits in the
limestone and closed depressions at land surface. Numerous
karst features, including sinkholes and springs, are present
in the study area. Sinkholes in all stages of development are
common throughout much of the study area and range from
small depressions a few feet in diameter to large lakes. Sink-
holes can be dry or water-filled, and many are areas of high
recharge to the underlying aquifers. Numerous springs, located
in the northern half of the study area, discharge water from the
Upper Floridan aquifer into rivers and streams that eventually
flow into the Atlantic Ocean.

The well-drained karst terrain in the western and cen-
tral parts of the study area combined with the coastward
topographic relief is sufficient to support regional flow in
the Floridan aquifer system. In central Florida, the highest
water levels in the Floridan aquifer system occur in the Upper
Floridan aquifer in north Polk County; the lowest water levels
occur in the Upper Floridan aquifer near springs, the St. Johns
River, and the Atlantic Ocean. Water recharges the Upper
Floridan aquifer at the highest rates in sandy ridge areas of
west Orange, south Lake, and east-central Polk Counties as
well as in more isolated, local areas where sandy soils with a
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deep water table are common (Sepulveda and others, 2012).
In these recharge areas, water generally moves laterally in

the Upper Floridan aquifer with a smaller amount moving
downward into the Lower Floridan aquifer. In both the Upper
and Lower Floridan aquifers, water generally flows to the
northeast and east. Water exits the Lower Floridan aquifer by
upward leakage to the Upper Floridan aquifer subsequently
exiting the groundwater flow system by discharge at springs,
upward leakage to the St. Johns River and other areas of lower
land-surface altitude where it may contribute to streamflow or
be removed by evaporation or withdrawal by plants (transpira-
tion), and lateral flow to the Atlantic Ocean. Water also exits
the Upper and Lower Floridan aquifers by withdrawals from
water-supply wells. The reader is referred to Sepulveda and
others (2012) for a more detailed description of the conceptual
groundwater flow system and water budget in the CFCA.

Previous Studies

Studies on the status and trends of the groundwater
system over long-term (multidecadal) periods are limited
for central Florida. Murch and Tara (2010) analyzed hydro-
logic and rainfall data from 1941 to 2009 for 120 sites in
the CFCA to determine if long-term statistically significant
trends are present in groundwater levels, lake water levels,
spring discharge, and rainfall measurements using exploratory
data analysis, trend analysis, and cluster analysis techniques.
Other earlier general water-resource studies include some
qualitative or quantitative analyses of long-term behavior of
the hydrologic system in parts of central Florida, including
Osceola County (Schiner, 1993), Seminole County (Spechler
and Halford, 2001), Lake County (Knowles and others, 2002),
Orange County (Adamski and German, 2004; German and
Adamski, 2005), and Polk County (Spechler and Kroening,
2007). Basso (2003) examined the effects of groundwater
withdrawals on groundwater levels and groundwater discharge
to the upper Peace River Basin in south-central Polk County
using estimated and measured data from the 1940s to the early
2000s. Osburn and others (2006) compiled period-of-record
discharge measurements and used locally weighted scatter-
plot smoothing to indicate possible patterns in discharge over
time for springs in the SJRWMD; an updated, online version
of this publication is available at Attp.//floridaswater.com/
springs/ (accessed April 2013). Intera (2007a, 2007b) devel-
oped regression models to predict daily discharge, starting as
early as 1949 and extending as late as 2005, at several springs
in central Florida.

Approach

In central Florida, a need exists to identify and quantify
the salient factors influencing the behavior of the groundwater
system, and several physics-based models have been devel-
oped for this purpose (Knowles and others, 2002; McGurk and
Presley, 2002; Sepulveda, 2002; Environmental Simulations

Inc., 2007; Sepulveda and others, 2012). However, complex
interactions between the surface and subsurface environments
in a karst terrain are difficult to simulate with physics-based
models. Alternatively, substantial historical hydrologic data,
which are well suited for empirical modeling, are available
for central Florida in the databases of local, State, and Federal
agencies.

The emerging field of data mining involves extracting
valuable knowledge from large databases (Weiss and Indur-
khya, 1998). Data mining comprises several technologies that
include signal decomposition, advanced statistics, multidimen-
sional visualization, machine learning/artificial intelligence,
and chaos theory. Data mining can provide insight into com-
plex problems and has been applied to an array of problems
related to the interactions between natural and human-made
systems. These interactions are becoming increasingly impor-
tant as growing populations and development place heavier
burdens on the environment. The application of data-mining
technologies to surface-water and groundwater systems has
been particularly successful. Models of hydraulic and water-
quality parameters based in part on ANNs, a form of machine
learning, have been accepted by State and Federal agencies for
regulatory applications for streams in western Oregon (Ris-
ley and others, 2002), and the Beaufort (Conrads and others,
2003), Lower Savannah (Conrads and others, 2006), and Pee
Dee (Conrads and Roehl, 2007) estuaries in South Carolina
and Georgia. Other studies have focused on groundwater,
surface-water, and water-quality applications of ANNSs, such
as the simulation of groundwater levels in the surficial aquifer
system and Upper Floridan aquifer (Coppola, Szidarovszky,
and others, 2003) and the karstic Edward’s aquifer in Texas
(Trichakis and others, 2011), groundwater management using
multi-objective optimization (Coppola, Poulton, and others,
2003), Everglades hydrology (Conrads and Roehl, 2006) and
water quality (Conrads and Roehl, 2010), stream temperatures
in Wisconsin for fisheries management (Stewart and others,
2006), Upper Floridan aquifer water levels in the Suwan-
nee River valley (Roehl, Risley, and others, 2006), Lake
Okeechobee inflow volumes (Trimble and others, 2006), fate
and transport of volatile organic compounds in groundwater
at the Savannah River nuclear site in South Carolina (Conrads
and others, 2007), dam-regulated wetland hydrology in South
Carolina (Conrads and others, 2008), prediction of Upper
Floridan aquifer spring flows (Sepulveda, 2009), and specific
conductance and chloride concentration in a tidal tributary of
the Savannah River (Conrads and others, 2011). These studies
have demonstrated that ANN models, combined with other
data-mining techniques, can provide an effective approach for
simulating complex hydrologic systems.

The variability of lake water levels, groundwater levels,
and spring flows in the CFCA is a result of many factors,
including rainfall and groundwater-use conditions. As part of
the CFWI, a variety of empirical and physics-based model-
ing approaches have been conducted. The empirical modeling
approach described in this report used correlation functions
that were synthesized directly from data to predict lake water
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levels, groundwater levels, and spring flows at selected sites
in the CFCA in order to simulate response to rainfall and
groundwater-use conditions. Hydrologic datasets at daily to
semiannual measurement frequencies were available. Empiri-
cal lake water-level, groundwater-level, and spring-flow
models were developed directly from these data by using ANN
models and other data-mining techniques, such as signal (time
series) processing methods including clustering, filtering, and
signal decomposition. Because the intent of this study was
to ascertain the salient factors influencing the behavior of
the groundwater system as inferred from available historical
data, restraint was exercised in prescribing assumptions based
on previous models, whether empirical or physical, in the
development of the ANN models. Given the empirical nature
of data-driven correlation-based modeling, however, data
were prepared in such a way to limit the potential confounding
effects of cross correlations among explanatory variables, and
the ANN models were developed to be consistent with hydro-
logic principles and the basic components of a water budget.
The application of data-mining techniques to develop
empirical models to simulate lake water levels, groundwater
levels, and spring flows and analyze response to rainfall and
groundwater-use conditions was undertaken in four phases:

1. obtaining and evaluating the suitability of historical lake
water-level, groundwater-level, spring-flow, meteorologi-
cal, and groundwater-use data for developing the models;

2. developing ANN models to simulate the hydrologic
response at selected sites with long-term record (at least
25 years);

3. developing the CFANN DSS to integrate historical data-
bases and the site-specific ANN models, model controls,
and model output into a spreadsheet application with a
graphical user interface (GUI) and simulating four hypo-
thetical scenarios to assess ANN model sensitivity; and

4. comparing results of the simulations made with the ANN
models with those from the physics-based east-central
Florida transient (ECFT) groundwater flow model devel-
oped by Septilveda and others (2012), using a spreadsheet
application with a GUI that allows the user to select sites
of interest for comparison.

Historical Data

Many Federal, State, and local agencies have collected
data in the CFCA. For this study, data collected by the USGS,
National Oceanic and Atmospheric Administration (NOAA),
SIRWMD, SFWMD, SWFWMD, Orange County, and
Seminole County were used for analysis and to develop ANN
models. These data consist of hydrologic data, consisting of
forcing (meteorological) and response (water level and flow),
and groundwater-use data. Some meteorological data extend
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back to 1900 and some hydrologic response data extend back
to the 1930s, whereas little groundwater-use data are available
prior to 1957.

Hydrologic Data

Hydrologic data were compiled for sites in the CFCA
(including all of Lake County) with a 10-year or greater period
of record up through 2008, which includes data collected by
the USGS, NOAA, SIRWMD, SFWMD, SWFWMD, Orange
County, and Seminole County. One exception to this criterion
is lake water levels measured by Seminole and Orange Coun-
ties. Owing to the lower frequency of collection of these data
(typically monthly), only those lakes with a 20-year or greater
period of record and six or more measurements per year were
included in the analysis.

Historical Hydrologic Database

A Microsoft Access® database was created to store all his-
torical hydrologic data. The database contains information for
963 sites comprising about 4.5 million records for 307 lakes,
470 wells, 22 springs, 143 rain gages, and 21 air temperature
measurement sites (fig. 2). Additionally, at the 21 air tempera-
ture measurement sites, computed potential evapotranspiration
(PET) data were included in the database. It is important to
note that the hydrologic database developed for this study was
constructed from data received from the collecting agencies
during 2008 and 2009. Data could be revised by the collect-
ing agency if changes in data processing techniques are made
in the future. For this reason, it is noted here that spring-flow
data were acquired from the SIRWMD (http.//floridaswater.
com/toolsGISdata/) on September 22, 2011, for the six springs
for which ANN models were developed. The hydrologic
database was updated with these data, but not for the other 16
springs. For future use of this database, the user is encouraged
to verify that all data are consistent with those that are most
recently published by the collecting agency.

Data in the hydrologic database were examined for
apparent errors, and identified issues were resolved. Data for
duplicate sites (sites monitored by more than one agency)
were merged, where consistency in data quality among the
collecting agencies could be verified, in order to increase data
density and extend the period of record for individual sites.
Duplicate sites generally had non-overlapping periods of
record; however, when data were available for the same date
at duplicate sites, the data value for the site with the longer
period of record was retained. As a result, a single time series
of data was created for each site. Simple statistics computed
for the entire period of record for each site were examined for
anomalies: period-of-record length in years, average number
of measurements per year, minimum and maximum values,
range, mean, linear slope, and Pearson product-moment corre-
lation coefficient (R). Errors in site coordinates were identified
and resolved by verifying the coordinates against known site
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Figure 2.

Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida
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locations. A conservative approach was taken in addressing
anomalies attributable to apparent errors in the original data,
in that erroneous data were deleted if a definitive correction
could not be identified. Likewise, anomalous data that were
not clearly erroneous were retained. Additional details on the
organization of the hydrologic database in Access as well as
information on how to obtain the database are provided in
appendix 1, and a summary of the data contained in the data-
base is provided in the following sections.

Rainfall, Air Temperature, and Potential
Evapotranspiration

Climate is an important external forcing factor that influ-
ences the behavior of the groundwater system in the CFCA.
Meteorological data acquired and assessed for use in this study
were rainfall, air temperature, and PET. The most complete set
of long-term daily rainfall data were available from NOAA.
Twenty-three NOAA weather stations exist in or near the
CFCA. Both rainfall and air temperature data are collected
at 21 of the stations, whereas only rainfall is measured at the
other two stations (fig. 2). Rainfall data at six of the NOAA
stations (station identification numbers 2229, 3137, 4502,
6628, 7982, and 8942; see hydrologic database described in
appendix 1) were provided by SIRWMD (David Clapp, writ-
ten commun., 2009), and data at the other 17 stations were
provided by SWFWMD (Jill Hood, written commun., 2009).
For NOAA rainfall data, periods of record start in the period
190146 and end in the period 2006-08, and range in length
from 61 to 108 years. For accumulated data values in the origi-
nal NOAA records, which represent rainfall that was accumu-
lated over 2 days to a month and reported as a single value,
daily values were estimated by SIRWMD and SWFWMD by
disaggregating using nearby rain gages. For station records
provided by SJRWMD, periods of missing data were filled
with estimates published by NOAA or computed by SIRWMD
on the basis of data from nearby rain gages. For station records
provided by SWFWMD, periods of missing data were filled
with the estimates computed by Aly (2008). Rainfall data are
also available for 120 additional sites operated by the SJR-
WMD, SFWMD, or SWFWMD (fig. 2). It is important to note
that some of the SJTRWMD, SFWMD, or SWFWMD rainfall
sites report accumulated data that represent several days or
even a month or more, which were not disaggregated into
daily values. As a result, statistics computed for such rainfall
sites would be skewed due to the treatment of accumulated
data as daily data. All accumulated rainfall data are identified
in the hydrologic database by a quality code assigned by the
collecting agency (appendix 1).

Air temperature data were obtained directly from NOAA
for the 21 weather stations (fig. 2). Daily measurements of
minimum, maximum, and mean air temperature were avail-
able. Periods of record start in the period 1900—59 and end
in the period 1961-2009, and range in length from 47 to
109 years, with 252 to 365 measurements per year.

Historical Data 9

Direct measurements or estimates of actual ET are sparse
in the study area, and data that are available do not extend
prior to 1993 and generally have periods of record less than
10 years (O’Reilly, 2007). As alternatives, PET data were
acquired from the USGS Statewide ET dataset (http.//fl. water.
usgs.gov/et/) (accessed July 2010) and were computed using
the temperature-based Hargreaves equation (Hargreaves and
Samani, 1985). Because the USGS Statewide ET dataset is a
spatial product providing data at 2-kilometer (km) resolution
across the entire land area of Florida (Mecikalski and others,
2011), for the purposes of this study, data were extracted for
the 2-km pixel overlying each of the 21 NOAA air temperature
measurement sites. The USGS Statewide ET data are available
from June 1, 1995, and data through 2009 were included in the
hydrologic database. PET data estimated using the Hargreaves
equation were computed using the entire period of record for
the 21 NOAA air temperature measurement sites. Given its
simplicity, Hargreaves-derived PET approximates actual ET
reasonably well after multiplying by a crop factor (O’Reilly,
2007).

Lake Water Level

Lake water-level measurements were available for 307
lakes in the study area (fig. 2). Periods of record start in the
period 1933-99 and end in the period 1968-2009, and range in
length from 10 to 76 years, with an average of 5 to 365 mea-
surements per year. The water-level range for individual lakes
varies from 2.38 to 32.96 ft for their respective periods of
record. Lakes were classified as either flowthrough (containing
at least one stream inflow or outflow) or closed basin (contain-
ing no stream inflow or outflow) on the basis of existing maps
and interpretation of aerial imagery. Slightly more than half of
the lakes (164) were classified as flowthrough, and the remain-
ing 143 were classified as closed basin (fig. 3).

Groundwater Level

Water-level measurements were available for 470 wells
in the study area (fig. 2). Periods of record start in the period
1930-2000 and end in the period 1981-2009, and range in
length from 8 to 79 years, with an average of less than 1 to
365 measurements per year. The water-level range for indi-
vidual wells varies from 2.57 to 62.87 ft for their respective
periods of record. Well-construction information typically
was incomplete, but total depths were available for all but
27 wells. Of the remaining 443 wells, total depths ranged from
4 to 2,090 ft. Wells were classified as being completed in the
surficial aquifer system, intermediate confining unit/intermedi-
ate aquifer system, Upper Floridan aquifer, Lower Floridan
aquifer, or Floridan aquifer system on the basis of records of
the collecting agency and well depth. Thus, of the 470 wells,
139 are in the surficial aquifer system, 40 are in the intermedi-
ate confining unit/intermediate aquifer system, 47 are in the
Upper Floridan aquifer, 13 are in the Lower Floridan aquifer,
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and 231 are in the Floridan aquifer system (known to be in
the Floridan aquifer system, but undetermined whether in the
Upper Floridan aquifer, Lower Floridan aquifer, or both).

Spring Flow

Spring-flow measurements were available for 22 springs
in the study area (fig. 2). Periods of record start in the period
1931-91 and end in the period 1995-2009, and range in
length from 18 to 79 years, with an average of less than 1 to
40 measurements per year. Mean (arithmetic average) spring
flow for individual springs ranges from 0.8 to 149 cubic feet
per second (ft*/s), whereas the spring-flow range for individual
springs varies from 0.6 to 169 ft¥/s for their respective periods
of record. The temporal data density for springs is extremely
variable. For an individual spring, it is not unusual to have
only one flow measurement per decade in the early part of the
period of record and daily flow data for more recent periods.

Groundwater Use

Groundwater-use data were compiled for the categories
public supply, citrus irrigation, non-citrus agricultural irriga-
tion, golf course irrigation, phosphate mining, and drainage
well recharge. Monthly data were compiled for all categories,
although for some categories only annual estimates were avail-
able and were disaggregated into monthly values. For sites for
which data were available or could be estimated, data were
compiled as far back as 1950, although for most categories
data are sparse or poorly estimated for years prior to 1957.
Groundwater use was not categorized by aquifer for this study,
although Sepulveda and others (2012) report that more than
95 percent of the total groundwater withdrawn from 1995
through 2006 in east-central Florida was from the Floridan
aquifer system. Surface-water-use data were not analyzed in
this study.

The various types of groundwater withdrawal rates or
direct water inflow (drainage well recharge) data were pro-
vided by the SIRWMD, SFWMD, SWFWMD, and the Florida
Department of Environmental Protection (FDEP) and supple-
mented with data available from the USGS. These data repre-
sent the best available data at the time of this study. For future
analyses, the user is strongly encouraged to verify that all data
are consistent with those that are most recently reported by the
collecting agency. For some categories, the reported and esti-
mated water withdrawals and inflows represent amounts for all
of the CFCA and small portions of surrounding areas. Further
details are provided in the following sections on the reported
data as well as the methodologies used to make estimates for
categories without reported data or for periods of missing data.

Historical Data 1

Public Supply

The public water supply category includes all permit
holders that pump from wells with a 4-inch or larger diameter
at a rate equal to or greater than 100,000 gallons per day. This
category represents all water distributed from the water-
treatment facilities for public water supply on a monthly basis.
Reported data generally were available for the years 1978 to
2008 at the water-treatment plants shown in figure 4, but such
data were sparse prior to 1978 and were estimated for the
years 1950 through 1977.

Data on groundwater withdrawals for public water sup-
ply for SJRWMD and SFWMD were gathered from FDEP
Monthly Operating Reports (MORs) for 1978 through 2008,
and periods of missing record were filled by linear interpola-
tion prorated by average monthly flow as a percentage of
annual total flow for 19782008 (Katherine Graf, University
of Florida, written commun., 2011). Groundwater withdraw-
als for public water supply in the SWFWMD area were
compiled using reported data from the SWFWMD Water Use
Permit (WUP) records for most water-treatment plants or
from estimates for a few plants (Jill Hood, Southwest Florida
Water Management District, written commun., 2010). These
public water-supply groundwater withdrawal data for the
CFCA and vicinity are provided by Munch (2014), includ-
ing documentation of the methods used to estimate missing
data. As described later in the report, all groundwater-use data
were spatially aggregated into 20 x 20-km grid cells for input
into the ANN models; therefore, only total monthly water
amounts delivered from a water-treatment plant were com-
piled and no attempt was made to distribute this total flow to
active wells that supply the plant. After aggregating the data
into 20 x 20-km grid cells, public water-supply groundwa-
ter withdrawal data from 1950 through 1977 were estimated
by extrapolation and comparison with the limited amount
of reported data during this period, as described later in the
report.

Agricultural

Estimates of groundwater withdrawals for citrus irriga-
tion, non-citrus agricultural irrigation, and golf course irriga-
tion developed by McLeod and Munch (2012) for the CFCA,
including all of Lake County, were used in this study. Even
though golf course irrigation is not traditionally categorized as
an agricultural water use, McLeod and Munch (2012) applied
the same methodology to estimate groundwater withdrawals
for golf course irrigation as that used to estimate withdraw-
als for citrus and non-citrus agricultural irrigation. Monthly
groundwater withdrawal data were available for citrus and
non-citrus agricultural irrigation for the period 1957-2010
and for golf course irrigation for the period 1977-2010 in the
areas shown in figure 5. The methodology applied by McLeod
and Munch (2012) involved the following procedures:

(1) aggregating annual total water use by county using data
compiled by the SIRWMD, SFWMD, SWFWMD, and
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USGS; (2) interpolating and extrapolating the total water

use into groundwater use based on the best available sources
(generally the National Agricultural Statistics Service
[NASS] for citrus irrigation and the STIRWMD, SFWMD,
SWFWMD, and USGS for non-citrus agricultural and golf
course irrigation); (3) disaggregating the total use spatially
by proportionally distributing the use according to estimated
acreage polygons, which were based on spatial land-use and
land-cover data available from the Florida Geographic Data
Library (http://www.fgdl.org), NASS, SIRWMD, SFWMD,
SWFWMD, and USGS; and (4) disaggregating the data tem-
porally to yield monthly groundwater use based on monthly
irrigation schedules for recommended crop irrigation require-
ments. Given the paucity of spatial data on historical irrigated
acreage, McLeod and Munch (2012, p. v) state that “...only
the groundwater use estimates generated from these models
are considered to be accurate (on a semi-regional scale); not
the polygon acreages.” This limitation of the data is another
reason why all groundwater-use data were aggregated into
20 x 20-km grid cells, as described later in the report.

Phosphate Mining

Phosphate mining in the CFCA has been confined to the
southwestern part of Polk County (fig. 6). Water used by the
phosphate industry consists of that required for the mining
(ore extraction) and phosphate chemical production processes.
Groundwater withdrawals for both categories of water use by
the industry were compiled from reported data for 1978-2010
on a monthly basis (Jill Hood, Southwest Florida Water Man-
agement District, written commun., 2011) and well locations
from the SWFWMD WUP records (fig. 6). No WUP data were
available for years prior to 1978, and groundwater withdraw-
als for mining and chemical production were estimated sepa-
rately on the basis of annual estimates of total water use by the
phosphate industry, using the stepwise methodology described
below (Jill Hood, Southwest Florida Water Management Dis-
trict, written commun., 2011):

1. The 5-year average ratio of groundwater to surface-
water use of 96 percent was calculated for the phosphate
industry using reported 1978-82 data from SWFWMD
WUP records. This period was chosen on the basis of the
assumption that as the phosphate industry started using
alternative sources, the 5-year average ratio would change
over time.

2. The average monthly variability of groundwater use for
mining and chemical production WUPs were calculated
separately. The use of water for mining generally showed
more seasonal variations.

3. The 5-year average ratio of groundwater use for mining
(69 percent) and chemical production (31 percent) to total
groundwater use by the phosphate industry was calcu-
lated using reported 1978-82 data from SWFWMD WUP
records.

4. The estimated annual water use for the phosphate
industry for 1935-74 reported by Robertson and others
(1978, p. 12) was used. The groundwater ratio (96 per-
cent) established in step one was applied to the 1935-74
data, followed by linear interpolation between estimated
1974 and reported WUP 1978 groundwater-use data.

5. Ratios were initially applied to the total annual ground-
water use for mining and chemical production from step
three, followed by ratios representing monthly variability
for mining and chemical production from step two.

6. For spatial distribution of chemical production groundwa-
ter use, the WUPs active in 1978 were assumed to have
been active since 1935. The contributing ratio for each
WUP was calculated and used to prorate the total chemi-
cal production groundwater use. The resulting estimated
withdrawal was placed at the centroid of the wells associ-
ated with each WUP (fig. 6).

7. For estimating the spatial distribution of mining ground-
water use, spatial data from FDEP showing historical
evolution of mining areas were used. These data were
available for the periods up to 1930, 1940, 1950, 1960,
1965, 1970, 1975, and 1980. The contributing ratio was
calculated for each parcel with the same mining year. For
years with no data, the ratio was assumed to be the same
as that for the following year. The contributing ratio for
each mining parcel was used to prorate the total mining
groundwater use, and the resulting estimated withdrawal
was associated with each respective parcel (fig. 6).

Drainage Wells

From the early 1900s to the 1960s, drainage wells were
drilled in central Florida primarily for the purposes of dispos-
ing of stormwater runoff and controlling lake levels (Kim-
rey and Fayard, 1984; Bradner, 1996). In the CFCA, direct
inflow to the Upper Floridan aquifer takes place through 210
active drainage wells, which are concentrated in the Orlando
metropolitan area (fig. 6). The status and locations of these
wells were verified by Hartman and Associates, Inc. (2003).
These wells, which are cased to the top of the Upper Floridan
aquifer and then drilled open-hole into the Upper Floridan
aquifer, either receive street runoff from storm drains (street
drainage wells) or control lake water levels (lake-level control
wells). The estimated monthly recharge to the Upper Floridan
aquifer was computed for each drainage well using a water-
budget analysis and empirical runoff coefficients developed
by Sepulveda (2002, p. 34-35). The surface drainage areas of
these wells, which were delineated by Sepulveda and others
(2012) on the basis of a digital elevation model, were used
with monthly rainfall intensity (from the NOAA Orlando
gage, station identification number 6628) and runoff coef-
ficients (0.478 for street drainage wells and 0.225 for lake-
level control wells) to compute the monthly volume of water
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contributing recharge to the Upper Floridan aquifer from 1950
through 2008. Therefore, the estimated recharge rates to the
Upper Floridan aquifer at drainage wells are strongly corre-
lated to the amount of total rainfall for any period. Sepulveda
and others (2012) developed more refined drainage-well
recharge rates using the Green-Ampt infiltration equations
(Chow and others, 1988), but these data are only available for
the period 1995-2006 and were not used in this study because
of the short period of record. Due to the lack of historical data,
for the purposes of the estimates used in this study, the number
of drainage wells was not changed over time from the 210
wells inventoried by Hartman and Associates, Inc. (2003).

Land Use and Land Cover

Landscape change resulting from urbanization may be
an important determinant of hydrologic change (Renken and
others, 2005). Because of paucity of historical data on land
cover and the coarse temporal resolution of the data that are
available, landscape change was not included as a quantita-
tive factor in this study. In order to illustrate the potential for
landscape-change-induced impacts on central Florida hydrol-
ogy, however, a brief comparison of historical land-use and
land-cover data was made.

Comparison of land-use and land-cover data for the years
1977 and 2006 indicates substantial changes in the study area,
particularly regarding the extent of developed areas (fig. 7). It
is important to note that such changes may be due in part to
differences in land-use and land-cover data sources as well as
to differences in the interpretation and classification tech-
niques. The 1977 data were compiled from high-altitude aerial
photographs and the minimum digitized polygon size gener-
ally was 4 hectares (U.S. Geological Survey, 1990), whereas

the 2006 data were derived from Landsat images and released
in a raster format at 30-meter resolution (equivalent to

0.09 hectare) (Fry and others, 2011). For this reason, only the
following more generalized land-use and land-cover catego-
ries were directly compared: developed areas (low-, medium-,
and high-intensity urban areas and associated open areas,
such as lawns, parks, and aesthetic landscaping), cropland/
pasture, open water, and other areas (barren land, forest, scrub/
grassland, and wetland). In 1977, the study area (6,019 square
miles (mi?) covering all of Lake, Orange, Osceola, Polk,

and Seminole Counties) consisted of 7 percent developed
land, 35 percent cropland/pasture, 9 percent open water, and
49 percent other areas. In 2006, the study area consisted

of 18 percent developed land, 21 percent cropland/pasture,

9 percent open water, and 52 percent other areas. These results
indicate the extent of increased urbanization for this 29-year
period during which the area of developed land increased by
about 680 mi?, representing a change of about 160 percent,
and the area of cropland/pasture decreased by about 810 mi?,
representing a change of about —40 percent (fig. 7). During a
similar 30-year period (1980-2010), population in the study
area increased from about 1.12 million to 2.74 million, or
about 140 percent (Florida Office of Economic and Demo-
graphic Research, 2012). Increases in the area of developed
land are particularly important because such changes could
cause an increase in runoff as a result of reduced infiltration
through impervious surfaces, soil compaction during develop-
ment activities, or installation of stormwater drainage systems.
In contrast, depending in part on the design of the stormwater
management system, such as the use of stormwater infiltra-
tion basins rather than detention basins or ditch/canal systems
that eventually direct overland runoff to surface-water bodies,
urbanization could result in an average increase in infiltration
on an areal basis.
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Characterization of Historical Data

Historical data were examined using descriptive statistics,
cluster analysis, and other exploratory analysis techniques to
assess their suitability for more intensive data-mining analy-
sis. Based on these analyses and input from SJRWMD and
SWFWMD on sites of priority water management concern, a
subset of lakes, wells, and springs (51 sites in all) was selected
for the development of ANN models.

Hydrologic Data

Hydrologic data were available for a wide range of time
periods and temporal resolutions. These data were examined
by computing range and linear trend for the entire period
of available data for each site with at least 10 years of data
consisting of at least 10 measurements. Cluster analyses were
performed for sites with longer periods of record.

Range and Linear Trend

In order to better understand long-term variability in the
historical hydrologic data, ranges and linear trends of the time
series were computed. The range of a time series is a measure
of the maximum fluctuation in an observed parameter over a
specified period and is computed as the difference between
maximum and minimum values. For each site, ranges were
computed for the period of record for the purposes of qual-
ity assuring the dataset, wherein an anomalous value could
be identified from an unusually large range. For rainfall
sites, unusually large maximum values can be present in data
accumulated over long periods, such as in some of the rainfall
datasets collected by SIRWMD, SFWMD, or SWFWMD.
Thus, for the purposes of further analysis in this study, only
NOAA daily rainfall data were examined. The linear trend of a
time series is the slope of a linear regression line computed for
the period of record data. For this simple exploratory analysis,
no attempt was made to identify cyclical, nonmonotonic, or
statistically significant trends.

Ranges of water-level data (in lakes or wells) varied
widely across the study area. Variation in lake water lev-
els ranged from 2.38 to 32.96 ft with a mean of 8.43 ft and
median of 7.22 ft. Some spatial trends are apparent. Of all
307 lakes, 59 percent are in ridge physiographic regions com-
prising 32 percent closed-basin and 27 percent flowthrough
lakes (figs. 8, 9). In contrast, 26 percent of the 307 lakes have
a historical range in water level greater than 10 ft, of which
19 percent are in ridge physiographic regions comprising
12 percent closed-basin lakes and 7 percent flowthrough lakes
(fig. 9). These results indicate that closed-basin lakes in ridge
areas consistently have greater variation in water levels than
do flowthrough lakes in ridge areas (fig. 9), perhaps as a result
of the lack of surface-water inflows or outflows. Addition-
ally, both closed-basin and flowthrough lakes in ridge areas
generally have greater variation in water levels than lakes in

Characterization of Historical Data 19

non-ridge areas, suggesting that lakes in ridge areas are more
susceptible to large changes in water level as a result of greater
hydraulic connection with the Floridan aquifer system. Ranges
of groundwater levels exhibit larger variations, from 2.57 to
62.87 ft with a mean of 13.23 ft and median of 10.41 ft. Spa-
tial trends in groundwater levels are due to spatial variations
in groundwater withdrawals, recharge, and hydrogeologic
conditions (fig. 10). The largest ranges of groundwater levels
occurred in southwest Polk County, likely attributable in part
to historical changes in water-use practices by the phosphate
industry (Basso, 2003; Spechler and Kroening, 2007).

Variation in spring flows ranged from 0.9 to 169 ft/s
with a mean of 32.8 ft¥/s and median of 13.8 ft¥/s. The range
of flow for an individual spring generally is greater for large
magnitude springs relative to that for small springs (fig. 11).
However, spring-flow ranges as a percentage of mean flow are
not strongly correlated with mean flows (R of —0.15).

Linear trend statistics of time series for each data type
computed for the respective periods of record indicate a mix-
ture of upward and downward trends (table 1). Meteorological
data indicate 67 percent of sites exhibited upward trends in air
temperature, whereas 76 percent exhibited downward trends
in rainfall. Hydrologic response data indicate about an even
split between upward and downward trends in lake water lev-
els, whereas water levels in 69 percent of wells and flows in
68 percent of the springs exhibited downward trends. Spatial
patterns are apparent in some data. Upward trends in air tem-
perature occur throughout the study area, but downward trends
occur only at some sites in the central portion of the study
area (fig. 12). Downward rainfall trends occur throughout the
study area, and upward trends occur only at five sites scattered
across the study area (fig. 13). For lake water levels, closed-
basin lakes in ridge areas consistently have stronger linear
trends, whether upward or downward, than flowthrough lakes
in ridge areas, perhaps a result of lack of surface-water inflows
or outflows (figs. 14, 15). Additionally, both closed-basin
and flowthrough lakes in ridge areas generally have stronger
upward or downward trends in water levels than lakes in
non-ridge areas, suggesting that lakes in ridge areas are more
susceptible to long-term changes in water level as a result of
greater hydraulic connection with the Floridan aquifer system
(figs. 14, 15). Trends in groundwater levels generally are more
pronounced than those in lake water levels, with downward
trends throughout the study area (fig. 16). Upward trends in
groundwater levels, although fewer in number, also occur
throughout the study area. The strongest upward trends were
computed for wells in southwest Polk County (fig. 16), likely
attributable in part to historical changes in water-use practices
by the phosphate industry (Basso, 2003; Spechler and Kroen-
ing, 2007). The linear trend in flow for an individual spring,
whether upward or downward, generally is greater for large
magnitude springs than for small springs (fig. 17). However,
the magnitudes of spring flow trends (absolute values of the
slopes of the linear trend lines for each spring) as a percentage
of mean flow are weakly inversely correlated with mean flows
(R =-0.33), indicating smaller springs tend to have trends in
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flow, whether upward or downward, that are proportionately
greater on the basis of flow magnitude than those of larger
springs. The analyst must exercise caution in comparing trends
among these sites because of large differences in periods

of record, measurement frequency, and hydrologic setting.
Furthermore, the intent of the linear trend analysis described
here is for exploratory purposes only and should not be con-
strued as a statistical analysis. No attempt was made to assess
normality of the data or imply statistical inference. Murch and

Table 1.
sites in central Florida.
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Tara (2010) presented a thorough statistical analysis of trends
in hydrologic data for 115 sites in the CFCA. Nevertheless,
the data ranges and linear trends described above indicate that
substantial variability exists in the hydrologic system in the
study area.

Time-Series Cluster Analysis

A time-series cluster analysis was performed for each
type of hydrologic response data (lake water level, ground-
water level, and spring flow) to identify dynamic similarities
and differences among sites of the same type. The criteria
for selection of sites for cluster analysis was that the site had
at least 30 years of data and that no more than 25 percent of
the record was missing during the period 1976-2008 (data
collection at some sites began well before 1976). For wells,
daily values of water level were required, but for springs and
lakes, monthly or more frequent data values were permitted.
A total of 176 sites—consisting of 121 lakes, 46 wells, and
9 springs—were used for cluster analysis.

