ZUSGS

science for a changing world

Prepared in cooperation with the

U.S. Department of Transportation

Federal Highway Administration

Office of Project Development and Environmental Review

Statistics for Stochastic Modeling of Volume
Reduction, Hydrograph Extension, and Water-
Quality Treatment by Structural Stormwater Runoff
Best Management Practices (BMPs)

Scientific Investigations Report 2014—-5037

U.S. Department of. Transportation
U.S. Department of the Interior /I:A\eddnflﬁé T';ggﬂgvr\]/cy
U.S. Geological Survey






Statistics for Stochastic Modeling of
Volume Reduction, Hydrograph Extension,
and Water-Quality Treatment by Structural
Stormwater Runoff Best Management
Practices (BMPs)

By Gregory E. Granato

Prepared in cooperation with the

U.S. Department of Transportation

Federal Highway Administration

Office of Project Development and Environmental Review

Scientific Investigations Report 2014-5037

U.S. Department of the Interior
U.S. Geological Survey



U.S. Department of the Interior
SALLY JEWELL, Secretary

U.S. Geological Survey
Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2014

For more information on the USGS—the Federal source for science about the Earth, its natural and living
resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888—ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications,
visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials
as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Granato, G.E., 2014, Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality
treatment by structural stormwater runoff best management practices (BMPs): U.S. Geological Survey Scientific
Investigations Report 2014-5037, 37 p., http.//dx.doi.org/10.3133/sir20145037.

ISSN 2328-0328 (online)


http://www.usgs.gov
http://www.usgs.gov/pubprod
http://store.usgs.gov

Acknowledgments

The author thanks the many people who reviewed this manual and the associated digital

media. Susan Jones of the Federal Highway Administration, Peter Weiskel, Toby Feaster,

Teresa Rasmussen, Elizabeth Enright, and Kevin Breen of the U.S. Geological Survey for
providing thoughtful and thorough technical and editorial reviews of this report, the software,
and the associated CD-ROM. Jane Clary, the project manager of the International BMP
database project worked closely with the author to answer questions and resolve a number

of issues with data in the January 2012 version of that database as they were uncovered in

this analysis. The International Stormwater BMP Database was developed by Wright Water
Engineers, Inc., and Geosyntec Consultants for the Water Environment Research Foundation, the
American Society of Civil Engineers/Environmental and Water Resources Institute, the American
Public Works Association, the Federal Highway Administration, and U.S. Environmental
Protection Agency. Jonas Bellini, an intern for the Massachusetts Department of Transportation
(MassDQT), helped do the least-squares optimization analyses for volume reduction and flow
extension; Henry Barbaro, MassDOT Wetlands Unit Supervisor, managed this effort.






Contents

ACKNOWIBAGMENTS ..ottt e st ee et ense e iii
AADSTTACT ...ttt Rt 1
[T O UCTION. ettt et bbbt 2
PUIPOSE ANA SCOPE vttt sttt s bbbttt b sannsns 2
RUNOTf VOIUME REAUCTION ..ottt ettt sttt sttt 3
Hydrograph EXEENSION........cciicececcese ettt 3
Water-Quality TrEatMEBNT ......ccucveeeeeeecteese et 4
The Minimum Irreducible CONCENTratiON. ..ot 4
MEthOAS OF ANAIYSIS.....coiieiiecticte ettt bbbt naes 5
D e 0] L=l (o o OO 5
Fitting the Trapezoidal Distribution to Duration and Ratio Data.........cccccceueeeerrerrenenreeseeneseeens
Methods for Estimating the Minimum Irreducible Concentrations
The Measured Minimum ValUE .......c.c.ccuicieiceeceeeeeeee ettt nans
The Log-Triangular Lower-Bound EStIMator .........ccccveveeeeneneneessssseeesesssesssesssssssssennns
Stedinger’s Quantile Lower-Bound EStimator.........c.cocccvieieeccecceceeece e
The Modified Quantile Lower-Bound EStIMator .........c.o.eeeueeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeeaeeae
Selecting Minimum Irreducible Concentrations from Lower-Bound Estimates.............. 12
Correlation COBfICIENTS ... 14
Limitations of the BMP Performance AnalySEes......ovrrrreeeeneereereeeeeneeseeeseseeseseeseesesssesenes 14
RESUIS Of ANAIYSES .uvureicecireeieee sttt sttt 16
RUNOTT VOIUME REAUCTION ...ttt 16
Hydrograph EXEENSION........covrececeeecereereeeee ettt ss s sns st snen 17
Water-Quality TreatMENT .....c.cvcveecirereee ettt s sttt ssnsenaes 23
Minimum Irreducible CONCENTIAtIONS ....cveeieeieierrieie et 23