A multistep process was followed to prepare and cluster
each type of data. First, each time series was processed by
applying a smoothing function, consisting of a trailing running
average hereafter called a moving window average (MWA).
The window size was selected on the basis of the original
data frequency: a 15-day MWA with 15-day resampling for
wells and a 30-day MWA with 30-day resampling for lakes
and springs. Next, the data were centered by computing the
difference from a “standard” time series (arithmetic average
by time step of all the time series for that data type), leav-
ing the residuals that accentuate differences between signals.
Finally, a correlation matrix (values of R) of the residuals was
constructed as a measure of the dynamic similarity among
sites, and the k-means clustering technique was applied to
the matrix. The k-means clustering technique provided in the
Data Miner Software Kit of Weiss and Indurkhya (1998) was
implemented, which is based on the algorithm of Hartigan and

Linear trend statistics for air temperature, rainfall, lake water levels, groundwater levels, and spring flow for study area

[Temperature sites have periods of record of at least 45 years; rainfall sites have periods of record of at least 95 years; other sites have periods of record of at
least 10 years; °F/yr, degrees Fahrenheit per year; (in/d)/yr, inches per day per year; in/yr, inches per year; (ft¥/s)/yr, cubic feet per second per year]

Number Percentage of sites Linear trend

of sites Increasing | Decreasing | Minimum Maximum Mean Median
Temperature, °F/yr 21 66.7 333 -0.014 0.052 0.007 0.003
Rainfall, (in/d)/yr 21 23.8 76.2 -136x 104 4.72x10* -6.56x10° —4.02x10°
Lake water level, in/yr 307 48.5 51.5 —2.85 13.26 0.305 —0.0111
Groundwater level, in/yr 455 314 68.6 -25.83 22.97 -0.431 -0.381
Spring flow, (ft’/s)/yr 19 316 68.4 ~0.599 0.238 -0.075 ~0.036
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Range of daily flow and mean flow for springs in the study area with at least 10 measurements and a period of record of at
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Figure 13. Linear trend in daily rainfall for sites in the study area with a period of record of at least 95 years (1901 or 1914 through 2008).
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Wong (1979). For k number of groups, the k-means algorithm
optimizes which members of the overall group should be in
groups 1 through k. The optimal partitioning of groups is
determined by using the root-mean-square error (RMSE) as a
measure of the difference in distance between each member
and the mean of the group such that movement of any point
from one group to another will not decrease the RMSE for
either group. The k-means clustering technique was repeated
for a range of group sizes (k values), and a mean RMSE for all
groups was computed for each k value and plotted (fig. 18). In
some cases the optimal number of groups can be selected at
the inflection point between a sharp vertical decline in mean
RMSE and a horizontal plateau, for example, for the spring
results showing a distinct break at three groups (fig. 18). In
other cases a more gradual reduction in RMSE with increas-
ing number of groups occurs, for example, for the lake results
showing breaks at two and six groups (fig. 18).

Cluster analyses were performed for several differ-
ent time periods: 31 years (1978-2008) for lakes, 31 years
(1978-2008) and 41 years (1968-2008) for wells, and 41 years
(1969-2009) for springs. For lakes, the optimal number of
groups selected was six (fig. 18). There is no apparent geo-
graphic association among these lake groups, as each group
has members generally located throughout the study area
(fig. 19). However, groups 2 and 3 have proportionately
more closed-basin lakes (10 of 22 for group 2 and 9 of 20
for group 3) than all groups combined (32 of 121), whereas

groups 4 and 5 have proportionately more flowthrough lakes
(20 of 21 for group 4 and 19 of 22 for group 5) than all groups
combined (89 of 121) (fig. 20). For wells, the optimal num-
ber of groups selected was three for both the 31- and 41-year
cluster analyses (fig. 18). For the 31-year cluster analysis,
wells generally are associated geographically (fig. 21). Group
1 wells are in southwest Polk County and comprise all Flori-
dan aquifer system wells and two intermediate aquifer system
wells in this area. Group 2 wells are generally in south Lake
and Orange Counties, east Polk County, and all of Osceola
County, and include all but one of the surficial aquifer system
wells used in the analysis. Group 3 wells are generally in the
central and northern parts of the study area. Wells from the
31-year cluster analysis with long periods of record were used
in the 41-year cluster analysis and generally were associated
into similar groups (fig. 22). For springs, the optimal num-
ber of groups selected was three (fig. 18). Spring groups are
loosely characterized by geographic location and magnitude of
flow. Group 1 springs comprise Alexander and Blue Springs,
both of which are first magnitude springs. Group 2 springs
comprise Miami, Palm, Sanlando, and Starbuck Springs,
which are small second magnitude or third magnitude springs
where all but Miami Springs are in close proximity to each
other (fig. 22). Group 3 springs comprise Bugg, Rock, and
Wekiwa Springs, where both Rock are Wekiwa are second
magnitude springs.

Time-series cluster analyses also were performed on
long-term meteorological data reported by NOAA. The period
1942-2008 was selected for analysis because it had the least
amount of missing data. However, large amounts of data were
missing for 5 of the 23 NOAA rainfall sites and 1 of the 21
NOAA air temperature measurement sites; the data for these
sites were not used in the analyses. Estimates of missing
rainfall data were included in the hydrologic database (appen-
dix 1), but most of these estimates were developed by Aly
(2008) for long-term rainfall analyses, such as those used in
the calculation of long-term water budgets, and not for event-
based predictions; thus, a daily prediction from this method
may have a large error (Aly, 2008, p. 97-98). Therefore, the
relatively small amounts of missing data in the remaining 18
rainfall time series and 20 PET time series were filled using
“IF-THEN-ELSE” rules in which a missing value at a gage
is filled using values from one or more neighboring stations.
Missing rainfall data in particular are difficult to fill because of
their “spiky,” spatially discontinuous nature; therefore, these
filling rules were selected to maintain consistent temporal vari-
ability in the data. Figure 23 shows how data were propagated
across the network, with the arrows indicating the direction
of flow. The order of filling emphasized the use of gages with
the most abundant data to fill the records for gages with the
next most abundant data and so on. In some instances filled
data at one gage were used to fill the record for another gage.
Data for three additional rain gages (sites 510206, 540106,
and 1880101 monitored by the STRWMD and located in
Indian River County; fig. 23) were used to fill the record for
NOAA site 2936. The rainfall filling rules also were used for
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Figure 15. Linear trend in daily water level for lakes in the study area with at least 10 measurements and a period of record of at least

10 years.
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Linear trend in daily flow and mean flow for springs in the study area with at least 10 measurements and a period of record
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study area.

filling missing PET data rather than developing a new set of
rules unique to the PET data. This approach is expected to be
sufficient given the more spatially and temporally consistent
nature of PET data. To assess the longer-term variability in
rainfall and PET data, cluster analyses were performed using
1,440-day (approximately 4-year) MWAs computed from the
filled datasets.

Cluster analysis of rainfall data from 18 NOAA gages
indicates 4 groups of sites with relatively similar dynamic
behavior exhibiting north-south and east-west geographic
associations (fig. 24). Comparisons with the long-term linear
trend analysis (fig. 13) show the rain gages in the western
half of the study area belonging to cluster groups 3 and 4 had
downward trends, with the exception of NOAA gage 1641,
which had a slightly upward trend. In contrast, rain gages in
the eastern half of the study area belonging to cluster groups
1 and 2 had a mix of upward and downward long-term trends
(fig. 13). Such spatial patterns in long-term trends may poten-
tially affect the hydrologic system, especially the groundwater
flow system because most of the areas of high groundwa-
ter recharge within the study area occur in the western half
(Septilveda and others, 2012), and long-term downward trends
are apparent in groundwater levels and spring flows (figs. 16,
17; table 1). Closer examination of 4-year MWAs of the daily
time series, however, indicates that substantial intragroup
differences exist (fig. 25), because rainfall data commonly
are highly variable in space and time. Therefore, for develop-
ing empirical models such as ANNSs, the use of data from all
18 rain gages rather than generalizing into 4 groups should
improve model predictive capability.

Cluster analysis of Hargreaves PET data computed from
air temperature at 20 NOAA gages indicates 3 groups of
sites with relatively similar dynamic behavior and a gener-
ally east-west geographic association (fig. 26). The PET data
generally are more smoothly varying in time than the rainfall
data, although some intragroup differences indicate spatial
variation (figs. 25, 27). These results are consistent with those
of Sumner (2006) and O’Reilly (2007), who noted that the
temporal variability of ET in central Florida is considerably
less than that of rainfall for a wide range of time scales (from
daily to annual). Such differences in the stochastic charac-
teristics of rainfall and ET lead to rainfall explaining more
than 90 percent of the temporal variability in available water
(rainfall minus ET) (O’Reilly, 2007, p. 15). Because available
water drives the hydrologic system and its variability is con-
trolled by rainfall, PET time series were not further analyzed
in this study and were excluded as explanatory variables for
ANN modeling.

Groundwater Use

To view general spatial trends in groundwater use
over time, an application was developed that aggregates
the monthly data using a grid cell size of approximately
20 x 20 km (fig. 28). This application—called the Ground-
water-Use Data Viewer (GUDV)—is described in further
detail in appendix 2. The relatively large grid cell size was
selected because the effects of groundwater use can propa-
gate over fairly long distances in a karst aquifer, such as the
Floridan aquifer system. Murray (2010) analyzed the effects
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Figure 20. Distribution of lakes in the study area identified by lake type (closed basin or flowthrough) and physiography (ridge or non-

ridge physiographic region) based on the 31-year cluster analysis of lake water-level data from 1978 through 2008.

of groundwater withdrawals and water levels at two monitor-
ing well sites in central Florida and reported no changes in
correlation between groundwater levels and withdrawals at

a range of radial distances from 2.5 to 10 miles, suggesting
that that the GUDV cell width of 20 km (12.4 miles) is not
too large. The grid structure of the GUDV also was used to
estimate missing data for public-supply groundwater with-
drawals. Data reported on water distributed by public-supply
water-treatment plants in the study area (fig. 4) are sparse prior
to 1978; therefore, data from 1950 through 1977 were esti-
mated by hindcasting measured data. Hindcasting consisted
of linear extrapolation of log-transformed 1978-2008 data
with average monthly variations from 1978 to 2008 added
back in. Hindcasting was done per GUDV grid cell (fig. 28),
not for individual users, and only for cells where 1978 total
public-supply groundwater withdrawals exceeded 0.1 Mgal/d.
Also, five cells for which public-supply data were missing in
the early part of the 1978-2008 period were filled in the same
way. Hindcasted data compare better with the limited amount
of reported data in the period 1965-77, when percentage dif-
ferences generally were less than 10 percent. Results compare
more poorly with data for the period 195064, when percent-
age differences generally exceeded 10 percent. The paucity
of measured data affects the accuracy of such comparisons,
however, and the hindcasted data have a similar upward trend
as the public-supply data estimated by Munch (2014) for the
same period.

Spatial and temporal trends in groundwater-use data
were examined using the GUDV. Long-term patterns in
total groundwater use exist in both monthly and annual data
for all water-use categories (fig. 29). Seasonal variations in
groundwater use are apparent in the monthly data, especially
in the citrus and non-citrus agricultural irrigation categories
(fig. 294). Examination of annual data clearly indicates that
all categories of groundwater withdrawal were increasing
during the 1950s and throughout most of the 1960s, with
the largest quantities from the phosphate mining category
increasing from 44 Mgal/d in 1951 to 252 Mgal/d in 1966
(fig. 29B). Groundwater withdrawals by the phosphate mining
industry began to decline in 1967 and generally have contin-
ued to decline, reaching a minimum of 44 Mgal/d in 2006.
Groundwater withdrawals for citrus and non-citrus agricultural
irrigation have increased from 63 and 50 Mgal/d, respectively,
in 1957 to a maximum of 225 Mgal/d for citrus in 1981 and
139 Mgal/d for non-citrus agricultural in 1984. Since the early
1980s, however, citrus and non-citrus agricultural groundwater
withdrawals generally have decreased, reaching a minimum
of 126 Mgal/d for citrus irrigation in 2008 and 29 Mgal/d
for non-citrus agricultural irrigation in 2002. The amount of
water used for golf course irrigation is small relative to that in
other categories but has shown a slight upward trend since the
earliest available records, from 3 Mgal/d in 1977 to 18 Mgal/d
in 2008 and a maximum of 34 Mgal/d in 2000. As expected,
drainage well recharge generally follows rainfall patterns with
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referenced by the station identification label.



Figure 27.

1,440—day average PET, in inches per day

1,440—day average PET, in inches per day

1,440—day average PET, in inches per day

Moving window averages (1,440 days = 4 years) of computed Hargreaves potential evapotranspiration (PET) data for the

0.19

0.19

0.09

0.21

0.19

0.09

Characterization of Historical Data

1955 —

1960 —

1965 —

1970 —

1975 —

1980 —

1985 —

2010

I I S Y I N I I
] o 0 o n o Lo o Y] o [Te) o w0 o
=3 0 0 (1= (1= ~ ~ [==3 [==] D D o [=] —
(=2 (=2 (=2 (=2 (=2 (=2 (=2 =z D (=2 (=2 o o o
— — — — — — — — — — — N N ~
Group 3

T T T 1T T T T T T T°1

1945

1950 —

1955 —

1960 —

1965 —

1970 —

1975 |—

1980 —

1985 —

1990 —

1995 —

2000 —

2005 —

2010

39

individual National Oceanic and Atmospheric Administration (NOAA) air temperature measurement sites in the study area composing

the three groups derived from the 67-year cluster analysis. Site locations are shown in figure 26.
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a minimum of 25 Mgal/d in 2000, maximum of 56 Mgal/d
in 1960, and mean of 41 Mgal/d for 1950-2008. In contrast
to these other categories, public-supply groundwater with-
drawals have increased substantially from 22 Mgal/d in 1950
to 437 Mgal/d in 2008, although short periods of decrease
occurred in 1981-82, 1990-91, 2000-2001, and 2006—08.
The net result is that total groundwater use in the study area
(excluding 195057 due to missing data) increased from
about 250 Mgal/d in 1958 to about 590 Mgal/d in 1980 and
has remained relatively stable in the period 1981-2008 with
a minimum of 559 Mgal/d in 1994, maximum of 773 Mgal/d
in 2000, and mean of 636 Mgal/d. The change in trend in

the early 1980s and the following period of relatively slight
trend is attributable to the concomitant effects of increasing
public-supply withdrawals and decreasing phosphate mining

and citrus and non-citrus agricultural irrigation (fig. 29B). A
comparison of aggregated data for a dry period (May 2000)
and a wet period (August 2004) using the GUDV shows the
effect of rainfall on all water-use categories, with generally
high groundwater withdrawals and low drainage well recharge
in May 2000 (fig. 30) and low groundwater withdrawals and
high drainage well recharge in August 2004 (fig. 31). May
2000 was a dry period with only 0.53 in. of rainfall, whereas
August 2004 was a wet period with 13.07 in. of rainfall, based
on average data for the 18 rain gages shown in figure 24.
During wet periods, the effect of drainage well recharge in
offsetting public-supply withdrawals in the Orlando area is
substantial, resulting in a net inflow to the aquifer in one area
(fig. 31). Such insight provided by the GUDV was used to
guide the development of ANN models described in the fol-
lowing section.
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Figure 30. Screen capture of the Groundwater-Use Data Viewer showing groundwater use by category and sum total in million gallons

per day (Mgal/day) for a dry period (May 2000).
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Methods for Simulation of Historical
Lake Water Levels, Groundwater
Levels, and Spring Flows

Water levels and flows in a hydrologic system typically
are simulated using dynamic deterministic models that incor-
porate the mathematical descriptions of the physics of surface
and subsurface flow. Although physics-based models have
been the state of the practice for resource management evalua-
tions of anthropogenic effects on hydrologic systems, devel-
opments in the field of advanced statistics, machine learning,
and data mining offer opportunities to develop empirical ANN
models that often more closely replicate observed conditions.
ANN models also have the capability to reliably predict sys-
tem response if the full range of input variables was consid-
ered during the model development and training process.

Limitations of Datasets

The reliability of all mathematical models, whether
empirical or physics based, is dependent on the quality of
the data and range of measured conditions used for training
or calibrating the model. The available period of record for
forcing variables (such as rainfall and groundwater use) and
hydrologic response variables can limit the range of lake water
levels, groundwater levels, and spring flows that a model can
accurately simulate. A long period of continuous record and
large range of historical conditions are critical for developing
accurate empirical models; therefore, only the sites used in
cluster analyses, which satisfied these conditions, were consid-
ered for potential ANN modeling.

To assist in the selection of potential sites for more
detailed analysis, SIRWMD and SWFWMD provided a list of
“priority sites” that are of important management or regula-
tory concern, such as a well with a long period of water-level
record or a lake for which a regulatory minimum water level
must be established. Priority sites with longer periods of
record, as well as other sites included in the cluster analysis
with long-term data records, were initially selected. For the
groups of sites exhibiting similar behavior as indicated by
cluster analysis, representative priority sites were selected
for ANN modeling. Owing to the sparseness of spring-flow
data, only priority springs that also have a relatively long and
complete data record were selected for ANN modeling. A
final dataset of 51 sites, consisting of 22 lakes, 23 wells, and
6 springs, was selected for intensive analysis and development
of ANN models [fig. 32; table 2 (table 2 in back of report)].

System Dynamics and Analysis

The behavior, or dynamics, of a natural system results
from the cause-and-effect relations between multiple physi-
cal forces. For example, temporal variations in water-table
altitude at a fixed location are subject to weather conditions,
such as rainfall and solar radiation, and anthropogenic influ-
ences, such as artificial recharge and groundwater withdraw-
als, over a range of time scales from daily to multiyear. For the
application of ANN models to sites in the CFCA, data-mining
techniques were applied to maximize the information content
in raw data while diminishing the influence of poor or miss-
ing measurements. Methods included digital filtering; the use
of time derivatives, time delays, and moving averages; and
comparison of differences between stations.

Signals, or time series, manifest three types of behavior:
periodic, noise, and chaotic (Conrads and others, 20006). Peri-
odic behavior is precisely predictable. Examples of periodic
behavior are the diurnal sunlight and temperature patterns
caused by the rising and setting sun or fluctuations in tidal
water levels attributed to orbital mechanics. Noise is unpre-
dictable. Noise refers to unexplained variations in data values
and commonly is attributed to measurement error. Chaotic
behavior is neither totally periodic nor noise and always has a
physical cause. Variations in weather conditions, such as fluc-
tuations in rainfall or air temperature, are examples of chaotic
behavior. Chaotic behavior is to an extent predictable, espe-
cially over short time frames and prediction horizons. Such
a short prediction horizon points to a classic characteristic of
chaos that small permutations in the initial state of a determin-
istic system can lead to large changes in a later state (Motter
and Campbell, 2013, p. 27).

Signal Filtering and Decomposition

Signal filtering involves removal of certain frequencies
or range of frequencies from an input signal, preserving all
other frequencies in the output signal. A MWA is a form of
low-pass filter, which preserves the low-frequency variations
of the input signal and removes the high-frequency variations,
where larger window sizes lead to greater smoothing of the
input signal. All MWAs in this study were trailing moving
averages such that, for example, a 30-day MWA was com-
puted as the arithmetic average of data for the current and
preceding 29 days. Daily rainfall data at the 18 NOAA rain
gages (fig. 24) were used to compute MWAss for a “standard”
rainfall signal (arithmetic average by time step of all gages)
using the following window sizes: 30; 90; 270; 630; 1,440;
and 2,250 days. Using these same window sizes, MWAs of
normalized rainfall (gage rainfall minus standard rainfall)
also were computed for each NOAA rain gage. Multiyear
trends in rainfall (for example, a 630-day MWA, fig. 334)
and seasonal variations in rainfall (for example, a 90-day
MWA, fig. 33B) are clearly evident in the study area as
manifest in the standard rainfall signal. Likewise, monthly
groundwater-use data (fig. 294) were used to compute MWAS



46 Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida

FLAGLER
COUNTY

R ——
MARION

VOLUSIA
COUNTY

29°00' [—

SUMTER
COUNTY

31 4
312 209 SEMINOLE
- ——p COUNTY

ORANGE
COUNTY

0
7120 622 613

OSCEOLA
COUNTY

28°00"
o BREVARD
g COUNTY
S |m2o e,
S &=
& 7z
o5
-Ne) T
a0
-
3 446
=
INDIAN
_ _ RIVER
"] county
MANATEE | HARDEE HIGHLANDS  # OKEECHOBEE |
COUNTY COUNTY

| COUNTY COUNTY —
| I | —

Base from U.S. Geological Survey digital data, 10 20 MILES EXPLANATION
Universal Transverse Mercator projection, zone 17 L )

. . L
10 20 KILOMETERS Central Florida Coordination

Area houndary

oo

——— Water Management District
boundary

446 o Groundwater-level site location

and site number

0 A Lake water-level site location
and site number
3090 Spring-flow site location and site
number

Figure 32. Sites in central Florida for which artificial neural network models were developed. Information for each site is referenced in
table 2 by the site number.



Moving average rainfall, in inches per day

Moving average rainfall, in inches per day

Methods for Simulation of Historical Lake Water Levels, Groundwater Levels, and Spring Flows

0.8 0
0.7 h 2
06 — 4
Daily
05 H— — 6
0.4 H 8
0.3 H 10
“ |
0.2 J ; \ 12
S l AN o 0 l
) qwlu‘mu " | ]VM"’IWJ wa ' IW “‘m )
\
l 16
1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Year
B
" TR TN dld I iR
07 — —1
06 — / — 2
Daily
05 — —3
— 4
— 5
\ — 6
W |
0 ) I I | L1 | | I I ) I I | | 1 T il Il |
1997 1998 1999 2000 2001
Year

Daily rainfall, in inches per day

Daily rainfall, in inches per day

EXPLANATION

Window size of
moving window
average, in days

30

90
270
630
1,440
2,250

EXPLANATION

Window size of
moving window
average, in days

30

90
210
630
1,440
2,250

47

Figure 33. Average daily and low-pass filtered rainfall for the standard rainfall time series for A, 1945 through 2008, and B, 1997 through

2001. The standard rainfall time series represents the arithmetic average of daily rainfall at the 18 National Oceanic and Atmospheric

Administration (NOAA) rain gages shown in figure 24.
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for total groundwater-use flow rates for the study area using
the following window sizes: 3, 6, 12, 24, 48, and 96 months.
Similar to rainfall, multiyear trends in groundwater use (for
example, 24-month MWA, fig. 344) and seasonal variations
in groundwater use (for example, 3-month MWA, fig. 34B)
are clearly evident in the study area. Unlike rainfall, however,
a notable long-term upward trend in groundwater use existed
prior to the mid-1980s, with a steeper upward trend during the
1960s and a milder upward trend during the 1970s and early
1980s (48-month MWA, fig. 344). From about the mid-1980s
through 2008, long-term trends in groundwater use were
slight, and during this period multiyear variability on the scale
of 5 to 10 years was more common (fig. 344).

Signal decomposition involves splitting a signal into
subsignals, called “components,” which are independently
attributable to different physical forces (Conrads and others,
2006). A moving window difference (MWD) is a form of
band-pass filter, which preserves variations of the input signal
within a certain range of frequencies and removes variations
of frequencies outside this range. Therefore, MWDs can be
used to represent various frequency-band components of the
forces that modulate water-level or spring-flow behavioral
dynamics. In this study, all MWDs were computed from suc-
cessive pairs of MWAs, for example, the 2,250-day MWA was
subtracted from the 1,440-day MWA, the 1,440-day MWA was
subtracted from the 630-day MWA, and so on. This process
transforms the raw input signal, such as rainfall or groundwa-
ter use, into a waveform that may be more strongly correlated
(than the raw input signal) with a water-level or spring-flow
signal and more representative of the input-output behavior
of the physical process. The behavioral dynamics manifest in
the rainfall and groundwater use as represented by MWAs and
MWDs were used to assess correlations with system response
(lake water levels, groundwater levels, and spring flows) and
ultimately for incorporation in ANN models.

Correlation Analysis

The relations between the forcing variables, response
variables, and their various low-pass filtered signals are ascer-
tained through correlation analyses to provide greater under-
standing of system dynamics. For example, spring flow is
dependent, in part, on rainfall and groundwater use, and corre-
lation analysis provides a measure of the relative contribution
of each variable. Sensitivity analysis quantifies the relations
between a dependent variable of interest and causal variables.
Computing sensitivities requires defining the relation between
variables through modeling.

Using statistical and (or) ANN software, correlations
can be computed between factors that most influence system
characteristics of interest (for example, groundwater level)
and candidate combinations of controlled and uncontrolled
variables (for example, rainfall and groundwater use). Correla-
tion methods based on statistics as well as ANNSs are applied.
Promising results identified by the analysis are validated by
comparing them to known patterns of behavior. For the current

study, correlations among rainfall, groundwater use, and
hydrologic response (lake water level, groundwater level, and
spring flow) were computed. Daily time series extending from
1942 (or the first year of hydrologic response record) through
2008 were used for identifying correlations between rain-

fall and hydrologic response. Because groundwater-use data
were available only at monthly resolution and over a shorter
period of record, monthly averages of rainfall and hydrologic
response were computed and correlations were identified for
time series extending from 1957 through 2008.

The correlations between 3 rainfall signals (270-, 630-,
and 1,440-day MWAs) at the 18 NOAA rain gages (fig. 24)
were compared to the hydrologic response at 51 sites (fig. 32;
table 2). These three rainfall signals were selected because
they generally showed the highest correlations with hydrologic
response based on preliminary analyses using a greater num-
ber and wider range of MWAs. Correlation coefficients were
computed for all rain gage and rainfall-signal pairs, yielding
a total of 54 values of R for each site (3 MWAs for each of
the 18 rain gages). Maximum correlations ranged from 0.35
to 0.90, and average correlations (for all 54 R values) ranged
from —0.03 to 0.61, whereas for most sites negative values
were found for minimum correlations ranging from —0.45 to
0.27 (fig. 35). Negative correlations likely are spurious and
have no direct causative significance; however, the relatively
high correlations suggest that rainfall is an important control
on hydrologic response.

Relatively high correlations exist for many rain gages and
rainfall signals. For example, groundwater level at site number
469 (ROMP 59 Avon Park well, table 2; fig. 32) is most highly
correlated (R values range from 0.68 to 0.76) with rainfall at
three relatively nearby rain gages (NOAA gages 5973, 7205,
and 9401; see figure 24 for rain gage locations) and rainfall at
two distant rain gages (NOAA gages 4502 and 6628) at rela-
tively short time scales (270- and 630-day MWAs). Ground-
water level at site number 602 (Bay Lake Floridan well,
table 2; fig. 32) is most highly correlated (R values range from
0.38 to 0.56) with one nearby rain gage (NOAA gage 1641)
and two distant rain gages (NOAA gages 1163 and 8942) at
various time scales (270-, 630-, and 1,440-day MWAs).

Correlations between rainfall and hydrologic response
also were examined as a function of distance between the
sites and the rain gages. Fairly high correlations between
rainfall and hydrologic response were found for both nearby
and distant rain gages as illustrated at three lake, well, and
spring sites (fig. 36). With some exceptions, correlations tend
to decrease with increasing distance between the site and
the rain gage, as indicated by the negative trends shown in
figure 36 and by the predominantly negative R values shown
in figure 37. Correlations that have an upward trend with
distance (positive R value in figure 37) may be a consequence
of other factors such as groundwater use. If groundwater
use is a significant factor affecting water levels and flows,
it is possible that low positive correlations or even negative
correlations with nearby rainfall may actually represent the
confounding effects of inverse correlation between rainfall and



Figure 34. Average monthly and low-pass filtered groundwater use in the Central Florida Coordination Area and vicinity for the sum
total of all water-use categories for A, 1957 through 2008, and B, 1997 through 2001. Data for individual water-use categories shown in

figure 29A.
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Figure 35. Pearson product-moment correlation coefficient (R) between rainfall (for each rain gage and rainfall-signal pair) and

hydrologic response at each site. Ranges are depicted indicating those values falling between the minimum and average R for the
site and those values falling between the average and maximum R for the site. Rainfall signals are 270-, 630-, and 1,440-day moving
window averages of rainfall at each of the 18 National Oceanic and Atmospheric Administration (NOAA) rain gages (locations shown
in figure 24). Site information and locations are shown in table 2 and figure 32.

nearby groundwater use. Such spurious correlations may be
more common at nearby rain gages than at distant rain gages
where groundwater-use effects may tend to be attenuated

by distance. In general, however, correlations with distance
are weak, where 78 percent of sites have R values less than
0.3 in absolute value (fig. 37). A possible explanation for the
generally weak correlations with distance is that rainfall at the
location of the hydrologic response may be correlated with
rainfall at a distant location. Rainfall signals (30-, 90-, 270-,
630-, 1,440-, and 2,250-day MWAs) from the 18 NOAA gages
are correlated between sites, where R values range from —0.31
to 0.91. Only 25 percent of the rainfall signals among all 18
NOAA gages have R values greater than 0.5 and 6 percent
have R values exceeding 0.75, suggesting that correlation of
rainfall between gages is not particularly strong (consistent
with the cluster analysis that indicated rainfall data are highly
variable in space and time). All these results taken together
suggest an “interconnectedness” of the hydrologic system in
which rainfall forcing may possibly be transmitted over long
distances (up to about 100 miles based on the extent of the
current study area). Such behavior is not inconsistent with
that of a semiconfined or confined karst aquifer, such as the
Floridan aquifer system in central Florida, where pressure
transients move relatively quickly through the system owing
to the high transmissivity and low storativity properties of the
hydrogeologic units.

Groundwater use is a potentially important forcing that
may influence behavior of the hydrologic system. Correlations
were examined between groundwater-use signals (monthly
values and 3-, 6-, 12-, 24-, 48-, and 96-month MWAs for
the sum total of all groundwater-use types; fig. 344) and the
hydrologic response at 51 sites (fig. 32; table 2). The correla-
tion was computed for each groundwater-use signal, yielding
a total of seven R values for each site (monthly signal plus six
MWAS). Correlations generally are negative because water
levels and flows will decrease in response to an increase in
groundwater withdrawals. Maximum correlations ranged
from —0.57 to 0.49 and average correlations (for all seven R
values) ranged from —0.73 to 0.30, whereas minimum cor-
relations were negative for nearly all sites and ranged from
—0.82 to 0.12 (fig. 38). Positive correlations likely are spuri-
ous and have no direct causative significance. The relatively
strong negative correlations suggest that groundwater use is an
important control on hydrologic response, although correla-
tions with groundwater use generally are lower (in absolute
value) than with rainfall. However, cross correlation with
rainfall may affect the relative explanatory strength of ground-
water use or rainfall for modeling hydrologic response.

Correlated variation between groundwater use and
rainfall for a range of time scales was examined to ascer-
tain the degree to which there may be confounding interac-
tions between these two fundamental forcing variables and



Methods for Simulation of Historical Lake Water Levels, Groundwater Levels, and Spring Flows 51

10
[ [
A. LAKE CLINCH
08 — —
&
%
o 06 $ % o —
g o
';'3 04 — 8—
02— —
Regression line
R=-0.42
0 | | |
0 25 50 75 100
' | |
B. ROMP 60 FLORIDAN WELL
08 — —
o ]
E i
Regression line n
R=-0.31
0 | | |
0 25 50 75 100
C.ROCK SPRINGS
08 [— —
oc 06— —
2
8
& 04— —
02— —
Regression line
R=-0.29
0 | | |
0 25 50 75 100

Distance to rain gage, in miles

Figure 36. Comparison of the Pearson product-moment
correlation coefficients (R) between rainfall (for each rain gage
and rainfall-signal pair) and hydrologic response and the distance
between the site and each rain gage for A, Lake Clinch (site
number 50), B, ROMP 60 Floridan well (site number 472), and

C, Rock Springs (site number 309). Site information and locations
are shown in table 2 and figure 32.

hydrologic response. Correlations were examined between
rainfall signals (30-, 90-, 270-, 630-, 1,440-, and 2,250-day
MWASs) at the 18 NOAA rain gages (fig. 24) and groundwater-
use signals (monthly values and 3-, 6-, 12-, 24-, 48-, and
96-month MWAs for the sum total of all groundwater-use
types; fig. 344). The correlation was computed for each rain
gage and rainfall-signal pair using monthly averages computed
from the MWAs of daily rainfall data (fig. 334), yielding a
total of 42 values of R for each rain gage (6 rainfall MWAs for
each of the 7 groundwater-use MWAs). Correlations between
rainfall and groundwater use tended to be negative, likely
attributable to rainfall control of certain types of water use
(for example, irrigation) such that groundwater withdraw-

als increase in response to a decrease in rainfall (fig. 39). For
example, the strongest negative correlation of —0.76 occurs for
NOAA gage 1163 (2,250-day MWA of rainfall) for a ground-
water-use 24-month MWA. At all rain gages, however, posi-
tive correlations were found for at least some rainfall signals.
For example, the strongest positive correlation of 0.71 occurs
for NOAA gage 2229 (2,250-day MWA of rainfall) for a
groundwater-use 96-month MWA. Positive correlations tend
to be more prevalent for rain gages in the eastern part of the
study area (cluster analysis groups 1 and 2, figs. 24, 39),
where several gages had upward trends in long-term rainfall
(fig. 13). Conversely, negative correlations tend to be more
prevalent for rain gages in the western part of the study area
(cluster analysis groups 3 and 4, figs. 24, 39), where several
gages showed downward trends in long-term rainfall (fig. 13).
Correlations tend to be stronger (both negative and positive)
with increasing groundwater-use MWA size (see correlations
composited for all rain gages shown for each MWA size in
figure 39), reflecting long-term trends in both rainfall and
groundwater use. It is important to note, though, that there
may not be a causative relation at this time scale. Other fac-
tors, such as trends in population, likely influence long-term
trends in groundwater use more than do weather variations.

State-Space Reconstruction

Achieving accurate predictions of the behavior of
dynamic systems can be notoriously difficult owing to chaotic
behavior (Motter and Campbell, 2013). Difficulties range
from microscale problems of computing point velocities in
turbulent pipe flow to macroscale problems of computing
mass and energy flows in regional hydrologic systems. Chaos
theory provides a conceptual framework called “state-space
reconstruction” for representing dynamic relations in systems
with inherent chaotic behaviors (Kugiumtzis and others, 1994;
Conrads and others, 2006). Data collected at a point in time
can be organized as a vector of measurements; for example,
element one of the vector might be the water level, element
two the rainfall, and so on. Engineers assert that a process
evolves from one state to another, through time, and that a
vector of measurements, also referred to as a ““state vector,”
represents the process state at the moment the measurements
were taken. A sequence of state vectors represents a “state



52 Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida
03
FTTTTTTTT T T I T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
Lakes Wells Springs
02 — - —
[ | [ |
[ |
01— —
- [ |
[ | [ |
0 =4 - - - - — — — — — — — mn_ e e = == = — — — ] e L]
o n - | |
= [ |
3 01 n L n H
3 I - [ | n [ |
& m| | ml . ]
02 H- -
03 H- -
1 T [ I |
05 IIIIITIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIITIIIIIIIIIIIIIIII
PRS2 3B8E3~RBEE58NBR8E S8R SIS RRBIRNRENYREE8EY 8802
— e N ANNNNANN ST OO0 LWL 0000000 OOOor~ cmmMmmmoMmom
Site number
Figure 37. Pearson product-moment correlation coefficient (R) between the R shown in figure 35 (between rainfall and hydrologic

response) and the distances between the site and each rain gage for each site. Site information and locations are shown in table 2 and
figure 32.
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Figure 38. Pearson product-moment correlation coefficient (R) between groundwater-use signals and hydrologic response at each

site. Ranges are shown for those values falling between the minimum and average R for the site and those values falling between
the average and maximum R for the site. Groundwater-use signals are the monthly data and 3-, 6-, 12-, 24-, 48-, and 96-month moving
window averages of the sum total groundwater use (fig. 34A). Site information and locations are shown in table 2 and figure 32.
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Figure 39.

Pearson product-moment correlation coefficient (R) between groundwater-use signals and rainfall signals at each National

Oceanic and Atmospheric Administration (NOAA) rain gage. Ranges are shown for those values falling between the minimum and
average R for the site and those values falling between the average and maximum R for the site. Groundwater-use signals are the
monthly data and 3-, 6-, 12-, 24-, 48-, and 96-month moving window averages (MWAs) of the sum total groundwater use (fig. 34A4), and
rainfall signals are monthly averages of 30-, 90-, 270-, 630-, 1,440-, and 2,250-day MWAs of daily rainfall (fig. 33A).

history.” Mathematicians define the state vector as a point

in a “state space” with a number of dimensions equal to the
number of elements in the vector. For example, eight vector
elements equate to eight dimensions. Engineers, mathemati-
cians, and scientists use this conceptual framework to develop
empirical models of the behavior of dynamic systems. Empiri-
cal modeling is the fitting of a multidimensional surface to the
points arrayed in state space.

Chaos theory proposes that a process can be optimally
represented (reconstructed) by a collection of state vectors,
Y(¢), using an optimal number of measurements equal to “local
dimension” d, that are spaced in time by integer multiples of
an optimal time delay, 7, (Abarbanel, 1996, p. 4-12, 39). The
sets of k parameters {d, } and {z, } fori=1,2,..., k are called
“dynamical invariants,” which characterize the behavror ofa
process in state space similar to how the amplitude, frequency,
and phase angle can be used to define a periodic time series.
Thus, for a multivariate process of k independent variables:

[5 (1) .2, =7, ) t = (), = 1)2,)
Y(r)= ;

(1)
[ (1) ox =T, (0= (d,, =7, ]

where each x (¢, ) foriis 1,2,..., k represents a different
dimension in state space and, therefore a different element in
a state vector. Values of {d, } and {z, } are estimated analyti-
cally or experimentally from the data. The mathematical
formulations for models are derived from these state vectors.
To predict a dependent variable of interest y(¢) from prior
measurements (also known as forecasting) of £ independent
variables (Roehl and Conrads, 2006):

xl(’_f,,l)=x1(f_7 —le),
x (-1 —(d, —1r,)
y(t)=Fi- " ' . @
xk(t—Tpk),xk(t—Tpk —’L'dk),
X (=T, = (d, ~D7,)

where F is an empirical function such as an ANN, each

x(t, 7,7 ) fori = ., k is a different input to F, and {r }
for i = 1 2, ks another time delay. For each variable, {r }
is specified accordmg to one of the following constraints:
time delay at which an input variable becomes uncorrelated
to all other inputs, but can still provide useful information
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about y(f); time delay of the most recent available measure-
ment of x; or time delay at which an input variable is most
highly correlated to y(¢). In equation 2, the state-space local
dimension {d, } of equation 1 is replaced with a model input
variable dlmeﬁswn {id, } which is determined experimentally.
It is noted that {d,, } < {d } fori=1.2,..,k and {d,, } tends to
decrease with i mcreasmg k. The final model for the predlcted
variable y(¢) can be a superposition of disparate behaviors,
yj(t), originating from #n different forcing functions (Roehl and
Conrads, 2006):

W=D y,0=IF (3)
Jj=1 Jj=1

In different terms, a goal of state-space reconstruction
is to determine the optimal temporal spacing (time delays)
and number of successive measurements (dimension) of an
input signal required to satisfactorily predict an output signal,
which amounts to solution of an inverse problem (Lillekjend-
lie and others, 1994). State-space reconstruction is focused on
univariate systems, that is, the system is described by a single
time-series variable and the prediction being made is the sys-
tem’s state at a near-future time. This “delays and dimension”
conceptual framework is applied in this study to a complex
multivariate system where multicollinearity among input
signals (rainfall and groundwater use) is common. Rather than
explicit identification of time delays and dimensions, however,
signals and frequency-band components that best predict the
observed hydrologic response are selected from candidate
MWAs and MWDs of rainfall and groundwater use using a
method to minimize correlated inputs. Ultimately, the synthe-
sis of one or more empirical functions (formalized by equa-
tions 2 and 3 in the context of state-space reconstruction) by
judicious construction and training of an ANN is the key task
in developing a model useful for simulating system behavior
and is discussed in further detail in the following sections.

Input-Output Mapping and Problem
Representation

The development of ANN models to predict the water
level or flow at the 51 sites (table 2) was undertaken in two
phases, resulting in a two-stage model architecture (fig. 40).
The two-stage approach was motivated in part by the differ-
ent temporal resolutions of the forcing time series, consisting
of daily rainfall and monthly groundwater use. The first phase
was to train a daily resolution ANN for each site to simulate
the observed hydrograph using daily rainfall inputs, herein
called the “rainfall model.” The second phase was to train a
monthly resolution ANN, herein called the “groundwater-use
model,” for each site to simulate the residual error time series
from the rainfall model using monthly groundwater-use inputs.
At a few sites, the predicted water level or flow from the rain-
fall model also was used as an input. The final simulated water

level or flow is the sum of the predictions of both ANNSs for
the site (fig. 40), thus following the superposition approach of
equation 3 where each ANN represents the empirical function
F of equation 2. The residual error, also called “the residuals,”
is a model’s prediction error and represents variability in an
output that is not accounted for by variability in the inputs.
Residuals are simply calculated by subtracting the predicted
values from the measured data. By predicting variability in
the residuals, a groundwater-use model predicts hydrograph
variability that is unaccounted for by rainfall, but can be
accounted for by groundwater use.

The decision to place the rainfall model first in the two-
stage model sequence, rather than model groundwater use
first or both rainfall and groundwater use simultaneously, was
based on the following constraints and rationale:

+ rainfall data records generally are more complete
(fewer missing data), and the data are of higher quality
(more measured and fewer estimated values) and finer
temporal resolution than the groundwater-use data;

* a paucity of previously compiled historical monthly
water-use data in the CFCA required a substantial
effort by SIRWMD and SWFWMD to compile
reported data and estimate missing values, most of
which is reported by McLeod and Munch (2012) and
Munch (2014), resulting in the groundwater-use data
not being available until late in the study;

* groundwater return flows—groundwater withdrawals
that subsequently are returned to the aquifer system,
such as by land application of treated wastewater or
deep percolation of irrigation—are poorly known, and
few data are available to enable estimation of historical
temporal and spatial patterns of these return flows;

» water-budget analyses derived from physics-based
model simulations for central Florida (Knowles
and others, 2002; McGurk and Presley, 2002; and
Septlveda and others, 2012) indicate groundwater
recharge at the water table (from rainfall and artificial
recharge) is the largest inflow to the aquifer system
(79 to 97 percent of total inflow for the combined sur-
ficial and Floridan aquifer systems), and groundwater
withdrawals are a small percentage (6 to 12 percent)
of flow in the aquifer system (combined surficial and
Floridan aquifer systems) during years with normal
rainfall; and

* the variability of rainfall is much greater (more than an
order of magnitude) than the variability of groundwa-
ter use over a wide range of time scales from monthly
to multiyear.

For empirical correlation-based models such as ANNSs,
the use of independent knowledge is essential to constrain
model results to established or hypothesized physics. The cor-
relation analyses indicated that hydrologic response was corre-
lated with both rainfall (fig. 35) and groundwater use (fig. 38),
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Figure 40. TDiagram wo-stage model architecture used to simulate water level at lakes or wells, or flow at springs. ANN, artificial
neural network; Q, spring flow; WL, lake water level or groundwater level.

and that rainfall and groundwater use were correlated with
each other (fig. 39). Additionally, other factors, such as popu-
lation growth and landscape change, can confound interpreta-
tion of the actual causative relations. In this study, previous
independent water-budget analyses provided a physics-based
constraint on ANN development and influenced the selection
of the two-stage model architecture. Several physics-based
models based on the USGS three-dimensional, finite-differ-
ence groundwater flow model code MODFLOW (Harbaugh
and McDonald, 1996; Harbaugh and others, 2000; Harbaugh,
2005) have been developed for central Florida that cover part
or nearly all of the CFCA. The models were developed to sim-
ulate either steady-state conditions, where model inputs and
outputs are constant over time, or transient conditions, where
model inputs and outputs vary over a selected time period and
changes in water stored in the aquifer are simulated. The Lake
County/Ocala National Forest (LCONF) model developed by
Knowles and others (2002) covers all of Lake County and the
Ocala National Forest and parts of adjoining counties, and
simulates steady-state, groundwater flow for average 1998
conditions (December 1997 to December 1998). The east-cen-
tral Florida (ECF) model developed by McGurk and Presley
(2002) covers all of Orange and Seminole Counties, most of
Brevard and Lake Counties, and parts of adjoining counties,
and simulates steady-state, groundwater flow for average 1995
conditions (January 1995 to December 1995). The east-central
Florida transient (ECFT) model developed by Sepulveda and
others (2012) covers all of the CFCA (except the westernmost

edge in Polk County) and parts of adjoining counties, and
simulates monthly groundwater flow, lake and stream water
levels, and streamflow from January 1995 through December
2006. All these models actively simulate the surficial and
Floridan aquifer systems; therefore, water budgets of the entire
aquifer system could be compared for their respective simula-
tion periods (fig. 41). It is important to note that the ECFT
model simulates changes in groundwater storage that consti-
tute substantial components of aquifer inflow (release of water
stored in the aquifer) and outflow (increase in volume of water
stored in the aquifer). These storage changes can influence

the temporal dynamics of the aquifer system even though the
net change in storage over long periods typically is small; for
example, the difference in storage between inflow and outflow
in the ECFT model from 1995 through 2006 was 0.08 inch
per year (in/yr) (6.32 in/yr storage inflow minus 6.24 in/yr
storage outflow, fig. 41). In contrast, the steady-state LCONF
and ECF models do not simulate storage changes, and only
average conditions during the respective simulation periods
are represented by the model based on the assumption that net
storage effects are small. Despite these differences in concep-
tual model, simulation period, and geographic area, all three
models indicate that groundwater recharge is the largest inflow
(79 to 97 percent) to the aquifer system (fig. 414). Ground-
water recharge is nearly exclusively derived from infiltration
of rainfall because artificial recharge (land based application
of reclaimed water) constitutes only 0.1 to 0.4 in/yr. Ground-
water withdrawals are a relatively small component of aquifer
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Figure 41. Water budgets for the combined surficial and Floridan aquifer systems simulated by the Lake County/Ocala National Forest
(LCONF; Knowles and others, 2002), east-central Florida (ECF, McGurk and Presley, 2002), and east-central Florida transient (ECFT;
Sepllveda and others, 2012) models for A, inflows, and B, outflows. Flows expressed in equivalent inches per year based on surface
area of surficial aquifer system simulated by the model (approximately 4,800 square miles (mi?) for the LCONF model, 6,480 mi? for the
ECF model, and 9,004 mi? for the ECF model). Surface leakage simulated by the ECFT model conceptually represents groundwater
seepage at model cells where the water table rises above land surface and drains to lakes, streams, wetlands, and closed basins.
Sepllveda and others (2012, p. 124 and 128) report that 24 percent of surface leakage is to cells in closed basins or cells draining to
streams or lakes outside the model area. Thus total leakage to cells draining to lakes, streams, and wetlands within the model area
would be the sum of lake and stream leakage and 76 percent of surface leakage, or 4.05 inches per year, which is comparable to lake

and stream leakage rates simulated by the LCONF and ECF models.
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outflow (6 to 12 percent), and ET is the largest loss of water
(47 to 60 percent of aquifer outflow) (fig. 41B). Because rain-
fall-derived recharge is the largest component of the aquifer
water budget, the two-stage model architecture was developed
using rainfall first followed by groundwater use (fig. 40). This
approach provided models more consistent with generally well
accepted physics-based models and mitigated potential spuri-
ous results of a pure correlation-based approach.

Hydrologic response is driven by variability in system
forcings in addition to the relative magnitudes of the forc-
ings. Therefore, a comparison of the temporal variability of
rainfall and groundwater use was made over a range of time
scales. In order to make an even comparison, monthly rainfall
was computed as an arithmetic average of daily values (based
on standard rainfall, fig. 334), and monthly groundwater use
(fig. 344) was converted to a flux by dividing the volumetric
rate by the total area where withdrawals historically have
occurred, which corresponds to 53 grid cells of the GUDV
(appendix 2) or 8,415 mi?. The standard deviation was com-
puted for each monthly signal and for 3-, 6-, 12-, 24-, 48-, and
96-month MWAs. For the period of contemporaneous monthly
data extending from 1957 through 2008, the standard devia-
tion of rainfall was 37.62 in/yr compared to 0.59 in/yr for
groundwater use (table 3). Likewise, over longer time scales,
the variability of rainfall is much greater than that of ground-
water use based on the standard deviations of low-pass filtered
signals (table 3). Even if groundwater use were distributed
over an area only one-tenth the size of the historical coverage
(making the standard deviations for groundwater use in table 3
ten times larger), only for the 96-month MWA would the vari-
ability of groundwater use exceed that of rainfall. Therefore,
not only is rainfall-derived groundwater recharge the largest
component of the water budget for the groundwater system
in central Florida for years with normal rainfall, but also the
temporal variability of rainfall far exceeds that of groundwater
use over a wide range of time scales from monthly to multi-
year. These factors provide further basis for modeling rainfall
first followed by groundwater use for the two-stage model
architecture (fig. 40).

Other potential causes of variability in hydrologic
response include meteorological forcing and groundwater use
outside the study area as well as changes in land use and land
cover. It was beyond the scope of the current study to explore
many of the other potential explanatory variables, but experi-
ments were conducted that evaluated the use of air temperature
and estimated PET in simulating the observed hydrographs.
The estimated PET was computed using the temperature-based
Hargreaves equation and, therefore, is not independent of air
temperature. Additionally, air temperature is highly correlated
to MWAs of rainfall in the study area. The experiments found
that model output sensitivities to inputs representing air tem-
perature and estimated PET were low compared to those repre-
senting rainfall. Thus, including air temperature and estimated
PET as explanatory variables did not substantially improve
prediction accuracy, and these variables were not included in
the final ANN models.

Table 3. Standard deviation of rainfall and groundwater-use
signals in central Florida.

[MWA, moving window average; --, not available; rainfall signals based
on standard rainfall shown in figure 334; groundwater-use signals based on
sum total of all water use categories shown in figure 344; groundwater use
converted to a flux by dividing by the total area where withdrawals histori-
cally have occurred, which corresponds to 53 grid cells of the Ground-
water-Use Data Viewer (appendix 2) or 8,415 square miles]

Standard deviation, in
inches per year

Data range Data type
Rainfall vf:e“r":se

19422008 monthly 37.98 --

1957-2008 monthly 37.62 0.59
1965-2008 monthly 37.57 0.54
1965-2008 3-month MWA 26.75 0.40
1965-2008 6-month MWA 18.11 0.26
1965-2008 12-month MWA 8.10 0.19
1965-2008 24-month MWA 5.64 0.19
1965-2008 48-month MWA 3.52 0.20
1965-2008 96-month MWA 2.13 0.24

Artificial Neural Network Models

ANN models are empirical models that are developed
directly from data. The most common empirical modeling
approach is a linear model fit using least squares (Hastie and
others, 2001), which relates variables using straight lines,
planes, or hyper-planes, whether the actual relations are linear
or not. Sahoo and Jha (2013) conducted a comparison of linear
and ANN models and noted the superior performance of the
ANN technique over multiple linear regression for the simula-
tion of transient groundwater levels. The principal advantages
of empirical models, such as ANN models, over physics-based
models are that they can be developed faster and typically are
more accurate provided that the modeled systems are well
characterized by data (Conrads and others, 2006). Empirical
models, however, are prone to problems when poorly applied.
Overfitting and multicollinearity caused by correlated input
variables can lead to invalid “mappings,” or relations, between
input and output variables (Roehl and others, 2003).

An ANN model is a flexible mathematical structure capa-
ble of describing complex nonlinear relations between input
and output datasets (Conrads and others, 2006). The structure
of ANN models is loosely based on the biological nervous
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system with interconnections of neurons and synapses (Hin-
ton, 1992). Although numerous types of ANN models exist,
the most commonly used type of ANN model is the multilayer
perceptron, which is used in this study and described in detail
by Jensen (1994). Multilayer perceptron ANNSs can synthe-
size functions to fit multidimensional, nonlinear data. Devine
and others (2003) and Roehl and Conrads (1999) describe
the application of multilayer perceptron ANNs to simulate
and control combined manmade and natural systems, includ-
ing disinfection byproduct formation, industrial air emissions
monitoring, and surface-water systems affected by point- and
nonpoint-source pollution.

Multilayer perceptron ANNs are constructed from layers
of interconnected processing elements called neurons that
execute a simple “transfer function” (fig. 42). All input-layer
neurons are connected to all hidden-layer neurons, and all hid-
den-layer neurons are connected to all output-layer neurons.
Multiple hidden layers are possible, but a single hidden layer
as shown in figure 42 is sufficient to address most problems
(Bishop, 1995, p. 132).

Typically, as well as for this study, linear transfer func-
tions are used to scale input values from the input layer to
the hidden layer, yielding values that generally fall within the
range that corresponds to the most linear part of the s-shaped
sigmoid transfer functions (hyperbolic tangent) used to scale
values from the hidden layer to the output layer (fig. 42). Each
connection has a “weight,” w,, associated with it, which scales
the output received by a neuron from a neuron in an anteced-
ent layer. The output of a neuron is a simple combination of
the values it receives through its input connections and the
associated weights, as well as the neuron’s transfer function.

An ANN is “trained” by iteratively adjusting its weights
to minimize the error by which it maps inputs to outputs
for a dataset composed of input/output vector pairs. Predic-
tion accuracy, during and after training, can be measured by
several metrics, including coefficient of determination (R?)
and RMSE. An algorithm that is commonly used to train
multilayer perceptron ANNSs is the error back-propagation
training algorithm (Rumelhart and others, 1986; Bishop, 1995,
p. 140-141). This algorithm optimally minimizes the error in
the objective function by adjusting the weights into and out of
the hidden layer of the model (fig. 42).

Experimentation with various ANN model architectural
and training parameters is a typical part of the modeling pro-
cess. For correlation analysis or predictive modeling appli-
cations, a number of potential ANN models are trained and
evaluated for their statistical accuracy and their representation
of dynamics of the system. Interactions between combinations
of variables are considered. The models here were calibrated
using a form of K-fold cross-validation, which involves parti-
tioning the data into K approximately equal-size subsets and
training the model recursively on K — 1 subsets starting with
subset 1 up to K (Hastie and others, 2001, p. 214). A value of
2 was used for K (2-fold cross-validation), resulting in a train-
ing dataset that is evaluated with a testing dataset. Rather than
using equal-size training and testing datasets, however, the

data were partitioned based on the characteristics of data. For
models with a large amount of data that adequately represents
the range of historical behaviors, a small percentage of the
data (10-30 percent) was selected for the training dataset,
with the balance assigned to a testing dataset. For models
with limited data, a larger percentage of the data (greater than
75 percent) was used in the training dataset. In some cases, the
data were too sparse to allow use of a training dataset. There
are many strategies for selecting the individual data points
composing the training and testing datasets, but a common
method is random selection of a specified percentage of the
total population of measurements (Hastie and others, 2001).
Serial correlation, which is common in hydrologic time-series
data, influences the degree of independence between the train-
ing and testing datasets and can result in overly optimistic
error statistics for the testing dataset potentially causing poor
generalization (or overfitting) of the model. Using disjoint
time periods for the training and testing datasets can miti-
gate this effect, but such an approach also limits the range
of historical behaviors to which the model is trained. For the
ANN models developed here, the goal was representing to
the fullest extent possible the effects of the limited number of
permutations of extended high and low forcing events (rainfall
and groundwater use); thus, random selection throughout the
historical period of record was used to populate the training
and testing datasets. Other measures taken to guard against
overfitting are described in a later section on ANN model
construction and training.

To mitigate extrapolation and data sparseness issues,
the ANN models were conservatively trained using a method
called “stop training” or “early stopping” (Bishop, 1995,
p. 343), thus allowing the ANN to both fit the data and
extrapolate in a minimally nonlinear and, therefore, predict-
able manner. Stop training simply means stopping the training
process before the ANN has fit the data to the maximum extent
possible. Training is commonly stopped when the testing
dataset, rather than the training dataset, R?> or RMSE values
cease to improve with additional training. Adjusting model
architectural and training parameters allows the modeler to
control the geometric complexity of the surface that the ANN
fits to the data. In general, a high-quality predictive model
can be obtained and a satisfactory model can be exported for
implementation in an end-user application when the following
conditions are satisfied (Conrads and others, 2006):

* the data are well distributed throughout the state space
of variables describing the physical system of interest;

* the input variables selected by the modeler share
mutual information about the output variables; and

* the functional form “prescribed” or “synthesized” by
the model to “map” (correlate) input variables to out-
put variables is a good one, that is, the model closely
matches observed data but is sufficiently generalized
to not overfit the data as guided by the training method
and the modeler’s knowledge of the real-world system
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and relevant physical principles. Machine-learning
techniques, like ANN models, synthesize a best fit to
the data. Techniques such as ordinary least squares and
physics-based models prescribe the functional form of
the model’s fit to the calibration data.

Subdividing a complex modeling problem into subprob-
lems and then addressing each is an effective means of achiev-
ing the optimal results. A collection of submodels whose cal-
culations are coordinated by a computer program constitutes
a “super-model” (Daamen and others, 2006). For the study
described here, ANN models (submodels) were first developed
to predict water level or flow at a particular gaging station.
These submodels were then incorporated into the CFANN
DSS super-model that integrated the model controls, model
database, and model outputs. The ANN models described in
this report were developed using the iQuest™ data-mining
software’ (Version 2.03C DM Rev31). The ANN models were
deployed in the DSS using the Visual Basic run-time library of
the iQuest R/T™ software.

3 The iQuest™ software is exclusively distributed by Advanced Data Min-
ing, LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615-5044 Phone:
864-616-9876, email: ruby.daamen@advdmi.com, http://www.advdmi.com.
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Multilayer perceptron artificial neural network architecture (modified from Conrads and Roehl, 2007).

Statistical Measures of Prediction Accuracy

Statistical measures of prediction accuracy were com-
puted for the final water-level and flow estimates (output from
the two-stage model architecture) and for the individual ANN
models. The statistics for the final predicted values capture the
capability of the two-stage modeling approach to accurately
estimate the water levels or flows at the site. The statistics for
the individual models (rainfall and groundwater-use ANNs)
document these intermediate models. Because two models
are used, the statistics for the individual models may not be
an indication of the quality of the final water-level or flow
estimates.

The R?, the mean error (ME), RMSE, and percent model
error (PME) were computed for the training and testing data-
sets for both the rainfall and groundwater-use ANN models
for each site. In addition to these statistics, the Nash-Sutcliffe
coefficient of efficiency was computed for the final water-level
and flow estimates. Model performance often is evaluated in
terms of R?, which commonly is interpreted as a measure of
the “goodness of the fit” of a model. A second interpretation is
one of answering the question, “How much information does
one variable or group of variables provide about the behavior
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of another variable?” In the first context, an R* of 0.6 might be
disappointing, whereas in the latter, it is merely an accounting
of how much information is shared by the variables being used
as defined by the selected model. As a correlation statistic, R?
is insensitive to additive and proportional differences between
predicted and measured values, and thus should not be used as
the sole measure of the goodness of fit of hydrologic models
(Legates and McCabe, 1999).

The ME and RMSE statistics provide a measure of model
prediction accuracy. The ME is a measure of the bias of model
predictions—whether the model over- or underpredicts the
measured data. The ME is presented as the adjustment needed
to make the simulated values equal to the measured values.
Therefore, a negative ME indicates an overprediction by the
model and a positive ME indicates an underprediction by
the ANN model. Mean errors near zero may be misleading
because negative and positive discrepancies in the simulations
can cancel each other. As an absolute-error statistic, RMSE
addresses the limitations of ME by computing the magnitude,
rather than the direction (sign) of the discrepancies. The units
of the ME and RMSE statistics are the same as those of the
simulated variable of the model.

The accuracy of the models, as indicated by RMSE,
should be evaluated with respect to the range of the output
variable. A model may have a low RMSE, but if the range of
the output variable is small, the model may be accurate only
for a small range of conditions and the model error may be a
relatively large percentage of the model response. Likewise, a
model may have a large RMSE, but if the range of the output
variable is large, the model error may be a relatively small per-
centage of the total model response. The PME was computed
by dividing the RMSE by the range of the measured data.

Nash and Sutcliffe (1970) developed an efficiency index
to evaluate the goodness of fit of hydrologic models, com-
monly referred to as the Nash-Sutcliffe coefficient of effi-
ciency (NSCE). The NSCE can range from minus infinity to
1. A value of 1 corresponds to a perfect match of predicted
values to the observed data. A value of 0 indicates that the
model predictions are as accurate as the mean of the observed
data used to develop the model, whereas a value less than 0
indicates that the observed mean is a better predictor than the
model. In summary, models with an NSCE from 0 to 1 provide
a better estimate than the mean of the observed data, and the
higher the value, the better the estimates. McCuen and others
(2006) noted that only subjective evaluations of the NSCE
were possible and that the index is influenced by sample size,
model bias, timing errors, and outliers. Legates and McCabe
(1999) recommend using a combination of correlation-based
and absolute-error statistics as well as graphical analysis to
evaluate model goodness of fit.

Development of Artificial Neural
Network Models in Central Florida

The following sections describe how the ANN models
were developed for predicting hydrologic response at each of
the 51 lake, well, and spring sites. Development of models for
all types of sites—lake water level, groundwater level, and
spring flow—followed a similar approach, which is described
in the section below on model construction and training.
Following this discussion is a section on prediction accuracy
of the final, trained models, including sections on the mod-
els for each type of site. Finally, a general description of the
performance of all the models for each type of site is provided
followed by a discussion of two example models.

Model Construction and Training

The ANN models were developed iteratively starting
with selecting a candidate pool of input variables, training the
ANN, and then using prediction accuracy statistics, such as R?
and input-output sensitivities, to cull the least important input
variables. Effectively, a hybrid modeling approach was applied
that combines signal decomposition with ANN models,
whereby rainfall and groundwater-use data are decomposed to
capture variability in time series of these key forcing variables
over a variety of frequency ranges and ANN models are used
to reconstruct the original time series of response variable
(water level or flow) using these decomposed subsignals. This
approach is conceptually similar to wavelet-neural network
hybrid models, which combine wavelet transforms and ANN
models, such as those developed to forecast monthly ground-
water levels and daily river flow (Wang and Ding, 2003), the
Palmer drought severity index (Kim and Valdés, 2003), daily
intermittent streamflow (Kisi, 2009), and monthly river flow
(Wei and others, 2013). Additionally, Ozger and others (2012)
developed a wavelet fuzzy logic model to forecast the Palmer
modified drought index that combined wavelet transforms
with a fuzzy logic model. In the current study, in place of the
wavelet analysis, signal decomposition was conducted using
MWDs computed from MWAs of prescribed window sizes.

It is left to the ANN to learn which explanatory variables and
associated frequency ranges are the best predictors of behav-
iors that are manifest in the hydrologic signal. As previously
described, two-stage model architecture was used that mod-
eled rainfall and groundwater-use effects separately (fig. 40).
Summaries of the rainfall and groundwater-use ANN models
for each of the 51 sites, including model construction details
and prediction accuracy statistics, are listed in appendix 3,
and descriptions of the explanatory variables used in the final
ANN s are provided in appendix 4.

The quality and completeness of both the forcing and
response data are critical for any empirical modeling approach,
such as that applied in the current study. In terms of accuracy,
completeness, and representativeness of physical process
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behavior, the rainfall data are better than the hydrologic
response data, which in turn are much better than the ground-
water-use data. Some of the hydrologic response data yield
hydrographs that exhibit late starts, long periods of missing
data, sporadic sampling, and values that appear to be anoma-
lous from inspection. In general, the groundwater-level hydro-
graphs are better than the lake water-level and spring-flow
hydrographs. More consistent data frequency led to the ability
to use random sampling to partition all groundwater-level and
most lake water-level hydrographs into training and testing
datasets. For some lakes and one spring (sites 5, 207, 209, 221,
239,277,289, 297, and 313; table 2; appendix 3), sparse data
necessitated using all data for the training dataset. The spring-
flow hydrographs are the most problematic. The springs were
measured sporadically for most of the study period, but more
frequent measurements were made in the last decade. The
disparate data frequency was particularly pronounced for three
springs (sites 311, 312, and 314; table 2; appendix 3), and data
collected during the last decade were subsampled so as not

to be disproportionately represented when combined with the
earlier sparse sampling period to partition the hydrographs into
training and testing datasets. Spring flow “flat-lining” (consec-
utive days of identical flows), which were apparent anomalies
in some datasets, are possibly artifacts of procedures used to
estimate daily data from direct measurements, and data during
these periods were removed from the dataset. Some of the lake
and well hydrographs have occasional short duration (60 days
or shorter) gaps when data are missing. For sites where there
was little submonthly cyclic variability in the hydrographs,
these data gaps were filled using simple linear interpolation
prior to training the ANN models so as not to bias the training
dataset toward some periods over others. At these sites, most
of the variability is due to seasonal (3-month) and longer term
trends. In addition, the final predictions generated by the two-
stage modeling approach use a 1-month time step; therefore,
interpolating over a period of 60 days or less means estimat-
ing across only one time step. Notes are included in the model
summaries (appendix 3) for the sites where 60-day or shorter
gaps were filled in this way.

The majority of the groundwater-use data were estimates
and, by a wide margin, lacked the accuracy, representative-
ness, and temporal and spatial resolution of the meteorological
and hydrologic response data. Data that describe the extent to
which groundwater withdrawals are returned to the hydrologic
system are also largely unavailable. Given these limitations,

a single total groundwater-use signal was created by aggre-
gating all of the categories of groundwater use (figs. 29, 34).
Potential inaccuracies introduced by this approach are likely
reduced by the generally highly permeable nature of the study
area’s karst terrain (Kuniansky and others (2012) mapped
large values of transmissivity for the Upper Floridan aquifer in
much of the study area), which would tend to dissipate spatial
variability in responses to groundwater use, and the 1-month
simulation time step, which is longer than the short-term
fluctuations in groundwater use. Using the two-stage model
architecture (fig. 40), separate ANN models were developed

for rainfall and groundwater use and are described in detail in
the following sections.

Rainfall Models

The rainfall models were developed using a 1-day time
step (fig. 40) enabled by daily rainfall (available from 1942
through 2008) and hydrologic response data (available for the
periods of record shown in table 2). To varying extents, the
rainfall data from the 18 NOAA sites are correlated between
sites (R values range from —0.31 to 0.91; 25 percent have R
values greater than 0.5). The general approach to developing
accurate models of dynamic processes involves filtering each
candidate input time series into signals representing a range of
frequencies and decomposing the filtered signals into multiple
frequency-band components. Then the supervised machine
learning of the ANN model is allowed to determine which
combination of input signals and components are the best
predictors while culling poor predicting inputs.

Given the large number of candidate input signals and
components, it was necessary to employ an input representa-
tion and model development approach that mitigated problems
associated with so many potentially correlated inputs. The
approach includes the following steps:

1. A “standard” rainfall signal was created for each hydro-
graph. The standard signal was the same for all of the
wells and springs and was computed as the arithmetic
average by time step of the values for the 18 NOAA sites
for each day (fig. 33). As a starting point, the standard for
each lake was a weighted average of the rainfall within
the lake drainage basin based on Thiessen polygons fit-
ted to the NOAA sites. For some lakes, the standard was
modified to use fewer or other nearby NOAA sites to
improve prediction accuracy. The formula used to com-
pute the rainfall standard for each lake is provided in the
model summary table for the respective lake (appendix 3).

2. A “normalized” rainfall signal was created for each of
the 18 NOAA rainfall gages by subtracting the standard
rainfall signal from the individual gage rainfall.

3. The standard and normalized rainfall signals were pro-
cessed as follows:

» Low-pass filters represented by MWAs of 30; 90;
270; 630; 1,440; and 2,250 days were applied
to the standard rainfall signal (fig. 33) as well as
each normalized rainfall signal. The selection of
the 270-, 630-, and 1,440-day MWAs followed
an analysis that determined the window sizes
at which correlations peaked between different
rainfall MWAs and hydrologic response at a vari-
ety of sites; this analysis used the super tau tool
described by Conrads and Roehl (2010, p. 19-20).
The other three MWASs provide for computation
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of additional higher and lower frequency-band
components.

» The standard rainfall signal’s frequency-band
components were computed using MWDs of suc-
cessive MWA pairs. It should be noted that one
MWA plus the MWDs completely represent any
of the defined low-pass signals without loss of
information.

» Subtracting the standard rainfall signals from the
individual NOAA rainfall signals decorrelates
the resulting MWAs from the standard signal.
The resulting normalized signals, however, are
not consequentially decorrelated from each other,
because, for example, two highly correlated pre-
normalized signals will still be correlated after
normalization. The effects of such cross-correla-
tions are addressed in item 4 below. Combining
the 6 MWAs for the standard rainfall signal and
each of the 18 normalized rainfall signals with the
5 MWDs of standard rainfall results in a total of
119 candidate input variables for an ANN model.

An ANN model was iteratively developed for each site to
simulate hydrologic response. During the ANN develop-
ment and training process, input variables were culled
according to the procedure described below, resulting

in a final set of variables for each site (appendixes 3, 4).
This process is purposefully conservative with regard to
overtraining, resulting in relatively simple ANNs with
limited numbers of parameters (weights; for example,

see figure 42) relative to the size of the training datas-

ets. Furthermore, Amari and others (1996) note that a
large testing dataset for cross-validation stop training is
not necessary when the training dataset is greater than

30 times larger than the number of ANN parameters—a
criterion that was met by each of the final ANN models—
and use of a large testing dataset at the expense of a small
training dataset may result in undertraining of the ANN.
The goal of the ANN development and training process
was to maximize R? under the following constraints:

* Retain input variables representing standard rain-
fall signals and frequency-band components.

+ Disallow input variables with an R value exceed-
ing 0.4 in order to minimize confounding effects
attributable to cross-correlations.

» Allow only positive input-output sensitivities,
such that increasing or decreasing any individual
rainfall input variable correspondingly increases
or decreases the predicted value, in order to
remove input variables that may yield a predicted
value at odds with known physics (in particu-
lar, principles of mass conservation). Imposing
constraints on the basis of plausible physics

is important, because relying solely on cross-
validation training techniques does not assure a
satisfactory ANN that reasonably approximates
the behavior of the physical system (Kingston and
others, 2005).

* Avoid overfitting. The hydrologic response data
were partitioned, where the data quantity allowed,
into training and testing datasets by random
selection. The prediction accuracy statistics for
the training and testing data should be similar to
verify model accuracy and ensure that the train-
ing data were not overfitted. Training datasets
as small as 10 percent of the available data were
used where possible, although 31 percent or less
was used for 39 sites and greater than 80 percent
was used for the remaining 12 sites. Several of
the hydrographs were not partitioned because of
sparse data and concern that using a testing data-
set would exclude important data for training. The
size of the training and testing datasets for each
ANN model are listed in appendix 3.

» Limit the ANN models to one hidden-layer
neuron (instead of four neurons shown in the
hidden layer of the generic multilayer perceptron
ANN depicted in figure 42), thereby allowing the
enforcement of only positive input-output sensi-
tivities and minimizing overfitting. This constraint
prevents fitting multivariate data with non-mono-
tonic surfaces (surfaces with saddle points), which
would cause the signs of sensitivities to change
as inputs are ranged. The constraint is appropri-
ate because hydrograph values should always
increase with rainfall increases (and decrease with
groundwater-use increases), and the constraint
mitigates the problem of unavailable testing data
for some sites.

Groundwater-Use Models

The groundwater-use models were developed using a
I-month time step (fig. 40), which was the minimum resolu-
tion of the groundwater-use data (available from 1957 through
2008). The rainfall data and the rainfall model predictions and
residuals had be converted to the same time step, which was
done by applying 1-month MWAs and subsampling the last
day of each month. The amount of the available data for train-
ing and testing the ANN models was reduced substantially as
a result of the monthly time step; therefore, testing datasets
were small or eliminated completely for the groundwater-use
models to maximize the amount of data for model training
(appendix 3).

The groundwater-use models simulate the residual error
signal (residuals) for each of the rainfall models and were
developed similarly to the rainfall models. The window sizes
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of the MWAs applied to total groundwater use were 3, 6, 12,
24,48, and 96 months (fig. 34), and MWDs were computed
for successive MWA pairs by subtracting each MWA from the
MWA with the next smaller window size. A total of 13 poten-
tial inputs for an ANN model were available, considering the
original monthly data, 6 MWAs, and 6 MWDs. A single MWA
was selected on the basis of the highest negative correlation

to the residuals, thus enforcing a known physical constraint
that an increase in groundwater use causes a decrease in water
level or flow (that is, negative input-output sensitivity). An
ANN model with only one hidden-layer neuron was used to
allow enforcement of only negative input-output sensitivity.
Other potential inputs to the model included the MWDs and
the monthly average of the predicted signal (water level or
flow) from the respective rainfall model. ANN training was

an iterative process wherein only those inputs with a negative
input-output sensitivity were included. The rainfall-model pre-
dicted water level or flow was used as an input for a ground-
water-use model only when it resulted in an increase in R? of
at least 0.01 for the final model (the combined rainfall and
groundwater-use models) or when it was needed to maintain a
negative input-output sensitivity. In addition, collinear inputs
with an R value exceeding 0.5 were excluded. After train-

ing, the largest groundwater-use frequency-band components
retained were MWDs using 96-month MWAs for some sites.
Hence, even though groundwater-use estimates were available
from 1957 onward and even earlier rainfall data were available
(from 1942 onward), the simulation period for the final two-
stage model architecture began in 1965 in order to accommo-
date the shorter period of record for groundwater use and an
8-year background period required by the 96-month MWA.

Model Prediction Accuracy and Example Model
Simulations

Statistical measures of prediction accuracy were com-
puted for the final water-level and flow estimates based on the
monthly simulated values from January 1965 through Decem-
ber 2008. The statistics for the final predicted values demon-
strate the generally good to excellent capability of the two-
stage architecture that uses the hybrid signal-decomposition
ANN models to accurately estimate the water levels or flows
at each site. The models explained much of the variability in
observed data, with models for 43 of the 51 sites having R?
values exceeding 0.6, as well as matching well the magnitude
of the observed data, with models for 32 of the 51 sites having
PME values less than 10 percent (fig. 43). Generally, ground-
water-level models (R? averaging 0.774 and PME averaging
8.90 percent) performed slightly better than lake water-level
models (R? averaging 0.718 and PME averaging 9.96 percent).
Spring-flow models had the poorest model fit (R? averaging
0.546 and PME averaging 13.14 percent). Summary statis-
tics of both measured and simulated data and model fit are
provided in appendix 5 for each site. The lake water-level,
groundwater-level, and spring-flow models are described in

more detail in the following sections. For each type of site,

a general description of the performance of all the models is
provided, followed by a discussion of two example models—
one with good model-fit statistics and one with a relatively
poor match to the observed data—in order to provide a sense
of the range in model performance. By discussing model con-
struction (input variables) and model performance in detail for
six sites, example interpretation techniques are provided that
can be applied by the reader to the models for any of the other
45 sites of interest using data in appendixes 3, 4, and 5 and the
CFANN DSS.

Lake Water-Level Models

The lake water-level models explained from 43 to
89 percent of the variability in the observed data and matched
observed water levels quite well (RMSE ranged from 0.39 to
2.25 ft). Values of PME ranged from 7.44 to 13.3 percent, and
values of ME generally were near zero (median of 0.009 ft
for 22 lakes) and ranged from —0.26 to 0.14 ft. Because the
absolute errors were generally small, values of the NSCE were
nearly identical to those of R?, ranging from 0.431 to 0.894.

Crooked Lake near Babson Park

Of all the lake water-level models, the model for Crooked
Lake near Babson Park (southeast Polk County; site 49,
table 2; fig. 32) had the most complete data record (no missing
data from 1965 to 2008) and the second highest set (ranked in
terms of accuracy) of model-fit statistics (R? of 0.887, ME of
0.02 ft, RMSE of 1.28 ft, PME of 7.44 percent, and NSCE of
0.881; appendix 5). The model simulates well multidecadal
trends (for example, the generally downward trend from 1965
to 1991 and the generally upward trend from 1991 to 2008;
fig. 444) and shorter term multiyear trends (for example, the
downward trend from 1979 to 1981; fig. 444). The simulation
of intraannual variability tends to be less accurate; seasonal
dry- to wet-period changes were sometimes overpredicted (for
example, the September 1976 to May 1977 simulated water-
level drop was 4.08 ft and the measured drop was 2.24 ft) and
sometimes underpredicted (for example, the April to October
1992 simulated water-level rise was 2.69 ft and the measured
rise was 3.76 ft). Lake water level was measured at approxi-
mately weekly intervals, resulting in a large amount of data
for training the rainfall model. Therefore, 30 percent of the
data were randomly selected and used for the training dataset,
and the remaining 70 percent were used for the testing dataset.
Model-fit statistics for the daily rainfall model for the training
and testing datasets were virtually the same, with R? of 0.863
and 0.864 and PME of 8.23 and 8.13 percent, respectively
(appendix 3).

The final model for Crooked Lake near Babson Park is
relatively simple, with four inputs for the rainfall model and
two for the groundwater-use model. The rainfall model uses
the following inputs: 1,440-day MWA and a 630-day minus
1,440-day MWD of standard rainfall, a 2,250-day MWA of
normalized rainfall at NOAA gage 4502 in south Osceola
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Figure 44. Results of lake water-level simulation for Crooked Lake near Babson Park (site number 49; table 2; fig. 32) showing
A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-
use model (RM + UM) with associated linear regression lines. R is the Pearson product-moment correlation coefficient for the linear

regression of residuals and time.

County (fig. 24), and a 630-day MWA of normalized rain-
fall at NOAA gage 9401 in north Hardee County (fig. 24)
(appendix 3). The standard rainfall for Crooked Lake was
computed as the weighted average of values from the NOAA
rain gages 5973 (96.2 percent) and 369 (3.8 percent) within
the lake’s drainage basin (fig. 24). The sensitivity of the
rainfall model to lower frequency rainfall signals is consis-
tent with the model accuracy over longer time scales noted
above and indicative of the nature of the lake water-level
response where lower-frequency variability is more evident in
the observed water-level data than subannual frequencies at
this site. A bias exists in the rainfall model residuals, leading

to a downward trend (linear correlation) in residual error

(R =-0.26; fig. 44B), which is qualitatively consistent with
possible decreases in lake water level attributable to increases
in groundwater use.

Because of the bias in rainfall model residuals, the
groundwater-use model was included in the two-stage model
architecture (fig. 40) in order to better explain the observed
hydrologic response. Inputs for the groundwater-use model for
this site are a 24-month MWA and a 3-month minus 6-month
MWD of total groundwater use (appendix 3). Addition of the
groundwater-use model explained about 18 percent of the vari-
ability in the rainfall model residuals (R? = 0.177; appendix 3)
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and eliminated much of this bias, such that the long-term
trend in residuals for the final model (rainfall plus groundwa-
ter use) is only slightly downward (R =—0.11; fig. 44B). The
groundwater-use model tended to mitigate negative residuals
from the rainfall model, indicating overpredicted water levels
from the rainfall model were reduced by the groundwater-

use model (fig. 44B). The overall average absolute residual
error decreased 0.11 ft from the rainfall model to the final
model, indicating that inclusion of the groundwater-use model
improved final model accuracy.

Prevatt Lake

Of all the lake water-level models, the model for Prevatt
Lake (northwest Orange County; site 5, table 2; fig. 32) had
one of the most incomplete data records (42.8 percent missing
data from 1965 to 2008) and the lowest set (ranked in terms
of accuracy) of model-fit statistics (R? of 0.432, ME of 0.03 ft,
RMSE of 1.80 ft, PME of 12.20 percent, and NSCE of 0.431;
appendix 5). Little long-term trend is apparent in the measured
data, and the model focuses more on attempting to repli-
cate shorter-term variability with limited success (fig. 454).
Intraannual variability attributable to seasonal dry- and
wet-period cycles is reflected in the simulated water levels,
although the simulated water levels often did not coincide in
magnitude with measured data (fig. 454). Multiyear trends
are simulated fairly well, such as during drought and recovery
periods in the early 1980s and early 2000s (fig. 454). Lake
water level was measured sporadically prior to 1982. After
1982, lake water level generally was measured at monthly
intervals with a short period (April 2004 to December 2008)
of daily data. Nevertheless, the more complete record after
1982 was interspersed with numerous periods of missing data
ranging from 1 to 14 months in duration. Given these sporadic
data, 100 percent of the data were used for the training dataset.

The final model for Prevatt Lake is relatively simple,
with five inputs for the rainfall model and two for the
groundwater-use model. The rainfall model uses the following
inputs: 630-day MWA, a 90-day minus 270-day MWD, and
270-day minus 630-day MWD of standard rainfall; a 630-day
MWA of normalized rainfall at NOAA gage 3137 in northeast
Okeechobee County (fig. 24); and a 630-day MWA of normal-
ized rainfall at NOAA gage 6414 in south Marion County
(fig. 24) (appendix 3). The standard rainfall for this lake was
set equal to that of NOAA rain gage 7982 in north Seminole
County (fig. 24). The sensitivity of the rainfall model to higher
frequency rainfall signals and frequency-band components is
indicative of the nature of the lake water-level response at this
site where high-frequency variability is more evident in the
observed water-level data than low frequency multidecadal
variability. A bias exists in the rainfall model residuals, leading
to a slight upward trend (linear correlation) in residual error
(R =0.10; fig. 45B), which is qualitatively consistent with pos-
sible increases in lake water level attributable to decreases in
groundwater use.

The groundwater-use model was used to better explain
the observed hydrologic response by addressing the bias in

rainfall model residuals. Inputs for the groundwater-use model
for this site are a 12-month MWA and a 48-month minus
96-month MWD of total groundwater use (appendix 3). Addi-
tion of the groundwater-use model explained about 5 percent
of the variability in the rainfall model residuals (R? = 0.0463;
appendix 3) and eliminated some of this bias such that the
long-term trend in residuals for the final model (rainfall plus
groundwater use) is slightly less upward (R = 0.088; fig. 45B).
The long-term trend in total groundwater use is slight since
the early 1980s (fig. 344), which coincides with the period of
greatest data availability for model training at this site. The
low frequency 48- and 96-month groundwater-use MWAs
show smooth upward and downward trends but little long-
term trend over this period (fig. 344); these smooth variations
in groundwater use may correlate, by way of the 48-month
minus 96-month MWD, with measured lake water-level varia-
tions. The groundwater-use model tended to mitigate negative
residuals from the rainfall model, indicating that overpredicted
water levels from the rainfall model were reduced by the
groundwater-use model (fig. 45B). The overall average abso-
lute residual error decreased 0.03 ft from the rainfall model to
the final model, indicating that inclusion of the groundwater-
use model slightly improved final model accuracy. The large
amount of missing data and irregular measurement frequency
are important factors that contributed to the relatively poor fit
of the water-level model for Prevatt Lake by limiting the rep-
resentation of complete cyclical patterns in the model training
dataset.

Groundwater-Level Models

The groundwater-level models explained from 54 to
89 percent of the variability in the observed data and matched
observed water levels well (RMSE ranged from 0.62 to
5.44 ft). Values of PME ranged from 7.33 to 15.5 percent, and
values of ME generally were near zero (median of —0.02 ft
for 23 wells) and ranged from —1.17 to 0.08 ft. Because the
absolute errors were generally small, values of the NSCE were
nearly identical to those of R?, ranging from 0.540 to 0.894.

OR-47 Floridan Well

Of all the groundwater-level models, the model for the
OR-47 Floridan well (west-central Orange County; site 648,
table 2; fig. 32) had a nearly complete data record (6.3 percent
missing data from 1965 to 2008) and the third highest (ranked
in terms of accuracy) set of model-fit statistics (R? of 0.840,
ME of 0.02 ft, RMSE of 1.50 ft, PME of 7.69 percent, and
NSCE of 0.836; appendix 5). The model simulates well mul-
tidecadal trends (for example, the generally downward trend
from 1965 to 2008; fig. 464) and shorter term multiyear trends
(for example, the drought and recovery periods in the early
1980s and early 2000s; fig. 464). Intraannual variability also
is simulated well, but the model sometimes underpredicts (for
example, August 1994 to March 1995; fig. 46A4) or overpre-
dicts (for example, March 1981 to January 1982; fig. 464) the
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Figure 45.

Results of lake water-level simulation for Prevatt Lake (site number 5; table 2; fig. 32) showing A, measured and simulated

water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model (RM + UM) with

associated linear regression lines. For the residuals, lines connecting points indicate periods of consecutive monthly data. R is the
Pearson product-moment correlation coefficient for the linear regression of residuals and time.

seasonal dry- and wet-period water-level extremes. Ground-
water level was measured at daily intervals, and, given this
large amount of data for the rainfall model, 30 percent of the
data were randomly selected and used for the training dataset
and the remaining 70 percent were used for the testing dataset.
Model-fit statistics for the daily rainfall model were virtually
the same, with R? of 0.905 and 0.906 and PME of 4.80 and
4.81 percent for the training and testing datasets, respectively
(appendix 3).

The model for the OR-47 Floridan well is relatively
complex, with 18 inputs for the rainfall model and 3 for the
groundwater-use model. The rainfall model uses the following

5 inputs based on the standard rainfall: 630-day MWA, 30-day
minus 90-day MWD, 90-day minus 270-day MWD, 270-

day minus 630-day MWD, and 1,440-day minus 2,250-day
MWD. In addition, the rainfall model uses 13 inputs with
MWAs (ranging from 270 to 2,250 days in length) of normal-
ized rainfall at NOAA gages 369, 478, 1163, 4502, 4625,
5076, 5612, 5973, 6414, 6628, 7205, 7982, and 9401 (see
appendix 3 for further details). The standard rainfall for this
well (and all other wells) was computed as the arithmetic aver-
age of the values for the 18 NOAA rain gages (fig. 33). The
sensitivity of the rainfall model to a wide variety of rainfall
frequency-band components is indicative of the nature of the



68 Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida

A
70 B b [ _
— o —
Cg 4 o ]
L T © ) .
Y _
65 'i> ,"{04'_{» l b2
Q N RS 1 P i
S IR T & EXPLANATION
S ! H P 0 %
§ ‘i“" .!!to B !,-‘; hdhd ——  Simulated (RM + UM)
- 60 f ‘i"’J o[ Bl Y § H O  Measured
o W o ‘i 8 ) (7 ! »ﬂq i. ‘«‘p‘:’
| & || & |[< apR b s
EOR N I L e
g °" & 5
ER °oh [1 ]
< L 14 B
= L N -
50 _— ]' 7
5 L | | | | | | | | 7
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
B
6 | |
R =0.027
- |
g EXPLANATION
£ 2 H’ | —— RM+UM
‘é — — — Linear (RM + UM)
8 o H = — —— RM
g — — — Linear (RM)
o L ]
£ 2
=
4 ]
R =-0.042
| | | | | | | |
-6
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

Figure 46. Results of groundwater-level simulation for the OR-47 Floridan well (site number 648; table 2; fig. 32) showing A, measured
and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model
(RM + UM) with associated linear regression lines. R is the Pearson product-moment correlation coefficient for the linear regression of

residuals and time.

groundwater-level response in which variability over a range
of time scales, from multidecadal to subannual, is evident at
this site. A slight bias exists in the rainfall model residuals,
leading to a downward trend (linear correlation) in residual
error (R =-0.042; fig. 46B), which is qualitatively consistent
with possible decreases in groundwater level attributable to
increases in groundwater use.

The groundwater-use model was used to better explain
the observed hydrologic response by addressing the bias
in rainfall model residuals. Inputs for the groundwater-use
model for this site are a 12-month MWA, 1-month minus
3-month MWD, and 24-month minus 48-month MWD of

total groundwater use (appendix 3). Addition of the ground-
water-use model eliminated this negative bias such that the
long-term trend in residuals for the final model (rainfall plus
groundwater use) is slightly upward (R = 0.027; fig. 46B).
Such a small change may not be significant, however, and
suggests that long-term (multidecadal) trends in groundwater
level at this site attributable to groundwater use are small or
cannot be definitively inferred from the available data. The
sensitivity of the groundwater-use model to a higher frequency
signal and frequency-band component of total groundwater
use (12-month MWA and 1-month minus 3-month MWD) is
indicative of the lesser importance of low-frequency variations
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in groundwater use for explaining measured groundwater-
level fluctuations. The groundwater-use model explained
about 3 percent of the variability in the rainfall model residu-
als (R? =0.0279; appendix 3) and tended to mitigate negative
residuals from the rainfall model, indicating that overpredicted
water levels from the rainfall model were reduced by the
groundwater-use model (fig. 44B). The overall average abso-
lute residual error decreased 0.02 ft from the rainfall model to
the final model, indicating that inclusion of the groundwater-
use model slightly improved final model accuracy.

Taft Surficial Well

Of all the groundwater-level models, the model for the
Taft surficial well (south-central Orange County; site 712,
table 2; fig. 32) had about an average amount of missing
data (21.6 percent missing data from 1965 to 2008) and the
lowest (ranked in terms of accuracy) set of model-fit statis-
tics (R? of 0.543, ME of —0.03 ft, RMSE of 0.73 ft, PME of
15.53 percent, and NSCE of 0.540; appendix 5). Variability
in groundwater level at this site predominantly occurred at
higher frequencies, from multiyear to subannual time scales,
and the model focused on attempting to replicate this short-
term variability but with limited success (fig. 474). Intraan-
nual variability attributable to seasonal dry- and wet-period
cycles is reflected in the simulated water levels, but often does
not coincide in magnitude with measured data (fig. 474). The
water-level record for this well has extended periods of miss-
ing data at the beginning (January 1965 to May 1969) and end
of the simulation period (August 2004 to December 2008), but
groundwater level was measured at daily intervals during the
intervening 35-year period. Given this large amount of data
for the rainfall model, 30 percent of the data were randomly
selected and used for the training dataset and the remaining
70 percent were used for the testing dataset. Model-fit statis-
tics for the daily rainfall model were nearly equal, with R? of
0.573 and 0.557 and PME of 13.44 and 13.64 percent for the
training and testing datasets, respectively (appendix 3).

The model for the Taft surficial well is relatively com-
plex, having 13 inputs for the rainfall model and 3 for the
groundwater-use model. The rainfall model uses 2 inputs
based on the standard rainfall consisting of a 90-day MWA
and a 30-day minus 90-day MWD. In addition, the rainfall
model uses 11 inputs with MWAs (30 or 90 days in length) of
normalized rainfall at NOAA gages 1163, 1641, 4502, 4625,
5076, 5973, 6414, 6628, 7205, 7982, and 8942 (see appendix 3
for further details). The standard rainfall was computed as the
arithmetic average of the values for the 18 NOAA rain gages
(fig. 33). The sensitivity of the rainfall model to only high fre-
quency rainfall signals and a high frequency frequency-band
component is indicative of the nature of the groundwater-level
response in which variability over short time scales, 30 and 90
days, dominates at this site. A bias exists in the rainfall model
residuals, leading to a downward trend (linear correlation)
in residual error (R =—0.28; fig. 47B), which is qualitatively

consistent with possible decreases in groundwater level attrib-
utable to increases in groundwater use.

The groundwater-use model was used to better explain
the observed hydrologic response by addressing the bias
in rainfall model residuals. Inputs for the groundwater-use
model for this site are a 6-month MWA, 3-month minus
6-month MWD, and 24-month minus 48-month MWD of total
groundwater use (appendix 3). Addition of the groundwater-
use model eliminated some of the negative bias such that the
long-term downward trend in residuals for the final model
(rainfall plus groundwater use) (R =—0.17; fig. 47B) was less
than that for the rainfall model residuals. The sensitivity of
the groundwater-use model to higher frequency (6-month
MWA) signals as well as both higher and lower frequency
frequency-band components (3-month minus 6-month MWD
and 24-month minus 48-month MWD) of total groundwater
use is indicative of the importance of short- and long-term
variations in groundwater use for explaining measured
groundwater-level fluctuations at this site. The groundwater-
use model explained about 15 percent of the variability in the
rainfall model residuals (R? = 0.153; appendix 3) and tended
to mitigate negative residuals from the rainfall model, indicat-
ing that overpredicted water levels from the rainfall model
were reduced by the groundwater-use model (fig. 47B). The
overall average absolute residual error decreased 0.04 ft from
the rainfall model to the final model, indicating that inclusion
of the groundwater-use model slightly improved final model
accuracy. Data collected at the Taft surficial well represent the
altitude of the water table that is near land surface (well depth
of 7 ft; site 712, table 2); therefore, other physical processes
not represented in the two-stage model architecture but that
may affect the dynamics of a shallow water table, such as spe-
cific yield variability caused by gas bubble entrapment (Fayer
and Hillel, 1986; Faybishenko, 1995) and ponding of surface
runoff, likely contribute to the relatively poor fit of this model.

Spring-Flow Models

The spring-flow models explain from 38 to 72 percent
of the variability in the observed data and matched observed
flows fairly well (RMSE ranged from 0.66 to 4.76 ft*/s).
Values of PME ranged from 9.85 to 15.0 percent, and values
of ME generally were near zero (median of 0.01 ft*/s for six
springs) and ranged from —0.17 to 0.07 ft*/s. Because the
absolute errors were generally small, values of the NSCE
were close to those of R?, ranging from 0.345 to 0.721. The
flow data for all six springs were sparse (missing data range
from 43.8 to 67.8 percent for 1965 to 2008; appendix 5). The
springs were sporadically measured, and quality of the flow
data was poor compared to the water-level data for the lakes
and wells. As a result, spring-flow model training focused
on lower frequency variability in an attempt to match multi-
decadal and multiyear trends, resulting in a generally poorer
match to seasonal variability.
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Figure 47. Results of groundwater-level simulation for the Taft Surficial well (site number 712; table 2; fig. 32) showing A, measured
and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model
(RM + UM) with associated linear regression lines. R is the Pearson product-moment correlation coefficient for the linear regression of
residuals and time.

Rock Springs early 2000s; fig. 484). Intraannual variability attributable to
seasonal dry- and wet-period cycles is reflected in the simu-
lated flows, although simulated flows often did not coincide

in magnitude with measured data (fig. 484). Spring-flow data
were available at irregular intervals ranging from daily to once

Of all the spring-flow models, the model for Rock
Springs (site 309, table 2; fig. 32) had the most complete
data record (43.8 percent missing data from 1965 to 2008)
and the highest (ranked in terms of accuracy) set of model-fit per year or even less frequent. The daily spring-flow data,
statistics (R of 0.725, ME of -0.08 ft'/s, RMSE of 3.79 ft's, however, are not field measurements and were computed from
PME of 9.85 percent, and NSCE of 0.724; appendix 5). The model-derived (rating curve) estimates made by the collecting

model simulates well multidecadal trends (for example, the agency. Given the relatively large amount of data available for
generally downward trend from 1965 to 1990; fig. 484) and the rainfall model (considering the spring-flow models were
shorter term multiyear trends (for example, the drought and developed to replicate multiyear and longer trends), 29 percent

recovery periods in the early 1980s and the late 1990s to of the data were randomly selected and used for the training
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Figure 48. Results of spring-flow simulation for Rock Springs (site number 309; table 2; fig. 32) showing A, measured and simulated
water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model (RM + UM) with
associated linear regression lines. For the residuals, lines connecting points indicate periods of consecutive monthly data. R is the
Pearson product-moment correlation coefficient for the linear regression of residuals and time.

dataset and the remaining 71 percent were used for the testing
dataset. Model-fit statistics for the daily rainfall model were
close in value, with R? 0f 0.796 and 0.777 and PME of 8.04
and 8.44 percent for the training and testing datasets, respec-
tively (appendix 3).

The final model for Rock Springs is relatively complex,
having 12 inputs for the rainfall model and 4 for the ground-
water-use model. The rainfall model uses 2 inputs based on the
standard rainfall consisting of a 630-day MWA and a 270-day
minus 630-day MWD. In addition, the rainfall model uses
10 inputs with MWAs (270, 630, or 1440 days in length) of
normalized rainfall at NOAA gages 1163, 2229, 3137, 5973,

6414, 6628, 7205, 7982, 8942, and 9401 (see appendix 3 for
further details). The standard rainfall for this spring (and all
other springs) was computed as the arithmetic average of the
values for the 18 NOAA rain gages (fig. 33). A bias exists in
the rainfall model residuals, leading to a downward trend (lin-
ear correlation) in residual error (R =—0.49; fig. 48B), which
is qualitatively consistent with possible decreases in ground-
water level attributable to increases in groundwater use.

The groundwater-use model was used to better explain
the observed hydrologic response by addressing the bias in
rainfall model residuals. Inputs for the groundwater-use model
for this site are a 48-month MWA, 12-month minus 24-month
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MWD, and 24-month minus 48-month MWD of total ground-
water use; the predicted spring flow from the rainfall model
was also used (appendix 3). Addition of the groundwater-use
model eliminated this negative bias such that the long-term
trend in residuals for the final model (rainfall plus groundwa-
ter use) is slightly upward (R = 0.14; fig. 48B). This relatively
large improvement suggests that long-term (multidecadal)
trends in spring flow at this site attributable to groundwater
use are important. The sensitivity of the groundwater-use
model to a lower frequency signal (48-month MWA) and
lower frequency frequency-band components (12-month
minus 24-month MWD and 24-month minus 48-month MWD)
of total groundwater use is indicative of the importance of
low-frequency variations in groundwater use for explaining
measured spring-flow fluctuations. The inclusion of predicted
spring flow from the rainfall model as an input parameter
resulted in an increase in R? from 0.329 to 0.477 for the
groundwater-use model, although an increase of only 0.03
was realized in R? for the final model (combined rainfall and
groundwater-use models). The groundwater-use model was
most sensitive to the 48-month MWA of total groundwater
use and less sensitive to predicted spring flow. These two
input parameters were inversely correlated such that periods
of lower predicted spring flow tended to occur during periods
of greater groundwater use. Therefore, predicted spring flow
may be acting as a surrogate for some error in the current
input parameters, such as poorly estimated groundwater use,
or some unaccounted for factor in the current groundwater-use
model, such as spatial variations in groundwater withdraw-
als masked by using total groundwater use. Nevertheless,

the groundwater-use model explained about 48 percent of

the variability in the rainfall model residuals (R* = 0.477;
appendix 3) and tended to mitigate negative residuals from
the rainfall model, indicating that overpredicted water levels
from the rainfall model were reduced by the groundwater-
use model (fig. 48B). The overall average absolute residual
error decreased 0.72 ft¥/s from the rainfall model to the final
model, indicating that inclusion of the groundwater-use model
improved final model accuracy.

Sanlando Springs

Of all the spring-flow models, the model for Sanlando
Springs (site 312, table 2; fig. 32) had an above average
amount of missing data (64.0 percent missing data from 1965
to 2008) and the lowest (ranked in terms of accuracy) set of
model-fit statistics (R? of 0.376, ME of 0.05 ft*/s, RMSE of
3.56 ft’/s, PME of 14.88 percent, and NSCE of 0.375; appen-
dix 5). Little long-term trend is apparent in the measured data,
and the model attempts to replicate shorter-term variability,
although with limited success (fig. 494). Multiyear trends
are roughly simulated, such as during drought and recov-
ery periods in the early 1980s and late 1990s to early 2000s
(fig. 494). Intraannual variability attributable to seasonal
dry- and wet-period cycles is reflected in the simulated flows,
although simulated flows often did not coincide in magnitude

with measured data (fig. 494). Spring-flow data were available
at irregular intervals ranging from daily to once per year; the
first measurement made after the beginning of the model simu-
lation period (1965) was in April 1972. The daily spring-flow
data, however, are not field measurements and were computed
from model-derived (rating curve) estimates made by the col-
lecting agency. The data available for the rainfall model were
sparse until a 6-year period at the end of the record (2003-08),
when daily data exhibited high frequency variability having
arange less than that of the previous 24 years of sparse data.
The training dataset was hand assembled and incorporated all
of the earlier sparse data and a subsample from the later period
of daily data, thereby removing bias in the training dataset
(caused by oversampling the daily-data period) to better repre-
sent the long-term record. The testing dataset incorporates data
only from the daily-data period and poorly represents the full
historical record. The overall split between training and testing
datasets is 90 and 10 percent, respectively. Model-fit statistics
for the daily rainfall model were substantially different, with
R?0f 0.521 and 0.190 and PME of 10.26 and 13.68 percent
for the training and testing datasets, respectively (appendix 3),
which is a direct result of the peculiarities of the datasets.

The final model for Sanlando Springs is relatively
complex, with 10 inputs for the rainfall model and 5 for the
groundwater-use model. The rainfall model uses one input
based on the standard rainfall consisting of a 270-day MWA.
In addition, the rainfall model uses nine inputs with MWAs
(90, 270, 630, or 1,440 days in length) for normalized rainfall
at NOAA rain gages 1641, 2229, 3137, 5076, 5612, 5973, and
6628 (see appendix 3 for further details). The standard rainfall
was computed as the arithmetic average of the values for
the 18 NOAA rain gages (fig. 33). A slight bias exists in the
rainfall model residuals, leading to a downward trend (linear
correlation) in residual error (R =—0.021; fig. 49B), which is
qualitatively consistent with possible decreases in groundwater
level attributable to increases in groundwater use.

The groundwater-use model was used to better explain
the observed hydrologic response by addressing the bias in
rainfall model residuals. Inputs for the groundwater-use model
for this site are a 12-month MWA, 1-month minus 3-month
MWD, 3-month minus 6-month MWD, and 24-month minus
48-month MWD of total groundwater use; the predicted spring
flow from the rainfall model also was used (appendix 3).
Addition of the groundwater-use model eliminated this nega-
tive bias such that the long-term trend in residuals for the
final model (rainfall plus groundwater use) is slightly upward
(R =0.043; fig. 49B). Such a small change may not be sig-
nificant, however, and suggests that long-term (multidecadal)
trends in spring flow at this site attributable to groundwater
use are small or cannot be definitively inferred from the avail-
able data. The groundwater-use model explained only about
4 percent of the variability in the rainfall model residuals
(R*=0.0417; appendix 3). The inclusion of predicted spring
flow from the rainfall model as an input parameter caused an
insignificant change in R?, but was necessary in order to obtain
a model with negative input-output sensitivity (an increase or
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Figure 49. Results of spring-flow simulation for Sanlando Springs (site number 312; table 2; fig. 32) showing A, measured and simulated
water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use model (RM + UM) with
associated linear regression lines. For the residuals, lines connecting points indicate periods of consecutive monthly data. R is the
Pearson product-moment correlation coefficient for the linear regression of residuals and time.

decrease in groundwater-use causes a decrease or increase,
respectively, in spring flow). These poor correlations and
difficulty maintaining correct input-output sensitivity suggest
either that there is little impact of groundwater use on spring
flow or that such a relation cannot be discerned with the avail-
able data. Nevertheless, the groundwater-use model tended to
mitigate negative residuals from the rainfall model, indicating
that overpredicted water levels from the rainfall model were
reduced by the groundwater-use model (fig. 49B). The overall

average absolute residual error decreased 0.004 ft*/s from

the rainfall model to the final model, indicating that inclu-
sion of the groundwater-use model slightly improved final
model accuracy. The large amount of missing data, irregular
measurement frequency, and differences in data variability
between the sparse older data and the later period of daily data
are important factors that contributed to the relatively poor fit
of the spring-flow model for Sanlando Springs.
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Development of the Decision Support
System

Dutta and others (1997, p. 912) define decision support
systems, or DSSs, as “...systems helping decision-makers
to solve various semi-structured and unstructured problems
involving multiple attributes, objectives, and goals. Histori-
cally, the majority of DSSs have been either computer imple-
mentations of mathematical models or extensions of database
systems and traditional management information systems.”
DSS technology can help provide the knowledge and tools
required for informed decision making (Roehl, Conrads, and
Daamen, 2006). Even though the collective interests and com-
puter skills within the community of water-resource manag-
ers, scientists, and other stakeholders are wide ranging and
unequal, equal access to the broad scope of current scientific
knowledge is needed to make the best possible decisions.

The CFANN DSS integrates historical databases and the
site-specific ANN models, model controls, and model output
into a spreadsheet application with a GUI that allows the user
to simulate water-resource scenarios of interest. Scenarios can
consist of adjustments to rainfall and groundwater-use data,
whereby predictions of lake water levels, groundwater levels,
and spring flows are provided by the CFANN DSS. Develop-
ment of the DSS required the following: (1) merging all the

Input-output files

g

data into a single comprehensive database; (2) developing
rainfall and groundwater-use ANN models; and (3) developing
a Microsoft Excel® application that integrates the new data-
base, ANN models, model inputs and outputs, and graphical
display routines into a single package that is easy to use and
disseminate. The user’s manual for the installation and opera-
tion of the CFANN DSS is provided in appendix 6.

System Architecture

The basic architectural elements, or functional compo-
nents, of the CFANN DSS are shown in figure 50. The DSS
reads and writes files for the various run-time options that can
be selected by the user through the system’s GUI. A histori-
cal database, containing 59 years (1950 to 2008) of monthly
average rainfall, hydrologic response data (lake water level,
groundwater level, and spring flow), and groundwater-use
data, is read into the simulator along with the ANN models at
the start of a simulation. By using GUI controls, the user can
evaluate scenarios for alternative rainfall and groundwater use.
The outputs generated by the simulator are written to files for
post processing in Microsoft Excel® or other analysis software
packages. During simulations of lake water level, groundwater
level, or spring flow response by the ANN models, the DSS
provides a tabular display of simulated values for the current
computational time step for all sites and streaming graphics
for one selected site.

/ Historical database
Rainfall, Groundwater use, Water level, Flow

Simulator controls

l

/— Models
102 ANN models

User-defined inputs

Simulator
iQuest™  Visual Basic
for Applications

B

/ Simulation output files

Graphical user interface

v

Streaming graphics

Other analysis

Figure 50. Architectural elements of the Central Florida Artificial

packages

Neural Network Decision Support System.



Model Simulation Control and Graphics

The simulator in the CFANN DSS integrates the histori-
cal database with the 102 ANN models. The date/time controls
on the user control panel (fig. 51) are used to adjust the start
and end dates and graphical and tabular output for a simula-
tion. The simulator allows the user to run “what-if” simula-
tions by varying the rainfall and groundwater-use inputs from
the historical values. The user has two simulation options
for changing rainfall inputs and three options for changing
groundwater-use inputs:

* as a percentage of historical rainfall or groundwater-
use values,

* as a constant offset from historical rainfall or
groundwater values, and

* as a user-defined time series of groundwater use.

 Simulation

Development of the Decision Support System 75

Explanations of how each of the options in the CFANN DSS
can be implemented are provided in the user’s manual
(appendix 6).

The top of the CFANN DSS control panel (fig. 51) shows
the simulation period, output options, and user-setting buttons
that allow specifications of changes to rainfall and ground-
water-use values. The CFANN DSS also shows streaming
graphics on the control panel while a simulation is running.
The graphs display the historical measured data, simulated
historical conditions (to show model accuracy), the simulated
output using the input option set by using the GUI controls or
an input file, and the difference in simulated outputs between
user-specified and historical conditions (fig. 51).
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Comparison of Rainfall and
Groundwater-Use Effects

To help understand the effects of rainfall and groundwa-
ter use on hydrologic response in central Florida, the CFANN
DSS can be used to facilitate a sensitivity analysis and as a
component of a vulnerability assessment. In the following
sections, the results of sensitivity analyses are described and
the potential for application of the forcing-response behavior
represented by the CFANN DSS to assessments of vulnerabil-
ity is discussed

Sensitivity Analysis

The CFANN DSS was used to simulate four scenarios,
representing hypothetical changes in historical rainfall and
groundwater use, to determine changes in lake water level,
groundwater level, and spring flow simulated by the ANN
models. The scenarios consist of using time series of rainfall
and groundwater use at 70 and 130 percent of historical val-
ues. These adjustments were effected by using the appropriate
controls in the CFANN DSS to apply a constant multiplier to
uniformly increase or decrease historical rainfall and ground-
water-use time series by 30 percent (see sections 3.3 and 3.4.3
in appendix 6). The resulting simulated hydrologic response is
indicative of the sensitivity of the model for each site to equal
percentage changes in rainfall and groundwater use that are
constant over time. Actual changes in rainfall and groundwa-
ter use are not likely to be equal even on a percentage basis
and likely would vary over a range of short- and long-term
time scales; thus, these simulations should not be interpreted
as representing expected changes. Analysis of hypothetical
scenarios, however, can be an effective tool for understand-
ing model sensitivity to changes in model inputs, and the user
can interpret results accordingly to determine if the model is
appropriate for a particular application.

Results of the rainfall and groundwater-use scenarios
indicate a wide range of responses in water levels at lakes
and wells and flows at springs (figs. 52, 53). Most sites show
a greater response to a 30-percent change in rainfall than a
30-percent change in groundwater use (for both maximum and
minimum changes in water level or flow). Lakes and wells
generally show a larger response to rainfall than groundwater
use, whereas springs generally show a mixed response, with
some springs showing a larger response to rainfall and some
springs showing a larger response to groundwater use. For
lakes, the median maximum changes in water level were a
5.07 ft increase for 130 percent rainfall, a 6.33 ft decrease for
70 percent rainfall, a 0.95 ft increase for 70 percent ground-
water use, and a 1.22 ft decrease for 130 percent groundwater
use. For wells, the median maximum changes in water level
were a 2.39 ft increase for 130 percent rainfall, a 3.23 ft
decrease for 70 percent rainfall, a 0.54 ft increase for 70 per-
cent groundwater use, and a 0.51 ft decrease for 130 percent

groundwater use. For springs, the median maximum changes
in flow were a 3.57 ft*/s increase for 130 percent rainfall, a
4.80 ft*/s decrease for 70 percent rainfall, a 4.54 ft*/s increase
for 70 percent groundwater use, and a 3.60 ft*/s decrease for
130 percent groundwater use.

Site specific differences exist, whereby some individual
lakes, wells, and springs show a greater response to a 30-per-
cent change in groundwater use than a 30-percent change in
rainfall. Comparison of the ratios between maximum change
in water level or flow due to increases or decreases in ground-
water use and maximum change due to increases or decreases
in rainfall indicates that these ratios typically exceed 1.0 for
one lake (Lake Apopka, site 170), one well (Cocoa P Floridan
well, site 622) and three springs (Wekiwa, Rock, and Palm
Springs; sites 308, 309, and 313, respectively). Some vari-
ability in these ratios occurs because of asymmetric sensitiv-
ity where positive responses are not equal in absolute value
to negative responses. For example, a 30-percent increase
in rainfall generally caused smaller water-level increases
for individual lakes and wells than the water-level decreases
caused by a 30-percent decrease in rainfall (figs. 524, 534).
Asymmetric sensitivity is common in complex natural systems
and is simply the manifestation of nonlinearity in the input-
output dynamics of the hydrologic system in central Florida.
As a result of these nonlinearities, ratios of groundwater-use
response to rainfall response more often exceeded 1.0 for
rainfall increases than for rainfall decreases. The follow-
ing 12 sites show a greater response to a 30-percent increase
in groundwater use than a 30-percent increase in rainfall:
Lake Clinch (site 50), Lake Deeson (site 77), Lake Apopka
(site 170), Lake Howell (site 207), Lake Anderson (site 221),
Lake Sue (site 297), Bay Lake Floridan well (site 602), Cocoa
P Floridan well (site 622), Mascotte Surficial well (site 643),
Wekiwa Springs (site 308), Rock Springs (site 309), and Palm
Springs (site 313). The following nine sites show a greater
response to a 30-percent decrease in groundwater use than a
30-percent increase in rainfall: Lake Apopka (site 170), Lake
Howell (site 207), Lake Anderson (site 221), Cocoa P Floridan
well (site 622), Lake Sawyer Floridan well (site 630), Taft
Surficial well (site 712), Wekiwa Springs (site 308), Rock
Springs (site 309), and Palm Springs (site 313). Of the sites
showing a larger relative response, Lake Howell and the Taft
Surficial well have small absolute responses to groundwater
use where the maximum water-level increase or decrease was
less than 1 ft (fig. 52B).

Before drawing specific inferences on rainfall and
groundwater-use effects for individual sites, the CFANN
DSS should be used to examine the simulated time series for
the sites of interest. Two sites were selected for illustrative
purposes: the ROMP 60 Floridan well (site 472), which shows
a much larger response to a 30-percent change in rainfall
compared to the same percentage change in groundwater use,
and the Cocoa P Floridan well (site 622), which shows a larger
response to a 30-percent change in groundwater use com-
pared to the same percentage change in rainfall (figs. 52, 53).
Discussion of the results from the two selected sites illustrates
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Figure 52. Sensitivity of lake water-level, groundwater-level, and spring-flow models as indicated by the maximum change in water
level or flow simulated during 1965 to 2008 caused by changes in A, rainfall, and B, groundwater use. Rainfall and groundwater-use

20

o

3,1

|
3,1

or flow, in cubic feet per second
o

L
o

20

o

3]

|
o

or flow, in cubic feet per second
o

L
o

Comparison of Rainfall and Groundwater-Use Effects

Wells Springs

EEm 130 percent rainfall

— — — zeroline

EXPLANATION -

I 70 percent rainfall |

NOOON—ODNDOANMANSNOANANML OO — N O @D = NM <
NN eeSESSNESNO0O NN MMS S S W0©— O O T T v
&S O W0 W0 LW W0 LW OO OO0 Oor~ cmMmMmmomm
ite number
FTTTTTTTTTT T T T T T T T T Igh T T
Wells
(2] —]
[=2]
EXPLANATION £
(=X
EEE 70 percent groundwater use (%)

s 130 percent groundwater use

— — — zeroline

LIII_ ll.I»..un...ull.Il - ..n...ll._ .I

277
289
297
446
469

Sit

NOON™— OO ANMANROANNML OO —N 0D —ANM <
NSNS SISO NMOMS St <D O — O O — — — —
SO0 LWOLWNLWNOOOO00OOOOOOOor~ mOMmMmmoemom
e number

n

changes were simulated separately using the Central Florida Artificial Neural Network Decision Support System and specifying values
of 130 percent for the increase and 70 percent for the decrease, which were applied to all historical values. Site information and

locations are shown in table 2 and figure 32.
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level or flow simulated during 1965 to 2008 caused by changes in A, rainfall, and B, groundwater use. Rainfall and groundwater-use
changes were simulated separately using the Central Florida Artificial Neural Network Decision Support System and specifying values
of 130 percent for the increase and 70 percent for the decrease, which were applied to all historical values. Site information and
locations are shown in table 2 and figure 32.



appropriate interpretation, and potential limitations, of the
hypothetical rainfall and groundwater-use scenarios.

Groundwater level at the ROMP 60 Floridan well was
highly variable, exhibiting fluctuations exceeding 10 ft over
time scales ranging from seasonal to multidecadal (fig. 544).
In fact, many wells in southwest Polk County show large
ranges in water level (fig. 10), and the five wells for which
groundwater-level models were developed that show the larg-
est responses to rainfall (sites 446, 469, 472, 478, and 516;
figs. 524, 53A4) are located in this area (fig. 32). The history of
the phosphate industry (both the mining and processing of ore)
in southwest Polk County (fig. 6) and associated groundwater
withdrawals (fig. 29) have been suggested previously as a
factor affecting historical groundwater-level fluctuations in the
area (Spechler and Kroening, 2007, p. 46). Variations in rain-
fall and agricultural groundwater use also have been suggested
as contributing to reported groundwater-level trends (Spechler
and Kroening, 2007, p. 46).

Linear correlation analyses indicated that correlations
between rainfall and groundwater level at these five wells
tended to be stronger (R ranged from 0.19 to 0.76 with an
average of 0.54, fig. 35) than correlations with total ground-
water use (R ranged from —0.55 to 0.49 with an average of
—0.20, fig. 38). Consideration of spatial variations in ground-
water use, which are not realized by using data for total
groundwater use, may contribute to the differences in correla-
tions. To investigate this possibility further, a linear correlation
analysis was performed using the 12-month MWA of ground-
water use (the sum of all categories) for each GUDV grid cell
(fig. 28) and hydrologic response at each site. For GUDV grid
cells in Polk County, the strongest correlations with ground-
water-level for the five wells in question (sites 446, 469, 472,
478, and 516; fig. 32) were with groundwater use in grid cells
RC70, RC71, and RC81 (fig. 28) (R ranged from —0.40 to
—0.52 with an average of —0.46). These correlations gener-
ally are slightly stronger than those for total groundwater use
on which the groundwater-use ANN models were developed
(R between groundwater level and 12-month MWA of total
groundwater use at these five wells ranged from —0.48 to 0.06
with an average of —0.30).

The relatively small responses to changes in groundwater
use predicted by the groundwater-level models for the ROMP
60 Floridan well (fig. 54B) and the other four wells in this
area (sites 446, 469, 478, and 516; figs. 52, 53) may be at least
partly attributable to spatial variability not accounted for in the
groundwater-use ANN models. Therefore, not accounting for
spatial variations in groundwater use could result in under-
estimation of the effects of phosphate industry groundwater
withdrawals. Groundwater use in the grid cells with stron-
ger correlations (RC70, RC71, and RC81; fig. 28) primar-
ily consists of phosphate industry withdrawals. Time series
of groundwater use in grid cells RC71 and RC81 generally
resemble the pattern of total phosphate industry groundwater
use with an upward trend from 1950 to the mid-1960s fol-
lowed by a more gradual downward trend to 2008 (fig. 29),
whereas for grid cell RC70 the upward trend in groundwater

Comparison of Rainfall and Groundwater-Use Effects 1

use extended to the mid-1970s followed by a downward

trend to 2008. In contrast, time series of groundwater use for
other GUDV grid cells in the phosphate mining area (RC60,
RC61, RC72, RC80, RC82; fig 28) show different patterns
reflecting contributions from public supply and agricultural
(predominantly citrus) groundwater withdrawals. In summary,
groundwater-level fluctuations at the ROMP 60 Floridan well
(site 472), and likely at the other four wells in southwest Polk
County (sites 446, 469, 478, and 516; fig. 32), are attributable
to a combination of fluctuations in rainfall, phosphate industry
groundwater use, and other categories of groundwater use.

Groundwater levels at the Cocoa P Floridan well
(site 622) show a slight but continuous downward trend from
the beginning of the simulation period (1965) to the early
1980s, followed by a period of relatively flat trend to the end
of the simulation period (fig. 554). Superimposed on these
long-term patterns are shorter multiyear periods of decline
and recovery in the late 1960s, early 1980s, late 1980s to early
1990s, late 1990s to early 2000s, and the late 2000s (fig. 554).
These groundwater-level fluctuations correlate well with long-
term trends and high frequency variability in both rainfall and
groundwater-use. As a result, the groundwater-level model
shows comparable responses to rainfall and groundwater use,
with a slightly greater sensitivity to a 30-percent change in
groundwater use, exhibiting a 1.43- to 4.07-ft increase or a
1.65- to 3.32-ft decrease in groundwater level, compared to
a 30-percent change in rainfall, exhibiting a 0.35- to 1.91-ft
increase or a 0.34- to 2.56-ft decrease in groundwater level
(fig. 55B). The Cocoa P Floridan well is in east-central
Orange County (site 622, fig. 32) in the expanding Orlando
metropolitan area, which has experienced substantial urban-
ization (fig. 7) and the increases in groundwater withdrawals
that accompany such population growth. When interpreting
the time series of hydrologic responses from the hypotheti-
cal scenarios, it is important to note that applying constant
percentage changes to rainfall and groundwater use results in
variable absolute changes. For example, for the Cocoa P Flori-
dan well, the smaller responses to rainfall changes in 2000 are
at least partly attributable to the low rainfall totals that year
(fig. 33B), and the long-term upward and downward responses
to groundwater-use changes are at least partly attributable to
long-term trends in groundwater use (fig. 344).

Overall, results of the simulations of the hypothetical
scenarios indicate that the flow of springs tends to be more
sensitive to groundwater use than are the water levels of lakes
or wells when compared on the basis of equal percentage
changes in rainfall. Interestingly, the predominant sources
of inflow to Lake Apopka (site 170) are surface-water runoff
(average 1995 rate of 61 ft*/s simulated by the ECFT model;
Nicasio Sepulveda, U.S. Geological Survey, written commun.,
2013) and Apopka Spring (1971-2009 mean flow of 28 {t*/s),
and the hypothetical scenarios show a lake water-level
response to groundwater use comparable to that of rainfall.
Even though the absolute simulated water-level changes are
relatively small (0.20 to 1.62 ft; figs. 52, 53) for Lake Apopka,
the similar relative sensitivity to rainfall and groundwater-use
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Figure 54. Simulated water levels at the ROMP 60 Floridan well (site 472, table 2; fig. 32) for historical conditions and hypothetical

rainfall and groundwater-use scenarios showing A, water-level altitude for historical and scenario conditions, and B, the change in
water level between historical and scenario conditions. Historical conditions are represented by using 100 percent rainfall (R) and
100 percent groundwater use (U). Scenarios are represented by increases and decreases of 30 percent in historical values of rainfall

and groundwater use.

changes and the presence of Apopka Spring inflow sug-

gest that the sensitivity of lake water-level response may be
affected by changes in flow from the spring. Springs are com-
monly considered to reflect the integrated effects of hydrologic
conditions over large areas. Additionally, from a long-term,
steady-state, water-balance perspective, increases in ground-
water withdrawals from an aquifer system are balanced by
increases in aquifer recharge or decreases in aquifer discharge,
with reductions in natural discharge typically being the most
important (Bredehoeft, 1997).

In central Florida, spring flow represents a substan-
tial outflow from the aquifer system, totaling 68 percent of
groundwater withdrawals for 1995 (ECF model; McGurk
and Presley, 2002) and 38 percent of groundwater withdraw-
als for 1995 to 2006 (ECFT model; Sepulveda and others,
2012) (fig. 41B). Accordingly, increases in groundwater
withdrawals over time are likely to eventually result in some
degree of decreases in spring flows as the hydrologic system
moves toward a long-term balance, and the sensitivities of
the spring-flow ANN models to the hypothetical rainfall and
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Figure 55.

Simulated water levels at the Cocoa P Floridan well (site 622; table 2; fig. 32) for historical conditions and hypothetical

rainfall and groundwater-use scenarios showing A, water-level altitude for historical and scenario conditions, and B, the change in
water level between historical and scenario conditions. Historical conditions are represented by using 100 percent rainfall (R) and
100 percent groundwater use (U). Scenarios are represented by increases and decreases of 30 percent in historical values of rainfall

and groundwater use.

groundwater-use scenarios are at least qualitatively consis-
tent with this equilibrium-seeking process. Compared to the
springs, the lower sensitivities of most lakes and wells to the
same hypothetical rainfall and groundwater-use scenarios are
likely attributable in part to the simple hydraulic principle that
a small change in water level can cause a large change in flow
rate if such a water-level change results in a large percentage
change in hydraulic gradient. Thus, modulation by the hydro-
logic system of the relations between water-level changes and
flow rates determines the degree to which the water balance

responds to changes in the primary system forcings of rainfall
and groundwater use.

Comparison of the predictive accuracies of the rainfall
and groundwater-use ANN models indicates that the hydro-
logic system in central Florida generally is affected by ground-
water use differently during wet periods than during dry peri-
ods. During wet periods, when little or no system storage is
available (high water levels), groundwater-use effects are less
evident. By contrast, during dry periods, when there is excess
system storage (lower water levels), groundwater-use effects
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are clearly noticeable in the historical record of hydrologic
response. The residual error time series of the final water-level
and spring-flow models (combined rainfall and groundwater-
use ANN models) were compared to the residual error time
series of the respective rainfall ANN models—a reduction in
residual error of the final combined model compared to the
rainfall model indicates the improvement in predictive accu-
racy gained by addition of the groundwater-use model. This
improvement in predictive accuracy varied with the magni-
tude of the hydrologic response, where a larger reduction in
residual error coincided with periods of lower water levels or
flows (bottom 25 percent of observed 1965-2008 data) and

a smaller reduction in residual error coincided with periods

of higher water levels or flows (upper 25 percent of observed
1965-2008 data). The reduction in residual error generally
was greater for months with lower than higher water levels

or spring flows, for example: 0.20 ft for Prevatt Lake (site 5),
0.087 ft for the OR-47 Floridan well (site 648), and 0.16 ft'/s
for Sanlando Springs (site 312). Extended periods of lower
water levels or spring flows occur during drought periods,
such as experienced throughout central Florida in the early
1980s and late 1990s to early 2000s (for example, figs. 454,
464, 494). Thus, by driving the overall behavior of the sys-
tem, rainfall indirectly influences the degree to which ground-
water use will drive persistent trends in water levels and flows,
with groundwater-use effects more prevalent during periods of
low water levels and spring flows caused by low rainfall and
less prevalent during periods of high water levels and spring
flows caused by high rainfall. Differences in the magnitudes of
rainfall and groundwater use during wet and dry periods also
are important determinants of hydrologic response.

Potential Application to Vulnerability
Assesment

Assessment of vulnerability of the hydrologic system
in central Florida to environmental change, whether natural
or human derived, is a potential application of the forcing-
response behavior learned through the data-mining analyses.
Vulnerability has many working definitions, but Fiissel (2007)
describes four fundamental dimensions needed to characterize
a vulnerable situation: system of concern, valued attributes
of the system, hazards to which the system is subject, and
time period for which assessment is desired. Luers and others
(2003) describe vulnerability as “...the degree to which human
and environmental systems are likely to experience harm due
to a perturbation or stress...,” and they developed a vulnerabil-
ity metric as the ratio of the system sensitivity to the system
state relative to a threshold below which harm would occur
times the occurrence probability of the forcings of concern.
Adger (2006) notes that in the framework of Luers and others
(2003), sensitivity may be a physical parameter of the sys-
tem or a social parameter that measures well being. Thus, the
quantification of system sensitivity factors prominently into
an assessment of vulnerability. The CFANN DSS provides an

easy-to-use tool for sensitivity analysis that could facilitate
vulnerability assessments. Results of the CFANN DSS could
be incorporated either directly into vulnerability assessments
based on water-level or flow conditions or indirectly if rela-
tions between predicted water-level or flow sensitivities and
some measure of system well being (for example, social or
economic effect) are established. On the basis of a range of
scenarios of interest to water-resource managers, sensitivities
derived from the CFANN DSS could be used to identify the
contribution of rainfall and groundwater use to the hydrologic
system’s overall vulnerability. Considerable uncertainty can
exist in quantifying the forcing-response behavior of a system,
and results may need to be interpreted somewhat qualitatively.
Luers (2005) recognized that some systems cannot be defini-
tively quantified and presented a framework whereby the rela-
tive vulnerability of a system to forcings of concern under dif-
ferent scenarios can be identified; such an approach may prove
beneficial to water-resource management decision making.

Limitations of Artificial Neural
Network Models

Several factors potentially limit the application of the
ANN models: confounding effects of correlation between
rainfall and groundwater use, quality and completeness of the
historical databases, and spatial variations in groundwater use.
These factors should be considered when interpreting results
of simulations made with the ANN models and are discussed
in more detail below.

Often, explanatory variables share information about the
behavior of a response variable. It is difficult, if not impos-
sible, to distinguish the individual effects of these variables
(sometimes known as confounded or correlated variables)
on a response variable. For the ANN models, rainfall and
groundwater use are correlated to some degree because rainfall
patterns partly determine when and how much groundwater is
withdrawn by utilities, industry, and agriculture. Correlation
analysis of rainfall and groundwater use and results herein
indicate that groundwater use tends to be negatively correlated
with rainfall, with R values ranging from —0.76 to 0.71 and
an average of —0.14 (fig. 39). Application of the two-stage
modeling architecture, whereby hydrologic response was first
modeled with rainfall and then with groundwater use (fig. 40),
allowed the possibility during the model training process that
the correlation between rainfall and groundwater use was
incorporated into the rainfall ANN model, causing alias-
ing of this interaction between groundwater-use and rainfall
effects by the rainfall model inputs. Aliasing is caused by
confounded variables, which may lead the analyst to attribute
the effects to a particular variable or combination of variables
when the actual causative behavior is due to another vari-
able or combination of variables. It was necessary to use this
two-stage approach for the reasons described in the Input-
Output Mapping and Problem Representation section, with the



primary reasons being the limited availability and quality of
the groundwater-use data and the findings of the current and
previous studies that indicate rainfall was the predominant fac-
tor affecting the water budget and the variability of hydrologic
response. For the rainfall ANN models, the likelihood of alias-
ing increases as the model is more closely trained to match the
observed data. Therefore, overfitting of the ANN models was
mitigated by using a conservative training process, namely by
limiting the ANN to one hidden-layer neuron, culling inputs
with input-output sensitivities at odds with principles of mass
conservation, retaining only those inputs that are not highly
correlated with each other, and using 2-fold cross-validation
where possible. An important characteristic of aliasing is that,
whereas the individual effects of the confounded variables
cannot be unambiguously separated, the combined effect can
be accurately modeled. Although, significant changes in the
underlying causative relations between the confounded vari-
ables, such as a change in water-management practices that
affect water-use patterns, may result in poor performance of
the model for predictive scenario simulations. Stronger alias-
ing causes greater ambiguity in separating the effects, and thus
the higher the correlation between rainfall and groundwater
use, the greater will be the potential for rainfall and groundwa-
ter-use interactions to alias rainfall effects.

Empirical models, such as ANNS, are especially sensi-
tive to the quality and completeness of the data from which
they were developed. Much of the groundwater-use data was
estimated owing to a paucity of historical measurement data.
Additionally, groundwater return flows (return of groundwater
withdrawals to the aquifer system) are difficult to quantify,
but available data indicate they could be important to an
understanding of the water resources of central Florida. For
example, a total of 151 Mgal/day of treated wastewater (from
municipal and privately owned treatment facilities) was dis-
posed of by land application in Lake, Orange, Osceola, Polk,
and Seminole Counties in 2000, accounting for 86 percent of
the total wastewater discharged by municipal and private sys-
tems in these counties (Marella, 2004, p. 37). For these same
five counties in 2000, 424 Mgal/day of groundwater was with-
drawn for public supply (from a publicly or privately owned
community water system) (Marella, 2004, p. 14). As a result,
assuming all municipal and privately owned wastewater-treat-
ment facilities receive water originally supplied by a publicly
or privately owned facility, about 36 percent of public-supply
groundwater withdrawals in 2000 were returned by land appli-
cation of treated wastewater. Although some of this water is
lost to ET, much of it likely recharges the groundwater system
depending on the particular land application methods used.
Additionally, 25 to 75 percent of domestic public-supply water
typically is used for irrigation (Marella, 2009, p. 15), which
provides additional potential groundwater recharge. The lack
of quantitative historical data on groundwater return flows
could have affected correlations identified with the ground-
water-use data, because hydrologic response is affected by the
net effects of anthropogenic withdrawals and inputs, which for
the current study were all groundwater withdrawals with the
exception of drainage well recharge.
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By contrast, the NOAA rain gage data were of high qual-
ity with few missing data, but only 18 gages were within or in
the vicinity of the study area. Cluster analysis of the NOAA
rain gage data showed that rainfall is highly variable in time
and space (figs. 24, 25), and if additional long-term rainfall
measurement sites had been available they likely would have
provided valuable information to further define the tempo-
ral and spatial variability of rainfall. Missing hydrologic
response data, which exceeded 25 percent for 22 of the sites
(appendix 5), can lead to model inaccuracy owing to a lack
of information on which to train the model (for example, the
model for Prevatt Lake; fig. 45). In addition to incomplete
records, relatively short periods of record for both groundwa-
ter-use data as well as hydrologic response data for some sites
necessitated limitation of the simulation period to 43 years
(1965 to 2008). Despite this multidecadal dataset, the hydro-
logic system was subject to only a limited number of large
impact events, such as droughts and El Nifio/La Nifia periods,
onto which the long process of human development is super-
imposed. Large impact events often provide the highest value
input-output responses for evaluation. Increasing population
and the associated land development and groundwater with-
drawals in central Florida clearly predate 1965, but data dur-
ing a period of predevelopment or modest development were
simply too sparse or nonexistent to develop models represent-
ing a larger range in anthropogenic influences. For models to
represent the fullest ranges of variability, they must be trained
on the most complete and longest-term datasets available that
encompass a comprehensive range of field conditions.

The effects of the spatial variability in groundwater use
warrant further analysis to determine if sufficient informa-
tion is present in the historical groundwater-use and hydro-
logic response data to quantify such effects. Examination of
historical groundwater-use data using the GUDV shows that
spatial variations are present (figs. 30, 31). Likewise, spatial
variations in the hydraulic properties of the Floridan aquifer
system are common, such as areas of relatively low transmis-
sivity for the Upper Floridan aquifer in east Polk County
and south Osceola County (Kuniansky and others, 2012) and
may accentuate hydrologic responses to spatial variations
in groundwater use. For some sites, such as the five wells in
southwest Polk County (sites 446, 469, 472, 478, and 516;
fig. 32) discussed in the previous section, linear correlations
with groundwater use from individual GUDV grid cells were
slightly stronger than correlations with total groundwater use.
Overall, however, linear correlations with the MWAs of total
groundwater use, which were the inputs used in the ground-
water-use ANN models, were similar in magnitude to correla-
tions with groundwater use for individual GUDYV grid cells.
Also, uncertainty exists in the locational information for some
categories of groundwater use. Information on the historical
spatial distributions of citrus irrigation, non-citrus agricul-
tural irrigation, and golf course irrigation were limited, and
these data should be interpreted only on a semi-regional scale
(McLeod and Munch, 2012). Trichakis and others (2011),
in a study of groundwater-level fluctuations in the Edward’s
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aquifer in Texas using ANNSs, noted the importance of accurate
and complete groundwater-use data for the prediction of
abrupt changes in groundwater levels characteristic of karstic
aquifers. Limitations on the availability of such groundwater-
use data during the current study and uncertainty in ground-
water return flows that may offset some of the groundwater
withdrawals contributed to the need to model groundwater use
on the basis of a single (spatially totaled) time series for the
study area.

Given the limitations that have been described, care
should be exercised to interpret the results of the ANN models
carefully within the context of the assumptions, approach,
and analyses documented herein. The final lake water-level,
groundwater-level, and spring-flow models incorporated in
the CFANN DSS should not be used alone to quantify the
individual effects of rainfall and groundwater use for water-
supply planning or management purposes. Examination of
other lines of evidence, including physics-based models and
other data such as quantified land-use and land-cover changes
not examined during the present study, is not only warranted
but may be indispensable. The knowledge gained from data-
driven modeling and the results from physics-based modeling,
when compared and used in combination, can yield a more
comprehensive assessment and a more robust understanding
of the hydrologic system than either of the approaches used
separately.

Comparison of Artificial Neural
Network Models With a Physics-
Based Model

The recent completion of the ECFT groundwater flow
model (Septlveda and others, 2012), which encompasses
nearly the entire CFCA with the exception of a small portion
of western Polk County, provides an opportunity to compare
results between this physics-based model and the data-driven
ANN models. Of the 51 sites for which ANN models were
developed and incorporated in the CFANN DSS, 48 sites are
simulated in the ECFT model. The three remaining sites—
Island Lake at Longwood, Lake Anderson at Orlando, and
Crooked Lake at Orlando (sites 209, 221, and 239, respec-
tively; fig. 32)—were not included in the ECFT model. For the
48 sites common to the ANN and ECFT models, a Microsoft
Excel® spreadsheet called the Model Data Viewer (MDV) was
developed to facilitate comparison of model performance for
both models. The MDYV provides tabular and graphical dis-
plays of descriptive statistics for measured, ANN-simulated,
and ECFT-simulated data and model-fit statistics for ANN-
and ECFT-simulated data. Further details on the functionality
and application of the MDYV are provided in appendix 7.

The MDYV was used to compute model-fit statistics
(R% NSCE, RMSE, and PME) for the overlapping simula-
tion period of the ANN and ECFT models, consisting of

144 monthly values from January 1995 to December 2006
(figs. 56, 57). Additionally, a complete tabular listing derived
from the MDYV of descriptive and model-fit statistics for mea-
sured and simulated data is provided in appendix 8. The ANN
models generally had better model-fit statistics than the ECFT
model, indicating that the ANN models were able to more
closely match the measured data for most sites. The greatest
differences between the ANN and ECFT models generally

are present in water levels for the wells and to a lesser degree
the lakes. The larger error for the ECFT model is attributable
to underrepresenting variability in the data (as indicated by,
for example, R?), but often to a larger degree the error also is
caused by larger absolute error (as indicated by, for example,
PME and ME) compared to the ANN models. For example,
for the Lake Oliver Surficial well (site 579), R? is 0.848 for the
ECFT model and 0.864 for the ANN model (figs. 574, 564,
respectively), whereas the ME is 2.62 ft for the ECFT model
and 0.11 ft for the ANN model (appendix 8). As a result, the
NSCE for the ECFT model (—1.18) is much lower than the
NSCE for the ANN model (0.86) for this well (figs. 57B, 56B,
respectively). Such differences in absolute error are attribut-
able in part to differences in how ANN and ECFT models

are constructed. Because of the spatially distributed nature of
groundwater flow models, simulated conditions and any error
at individual sites may affect other sites, causing, for example,
the simulated water level at a well to be consistently offset
from the measured values. In contrast, the ANN models are
site-specific models; therefore, simulated conditions or errors
at one site cannot affect other sites.

For the springs, the ANN and ECFT models generally
had similar accuracy. For example, the ECFT model had better
model-fit statistics for Palm Springs (site 313) than the ANN
model—although both models had difficulty accurately simu-
lating flow at this spring (figs. 56, 57). Issues with the quality
and completeness of the spring-flow data described previously
likely contributed to inaccuracies in the simulation of flow
at springs for the ANN models as well as the ECFT model.
For some sites, the model-fit statistics for the CFANN DSS
simulation period (1965 to 2008; fig. 43) differ substantially
from those shown in figure 56 for the period 1995 to 2006.
For example, for the spring-flow model for Palm Springs, R?
is 0.627 for 1965 to 2008 (fig. 434, appendix 5) and 8.9 x 10
for 1995 to 2006 (fig. 564, appendix 8). These differences are
simply the result of the different simulation periods and inabil-
ity of the ANN model, or any model, to match all data equally
well. Had the ANN and ECFT models been calibrated using
only contemporaneous data, the ANN models likely would
have had comparatively better model-fit statistics for all sites.
The capability of ANN models to accommodate a large num-
ber of degrees of freedom (adjustable model parameters) con-
tributes to its flexibility in replicating observed data, whereas
physics-based groundwater models are limited internally to the
hydraulic parameters of the hydrogeologic units.

Further insight into how simulated results for each model
compare at an individual site can be obtained using the graphi-
cal display functionality of the MDV. Graphs of time-series
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Figure 56. Model-fit statistics for the final water-level or flow models for the 51 sites incorporated in the Central Florida Artificial Neural Network Decision Support System

for the 1995 to 2006 period: A, coefficient of determination (R?), B, Nash Sutcliffe coefficient of efficiency, C, root-mean-square error (RMSE), and D, percent model error (RMSE

divided by the range of data). Site information and locations are shown in table 2 and figure 32.

85



"Z€ 2nB1y pue Z 8|qel Ul UMOYS a1 SUOIRIO| pue
uonewJoyul 811§ "(e1ep jo abues ayy Aq papiaip ISIAY) 10418 [apouw Jusalad ‘g pue ‘(ISINY) 10418 sienbs-ueaw-1001 9 ‘AauaIalye JO JUBIDNB0D BIIIOING YSBN ‘g ‘(;4) uoneuiwislap
10 1UB191}4809 ‘i :poLiad 900z 01 G661 BY3 10} (Z10Z ‘S48Yr0 pue epaandas) [apow (1493) JUBISULIY BPLIO| [BJIUSI-1SES BU) Ul SBYIS 8¢ 10} SOIISIILIS 1)-|apoj\ LG ainbiy

Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida

86

laquinu sy Jlaquinu a)ug
WWWLWWW N UICICICTIUICT RS NININININININ) — — =3 WLWWWWwW N UICICICTICIOTAR S NININININININ) — = =3
Porod8 ~n2BEHEERERNNIREIIIRSINBS m%u&ummwmw /_Qc_%mmwwwwg 0 FPoro88 NRBEHETERERNNGRESINRoaNBS SBIBNBIRIBIZRIFRSEEEEx 0
____R__________R________________________ TUULL ___.________________________________________________R_________._____R___
l
oL >
n t o %
) o 3
o | | = @
% g togs
=3 I Hy =48
— — e 2 25
[ u =4 — ' |apow ul pajenwis jou —g g
@ H H m ®
© " 6€Z Pue ‘127 ‘607 SaUS » 3
— — 0 3 — —9 88
jusalad QL < £67 8YS < S =
[ ] ‘lapow ul paje|nwis — [ ] — a =
L 10U 6EZ PUe ‘L7 ‘60 SaNS — 05 LI 2
sbunidg SIELS sayeq — sbuudg SIEN saye] — 8
LLLLCLLLL L LLLLL L o _________________________.___________________________m
a J
WWWWWLW NI UICICICTICIOTAR S NININININININ) — = =3 WLWWWWwW N OIUICICICIICTR SN NININININININ) — = =3
Pomod8 ~nI2BEHETERERNNGRESIIRoINBS SBIBNBIRIBI=ZRIFRSEEEEx 0 Po—BR ~lSEHHRRSNNOSSsINosnds SB8IBRNSIVIBITRIFHSESELB 0
" > et
_______________________________________________________ T T e e e ey
H — 810~ 10
. e
H — 90~ 20
. S
H e = €0 3
a2 -
L — 70— Wun: W — 0 o
< =
—H+-*~++-tH+r-F-l--tH4-=-=--- H+l-H-14+l+FH{o0o &F — 90 2
@ o ]
| F - ] . 7o 3 g — = ll | | —1{ 90 W
u L] un =X = u 3
L L] il 1—> 67 8WS o s> = I I L] 0 B
] . o =
. . |apow ul ' I e '3 it |lopouw ul | S
—vu [ ] palejnwisjou ggz | M ™ . — 90 [ . L L] | [ ] i s [ ] ' paje|nuiIs 10U 67 | g A —80 =
= u pue ‘17z ‘60z SeNS M " " I u® pue ‘17z 602 SOUS 8 >
G 1= > £b9 PUB 'Zhg ‘smms dﬂm soNs Sonet “f e - sbunds Slem el 160
________ SR S LLe e e e e e e e e e e e iy
q 14




data, cumulative z-scores, percentile rank curves, and scatter
plots of measured data and simulated values from the ANN
and ECFT models are displayed by the MDV (appendix 7).
For example, for Crooked Lake near Babson Park (site 49),
percentile rank curves indicate that the ANN model underpre-
dicts low altitude water levels (the bottom 25 percent of data),
whereas the ECFT model overpredicts low altitude water lev-
els (the bottom 15 percent of data) (appendix 7). In contrast,
both the ANN and ECFT models underpredict high altitude
water levels by 1 ft or more for the upper 5 percent of data.

Even though the ANN models generally replicate the
observed historical data more closely than does the ECFT
model, ANN models may not more accurately predict system
behavior under a different set of conditions. Each model has a
unique set of assumptions and limitations, described herein for
the ANN models and by Sepulveda and others (2012) for the
ECFT model. By applying machine learning artificial intel-
ligence techniques, ANN models have a greater mathemati-
cal capability to replicate observed data than does the ECFT
model. Physics-based models attempt to fit given equations
based on prior definition of a conceptual model of the system.
The groundwater flow equations used by the ECFT model sub-
stantially reduce the degrees of freedom available to explain
head and flow variability. These limitations are not imposed
in the ANN models. In short, ANNs synthesize the interac-
tions among the model inputs and outputs to best match the
observed response, whereas physics-based models prescribe
such interactions based on first principles and associated
approximations.

Both approaches have potential advantages and disad-
vantages. Where data are sparse or of poor quality, an ANN
model may provide poor predictions or synthesize an incorrect
mathematical input-output relation, whereas a physics-based
groundwater flow model may provide poor predictions but
will be constrained by the principles of mass conservation
and the formulation prescribed for relating flow to the driving
potential-energy gradient (most commonly a porous media
model based on hydraulic head gradients and Darcy’s law).
Where data are plentiful and of high quality, however, an ANN
model may synthesize a mathematical input-output relation
that differs from that of a physics-based model in order to
more closely replicate the observed data. Under such condi-
tions, a physics-based model may be adversely constrained
by the prescribed mathematical relation, resulting in a poorer
capability to replicate the observed data. Some of the physics
of groundwater flow in karst aquifers may not follow the com-
monly applied equivalent porous media concept, such as that
used in the ECFT model, especially at the site scale. Under
those conditions, different and more advanced models—such
as dual porosity or conduit flow models (Shoemaker and oth-
ers, 2008)—may be more accurate (Hill and others, 2008). The
ultimate difficulty with these more advanced physics-based
models for karst aquifers is that the fine-scale rock lithology
and structure, which is what fundamentally controls the travel
times and pathways of flowing groundwater, are effectively
unmappable over any area of regional water management
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concern. The effects of such fine-scale features may be mani-
fest in the observed hydrologic response and could be rela-
tively easily simulated using ANN or other empirical modeling
techniques. Hydrologic models, whether data-driven or
physics-based, often more accurately predict changes in, rather
than the absolute magnitude of, a simulated response, such as
drawdown in groundwater level caused by increased ground-
water withdrawals. Comparisons of model sensitivities and
predictions under the same set of conditions would provide
additional insight on the similarities and differences between
the ANN and ECFT models. Hypothetical scenarios, such as
those used for the ANN model sensitivity analyses, as well as
more realistic projected future conditions, could be used for
comparing the ANN and ECFT models. Combined applica-
tions of both physics-based and data-driven models provide
another avenue for leveraging the strengths of both types of
model. Improvement in the predictive accuracy of a physics-
based groundwater model has been demonstrated by using
data-driven models, including ANNs, to predict systematic
errors in the physics-based model and then combining each
model’s results in an error-correcting complementary manner
(Demissie and others, 2009). More robust models should yield
predictions that have been derived over a wide range of condi-
tions and are consistent with known physical principles and
data on system behavior from other independent sources.

Summary and Conclusions

In central Florida, variations in both rainfall and ground-
water use may affect surface and subsurface water-level and
flow conditions, potentially affecting the ability of the hydro-
logic system to meet both human and environmental needs.
Many long-term records of historical hydrologic data for the
area are available in the databases of local, State, and Fed-
eral agencies, which are well suited for empirical modeling.
On the basis of these data, the response of lake water levels,
groundwater levels, and spring flows to changing rainfall and
groundwater-use conditions over a multidecadal period was
analyzed using artificial neural network (ANN) and other data-
mining techniques.

The data consist of forcing (meteorological and ground-
water use) and response (water level and flow) data from sites
in Lake, Orange, Osceola, Polk, and Seminole Counties and
the vicinity. Some meteorological data extend back to 1900
and some hydrologic response data extend back to the 1930s,
whereas little groundwater-use data are available prior to
1957. A database was created to store all historical hydrologic
records, which consist of daily data on rainfall (143 sites), air
temperature (21 sites), potential evapotranspiration (21 sites),
lake water level (307 sites), groundwater level (470 sites), and
spring flow (22 sites). Reported or estimated monthly ground-
water-use data were compiled for the categories public supply,
citrus irrigation, non-citrus agricultural irrigation, golf course
irrigation, phosphate mining, and drainage well recharge.
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Historical data were evaluated using descriptive statistics,
cluster analysis, and other exploratory analysis techniques to
assess their suitability for more intensive data-mining analy-
sis. A linear trend analysis was performed on the data for the
sites in the hydrologic database with at least 10 measurements
and a period of record of at least 10 years. Daily rainfall data
from only 21 rain gages operated by the National Oceanic and
Atmospheric Administration (NOAA) with 95-year or longer
periods of record were analyzed owing to the presence of
accumulated data (rainfall that was accumulated over multiple
days and reported as a single value) in the record of other
rain gages. For this initial exploratory analysis, no attempt
was made to identify cyclical or nonmonotonic trends or to
establish statistically significant upward or downward trends.
Meteorological data indicate 67 percent of sites exhibited
upward trends in air temperature over at least a 45-year period
of record, whereas 76 percent exhibited downward trends in
rainfall over at least a 95-year period of record. Analyses of
hydrologic response data, which have varied periods of record
ranging in length from 10 to 79 years, indicate that the water
levels of lakes were about evenly split between upward and
downward trends, whereas water levels in 69 percent of wells
and flows in 68 percent of springs exhibited downward trends.
For lake water levels, both closed-basin and flowthrough
lakes in ridge areas generally have greater upward or down-
ward trends in water levels than do lakes in non-ridge areas,
suggesting that lakes in ridge areas are more susceptible to
long-term changes in water level as a result of greater hydrau-
lic connection with the Floridan aquifer system.

For sites with periods of record exceeding 30 years and
relatively few missing data, a time-series cluster analysis
was performed for each type of hydrologic response data
(water levels at 121 lakes and 46 wells and flow at 9 springs)
to identify dynamic similarities and differences among sites
of the same type based on a correlation matrix (Pearson
product-moment). For lakes, there is no apparent geographic
association among the resulting six cluster analysis groups.
Compared to all groups combined, however, two groups have
proportionately more closed-basin lakes and two other groups
have proportionately more flowthrough lakes, suggesting dif-
ferences in the dynamic behavior of historical water levels in
these different types of lakes. Cluster analysis results indicate
that wells generally are associated geographically. Spring
groups are loosely associated geographically and by magni-
tude of flow. Time-series cluster analyses also were performed
on 1942-2008 meteorological data, consisting of rainfall at
18 NOAA gages and potential evapotranspiration computed
from air temperature data at 21 NOAA gages. Results indicate
four groups of rain gages with north-south and east-west geo-
graphic associations; with the exception of one gage, all gages
belonging to the two groups in the western half of the study
area had downward trends in rainfall. Substantial intragroup
differences indicate that rainfall is highly variable in space
and time. Cluster analysis of potential evapotranspiration data
indicates three groups of relatively similar dynamic behavior
with a generally east-west geographic association.

To enable viewing of general spatial trends in ground-
water use over time, a spreadsheet application called the
Groundwater-Use Data Viewer was developed that aggre-
gates the monthly data using a grid cell size of approximately
20 x 20 kilometers. Spatial patterns and long-term trends in
groundwater use are evident in both monthly and annual data
for all water-use categories. Total groundwater use in the
study area (excluding 1950-57 due to missing data) increased
from about 250 million gallons per day (Mgal/d) in 1958 to
about 590 Mgal/d in 1980 and remained relatively stable dur-
ing 1981-2008, with a minimum of 559 Mgal/d in 1994 and
a maximum of 773 Mgal/d in 2000. The change in trend in
the early 1980s and the following period of relatively slight
trend is attributable to the concomitant effects of increasing
public-supply withdrawals and decreasing use of water by the
phosphate industry and for citrus and non-citrus agricultural
irrigation.

On the basis of the exploratory analyses of the histori-
cal data, empirical lake water-level, groundwater-level, and
spring-flow models were developed for 51 sites by using
ANN models and other data-mining techniques, such as signal
(time series) processing methods including filtering and signal
decomposition. The sites consist of 22 lakes, 23 wells, and
6 springs, with data records beginning as early as 1942 and
extending to 2008. Input time series consisting of decomposed
daily rainfall (1942 to 2008) and monthly total groundwater
use (1957 to 2008) resulted in a hybrid signal-decomposition
ANN model. Moving window averages (MWAs) having suc-
cessively increasing window sizes, and differences between
them called moving window differences (MWDs), were used
to represent various frequencies and frequency-band compo-
nents of the rainfall and groundwater-use forces that modulate
water-level or spring-flow behavioral dynamics. Daily rainfall
data at the 18 NOAA rain gages were used to compute MWAs
for the standard rainfall (arithmetic average by time step of all
gages) as well as normalized rainfall (individual gage rainfall
minus the standard rainfall) at each gage using the following
window sizes: 30; 90; 270; 630; 1,440; and 2,250 days. For
the standard rainfall, MWDs also were computed. Likewise,
monthly groundwater-use data were used to compute MWAs
and MWDs for total groundwater-use flows for the study
area using the following window sizes: 3, 6, 12, 24, 48, and
96 months.

To provide insight into the input-output system dynam-
ics and to guide development of the ANN models, linear
associations among rainfall, groundwater use, and hydrologic
response (lake water level, groundwater level, and spring
flow) were computed using the Pearson product-moment cor-
relation coefficient (R). Results for all sites indicate that the
strongest correlations between rainfall signals (270-, 630-, and
1,440-day MWAss) and hydrologic response averaged 0.66
and average correlations for all rainfall signals averaged 0.40.
In contrast, the strongest correlations between groundwater-
use signals (3-, 6-, 12-, 24-, 48-, and 96-month MWAs) and
hydrologic response averaged —0.48 and average correlations
for all groundwater-use signals averaged —0.31 for all sites.



Correlations of hydrologic response with groundwater use
generally were negative because water levels and flows will
decrease in response to an increase in groundwater with-
drawals. The relatively strong negative correlations suggest
that groundwater use is an important control on hydrologic
response, although correlations of hydrologic response with
groundwater use generally are weaker than those with rainfall.
Additionally, long-term downward trends in rainfall were
prevalent in the western half of the study area, where most

of the areas of high groundwater recharge occur, and are
potentially associated with downward trends in groundwater
levels and spring flows. Correlations between hydrologic
response and rainfall were fairly high for both nearby and
distant rain gages, suggesting an “interconnectedness” of the
hydrologic system in which the effects of rainfall forcing on
the hydrologic system could propagate over long distances.
Correlations between rainfall signals (30-, 90-, 270-, 630-,
1,440-, and 2,250-day MWA?s) at the 18 NOAA gages and
groundwater-use signals (3-, 6-, 12-, 24-, 48-, and 96-month
MWAs) tended to be negative, where the strongest correlations
averaged —0.46 and average correlations for all rainfall and
groundwater-use signal combinations averaged —0.14 for all
NOAA rain gage sites. These negative correlations are likely
attributable to rainfall control of certain types of water use
(for example, irrigation) such that groundwater withdrawals
increase in response to a decrease in rainfall. Such cross cor-
relation between rainfall and groundwater use may affect the
relative explanatory strength of groundwater use or rainfall for
modeling hydrologic response.

The development of the hybrid signal-decomposition
ANN models for the 51 sites in the study was undertaken in
two phases, resulting in a two-stage model architecture. The
first phase was to train an ANN for each site to simulate the
observed hydrograph using decomposed rainfall signals as
inputs. The second phase was to train a second ANN for each
site to simulate the residual error time series from the first
model using decomposed groundwater-use signals as inputs
and, at a few sites, using the predicted water level or flow
from the first model as an additional input. The final simulated
water level or flow is the sum of the predictions of both ANN
models for the site. Final models were limited to the 1965
to 2008 period to accommodate the limited period of record
of groundwater-use data and the computation of MWAs and
MWDs.

Training of the ANN models was performed iteratively
to select the MWAs and MWDs that were the best predictors
for each output hydrograph, while culling inputs that were col-
linear or had input-output sensitivities at odds with principles
of mass conservation. The final models explained much of the
variability in observed data, with models for 43 of the 51 sites
having coefficient of determination (R?) values exceeding
0.6, and the models matched the magnitude of the observed
data reasonably well, such that models for 32 of the 51 sites
had percent model error (PME) less than 10 percent (PME is
root-mean-square error divided by the range of the measured
data). Generally, groundwater-level models, with R? averaging
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0.774 and PME averaging 8.90 percent, performed slightly
better than lake water-level models, with R? averaging 0.718
and PME averaging 9.96 percent. Spring-flow models had the
poorest model fit, with R? averaging 0.546 and PME averaging
13.14 percent.

The Central Florida Artificial Neural Network Decision
Support System (CFANN DSS) was developed to simulate
hydrologic response to historical or user-specified rainfall and
groundwater use from 1965 through 2008. The CFANN DSS
integrates historical databases and the 102 site-specific ANN
models, model controls, and model output into a spreadsheet
application with a graphical user interface that allows the
user to simulate scenarios of interest. The CFANN DSS was
used to run four scenarios, representing hypothetical changes
in historical rainfall and groundwater use, to determine
changes in lake water level, groundwater level, and spring
flow simulated by the ANN models. The scenarios consist of
using time series of rainfall and groundwater use at 70 and
130 percent of historical values. Lakes and wells generally
show a larger response to a 30-percent change in rainfall than
a 30-percent change in groundwater use (for both maximum
and minimum changes in water level or flow), whereas springs
generally show a mixed response, with some springs showing
a larger response to rainfall and some springs showing a larger
response to groundwater use.

From a long-term, steady-state, water-balance perspec-
tive, increases in groundwater withdrawals from an aquifer
system are balanced by increases in aquifer recharge or
decreases in aquifer discharge, with reductions in natural
discharge (for example, springs) typically most important. In
central Florida, spring flow constitutes a substantial outflow
from the aquifer system. Accordingly, increases in ground-
water withdrawals over time are likely to eventually result
in decreases in spring flows as the hydrologic system moves
toward a long-term balance; such behavior would be magni-
fied under prolonged low-recharge conditions. The sensitivity
of spring-flow ANN models to the hypothetical rainfall and
groundwater-use scenarios are at least qualitatively consis-
tent with this equilibrium-seeking process. Compared to the
sensitivity of the flow of springs, the lower sensitivities of the
water levels of most lakes and wells to the same hypothetical
rainfall and groundwater-use scenarios are likely attributable
in part to the simple hydraulic principle that a small change in
water level can cause a large change in flow rate if the water-
level change results in a large percentage change in hydraulic
gradient.

Overall, the data-mining analyses described herein
indicate that the Floridan aquifer system in central Florida is
a highly conductive, dynamic, open system that is strongly
influenced by external forcing. The most important external
forcing appears to be rainfall, which explains much of the
multiyear cyclic variability and long-term downward trends
observed in lake water levels, groundwater levels, and spring
flows. For most sites, groundwater use explains less of the
observed variability in water levels and flows than rainfall.
Relative groundwater-use effects are greater, however, during
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droughts, and long-term trends consistent with historical
groundwater-use patterns were identified. The sensitivity of
the hydrologic system to rainfall is consistent with the hydro-
geology of central Florida where the Floridan aquifer system
is thinly confined; the overlying confining unit (intermediate
confining unit/intermediate aquifer system) is less than 130 ft
thick throughout most of the study area (Sepulveda and others,
2012). The well-drained karst terrain in central Florida largely
coincides with these areas of thin confinement and facilitates
relatively rapid transmission of infiltrating water from rainfall
to the water table.

Previous physics-based modeling and independent
water-budget analyses indicated that groundwater recharge
from rainfall and artificial recharge is the largest inflow to the
groundwater system in central Florida. The areally distrib-
uted nature of rainfall, as opposed to the site-specific nature
of groundwater use, and the generally high transmissivity
and low storativity properties of the Floridan aquifer system
contribute to the prevalence of water-level and flow patterns
that mimic rainfall patterns. The effects of development activi-
ties, such as groundwater withdrawals, are superimposed on
the natural rainfall-driven system, which may affect both the
short-term and the long-term water balance of the hydrologic
system.

The dynamic nature of the groundwater system in central
Florida is characterized by constant adjustments to changing
hydrologic inflows and outflows. An aquifer responds to such
adjustments through a combination of storage gains and losses
that induce positive feedback from system boundaries—when
inflows or reduced outflows from system boundaries match
groundwater withdrawals, a hydrologic balance is achieved
(Balleau, 2013). The effects of such behavior are reflected by
changing water levels and flows. A hydrologic system with
multiple forcings and positive feedbacks may have multiple
stable states, that is, the system may not return to the same
water-level and flow conditions (the same point in state space)
after a transient disturbance (Peterson and others, 2009). This
hysteretic behavior depends on the magnitude and interactions
of the system inputs and outputs, and contributes to dynamic
behavior of the system. In general, the data-mining analyses
demonstrate that the hydrologic system in central Florida is
affected by groundwater use differently during wet periods,
when little or no system storage is available (high water lev-
els), than during dry periods, when there is excess system stor-
age (lower water levels). Thus, by driving the overall behavior
of the system, rainfall indirectly influences the degree to
which groundwater use will drive persistent trends in water
levels and flows, with groundwater-use effects more prevalent
during periods of low water levels and spring flows caused by
low rainfall and less prevalent during periods of high water
levels and spring flows caused by high rainfall. Differences
in the magnitudes of rainfall and groundwater use during wet
and dry periods also are important determinants of hydrologic
response.

The data-mining analyses provided insight on salient
processes influencing system behavior as gleaned from a long

period of historical data representing a wide variety of hydro-
climatic conditions. This insight may not be easily acquired
with physics-based models, which commonly are developed
by using relatively short calibration periods. The analysis
methods inherent in data mining are particularly well suited
for karst aquifer systems having good hydraulic communica-
tion between surface and subsurface environments, such as
the Floridan aquifer system in central Florida. In contrast,

for deeply buried or well-confined aquifer systems, in which
surface forcing signals are substantially attenuated and system
behavior evolves over a longer time period, development of
empirical models may be more difficult owing to the often
sparse or nonexistent data for 50- to 100-year or greater peri-
ods. An important implication of the data-mining analyses is
that rainfall variability at subannual to multidecadal timescales
must be considered in combination with groundwater use to
provide robust system-response predictions that benefit sus-
tainable resource management in an open karst aquifer system.

Assessment of vulnerability of the hydrologic system
in central Florida to environmental change, whether natural
or human derived, is a potential application of the forcing-
response behavior learned through the data-mining analyses.
The CFANN DSS provides an easy-to-use tool for sensitiv-
ity analysis that could facilitate vulnerability assessments.
Even though considerable uncertainty can exist in quantify-
ing the forcing-response behavior of a system, assessment of
the relative vulnerability of a system to forcings of concern
represented by the CFANN DSS under different scenarios
may prove beneficial to water-resource management decision
making.

Determining the effects of rainfall and groundwater use
on hydrologic response in central Florida using empirical
modeling is limited by the confounding effects of correlation
between rainfall and groundwater use, quality and complete-
ness of the historical databases, and spatial variations in
groundwater use. The data-mining analyses presented herein
indicate that the available historical data alone do not contain
sufficient information to allow definitive quantification of
cause-and-effect relations of rainfall and groundwater-use on
hydrologic response. As a result, the final lake water-level,
groundwater-level, and spring-flow models incorporated in the
CFANN DSS should not be used alone to quantify the indi-
vidual effects of rainfall and groundwater use for water-supply
planning or management purposes.

Results of the ANN models were compared with those of
a physics-based groundwater flow model. The ANN models
were able to more closely match the measured data for most
sites compared to the physics-based model. The greatest dif-
ferences between the ANN and physics-based models gener-
ally are present in water levels for the wells and to a lesser
degree the lakes; both types of models generally had similar
accuracies for flows at springs. Both approaches have poten-
tial advantages and disadvantages. Where data are sparse or
of poor quality, an ANN model may provide poor predictions
or synthesize an incorrect mathematical input-output relation,
whereas a physics-based groundwater flow model may provide



poor predictions but will be constrained by the principles of
mass conservation and Darcy’s law. The knowledge gained
from data-driven modeling and the results from physics-based
modeling, when compared and used in combination, can
yield a more comprehensive assessment and a more robust
understanding of the hydrologic system than either of the
approaches used separately.
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Appendix 1. Description of hydrologic database

The hydrologic database was developed using Microsoft Access 2010® to store all historical hydrologic data compiled dur-
ing this study and is available for download from the U.S. Geological Survey (USGS) (http.//dx.doi.org/10.3133/sir20145032).
The database comprises nine tables. The “README” Access table contains two fields, VERSION DATE and COMMENTS,
which document revisions to the database and the corresponding date the change was made. The “Station List” Access table
contains site-specific information about each of the 963 sites. Table Al-1 lists the field names, type of field, and a brief descrip-
tion of the data in the fields for the “Station List” Access table. The STATION ID field serves as the unique identifier by which
the site record in the “Station List” Access table can be related to records in other Access tables. The other seven Access tables
contain the time-series data for all sites for each type of data; the tables listed below provide the field names, type of field, and a
brief description of the data in the field for each of the Access data tables.

* “GOES_ET” Access table contains potential and reference daily evapotranspiration data (extracted for the 2-kilometer
pixel overlying each of the 21 National Oceanic and Atmospheric Administration (NOAA) air temperature measure-
ment sites) from the USGS Statewide Evapotranspiration dataset (http.//fl. water.usgs.gov/et/) (Mecikalski and others,
2011) (table A1-2);

» “Hargreaves PET” Access table contains daily potential evapotranspiration data (at each of the 21 NOAA air tempera-
ture measurement sites) computed by using the Hargreaves equation (Hargreaves and Samani, 1985) (table A1-3);

» “Lakes” Access table contains daily lake water-level data (table A1-4 );

+ “Rainfall” Access table contains daily rainfall data, with the caveat that sites not operated by NOAA may contain data
accumulated over periods from 2 days to a month or more (table A1-5);

* “Springs” Access table contains daily spring-flow data (table A1-6 );

» “Temperature” Access table contains daily minimum, maximum, and mean air temperature data at 21 NOAA sites
(table A1-7); and

o “Wells” Access table contains daily groundwater-level data (table A1-8 ).

Codes denoting the quality of the data were assigned to many individual data values by the St. Johns River Water Manage-
ment District, South Florida Water Management District, and Southwest Florida Water Management District and are defined in
tables A1-9, 1-10, and 1-11, respectively). Separate quality codes are provided for rainfall data as explained in table A1-5 .

Data for duplicate sites (sites monitored by more than one agency) were merged, where consistency in data quality among
the collecting agencies could be verified. When data were available for the same date at duplicate sites, the data value for
the site with the longer period of record was retained. As a result, a single time series of data was created for each site. In the
STATION_ID field, sites with an “ M” appended at the end of the station identifier denote duplicate sites with different station
identifiers that were merged and assigned the station identifier for the station with the longest period of record. Merged sites with
the same station identifier are not denoted with an “ M” and use the original station identifier.

Two Access queries are included in the hydrologic database for updating the site-specific statistics in the Station List
Access table. First, the “Build Station List (Step 1)” query is executed to delete all existing records in the Station List Access
table. Second, the “Build Station List (Step 2)” query is executed to compute all statistics on the basis of the data currently
stored in Lakes, Rainfall, Springs, Temperature, and Wells Access tables and repopulate all the fields in the Station List Access
table. In this way, should it be necessary to add or remove data records, the Station List Access table can easily be updated.


http://dx.doi.org/10.3133/sir20145032
http://fl.water.usgs.gov/et/

Table A1-1.
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Description of fields in the “Station List” table of the hydrologic database.

[ft, feet; cfs, cubic feet per second; in, inches, deg F, degrees Fahrenheit; yr, year]

Field name Data type Description

STATION_ID Text Unique identifier assigned by collecting agency

STATION _NM Text Station name assigned by collecting agency

AGENCY Text Collecting agency

TYPE Text Data type: GW, groundwater leV§l, ft;‘ LK, lake level, ft; SP, spring flow, cfs; RN, rainfall, in; TM, mini-
mum, maximum, and mean daily air temperature, deg F

AQUIFER Text Aquifer tapped by open interval of well; SAS, suﬁcial aq}lifer system; IM, inte}’mediate. aquifer system;
FA, Floridan aquifer system; UFA, Upper Floridan aquifer; LFA, Lower Floridan aquifer

DEPTH Number Total depth of well, in feet

POR_START Date/Time Start date of period of record

POR_END Date/Time End date of period of record

YEARS Number Length of period of record, in years

COUNT Number Number of measurements (total)

COUNTS_PER Number Number of measurements per year

MIN Number Minimum measurement value; For TM, statistic computed on Mean Temperature

MAX Number Maximum measurement value; For TM, statistic computed on Mean Temperature

RANGE Number Maximum minus minimum measurement value; For TM, statistic computed on Mean Temperature

MEAN Number Arithmetic mean of measurement value; For TM, statistic computed on Mean Temperature

SLOPE Number Linear trend: in/yr for GW, LK, RN; cfs/yr for SP; deg F/yr for TM

R Number Pearson product-moment correlation coefficient for linear trend

R _SQUARED Number Coefficient of determination for linear trend

T Number Student’s t statistic computed from COUNT and R

LAT DD Number Latitude, decimal degrees

LON DD Number Longitude, decimal degrees

PRIORITY Text Classification assigned by SIRWMD and SWFWMD
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Table A1-2. Description of fields in the “GOES_ET" table of the hydrologic database.

[km, kilometer; mm/d, millimeters per day]

Field name Data type Description

Unique identifier assigned by collecting agency; for GOES_ET sites this is equal
Station_ID Text to the NOAA identification number followed by a “G” for the 2-km pixel
overlying the NOAA station

Measurement Date Date/Time Date measurement was made
PET Value Number Potential evapotranspiration, in mm/d
RET Value Number Reference evapotranspiration, in mm/d

Table A1-3. Description of fields in the “Hargreaves_PET" table of the hydrologic database.

[mm/d, millimeters per day]

Field name Data type Description

Unique identifier assigned by collecting agency; for Hargreaves PET

Station_ID Text sites this is equal to the Station ID for the corresponding air tempera-
ture site

Measurement_Date Date/Time Date measurement was made

PET Value Number Potential evapotranspiration, in mm/d

Table A1-4. Description of fields in the “Lakes” table of the hydrologic database.

Field name Data type Description
Station_ID Text Unique identifier assigned by collecting agency
Measurement_Date Date/Time Date measurement was made
Lake Value Number Lake water level, in feet

Quality code assigned by collecting agency (see tables Al-
Code Text 9, A1-10, and A1-11); blank if no quality code specified
by collecting agency
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Table A1-5. Description of fields in the “Rainfall” table of the hydrologic database.

[NOAA, National Oceanic and Atmospheric Administration; SIRWMD, St. Johns River Water Management Distric; SWFWMD, Southwest Florida Water

Management District]

Field name Data type Description
Station_ID Text Unique identifier assigned by collecting agency
Measurement_Date Date/Time Date measurement was made
Rainfall Value Number Rainfall total, in inches
An error value computed by the algorithm developed by Aly (2008)
Error Number for NOAA records coded as “E”; a value of 0.00 indicates a rain-
fall data value used by Aly (2008) that was coded as “G”; blank if
rainfall data value not used by Aly (2008)
Quality code assigned by collecting agency: A, accumulated data
at NOAA station disaggregated to daily data by SIRWMD:; E,
estimated data at NOAA station computed by Aly (2008); G, good
Code Text data reported by NOAA or accumulated data disaggregated to daily

data by SWFWMD; M, missing data at NOAA station estimated
by SJRWMD; blank if no quality code specified by collecting
agency

Table A1-6. Description of fields in the “Springs” table of the hydrologic database.

[cfs, cubic feet per second]

Field name Data type Description
Station_ID Text Unique identifier assigned by collecting agency
Measurement Date Date/Time Date measurement was made
Springflow_Value Number Spring flow, in cfs
Quality code assigned by collecting agency (see tables Al-
Code Text 9, A1-10, and A1-11); blank if no quality code specified

by collecting agency
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Table A1-7. Description of fields in the “Temperature” table of the hydrologic database.

[deg F, degrees Fahrenheit]

Field name Data type Description
Unique identifier assigned by collecting agency; for tem-
Station_ID Text perature sites this is equal to the NOAA identification
number followed by a “T”
Measurement Date Date/Time Date measurement was made
Tmax Number Maximum temperature, in deg F
Tmin Number Minimum temperature, in deg F
Tmean Number Mean temperature, in deg F

Table A1-8. Description of fields in the “Wells” table of the hydrologic database.

Field name Data type Description
Station_ID Text Unique identifier assigned by collecting agency
Measurement Date Date/Time Date measurement was made
Groundwater Value Number Groundwater level, in feet
Quality code assigned by collecting agency (see tables A1-9,
Code Text A1-10, and A1-11); blank if no quality code specified by col-

lecting agency




Table A1-9.
obtained from their database.
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Description of quality codes assigned by the St. Johns River Water Management District for data

Code Description
1 Good quality records
2 Good quality, edited data
3 Good quality data obtained from USGS
5 Good quality data obtained from SWFWMD
72 Correlation w/other station - high confidence
74 Correlation w/ other station - see documentation regarding confidence
79 Records partly estimated
85 Estimated by contractor high confidence see documentation
111 Estimate based on correlation with neighboring station
112 Estimated Discharge
130 Unverifiable—quality unknown
140 Provisional data—quality unknown
Table A1-10. Description of quality codes assigned by the Table A1-11. Description of quality codes assigned by the

South Florida Management District for data obtained from their
database.

Soutwest Florida Water Management District for data obtained
from their database.

Code Description Code Description
E Estimated 1 Good continuous record
2 Good quality edited data
P Summary computed from partial record 79 Records partly estimated
95 Estimated
96 Override
97 Surveyed

Aly, Alaa, 2008, An assessment of interpolation methods
for estimating missing daily precipitation records for rain
gauges in central and south Florida: Niwot, Colo., INTERA
Inc., 111 p.

Hargreaves, G.H., and Samani, Z.A., 1985, Reference crop
evapotranspiration from temperature: Applied Engineering
in Agriculture, v. 1, no. 2, p. 96-99.

Mecikalski, J.R., Sumner, D.M., Jacobs, J.M., Pathak, C.S.,
Paech, S.J., and Douglas, E.M., 2011, Use of visible geo-
stationary operational meteorological satellite imagery in
mapping reference and potential evapotranspiration over
Florida, in Labedzki, Leszek, ed., Evapotranspiration:
Vienna, Austria, InTech Publishers, 446 p.



Appendix 2 . Description of Groundwater-Use Data Viewer

The Groundwater-Use Data Viewer (GUDV) is a Microsoft Excel 2010® workbook created as part of this study to allow
graphical review of the groundwater-use data compiled during the study and is available for download from the U.S. Geologi-
cal Survey (http://dx.doi.org/10.3133/sir20145032). Data were aggregated into a 72-cell gridded representation of the study
area using ArcGIS® and point and polygon geographic information system (GIS) data. Each grid cell is 19.67 kilometers (east to
west) by 20.90 kilometers (north to south) (64,544 by 68,578 feet) and the 72-cell grid encompasses the groundwater-use data
in the Central Florida Coordination Area and vicinity (see figure 28 of the main report). Groundwater use consists of six types:
public supply, phosphate mining, citrus irrigation, non-citrus agricultural irrigation, golf course irrigation, and drainage well
recharge. The GUDV grid and associated groundwater-use data were used to guide development of the artificial neural network
models and the Central Florida Artificial Neural Network Decision Support System.

The workbook consists of 10 worksheets containing the groundwater-use data, summary results, maps, and the interactive
graphical display. Additionally, the “Info” worksheet contains a history of GUDV version releases and updates. Six worksheets
contain monthly groundwater withdrawal or inflow data in million gallons per day reported for the study area: “AG_Summed”
contains the non-citrus agricultural irrigation withdrawal data, “Citrus_Summed” contains the citrus irrigation withdrawal data,
“Golf Summed” contains the golf course irrigation withdrawal data, “Phosphate Summed” contains the phosphate mining
withdrawal data (comprising water used for ore extraction and chemical plants), “Drainage Summed” contains the drainage well
recharge (inflow) data, and “WU_Summed” contains the public-supply (water utility) withdrawal data. Withdrawals are reported
as positive values and inflows are reported as negative values. The reported period of record varies for each groundwater-use
type; however, for consistency, each type was tabulated in these worksheets for months between January 1950 and December
2008. Data not reported for a given month are indicated by a cell with contents equal to “#N/A.” The “ALL_SUMMED” work-
sheet collates the data for all the types of groundwater use and includes a summation of all types in a format that can be easily
graphed.

The “Summary” worksheet presents summary descriptive statistics for the summation of all groundwater-use types for each
cell in the GUDV. The descriptive statistics include the count, minimum, maximum, and summed values of monthly reported
groundwater use per cell. The statistics are shown in four graphs and an associated table on a per-cell basis.

The “Maps” worksheet contains 11 maps of the study area showing the GUDV grid and groundwater-use distribution dis-
played by type. The maps show that non-citrus agricultural, citrus, golf, and phosphate mine locations were polygon GIS data.
The remaining maps show that the other datasets—public-supply water-treatment plants in SIRWMD and SFWMD compiled by
SJIRWMD, public-supply water-treatment plants in SWFWMD, drainage wells, and phosphate chemical plants—were point GIS
data.

The “Viewer” worksheet is used interactively to display/review the groundwater-use data on a type and monthly basis
(see figures 30 and 31 of the main report). The worksheet contains six grids of the different groundwater-use types that show
the groundwater use per cell for a given month and are overlain with a simple base map. Additionally, a separate map showing
the location of the grid on a base map is included to orient the user to the grid cell numbers and the pumping distribution in the
study area. The grid in the center of the worksheet is a summation by cell of groundwater use for all types for the given month.
A toggle button located to the left of this “SUM?” grid allows the user to change the month forward or backward by 1-month
increments. The selected date (month and year) is displayed below the toggle button. Months are numbered sequentially starting
with January 1950, and the corresponding “month column number” is displayed below the date. The user can “jump” to a spe-
cific month and year by entering the month column number directly. Month column numbers range from 2 for January 1950 to
709 for December 2008. Grid cells are automatically shaded using a color ramp of green to red to indicate relative water use in
the study area for the selected month. With the exception of drainage well inflows, dark red colors indicate the highest reported
water use and dark green colors indicate the lowest reported water use. Because drainage well inflows are reported as negative
values, dark red indicates the lowest inflow and dark green indicates the highest inflow. If no groundwater use was reported for a
cell, the cell is not colored.
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Appendix 3. Summary of artificial neural network models

The rainfall artificial neural network (ANN) models were developed using daily rainfall, lake water levels, groundwater
levels, and spring flows. The dataset includes daily data from 1942 to 2008. Below are nomenclature examples for input vari-

able names for the rainfall models (a complete list of all input variable names with descriptions is provided in appendix 4,
table A4-1):

* RS-FA630 = standard rainfall (RS) from gap-filled data (F) that has been moving window averaged (A) over specified
number of days (630 days in this example);

* RS-FA90D = RS-FA90 — RS-FA270, where “D” denotes a difference from the moving window average (MWA) of the
next larger window size (270 days in this example); the MWAs used are 30; 90; 270; 630; 1,440; and 2,250 days; and

* R5973-FA1440DS = R5973-FA 1440 — RS-FA 1440, where “DS” denotes the difference between rainfall (R) at the
National Oceanic and Atmospheric Administration (NOAA) gage (number 5973 in this example) and the standard rain-
fall to which a MWA of the same window size (1,440 days in this example) has been applied.

Groundwater-use ANN models were developed using monthly groundwater-use estimates and monthly water-level and
flow residuals. The daily predictions and residuals were converted to monthly values by calculating the monthly average. Below
are nomenclature examples for input variable names for the groundwater-use models (a complete list of all input variable names
with descriptions is provided in appendix 4, table A4-2):

* USE-TOT_A12 = Summation of all monthly groundwater-use data (USE-TOT) that has been moving window averaged
(A) over specified number of months (12 months in this example);

* USE-TOT D12 =USE-TOT_A12 - USE-TOT_A24, where “D” denotes a difference from the moving window average

(MWA) of the next larger window size (24 months in this example); the MWAs used are 3, 6, 12, 24, 48, and 96 months;
and

* P W-2759590-M = predicted (P) values from the specified rainfall model (W-2759590 in this example) converted to
monthly (M) values.

Input variable names, statistics, and other notes (for example, whether raw data were interpolated and how standard rainfall
was computed) for both the rainfall and groundwater-use ANN models for each of the 51 sites are included below. Statistics for
the rainfall ANN models include the period 1942 to 2008. Statistics for the groundwater-use ANN models include the period
1950 to 2008. Statistics for the final models (combined rainfall and groundwater-use ANN models) include the period 1965 to
2008. For two lakes (L-1547081, L-7583) and four springs (S-2234600, S-2234650, S-2234991, and S-2234997), rainfall and
groundwater-use ANN model outputs exhibit considerably lower coefficients of determination (R?) when converted to monthly
averaged data. These six sites all have sparse data for the period of record up to and including 2003 and exhibit considerably
higher R? for the period 2004 to 2008. Detailed information about the ANN models for each is provided in table A3-1 [accessible
from the publication Web site (http.//dx.doi.org/10.3133/sir20145032)].


http://dx.doi.org/10.3133/sir20145032

Appendix 4. Input variables used in artificial neural network models

For the rainfall artificial neural network (ANN) models, a total of 119 rainfall input variables were computed, consisting
of 6 moving window averages (MWAs) of the standard rainfall, 5 moving window differences (MWDs) of the standard rainfall,
and 6 MWAs for normalized rainfall at each of the 18 National Oceanic and Atmospheric Administration (NOAA) rain gages.
For the groundwater-use ANN models, a total of 13 groundwater-use input variables were computed, consisting of 6 MWAs,

6 MWDs, and the original monthly data. For some of the groundwater-use ANN models, the predicted water level or flow
from the respective rainfall ANN model also was used as an input variable. Listings of the variables retained in the rainfall and
groundwater-use models after training of the ANNs are provided in table A4-1 and A4-2.



Appendix 4

Table Ad-1. Input variables used in rainfall artificial neural network models.

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable

Description

RS-FA30

RS-FA90

RS-FA270

RS-FA630

RS-FA 1440

RS-FA2250

RS-FA30D

RS-FA90D

RS-FA270D

RS-FA630D

RS-FA1440D

R369-FA30DS

R369-FA270DS

R369-FA630DS

R369-FA1440DS

R369-FA2250DS

R478-FA90DS

R478-FA270DS

R478-FA630DS

R478-FA1440DS

R478-FA2250DS

R1163-FA30DS

R1163-FA90DS

R1163-FA630DS

R1163-FA1440DS

R1163-FA2250DS

R1641-FA30DS

30-day MWA of standard rainfall

90-day MWA of standard rainfall

270-day MWA of standard rainfall

630-day MWA of standard rainfall

1440-day MWA of standard rainfall

2250-day MWA of standard rainfall

Moving window difference: 30-day MWA minus 90-day MWA of standard rainfall
Moving window difference: 90-day MWA minus 270-day MWA of standard rainfall
Moving window difference: 270-day MWA minus 630-day MWA of standard rainfall
Moving window difference: 630-day MWA minus 1440-day MWA of standard rainfall
Moving window difference: 1440-day MWA minus 2250-day MWA of standard rainfall
30-day MWA of normalized rainfall at NOAA gage 369

270-day MWA of normalized rainfall at NOAA gage 369

630-day MWA of normalized rainfall at NOAA gage 369

1440-day MWA of normalized rainfall at NOAA gage 369

2250-day MWA of normalized rainfall at NOAA gage 369

90-day MWA of normalized rainfall at NOAA gage 478

270-day MWA of normalized rainfall at NOAA gage 478

630-day MWA of normalized rainfall at NOAA gage 478

1440-day MWA of normalized rainfall at NOAA gage 478

2250-day MWA of normalized rainfall at NOAA gage 478

30-day MWA of normalized rainfall at NOAA gage 1163

90-day MWA of normalized rainfall at NOAA gage 1163

630-day MWA of normalized rainfall at NOAA gage 1163

1440-day MWA of normalized rainfall at NOAA gage 1163

2250-day MWA of normalized rainfall at NOAA gage 1163

30-day MWA of normalized rainfall at NOAA gage 1641
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Table A4-1. Inputvariables used in rainfall artificial neural network models.—Continued

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable

Description

R1641-FA90DS

R1641-FA270DS

R1641-FA630DS

R1641-FA1440DS

R2229-FA270DS

R2229-FA630DS

R2229-FA1440DS

R2229-FA2250DS

R3137-FA90DS

R3137-FA270DS

R3137-FA630DS

R3137-FA1440DS

R4502-FA30DS

R4502-FA90DS

R4502-FA270DS

R4502-FA630DS

R4502-FA1440DS

R4502-FA2250DS

R4625-FA30DS

R4625-FA90DS

R4625-FA270DS

R4625-FA630DS

R4625-FA1440DS

R4625-FA2250DS

R5076-FA90DS

R5076-FA270DS

R5076-FA630DS

90-day MWA of normalized rainfall at NOAA gage 1641
270-day MWA of normalized rainfall at NOAA gage 1641
630-day MWA of normalized rainfall at NOAA gage 1641
1440-day MWA of normalized rainfall at NOAA gage 1641
270-day MWA of normalized rainfall at NOAA gage 2229
630-day MWA of normalized rainfall at NOAA gage 2229
1440-day MWA of normalized rainfall at NOAA gage 2229
2250-day MWA of normalized rainfall at NOAA gage 2229
90-day MWA of normalized rainfall at NOAA gage 3137
270-day MWA of normalized rainfall at NOAA gage 3137
630-day MWA of normalized rainfall at NOAA gage 3137
1440-day MWA of normalized rainfall at NOAA gage 3137
30-day MWA of normalized rainfall at NOAA gage 4502
90-day MWA of normalized rainfall at NOAA gage 4502
270-day MWA of normalized rainfall at NOAA gage 4502
630-day MWA of normalized rainfall at NOAA gage 4502
1440-day MWA of normalized rainfall at NOAA gage 4502
2250-day MWA of normalized rainfall at NOAA gage 4502
30-day MWA of normalized rainfall at NOAA gage 4625
90-day MWA of normalized rainfall at NOAA gage 4625
270-day MWA of normalized rainfall at NOAA gage 4625
630-day MWA of normalized rainfall at NOAA gage 4625
1440-day MWA of normalized rainfall at NOAA gage 4625
2250-day MWA of normalized rainfall at NOAA gage 4625
90-day MWA of normalized rainfall at NOAA gage 5076
270-day MWA of normalized rainfall at NOAA gage 5076

630-day MWA of normalized rainfall at NOAA gage 5076
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Table A4-1. Input variables used in rainfall artificial neural network models.—Continued

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable Description

R5076-FA1440DS

R5076-FA2250DS

R5612-FA90DS

R5612-FA270DS

R5612-FA1440DS

R5612-FA2250DS

R5973-FA30DS

R5973-FA90DS

R5973-FA270DS

R5973-FA630DS

R5973-FA1440DS

R5973-FA2250DS

R6414-FA30DS

R6414-FA90DS

R6414-FA270DS

R6414-FA630DS

R6414-FA1440DS

R6414-FA2250DS

R6628-FA30DS

R6628-FA270DS

R6628-FA630DS

R7205-FA30DS

R7205-FA90DS

R7205-FA270DS

R7205-FA630DS

R7205-FA1440DS

R7205-FA2250DS

1440-day MWA of normalized rainfall at NOAA gage 5076
2250-day MWA of normalized rainfall at NOAA gage 5076
90-day MWA of normalized rainfall at NOAA gage 5612
270-day MWA of normalized rainfall at NOAA gage 5612
1440-day MWA of normalized rainfall at NOAA gage 5612
2250-day MWA of normalized rainfall at NOAA gage 5612
30-day MWA of normalized rainfall at NOAA gage 5973
90-day MWA of normalized rainfall at NOAA gage 5973
270-day MWA of normalized rainfall at NOAA gage 5973
630-day MWA of normalized rainfall at NOAA gage 5973
1440-day MWA of normalized rainfall at NOAA gage 5973
2250-day MWA of normalized rainfall at NOAA gage 5973
30-day MWA of normalized rainfall at NOAA gage 6414
90-day MWA of normalized rainfall at NOAA gage 6414
270-day MWA of normalized rainfall at NOAA gage 6414
630-day MWA of normalized rainfall at NOAA gage 6414
1440-day MWA of normalized rainfall at NOAA gage 6414
2250-day MWA of normalized rainfall at NOAA gage 6414
30-day MWA of normalized rainfall at NOAA gage 6628
270-day MWA of normalized rainfall at NOAA gage 6628
630-day MWA of normalized rainfall at NOAA gage 6628
30-day MWA of normalized rainfall at NOAA gage 7205
90-day MWA of normalized rainfall at NOAA gage 7205
270-day MWA of normalized rainfall at NOAA gage 7205
630-day MWA of normalized rainfall at NOAA gage 7205
1440-day MWA of normalized rainfall at NOAA gage 7205

2250-day MWA of normalized rainfall at NOAA gage 7205
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Table A4-1. Inputvariables used in rainfall artificial neural network models.—Continued

[MWA, moving window average; NOAA, National Oceanic and Atmospheric Administration]

Input variable

Description

R7982-FA30DS

R7982-FA90DS

R7982-FA270DS

R7982-FA630DS

R7982-FA1440DS

R7982-FA2250DS

R8942-FA90DS

R8942-FA270DS

R8942-FA630DS

R8942-FA1440DS

R8942-FA2250DS

R9401-FA90DS

R9401-FA270DS

R9401-FA630DS

R9401-FA1440DS

R9401-FA2250DS

R9707-FA90DS

R9707-FA270DS

R9707-FA630DS

R9707-FA1440DS

R9707-FA2250DS

30-day MWA of normalized rainfall at NOAA gage 7982
90-day MWA of normalized rainfall at NOAA gage 7982
270-day MWA of normalized rainfall at NOAA gage 7982
630-day MWA of normalized rainfall at NOAA gage 7982
1440-day MWA of normalized rainfall at NOAA gage 7982
2250-day MWA of normalized rainfall at NOAA gage 7982
90-day MWA of normalized rainfall at NOAA gage 8942
270-day MWA of normalized rainfall at NOAA gage 8942
630-day MWA of normalized rainfall at NOAA gage 8942
1440-day MWA of normalized rainfall at NOAA gage 8942
2250-day MWA of normalized rainfall at NOAA gage 8942
90-day MWA of normalized rainfall at NOAA gage 9401
270-day MWA of normalized rainfall at NOAA gage 9401
630-day MWA of normalized rainfall at NOAA gage 9401
1440-day MWA of normalized rainfall at NOAA gage 9401
2250-day MWA of normalized rainfall at NOAA gage 9401
90-day MWA of normalized rainfall at NOAA gage 9707
270-day MWA of normalized rainfall at NOAA gage 9707
630-day MWA of normalized rainfall at NOAA gage 9707
1440-day MWA of normalized rainfall at NOAA gage 9707

2250-day MWA of normalized rainfall at NOAA gage 9707
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Table Ad-2. Inputvariables used in groundwater-use artificial neural network models.

[MWA, moving window average]

Input variables

Description

USE-TOT A3

USE-TOT_A6

USE-TOT_A12

USE-TOT_A24

USE-TOT A48

USE-TOT_A96

USE-TOT DI

USE-TOT D3

USE-TOT D6

USE-TOT D12

USE-TOT D24

USE-TOT D48

P L-2310950-M

P_L-ANDERSON-M

P L-ROSE-M

P L-SUE-NEW-M

P_S-2234600-M

P_S-2234610-M

P_S-2234650-M

P_S-2234991-M

P_W-2759590-M

P_W-2810080-M

P_W-2826230-M

3-month MWA of total groundwater use

6-month MWA of total groundwater use

12-month MWA of total groundwater use

24-month MWA of total groundwater use

48-month MWA of total groundwater use

96-month MWA of total groundwater use

Moving window difference: 1-month MWA minus 3-month MWA of total groundwater use
Moving window difference: 3-month MWA minus 6-month MWA of total groundwater use
Moving window difference: 6-month MWA minus 12-month MWA of total groundwater use
Moving window difference: 12-month MWA minus 24-month MWA of total groundwater use
Moving window difference: 24-month MWA minus 48-month MWA of total groundwater use
Moving window difference: 48-month MWA minus 96-month MWA of total groundwater use
Predicted water levels from the L-2310950 rainfall model converted to monthly values
Predicted water levels from the L-ANDERSON rainfall model converted to monthly values
Predicted water levels from the L-ROSE rainfall model converted to monthly values
Predicted water levels from the L-SUE rainfall model converted to monthly values

Predicted flows from the S-2234600 rainfall model converted to monthly values

Predicted flows from the S-2234610 rainfall model converted to monthly values

Predicted flows from the S-2234650 rainfall model converted to monthly values

Predicted flows from the S-2234991 rainfall model converted to monthly values

Predicted water levels from the W-2759590 rainfall model converted to monthly values
Predicted water levels from the W-2810080 rainfall model converted to monthly values

Predicted water levels from the W-2826230 rainfall model converted to monthly values
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Appendix 5. Summary statistics for lake water-level, groundwater-level, and
spring-flow models

The data presented in table A5-1 are summary statistics for both measured and simulated data for the final lake water-level,
groundwater-level, and spring-flow models. Statistics were computed using monthly data from January 1965 through December
2008; a measured time series consists of arithmetic averages of available measured daily data for each month and a simulated
time series consists of the final predicted values from the two-stage model (combined rainfall and groundwater-use artificial neu-
ral network models). Values of statistics reported for the individual model summaries provided in appendix 3 will be different
than those reported here because of different periods of record and time step used for the rainfall artificial neural network models
and (or) the inclusion of 60-day interpolated estimates in the training datasets for some sites that also were used in the computa-
tion of model-fit statistics in appendix 3.
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Appendix 6. User’s manual for the Central Florida Artificial Neural Network
Decision Support System (CFANN DSS)
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1. Introduction

This document describes how to install and operate the
Central Florida Artificial Neural Network Decision Support
System (CFANN DSS), which is available for download
from the U.S. Geological Survey (http://dx.doi.org/10.3133/
sir20145032). The CFANN DSS is a decision support system
(DSS) built around a suite of empirical hydrologic models for
the simulation of lake water levels, groundwater levels, and
spring flow at discrete sites in central Florida.

2. CFANN DSS Installation, Removal,
and Technical Assistance

NOTE: The CFANN DSS requires a 64-bit Microsoft
Windows® operating system. The CFANN DSS was developed
using Microsoft Excel 2010® (32-bit installation) and may not
work with other versions.

2.1 Installation

1. Copy the CFANN_DSS folder to your computer
hard drive. The user may rename this folder, which
contains the following subdirectories and files:

* ANN-Lakes — a folder containing all ANN models
used by CFANN DSS to predict lake water levels;

* ANN-Springs — a folder containing all ANN mod-
els used by CFANN DSS to predict spring flows;

* ANN-Wells — a folder containing all ANN models
used by CFANN DSS to predict well water levels;

» Images — a folder containing all images used
by CFANN DSS to display site locations and
Groundwater-Use Data Viewer (GUDV) grid
cells;

* Output — a folder containing all output files writ-
ten by CFANN DSS;

* ADMQuestRT.dll — a custom Microsoft Excel®
Add-in required to execute the ANN models;

¢ CFANN_DSS-yyyymmdd.xlsm! — a Microsoft
Excel® workbook application; and

* CFANN _DSS UserManual-yyyymmdd.pdf — an
Adobe® Portable Document Format document of
the appendix you are reading now.

lyyyymmdd is the version date of the CFANN DSS image to be installed.

2. Install ADMQuestRT.dll by following the directions
in section 5 of this user’s manual (appendix 6 of the
main report).

3. Set the macro security level of Microsoft Excel®
to “Disable all macros with notification” using the
Developer > Macro Security > Macro Settings menu.
The CFANN DSS uses Microsoft Visual Basic for
Applications® (VBA) macros for a variety of pur-
poses and must be able to execute them to operate
correctly.

4. Open CFANN_DSS-yyyymmdd.xlsm to run simula-
tions. When the Microsoft Excel® security warning
reports macros have been disabled, click “Enable
Content,” otherwise CFANN DSS will not operate

properly.

2.2 Removal

Uninstall the ADMQuestRT dynamic link library by
entering the following command at the command (DOS)
prompt:

regsvr32 /u c:admquestrt\admquestrt.dll

Delete the folder containing the application and its contents.
Consider removing the add-ins and reverting to the default
Microsoft Excel® security settings.

2.3 Technical Assistance

Please contact Andy O’Reilly of the U.S. Geological Sur-
vey at aoreilly@usgs.gov, if you have questions or problems
with the CFANN DSS. If unavailable, you may contact the
U.S. Geological Survey Florida Water Science Center using
the “Contact” webpage at http://fl. water.usgs.gov/.

3. CFANN DSS Features and Operation

The CFANN DSS runs monthly simulations of the effects
of rainfall and groundwater use on water levels at 22 lakes
and 23 wells and flows at 6 springs within the Central Florida
Coordination Area (CFCA) for the period 1965-2008. Each
site is modeled using artificial neural networks (ANNSs).

A two-stage model architecture is used with the first ANN
model set (MS1) predicting a water level or flow using rainfall
inputs from rainfall measured at 18 National Oceanic and
Atmospheric Administration (NOAA) sites. The residual
(difference between the measured and predicted output from
MS1) is then modeled using groundwater-use (usage) inputs.
Usage inputs—as collated by type, month, and million gallons
per day in the GUDV (see appendix 2 of main report)—are
calculated from the summation of all usages in the GUDV grid
(denoted as USETOT). The two submodels are then summed
and denoted as ANN model set 2 (MS2).
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Users can make changes to the rainfall and (or) usage
inputs to run “what-if” scenarios. Rainfall can be set for each
of the 18 NOAA sites as a percentage of historical, or bias
(constant offset) in inches per year. Although usage is only
incorporated in the ANNs as USETOT, the user can adjust the
usage in the following ways:

» Percentage of historical or a constant monthly bias in
million gallons per day (MGD/month) for USETOT;

» Percentage of historical or a constant monthly bias
in million gallons per day (MGD/month) for each
usage type and GUDYV grid cell; or

» User-specified time series for any GUDV grid cell or
usage type.

The CFANN DSS is opened like any standard Microsoft
Excel® workbook. Simply open the CFANN_ DSS-yyyymmdd.
xIsm file and begin. When the workbook is closed, it may be
saved to keep any changes made to the simulation control
settings, such as rainfall or usage adjustments made for a
particular scenario; otherwise select “Don’t Save” to retain the
original simulation control settings. The CFANN DSS and its
graphical user interface (GUI) comprise a number of work-
sheets. Detailed descriptions of each worksheet are provided
below in section 3, followed in section 4 by an outline of the
basic steps, or “Quick Start” guide, to facilitate running a
simulation.

3.1 “Info” Worksheet

The “Info” worksheet is automatically displayed when
the CFANN DSS is first loaded (fig. A6-1 ). The worksheet
shows a map of the study area and gives the application’s ver-
sion date and the contact information of its developers.

3.2 “Controls” Worksheet

The “Controls” worksheet is the GUI component that lets
the user set up and run simulations. The worksheet provides
numerical and streaming graphical information that can be
observed during simulations or when incrementally stepping
through time. This allows the user to examine in detail specific
periods and behaviors of interest. The worksheet is divided
into multiple sections that are described below.

3.2.1 Simulation Section

The Simulation section (fig. A6-2) is used to set “Start”
and “Stop” dates for a simulation using the scroll bars. The
scroll bars can change the date in monthly (clicking on arrows)
or yearly (clicking inside the scroll bar) increments. The end
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date must be more recent than the start date. The “Sim Date”
text box indicates the time stamp that is providing the current
input values to the ANN models. The “<<Step” and “Step>>"
buttons move the current time stamp backward or forward
one time step with each click. The “Sim Time=Start” button
sets the current time stamp to the simulation “Start” date. The
“RUN” button will start and run a simulation between the
dates indicated by the simulation “Start” and “End” dates. A
simulation may be stopped at any time during an execution by
pressing the “Esc” key twice, after which a message will be
written in the Simulation section (fig. A6-3).

3.2.2 User Settings Section

The User Settings section (fig. A6-4) contains the “App
Path” textbox that displays the location of the CFANN DSS
application files. The “Set User Rain” and “Set User Usage”
buttons take the user to the appropriate worksheet for setting
the user-specified values.

3.2.3 Output Section

The Output Section (fig. A6-5) is used to turn on and off
the display of graphs and writing of output files. Additional
details on graph and output options are provided below.

1. Graph Options: If graphs are turned off (“Graphs
ON” check box is unchecked), no graphical display
of the output is available within the application
during a simulation run or after run completion. If
graphs are turned on (“Graphs ON” check box is
checked), the user can select a site to be dynamically
displayed during the simulation run. In addition,
the user can choose to display model set 1 (MS1),
which are the rainfall models, output on the graph.
Additional details on graphical display are provided
in section 3.2.5.

2. Output Options: If “Write Output” is turned off, no
output will be saved for the run. If turned on, the
user also can select which type of sites to output.
The options are all wells, all lakes, and all springs.
The default setting is for all sites to be included in
the output.

3.2.4 View Sites on Grid Section

The View Sites on Grid section (fig. A6-6) allows users
to view an image of the GUDV grid and the locations of the
wells, lakes, and springs within the grid by selecting the asso-
ciated button. The image will display in a separate window
that can be moved around the screen and closed by clicking on
the X in the top right corner.
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Figure A6-1. “Info” worksheet.
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Figure A6-2. Simulation section of the “Controls” worksheet used to set the “Start” and “Stop” dates for simulation, initiate a run, or
step forward and backward through the data.
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Figure A6-3. Simulation section of the “Controls” worksheet showing the message that appears when a simulation is interrupted by
pressing the “Esc” key twice.
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Figure A6-4. User Settings section of the “Controls” worksheet used to navigate to the worksheets for making user-specified
adjustments to rainfall and groundwater use inputs.
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Figure A6-5. Output section of the “Controls” worksheet used to set graphing and output options.
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Figure A6-6. View Sites on Grid section of the “Controls” worksheet used to view images of site locations within the Groundwater Use
Data Viewer (GUDV) grid displayed when “View selected”.
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3.2.5 Graphical Display Section

The Graphical Display section (fig. A6-7) is used to
create hydrographs for a site. If “Graphs ON” is checked in
the Output section (see section 3.2.3) the focus will move to
the Graphical Display section when a simulation is run. The
user-selected site displayed in the drop-down box will be
dynamically displayed during a simulation. Upon simulation
completion the user can scroll forward and backward through
the sites using the spin control or select specific sites using the
drop-down box. The time series displayed on the graph can be
selected by using the check boxes located below the graph:

1. Primary Axis

» Display m: Monthly averaged historical measured
value

» Display pm: Predicted output using historical
measured inputs

 Display pu: Predicted output using user-specified
inputs

* Display m + (pu — pm): Sum of measured value
and the difference between user-specified and
measured output

* Display pm (MS1): Predicted output using histori-
cal inputs for model set 1 (rainfall models). MS1
outputs will be displayed if the user has selected
option to include them in the Output section (see
section 3.2.3).

» Display pu (MS1): Predicted output using user
inputs for model set 1 (rainfall models)

2. Secondary Axis

» Display pu — pm: Difference between user-speci-
fied and measured output

+ Display pu— pm (MS1): Difference between
user-specified and measured output for model set
1 (rainfall models)

3.2.6 Tabular Display Section

The Tabular Display section (fig. A6-8) has three tables
showing measured and predicted output for wells, lakes, and
springs. Moving the mouse over the red caret immediately
above and to the right of a header in any of these tables will
provide a description of the header variable. Similarly, moving
the mouse over the red caret immediately above and to the
right of the ANN model label will provide a short name of the
well, lake, or spring. In addition, double clicking on any ANN
model label will cause a pop-up window to appear displaying
an image of the site location within the GUDYV grid. To facili-
tate locating individual sites, images shown in this pop-up

window provide a close-up view compared to the study area
view shown in the View Sites on Grid section (see section
3.2.4). If “Graphs ON” is unchecked in the Output section (see
section 3.2.3), the focus will move to the Tabular Display sec-
tion when a simulation is run. Each table dynamically displays
the following data for the current simulation time:

* meas (m): Monthly averaged historical measured
value

+ pred-meas (pm): Predicted output using historical
measured inputs

 pred-user (pu): Predicted output using user-specified
inputs

* pu-— pm: Difference between user-specified and
measured output

* MEAS + d(pu —pm): Sum of measured value and
the difference between user-specified and measured
output

3.2.7 Current User Settings Section

The Current User Settings section (fig. A6-9) displays
the current user-specified settings for rainfall and usage. The
user-specified values are listed in the columns labeled “User
SP” followed by a column displaying the appropriate units.
No changes can be made in this area. The user must go to the
User Settings section to make any changes to the settings (see
section 3.2.2).

3.3 “Rain_UserSetpoints” Worksheet

All adjustments to user rainfall settings are made on the
“Rain_UserSetpoints” worksheet (fig. A6-10). Each of the 18
NOAA sites can be adjusted individually. In addition, all sites
can be adjusted globally to the same user setting. Follow the
steps below to adjust sites individually or globally.

1. Select User Option using the appropriate “User Opt”
scroll bar:

* %: Percentage of historical value

* bias: Constant offset added or subtracted from
historical value

2. Set user setting using the “%” scroll bar or the

“bias in/yr” scroll bar based on “User Opt” selected
in step 1. To make a global change to all sites, use
the “Set ALL NOAA SITES” scroll bars followed by
clicking the “Set ALL NOAA Sites” button to update
the setting for each site. To make changes to individ-
ual sites, use the scroll bars beneath the respective
NOAA site numbers. Refer to the map to the right of
the scroll bars for site locations, which are grouped
according to a time-series cluster analysis based on
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Figure A6-7. Graphical Display section of the “Controls” worksheet used to display measured and predicted hydrographs. The site
shown in the drop-down box is the site currently displayed.
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Figure A6-8. Tabular Display section of the “Controls” worksheet showing measured and predicted data for the current
simulation time.
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Figure A6-9. Current User Settings section of the “Controls” worksheet showing user settings for rainfall and usage.
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Figure A6-10. “Rain_UserSetpoints” worksheet used to make user-specified adjustments to rainfall model inputs.



1,440-day moving window averages (see figure 24
of the main report). Allowable ranges are

e For %: minimum of —50%, maximum of 50%.
The scroll bars can change the percentage in 1%
(clicking on arrows) or 10% (clicking inside the
scroll bar) increments.

* For bias: minimum of —15 in/yr, maximum of
15 in/yr. The scroll bars can change the bias in
1 in/yr (clicking on arrows) or 5 in/yr (clicking
inside the scroll bar) increments.

3. Once all rainfall user-specified settings are complete,
select the “Return to Controls Worksheet” button to
return control to the “Controls” worksheet. User-
specified settings made in step 2 will be displayed
in Current User Settings section of the “Controls”
worksheet (see section 3.2.7). It is important to note
that only the settings for the user option selected in
step 1 will be displayed in this section and used by
the CFANN DSS.

3.4 "Usage_UserSetpoints” Worksheet

All adjustments to the usage user settings are made on the
“Usage UserSetpoints” worksheet. The worksheet is divided
into four sections. A detailed description of each worksheet
section is provided below.

3.4.1 SELECT USER OPTION Section

The SELECT USER OPTION section on the far left of
the “Usage UserSetpoints” worksheet remains visible and is
used to set the user usage option (User Opt) by using the drop-
down menu as well as to view the GUDV (usage) grid and
return to the “Controls” worksheet (fig. A6-11). Once a user
usage selection is made, focus will move to one of the three
sections in the right portion of the worksheet. Each of the four
sections of the worksheet contains important notes that should
be consulted on how to make user-specified adjustments. The
user usage options and their corresponding worksheet section
are listed below.

* %-type: USAGE BY TYPE/CELL
¢ bias-type: USAGE BY TYPE/CELL
* %-utot: TOTAL USAGE (U-TOT)
¢ bias-utot: TOTAL USAGE (U-TOT)

¢ user-ts: USER TIME SERIES

It is important to note that while the USAGE BY TYPE/CELL
and USER TIME SERIES sections allow the user to adjust
usage inputs by type or individual GUDV cell, all usage data
are summed into a single total usage time series for signal

Appendix 6 131

decomposition and input to the groundwater-use ANN models.
The ability to adjust usage spatially is provided only to facili-
tate conceptualization and implementation of user-specified
changes. Identical predictions can be made globally by adjust-
ing total summed usage using the TOTAL USAGE (U-TOT)
section, although doing so for more complex spatial adjust-
ments would require preprocessing of the appropriate %-utot
and bias-utot values. The temporal adjustment of usage,
whether made globally or only for specific GUDV cells, must
be made using the USER TIME SERIES section.

After all user-specified usage settings have been made in
one of the three sections described below (see sections 3.4.2,
3.4.3, and 3.4.4), select the “Return to Controls Worksheet”
button to return control to the “Controls” worksheet. User-
specified settings will be displayed in the Current User Set-
tings section of the “Controls” worksheet (see section 3.2.7).
It is important to note that only the settings for one of the five
user options selected in the SELECT USER OPTION section
will be displayed in the Current User Settings section of the
“Controls” worksheet and used by the CFANN DSS.

3.4.2 USAGE BY TYPE/CELL Section

The USAGE BY TYPE/CELL section (fig. A6-12) is
used to adjust groundwater-use model inputs. This section
contains a table that is organized into rows and columns
corresponding to GUDV grid cells and usage types, respec-
tively. Each GUDV grid cell is listed as a separate row and
labeled with a unique identifier, RC##, where the first # is the
GUDV grid row number (from 0 to 8) and the second # is the
GUDV grid column number (from 0 to 7). Click on the “View
Usage Grid” button in the SELECT USER OPTION section
(fig. A6-11) to display an image of the GUDV grid. The table
contains six columns with the following headings representing
specific usage types:

e AG Grid Cells: Groundwater withdrawals for non-
citrus agricultural irrigation

e Citrus Grid Cells: Groundwater withdrawals for
citrus irrigation

* Golf Grid Cells: Groundwater withdrawals for golf
course irrigation

* WU Grid Cells: Groundwater withdrawals public-
supply water utilities

* Drain Grid Cells: Groundwater recharge for drainage
wells

* PHOS Grid Cells: Groundwater withdrawals for
phosphate mining (ore extraction and chemical
plants)

The table has a blank gray background for those GUDV grid
cells that contain no historical usage for a given usage type.
The table has scroll bars for each usage type that has historical
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Figure A6-11. The SELECT USER OPTION section of the “Usage_UserSetpoints” worksheet is always visible and is used to
select one of five user usage options.
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Figure A6-12. Partial view of the USAGE BY TYPE/CELL section of the “Usage_UserSetpoints” worksheet used for setting the %-type
or bias-type option.



usage data for a given GUDV grid cell. Adjustments can be
a user percentage or bias specified in the SELECT USER
OPTION section (see section 3.4.1) and may be made by
usage type or for individual GUDV grid cells as explained
below.

1. %-type: Percentage of historical value. To set all
cells for a given usage type, first use the scroll bar
at the top of each column to change the percent-
age in 1% (clicking on arrows) or 10% (clicking
inside the scroll bar) increments, and second click
the “SET ALL” button below the scroll bar to apply
the change to the cells below (fig. A6-12). To set an
individual cell, use the scroll bar in the row cor-
responding to the desired GUDYV grid cell identifier
and the column corresponding to the desired usage
type. The percentage can be changed in 1% (clicking
on arrows) or 10% (clicking inside the scroll bar)
increments. Note that individual adjustments can
only be made for those GUDV cells with historical
data for a given type.

2.  bias-type: Constant offset added or subtracted from
historical value. To set an individual cell, use the
scroll bar in the row corresponding to the desired
GUDV grid cell identifier and the column cor-
responding to the desired usage type. Because the
magnitude of usage varies substantially from cell to
cell, the bias adjustment increments vary by cell, and
changes in bias to all cells of the same usage type
are not permitted. The scroll bar effects a change
in bias in increments equivalent to 5% of historical
range (clicking on arrows) or 50% of historical range
(clicking inside the scroll bar). The minimum and
maximum bias limits are equivalent to —-50% and
50%, respectively, of the historical range (maximum
usage minus minimum usage) for that cell.

3.4.3 TOTAL USAGE (U-TOT) Section

Regardless of which worksheet section is used to make
usage adjustments, all usage data are summed into a single
total usage time series (U-TOT) for signal decomposition
and input to the groundwater-use ANN models. The TOTAL
USAGE (U-TOT) section (fig. A6-13) is used for making
direct adjustments to this total summed usage time series as
described below.

1. %-type: Percentage of historical value. Use the
scroll bar to change the percentage in 1% (clicking
on arrows) or 10% (clicking inside the scroll bar)
increments. The minimum and maximum percentage
limits are —50% and 50%, respectively.

2.  bias-type: Constant offset added or subtracted from
historical value. Use the scroll bar to change the bias
in increments equivalent to 5% of historical (clicking

Appendix 6 133

on arrows) or 50% of historical (clicking inside the
scroll bar). The minimum and maximum bias limits
are equivalent to —50% and 50%, respectively, of the
historical range (maximum U-TOT minus minimum
U-TOT).

3.4.4 USER TIME SERIES Section

The USER TIME SERIES section (fig. A6-14) is used
to input any user-specified usage data. This section contains a
table with rows representing months (708) from January 1950
through December 2008 and columns representing each usage
type (6) for each GUDV grid cell (72), for a total of 305,856
data values. Table headings are labeled consistent with the
naming convention used for the USAGE BY TYPE/CELL
section (see section 3.4.2). For example, the column labeled
“RC34_Drain” contains drainage well recharge data for row 3
and column 4 of the GUDV grid. Date stamps used in the table
correspond to the last day of each month, indicating that data
represent monthly values in million gallons per day per month.
Groundwater withdrawals are represented by positive values
and groundwater recharge is represented by negative values. It
is important to note that date stamps are provided in this table
from January 1950 through December 1956, but these data
are not currently used by the CFANN DSS. Data for citrus
irrigation, non-citrus agricultural irrigation, and golf course
irrigation prior to 1957 were not available for this study, and
estimates for public supply and phosphate mining become
increasingly uncertain for older data during the earlier histori-
cal period; therefore, the current version of the CFANN DSS
uses usage data from only 1957 through 2008.

Unlike the USAGE BY TYPE/CELL section, by using
the user-ts option (see section 3.4.1) all cells can be populated
in the USER TIME SERIES section. A column header with
a gray background indicates no historical usage was avail-
able for that GUDV grid cell, but users can input usage data
in these cells and these data will be used by the ANN models.
Data can be entered by typing or by copying and pasting from
another spreadsheet. To restore historical usage data for a
given usage type, select the appropriate command button. For
example, “Copy Historical AG” will replace any user time
series in the AG cells with the historical data (fig. A6-14). This
allows for the use of a combination of historical and user time-
series data. It is important to note that while much latitude is
provided to enter data in this section, it is the responsibility of
the user to check the correctness of the user-defined input data
and its synchronization with the given date stamps.

Time-series graphs of historical and user-specified
usage can be displayed in a pop-up window by clicking the
“Display Usage Chart” button (fig. A6-15). The graphical
display is blank until a view option is selected. The CFANN
DSS currently uses only the total summed usage (USETOT)
for input to the groundwater-use ANN models, but plots can
be displayed of measured and user-specified usages by type.
The plots apply only to the data entered in the USER TIME
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Figure A6-13. The TOTAL USAGE (U-TOT) section of the “Usage_UserSetpoints” worksheet used for setting the %-utot and
bias-utot options.
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Figure A6-14. Partial view of USER TIME SERIES section of the “Usage_UserSetpoints” worksheet used for setting the user-ts option.
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Figure A6-15.

Graph of historical and user-specified usage time series displayed using the “

Use "Refresh Chart” to reload the plot after any
changes made to the User Time Series Usage

Exit

Display Usage Chart” button in the

USER TIME SERIES section of the “Usage_UserSetpoints” worksheet.

SERIES section. If changes are made to the time series, select
the “Refresh Chart” button to update the graphical display.
Select the “Exit” command to close the graphical display
window.

3.5 “Database-Rain-M,” “Database-Hyd-M,”
and “Database_UsageCells” Worksheets

The “Database-Rain-M,” “Database-Hyd-M,” and “Data-
base UsageCells” worksheets contain the monthly historical
data for rainfall at the 18 NOAA sites, water level or flow at
the 51 study sites, and usage by type and GUDV grid cell,
respectively. Rainfall (in inches per day), water level (in feet
NGVD 29), and flow (in cubic feet per second) data were con-
verted from daily to monthly values by calculating monthly

averages. Monthly average rainfall is included for each gage
for 30-; 90-; 270-; 630-; 1,440-; and 2,250-day moving win-
dow averages of the filled, daily data. Usage data (in million
gallons per day) was originally available in monthly intervals
and was stored as such after spatial aggregation using the
GUDV grid.

3.6 “Output-MS2,” “Qutput-MS1,” and “Qutput-
UserSettings” Worksheets

The “Output-MS2,” “Output-MS1,” and “Output-
UserSettings” worksheets contain simulation time-series data
from each run of the CFANN DSS when the “Write Output”
check box is selected (see section 3.2.3). Data are written from
the “Start” date to the “End” date specified in the Simulation
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section (see section 3.2.1). Data in each worksheet are also
written to three corresponding ASCII files stored in the “Out-
put” folder (see section 2.1). Data in each of these worksheets
are described below.

1. The “Output-MS2” worksheet contains the output
for the combined rainfall and groundwater-use mod-
els for each site. The corresponding ASCII file cre-
ated will be named “CFCA-yyyymmdd-hhmm.txt”
where “yyyymmdd-hhmm” is the year, month, day,
hour, and minute when the file was created. Each
column heading consists of the ANN model label
(for example, W-2745470) denoting the site concat-
enated with one of the following suffixes denoting
the type of data [for example, W-2745470(m+dp)]:

» m: Monthly averaged historical measured value

» pm: Predicted output using historical measured
inputs

» pu: Predicted output using user-specified inputs

* (pu—pm): Difference between user-specified and
measured output

* (m+dp): Sum of measured value and the differ-
ence between user-specified and measured output

2. The “Output-MS1” worksheet contains the output
for model set 1 (MS1), which are the rainfall models,
for each site. The corresponding ASCII file created
will be named “CFCA-yyyymmdd-hhmm-MS1.txt”
where “yyyymmdd-hhmm” is the year, month, day,
hour, and minute when the file was created. Each
column heading consists of the ANN model label
(for example W-2745470) denoting the site concate-
nated with one of the following suffixes denoting the
type of data (for example, W-2745470(m+dp)-MS1):

* m-MS1: Monthly averaged historical measured
value

* pm-MSI1: Predicted output using historical mea-
sured inputs for rainfall model

* pu-MSI1: Predicted output using user-specified
inputs for rainfall model

* (pu—pm)-MSI: Difference between user-specified
and measured output for rainfall model

* (m+dp)-MS1: Sum of measured value and the
difference between user-specified and measured
output for rainfall model

3. The “Output-UserSettings” worksheet contains
user setting information for rainfall and usage. The
corresponding ASCII file created will be named
“CFCA-yyyymmdd-hhmm-UserSettings.txt” where
“yyyymmdd-hhmm?” is the year, month, day, hour,

and minute when the file was created. The specific
rainfall and usage information are as follows:

» For each NOAA rain gage, monthly average
of 30-day moving window average of daily
historical measured data (from the “Database-
Rain-M” worksheet) and user-specified rainfall
data are provided. Each column heading con-
tains the NOAA site number with an “m” suf-
fix denoting historical measured data or a “u”
suffix denoting user-specified data (for example,
R369-FA30M-m).

» For total summed usage (USETOT), historical
measured total summed usage (column heading
USETOT-m) and user-specified total summed
usage (column heading USETOT-u) are provided.

3.7 “ReleaseNotes” Worksheet

The “ReleaseNotes” worksheet maintains a history of
CFANN DSS updates.

4. Quick Start Guide for the CFANN
DSS

The following steps outline the basic procedure to run a
CFANN DSS simulation. Please refer to section 3 for more
detailed instructions.

1. Select the “Controls” worksheet.

2. Use the scroll bars on the “Controls” worksheet to
set a start date and end date for the simulation run.

3. Use the “Set User Rain” command button to go to
the “Rain_UserSetpoints” worksheet. Use the scroll
bars to set the user rain as

a. percentage of historical; or

b. bias (constant offset in inches per year)

Each rain site can be changed individually OR all sites
can be set to a common value. Return to the Controls work-
sheet by selecting the “Return to Controls Worksheet” com-
mand button.

4.  Use the “Set User Usage” command button to go to
the “Usage UserSetpoints” worksheet and set user
usage values.

a. Use the drop-down combo box to select a user
option. Once selected the screen focus will move
to that area of the worksheet. Options are

1. %-type (percentage of historical by usage
type);



ii. bias-type (constant offset in million gallons
per day by usage type);

iii.  %-utot (percentage of historical for total
usage);

iv.  bias-utot (constant offset in million gallons
per day for total usage); or

v. user-ts (user-specified time series in million
gallons per day per month).

b. Use the scroll bars to set usage values for options
i—iv. For option v, paste the time series in the
appropriate columns; a combination of histori-
cal time series and user-specified time series
can be used.

Return to the Controls worksheet by selecting the
“Return to Controls Worksheet” command button.

Turn graphs On or Off using the “Graphs ON” check
box. The drop-down combo box to the right of the
check box can be used to select which site to display
during the simulation if graphs are turned on.

Turn Write Output On or Off using the “Write
Output” checkbox. Use the “Write Wells Output,”
“Write Lakes Output,” and “Write Springs Output”
check boxes to select which sites to include in the
output.

Start run by selecting the “Run” Command button.

Upon run completion, three files will be saved to the
Output subdirectory if Write Output is turned On.
The three files are

a. CFCA-yyyymmdd-hhmm.txt — Output for each
location selected for output which includes for
each monthly time stamp

i.  Monthly average historical measured data

(m)
ii.  Predicted using measured inputs (pm)
iii.  Predicted using user inputs (pu)

iv.  Predicted measured minus predicted user
(pu—pm)

v.  Measured + pu-pm
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b. CFCA-yyyymmdd-hhmm-MSI.txt — Same as

above, but only includes the rainfall models
(MS1) predictions.

c. CFCA-yyyymmdd-hhmm-UserSettings.txt

i.  Measured (m) and user-specified (u)
monthly average of 30-day moving win-
dow average of daily historical measured
data for each NOAA rain station

ii.  Measured (m) and user-specified (u) USE-
TOT (sum of all usages for a given month)

5. Installing ADMQuestRT Dynamic Link
Library

Follow the steps below to install the ADMQuestRT
dynamic link library (DLL).

1.

Install veredist x86.exe by downloading (fig. A6-16)
from http.//www.microsoft.com/download/en/details.
aspx?id=26999. Click Yes if you get the prompt, “Do
you want to allow the following program to make
changes to this computer?” (fig. A6-17). This ensures
that the proper runtime components of Visual C++
2010 are installed.

If the install prompts to repair or remove, select
repair; this will re-copy the 32 bit DLLs (fig. A6—18).

Create the following folder on your c: drive:
c\ADMQuestRT

Copy the file ADMQuestRT.dll into the newly create
folder.

Run the following command as administrator

(fig. A6-19): regsvr32 /v c:\admquestrt\admquestrt.dll
To run as administrator, right click on the Command
Prompt (found in All Programs/Accessories) and
select “Run as administrator.”

There should be no errors from the previous step. If
an error occurs, take a screenshot of the error mes-
sage and email to ruby.daamen@advdmi.com


http://www.microsoft.com/download/en/details.aspx?id=26999
http://www.microsoft.com/download/en/details.aspx?id=26999
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Figure A6-16. Download vcredist_x86.exe.
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File arigin: Downloaded from the Internet
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Figure A6-17. If the above message is received, select Yes and continue with the installation.

Microsoft ¥isual C++ 2010 x86 Redistributable Maintenance
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' Repair Microsoft Yisual C++ 2010 %86 Redistributable to its original state,
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[~ Yes, send information about my setup experiences to Microsoft Carporation.

Faor more information, read the Data Collection Policy.

Mext = I Cancel

Figure A6-18. If the above message is received, select Repair and continue with the installation.
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BN Administrator: Command Prompt
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Figure A6-19. Screenshot of command used to register the ADMQuestRT dynamic link library (DLL). The message in the lower
right corner of the above screenshot should appear (with the message title “RegSvr32’) when the DLL has been successfully
registered.
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Appendix 7. Description of Model Data Viewer

The Model Data Viewer (MDV) is a Microsoft Excel 2010® workbook created to allow quick review and analysis of data
and results collated during this study, consisting of measured data, data simulated by the east-central Florida transient (ECFT)
MODFLOW model (Sepulveda and others, 2012), and data simulated by the Central Florida Artificial Neural Network Decision
Support System (CFANN DSS) described in appendix 6. The MDV is available for download from the U.S. Geological Survey
(http://dx.doi.org/10.3133/sir20145032). The workbook consists of six worksheets that contain the measured and simulated
data, provide statistical and graphical output for one to six sites, and allow user adjustment of certain specifications that con-
trol processing of the data. The worksheets titled “Setup,” “Measured,” “MODFLOW,” “ANN_DSS,” “Station_analysis,” and
“Multi-Station_analysis” are used interactively to review, compare, and analyze measured and simulated data. Each worksheet is
described in more detail below. Additionally, the “Info”” worksheet contains a history of MDV version releases and updates.

The “Setup” worksheet consists of six columns listing the naming convention for the 51 sites included in the MDV, which
are the same 51 sites included in the CFANN DSS. The MDV uses the column titled “COMMON_NAME” as the name that is
populated in the output worksheets. In addition, the “Setup” worksheet contains four columns of data that are used during the
interactive process to populate the output worksheets. The “Data_type” column (spreadsheet column K) describes how the MDV
processes the measured data in the viewer. The “Data_type” can be set to “Average” to calculate monthly averaged data or “Last
Day” to use the last day of every month to populate the output worksheets. In general, if the user agrees with the current setting
of the “Data_type” column, the user will not need to make any modifications to the “Setup” worksheet to use the MDV. The
user, however, can view the “Setup” worksheet to review the various sites included in the MDV. To make any changes to the
“Setup” worksheet, the user must first “unprotect” the worksheet by selecting that option under the Microsoft Excel® “Review”
tab.

The “Measured,” “MODFLOW,” and “ANN_DSS” worksheets contain the data and results for the 51 sites. The “Mea-
sured” worksheet contains daily observed data from 9/30/1930 to 12/31/2009. The “MODFLOW” and “ANN_DSS” work-
sheets contain monthly data listed for the last day of each month for the ECFT model and CFANN DSS, respectively. The
“MODFLOW?” data were simulated from 1/31/1995 to 12/31/2006. The “ANN_DSS” data were simulated from 1/31/1965 to
12/31/2008. Three sites were not simulated by the ECFT model—Island Lake (Longwood), Lake Anderson (Orlando), and
Crooked Lake (Orlando)—therefore, if these sites are selected, no statistical or graphical output will be displayed for the
“MODFLOW?” data.

The “Station_analysis” and “Multi-Station_analysis” worksheets contain the statistical and graphical output and require
user interaction to select the site(s) and dates of interest. The period of MODFLOW simulation was from 1/31/1995 to
12/31/2006, so users should always be attentive to date ranges when comparing MODFLOW results to Measured or ANN_DSS
data that extend outside the MODFLOW simulation period. The “Station_analysis” worksheet consists of four graphs show-
ing comparisons of the sets of data including time-series data, cumulative z-scores, percentile rank curves, and a scatter plot of
the MODFLOW and ANN_DSS data (y-axis) versus the measured data on the x-axis (fig. A7-1). The cumulative z-score of a
time series is calculated by subtracting the mean of the time series from each data point, dividing the resulting dividend by the
standard deviation of the time series, and computing a running sum of this quotient starting with the first data point. Breaks in
slope in a time-series graph of cumulative z-score indicate points in time when changes in hydrologic behavior occurred, such
as a change from falling to rising water levels indicating the beginning of a drought recovery. The site displayed on the graphs
in the “Station_analysis” worksheet may be selected using the drop-down menu to the right of the cell labeled “Station Analysis
— Select the station:” located at the top left corner of the worksheet. The start and end dates for the graphs and statistical results
may be selected using the drop-down menu to the right of the cells labeled “Choose START Date:” and “Choose END Date:”
located below the site selection menu. The “Multi-Station_analysis” worksheet consists of bar graphs for up to six sites show-
ing the fit of the simulated data to the measured data by graphing the coefficients of determination (R?), percent model errors,
and the Nash-Sutcliffe coefficients of efficiency (fig. A7-2). The start and end dates for the graphs and statistics may be selected
using the drop-down menu to the right of the cells labeled “Choose START Date:” and “Choose END Date:” located in the top
left corner of the worksheet. The six sites displayed on the graphs may be selected using the six drop-down menus located to the
right of the cell labeled “Choose Sites:”. Both the “Station_analysis” and “Multi-Station_analysis” worksheets present the fol-
lowing statistical results in tabular form: minimum, maximum, mean, median, mode, range, standard error, standard deviation,
sample variance, kurtosis, skewness, sum, count, R?, mean error, root mean square error (RMSE), percent model error, and the
Nash-Sutcliffe coefficient of efficiency (Nash and Sutcliffe, 1970).


http://dx.doi.org/10.3133/sir20145032
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Figure A7-2. Screen capture showing the “Multi-Station_analysis” worksheet of the Model Data Viewer.
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Appendix 8. Summary statistics for measured, ANN-simulated, and MODFLOW-
simulated data

The data presented in table A8-1 are summary statistics for measured data; simulated data for the final lake water-level,
groundwater-level, and spring-flow artificial neural network (ANN) models executed by the Central Florida Artificial Neural
Network Decision Support System described in this report; and simulated data for the east-central Florida transient (ECFT)
MODFLOW model developed by Sepulveda and others (2012). Statistics were computed using monthly data from January 1995
through December 2006, where a measured time series consists of arithmetic averages of available measured daily data for each
month, and simulated ANN and ECFT data consist of the final predicted monthly values from the respective models. Statistics
were computed using the Model Data Viewer described in appendix 7.
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Appendix 8

J.B., and Burger, Patrick, 2012, Water budget and ground-

water flow in the surficial and Floridan aquifer systems
in east-central Florida: U.S. Geological Survey Scientific

Sepulveda, Nicasio, Tiedeman, C.R., O’Reilly, A.M., Davis,
Investigations Report 2012-5161, 214 p.

%LYOT 981 €T TE0  HOTO  ¥9E0 %00  vKI  pOT  OL01  SSET 6E€El  0S81  08L  COW
%EIST 9Ll €T 900  ¥8TO  8LE0 %00 vkl v6l  OL'8 68Tl 8SEl  09%61 0601  SSA
- = = - - - %6'8¢ 88 80T LTIl SLEl  S6€l  LS6T  0€8  SwW  Sumdgyonqmis  pIg
S S MLy —w:_ww_:_ S abue ueipa uea xe ul adhy aweu 3jyig faqunu
Ind  Iswy 3 N SN A Nd N a 4 uelpapy W W W g ! ang

[puooas 1ad 1095 o1qnd Ul a1e SONSHE)S [RUOISUIWIP ‘STuLIdS 10J $09) Ul
dIe SOTISIIE]S [RUOISUIWIP ‘S[[9M pue saye[ 10J :d[qeordde jou ‘-- ‘ejep paimseauwr oy Jo d3uel oY) £q FSINY Y1 SUIPIAIP £q payndwod 10110 [opow 1ua01dd ‘N 10110 d1enbs-ueaw-1001 ‘GSIARY 10110 PIBPUR]S
‘S 10110 UBIW “JIA <AOUSIOLJD JO JUIIYJI0D PI[OINS-YSEN ‘HDSN ‘UOIBUILLIDIIP JO JUIDYJA09 ‘3 syutod ejep Surssiw Jo a3ejudorad

XBIA SWINWIUIW “UTJA] S[opOuwl O TIQOIN JUSISURT) BPLIO[] [BNUII-)SLd Aq paje[nuils ‘QOIA {WSAS Hoddng uoIsiodq J10MIoN [BINAN [BIOYNIY BPLIO[] [BNUID) AQ Paje[nuuls ‘SS( ‘pIINseawt ‘seaj]

Suissiw

“Nd ‘swutod ejep Jo 1oquinu ‘N ‘UONBIAD PIepue)s ‘(IS ‘Wwnuwixew

panuRU0)—900z-G661 ‘SBNS LG 8y} 10} E1Rp pale|nwIs-A\QTAO0IN PUB ‘Pale|nwIs-NNY ‘PaInsesw Joj sonsiels Alewwns -8y 3jqeL



Prepared by the Raleigh and West Trenton Publishing Service Centers

For additional information, write to:

Director

U.S. Geological Survey
Florida Water Science Center
4446 Pet Lane, Suite 108

Lutz, FL 33559

or visit our Web site at:
http.//fl.water.usgs.gov


http://fl.water.usgs.gov

0'Reilly and others—Simulation of the Effects of Rainfall and Groundwater Use on Water Levels and Spring Flows in Central Florida—Scientific Investigations Report 2014-5032

http://dx.doi.org/10.3133/sir20145032

ISSN 2328-0328 (online)



http://dx.doi.org/10.3133/sir20145032

	Abstract
	Introduction
	Purpose and Scope
	Description of Study Area
	Climate
	Hydrogeologic Setting

	Previous Studies
	Approach

	Historical Data
	Hydrologic Data
	Historical Hydrologic Database
	Rainfall, Air Temperature, and Potential Evapotranspiration
	Lake Water Level
	Groundwater Level
	Spring Flow

	Groundwater Use
	Public Supply
	Agricultural
	Phosphate Mining
	Drainage Wells

	Land Use and Land Cover

	Characterization of Historical Data
	Hydrologic Data
	Range and Linear Trend
	Time-Series Cluster Analysis

	Groundwater Use

	Methods for Simulation of Historical Lake Water Levels, Groundwater Levels, and Spring Flows
	Limitations of Datasets
	System Dynamics and Analysis
	Signal Filtering and Decomposition
	Correlation Analysis
	State-Space Reconstruction

	Input-Output Mapping and Problem Representation
	Artificial Neural Network Models
	Statistical Measures of Prediction Accuracy

	Development of Artificial Neural Network Models in Central Florida
	Model Construction and Training
	Rainfall Models
	Groundwater-Use Models

	Model Prediction Accuracy and Example Model Simulations
	Lake Water-Level Models
	Crooked Lake near Babson Park
	Prevatt Lake

	Groundwater-Level Models
	OR-47 Floridan Well
	Taft Surficial Well

	Spring-Flow Models
	Rock Springs
	Sanlando Springs



	Development of the Decision Support System
	System Architecture
	Model Simulation Control and Graphics

	Comparison of Rainfall and Groundwater-Use Effects
	Sensitivity Analysis
	Potential Application to Vulnerability Assesment

	Limitations of Artificial Neural Network Models
	Comparison of Artificial Neural Network Models With a Physics-Based Model
	Summary and Conclusions
	References Cited
	Appendix 1. Description of hydrologic database 
	Appendix 2 . Description of Groundwater-Use Data Viewer
	Appendix 3. Summary of artificial neural network models 
	Appendix 4. Input variables used in artificial neural network models 
	Appendix 5. Summary statistics for lake water-level, groundwater-level, and spring-flow models 
	Appendix 6. User’s manual for the Central Florida Artificial Neural Network Decision Support System (CFANN DSS) 
	Appendix 7. Description of Model Data Viewer 
	Appendix 8. Summary statistics for measured, ANN-simulated, and MODFLOW-simulated data
	Table 1. Linear trend statistics for air temperature, rainfall, lake water levels, groundwater levels, and spring flow for study area sites in central Florida.
	Table 2.  Site information for lakes, wells, and springs for which artificial neural network models were developed.
	Table 3. Standard deviation of rainfall and groundwater-use signals in central Florida.
	Figure
 1. Map showing location of study area and the Central Florida Coordination Area boundaries
	Figure 2. Map showing locations of sites for which historical hydrologic data were acquired for this study
	Figure
 3. Map showing lakes classified as either flowthrough or closed basin for which historical water-level data were acquired
	Figure
 4. Map showing locations of water-treatment plants in the Central Florida Coordination Area and vicinity for which public water-supply groundwater withdrawal data from 1978 through 2008 were available
	Figure
 5. Map showing locations of citrus, non-citrus agricultural, and golf course irrigation areas in the Central Florida Coordination Area and vicinity where groundwater withdrawal estimates were available. Areas denote where irrigation occurred sometime dur
	Figure
 6. Map showing locations of phosphate industry wells for which reported groundwater withdrawal rates from 1978 through 2010 were available, phosphate mining areas and phosphate chemical plants where groundwater withdrawal estimates from 1935 through 1977
	Figure
 7. Map showing generalized land use and land cover in the study area for A, 1977, and B, 2006 
	Figure
 8. Map showing range of daily water level for lakes in the study area with at least 10 measurements and a period of record of at least 10 years
	Figure
 9. Graph showing exceedance probability of range in daily lake water level by lake type (closed basin or flowthrough) and physiography (ridge or non-ridge physiographic region) for lakes in the study area with at least 10 measurements and a period of rec
	Figure 10. Map showing range of daily groundwater level for wells in the study area with at least 10 measurements and a period of record of at least 10 years
	Figure
 11. Map showing range of daily flow and mean flow for spring
	Figure 12. Map showing linear trend in daily average air temperature for sites in the study area with a period of record of at least 45 years
	Figure
 13. Map showing linear trend in daily rainfall for sites in the study area with a period of record of at least 95 years (1901 or 1914 through 2008)
	Figure
 14. Graph showing exceedance probability of linear trend in daily lake water level by lake type (closed basin or flowthrough) and physiography (ridge or non-ridge physiographic region) for lakes in the study area with at least 10 measurements and a perio
	Figure
 15. Map showing linear trend in daily water level for lakes in the study area with at least 10 measurements and a period of record of at least 10 years
	Figure
 16. Map showing linear trend in daily groundwater level for wells in the study area with at least 10 measurements and a period of record of at least 10 years
	Figure
 17. Map showing linear trend in daily flow and mean flow for springs in the study area with at least 10 measurements and a period of record of at least 10 years
	Figure
 18. Graph showing root-mean-square error for k-means cluster analysis of water-level data for lakes and wells and flow data for springs in the study area
	Figure
 19. Map showing locations of lakes in the study area identified by group number based on the 31-year cluster analysis of lake water-level data from 1978 through 2008
	Figure
 20. Graph showing distribution of lakes in the study area identified by lake type (closed basin or flowthrough) and physiography (ridge or non-ridge physiographic region) based on the 31-year cluster analysis of lake water-level data from 1978 through 20
	Figure
 21. Map showing locations of wells in the study area identified by group number and aquifer based on the 31-year cluster analysis of groundwater-level data from 1978 through 2008
	Figure
 22. Map showing locations of springs in the study area identified by group number based on the 41-year cluster analysis of spring-flow data from 1969 through 2009 and locations of wells by group number and aquifer based on the 41-year cluster analysis of
	Figure
 23. Map showing direction of flow for filling missing rainfall data using “IF-THEN-ELSE” rules
	Figure
 24. Map showing locations of National Oceanic and Atmospheric Administration (NOAA) rain gages in the study area identified by group number based on the 67-year cluster analysis of rainfall data from 1942 through 2008. Information and data for each site 
	Figure
 25. Graphs showing moving window averages (1,440 days ≈ 4 years) of rainfall data for the individual National Oceanic and Atmospheric Administration (NOAA) rain gages in the study area composing the four groups derived from the 67-year cluster analysis. 
	Figure
 26. Map showing locations of National Oceanic and Atmospheric Administration (NOAA) air temperature measurement sites in the study area identified by group number based on the 67-year cluster analysis of computed Hargreaves potential evapotranspiration (
	Figure
 27. Graphs showing moving window averages (1,440 days ≈ 4 years) of computed Hargreaves potential evapotranspiration (PET) data for the individual National Oceanic and Atmospheric Administration (NOAA) air temperature measurement sites in the study area 
	Figure
 28. Map showing grid used for aggregating groundwater-use data in the Groundwater-Use Data Viewer showing the identification label for each cell
	Figure
 29. Graphs showing total groundwater use in the Central Florida Coordination Area and vicinity by category from 1950 through 2008 based on the Groundwater-Use Data Viewer for A, monthly data, and B, annual average data. Drainage well recharge depicted as
	Figure
 30. Diagram showing screen capture of the Groundwater-Use Data Viewer showing groundwater use by category and sum total in million gallons per day (Mgal/day) for a dry period (May 2000)
	Figure
 31. Diagram showing screen capture of the Groundwater-Use Data Viewer showing groundwater use by category and sum total in million gallons per day (Mgal/day) for a wet period (August 2004)
	Figure
 32. Map showing sites in central Florida for which artificial neural network models were developed. Information for each site is referenced in table 2 by the site number
	Figure
 33. Graphs showing average daily and low-pass filtered rainfall for the standard rainfall time series for A, 1945 through 2008, and B, 1997 through 2001. The standard rainfall time series represents the arithmetic average of daily rainfall at the 18 Nati
	Figure
 34. Graphs showing average monthly and low-pass filtered groundwater use in the Central Florida Coordination Area and vicinity for the sum total of all water-use categories for A, 1957 through 2008, and B, 1997 through 2001. Data for individual water-use
	Figure
 35. Graph showing pearson product-moment correlation coefficient (R) between rainfall (for each rain gage and rainfall-signal pair) and hydrologic response at each site. Ranges are depicted indicating those values falling between the minimum and average 
	Figure
 36. Graphs showing comparison of the Pearson product-moment correlation coefficients (R) between rainfall (for each rain gage and rainfall-signal pair) and hydrologic response and the distance between the site and each rain gage for A, Lake Clinch (site 
	Figure
 37. Graph showing pearson product-moment correlation coefficient (R) between the R shown in figure 35 (between rainfall and hydrologic response) and the distances between the site and each rain gage for each site. Site information and locations are shown
	Figure
 38. Graph showing pearson product-moment correlation coefficient (R) between groundwater-use signals and hydrologic response at each site. Ranges are shown for those values falling between the minimum and average R for the site and those values falling b
	Figure
 39. Graph showing pearson product-moment correlation coefficient (R) between groundwater-use signals and rainfall signals at each National Oceanic and Atmospheric Administration (NOAA) rain gage. Ranges are shown for those values falling between the mini
	Figure
 40. Diagram showing two-stage model architecture used to simulate water level at lakes or wells, or flow at springs. ANN, artificial neural network; Q, spring flow; WL, lake water level or groundwater level
	Figure
 41. Pie charts showing water budgets for the combined surficial and Floridan aquifer systems simulated by the Lake County/Ocala National Forest (LCONF; Knowles and others, 2002), east-central Florida (ECF; McGurk and Presley, 2002), and east-central Flor
	Figure
 42. Diagram showing multilayer perceptron artificial neural network architecture
	Figure
 43. Graphs showing model-fit statistics for the final water-level or flow models for each site for the 1965 to 2008 simulation period: A, coefficient of determination (R2), B, root-mean-square error (RMSE), and C, and percent model error (RMSE divided by
	Figure
 44. Graphs showing results of lake water-level simulation for Crooked Lake near Babson Park (site number 49; table 2; fig. 32) showing 
A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall a
	Figure
 45. Graphs showing results of lake water-level simulation for Prevatt Lake (site number 5; table 2; fig. 32) showing A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use 
	Figure
 46. Graphs showing results of groundwater-level simulation for the OR-47 Floridan well (site number 648; table 2; fig. 32) showing A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and gr
	Figure
 47. Graphs showing results of groundwater-level simulation for the Taft Surficial well (site number 712; table 2; fig. 32) showing A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and gr
	Figure
 48. Graphs showing results of spring-flow simulation for Rock Springs (site number 309; table 2; fig. 32) showing A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use mod
	Figure
 49. Graphs showing results of spring-flow simulation for Sanlando Springs (site number 312; table 2; fig. 32) showing A, measured and simulated water levels, and B, residuals for the rainfall model (RM) and the final combined rainfall and groundwater-use
	Figure
 50. Diagram showing architectural elements of the Central Florida Artificial Neural Network Decision Support System
	Figure
 51. Diagram showing simulator controls used to run a simulation of the Central Florida Artificial Neural Network Decision Support System and the associated graphical display
	Figure
 52. Graphs showing sensitivity of lake water-level, groundwater-level, and spring-flow models as indicated by the maximum change in water level or flow simulated during 1965 to 2008 caused by changes in A, rainfall, and B, groundwater use. Rainfall and g
	Figure
 53. Graphs showing sensitivity of lake water-level, groundwater-level, and spring-flow models as indicated by the minimum change in water level or flow simulated during 1965 to 2008 caused by changes in A, rainfall, and B, groundwater use. Rainfall and g
	Figure
 54. Graphs showing simulated water levels at the ROMP 60 Floridan well (site 472; table 2; fig. 32) for historical conditions and hypothetical rainfall and groundwater-use scenarios showing A, water-level altitude for historical and scenario conditions, 
	Figure
 55. Graphs showing simulated water levels at the Cocoa P Floridan well (site 622; table 2; fig. 32) for historical conditions and hypothetical rainfall and groundwater-use scenarios showing A, water-level altitude for historical and scenario conditions, 
	Figure
 56. Graphs showing model-fit statistics for the final water-level or flow models for the 51 sites incorporated in the Central Florida Artificial Neural Network Decision Support System for the 1995 to 2006 period: A, coefficient of determination (R2), B, 
	Figure
 57. Graphs showing model-fit statistics for 48 sites in the east-central Florida transient (ECFT) model (Sepúlveda and others, 2012) for the 1995 to 2006 period: A, coefficient of determination (R2), B, Nash Sutcliffe coefficient of efficiency, C, root-m
	Figure A6-1. “Info” worksheet.
	Figure A6-2. Simulation section of the “Controls” worksheet used to set the “Start” and “Stop” dates for simulation, initiate a run, or step forward and backward through the data.
	Figure A6-3. Simulation section of the “Controls” worksheet showing the message that appears when a simulation is interrupted by pressing the “Esc” key twice.
	Figure A6-4. User Settings section of the “Controls” worksheet used to navigate to the worksheets for making user-specified adjustments to rainfall and groundwater use inputs.
	Figure A6-5. Output section of the “Controls” worksheet used to set graphing and output options.
	Figure A6-6. View Sites on Grid section of the “Controls” worksheet used to view images of site locations within the Groundwater Use Data Viewer (GUDV) grid displayed when “View selected”.
	Figure A6-7. Graphical Display section of the “Controls” worksheet used to display measured and predicted hydrographs. The site shown in the drop-down box is the site currently displayed.
	Figure A6-8. Tabular Display section of the “Controls” worksheet showing measured and predicted data for the current simulation time.
	Figure A6-9. Current User Settings section of the “Controls” worksheet showing user settings for rainfall and usage.
	Figure A6-10. “Rain_UserSetpoints” worksheet used to make user-specified adjustments to rainfall model inputs.
	Figure A6-11. The SELECT USER OPTION section of the “Usage_UserSetpoints” worksheet is always visible and is used to select one of five user usage options.
	Figure A6-12. Partial view of the USAGE BY TYPE/CELL section of the “Usage_UserSetpoints” worksheet used for setting the %-type or bias-type option.
	Figure A6-13. The TOTAL USAGE (U-TOT) section of the “Usage_UserSetpoints” worksheet used for setting the %-utot and bias-utot options.
	Figure A6-14. Partial view of USER TIME SERIES section of the “Usage_UserSetpoints” worksheet used for setting the user-ts option. 
	Figure A6-15. Graph of historical and user-specified usage time series displayed using the “Display Usage Chart” button in the USER TIME SERIES section of the “Usage_UserSetpoints” worksheet.
	Figure A6-16. Download vcredist_x86.exe.
	Figure A6-17. If the above message is received, select Yes and continue with the installation.
	Figure A6-18. If the above message is received, select Repair and continue with the installation.
	Figure A6-19. Screenshot of command used to register the ADMQuestRT dynamic link library (DLL). The message in the lower right corner of the above screenshot should appear (with the message title “RegSvr32’) when the DLL has been successfully registered.