SUMIMATY oottt bbb s s e b e ss e ssn b ssensen b ae
References Cited

Figures

1. Schematic diagram showing five possible probability-density functions of the
trapezoidal distribution as defined by the location variables ... 7
2. Boxplot showing the variation in estimates of the minimum irreducible
concentrations (MIC) among different structural best management practice (BMP)
monitoring Sites by BMP Category ..ottt ns 13

3. Graphs showing fitted cumulative trapezoidal-distribution functions of the flow-
reduction statistics for A, 29 biofilter (grassy swale or strip) monitoring sites and
B, 13 detention-basin MONILOMNG SIES......ccvicreiirieeriereee et 18

4. Graphs showing fitted cumulative trapezoidal-distribution functions of the flow-
extension statistics for A, 11 biofilter (grassy swale or strip) monitoring sites and
B, 12 detention-basin MONILOMNG SIES......ccoicueeeieeeeicreeeeeee et 20
5. Graphs showing normalized A, depth-discharge and B, drain-time volume graphs
showing the contribution of a low-flow orifice, a riser orifice, and an emergency
spillway to the drawdown time for a brim-full detention pond..........cocveeevveeveccrecnrnnee. 22



vi

Graphs showing fitted cumulative trapezoidal-distribution functions of the
suspended sediment water-quality treatment statistics for A, 17 biofilter (swale)

monitoring sites and B, 16 detention-basin monitoring Sites .......cocvveeereereneerereereeneenenes 26
Boxplot showing the populations of minimum irreducible concentration (MIC)
estimates from the literature for selected runoff-quality constituents ..........cccccvvrrenenee 30

Scatterplot showing the variation in estimators of the minimum irreducible
concentrations (MICs) of total suspended solids in effluents from biofilters (grass
strips and grass swales) with respect to the geometric means of inflow
concentrations MeasUred @t 22 SIEES ......cvcureereeereireireieee et 31

Tables

Explanation of structural best management practice (BMP) categories used in the
International BMP Database (www.bmpdatabase.org).......ccccccocveeeeeeeceeeeeeeeceeceeceeeeene 6
Median of stormflow volume-reduction statistics for the trapezoidal distribution and
Spearman'’s rho correlation coefficient statistics for best management practices

LAY LR O3 A o 1= o V7SO 16
Median of stormflow-extension statistics for the trapezoidal distribution and
Spearman’s rho correlation coefficient statistics for best management practices
(BIVIPS) DY CAtEUOIY.....ouevcececeeceeeetetete ettt sse st ss bbb sse s snen 19

Summary of water-quality volume drawdown times from design tables in the
January 2012 version of the International BMP Database (www.bmpdatabase.org)....21

Median of water-quality treatment statistics for the trapezoidal distribution and
Spearman'’s rho correlation coefficients for best management practices (BMPs) by
(o= 1 (=T [0 OO TP PR 24

Estimates of the minimum irreducible concentration (MIC) and correlations between
the geometric mean concentration of inflows and the median of MIC estimates for
individual best management practice (BMP) monitoring sites for each selected

BIVIP CATBGOIY vttt st 28



Conversion Factors and Abbreviations

Inch/Pound to International System of Units (SI)

Multiply By To obtain
Length
inch (in.) 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)
Area
acre 4,047 square meter (m?)
acre 0.4047 hectare (ha)
square foot (ft?) 0.09290 square meter (m?)
Flow rate
cubic foot per second (ft/s) 0.02832 cubic meter per second (m?/s)
cubic foot per second (ft*/s) 0.01093 liter per second (1/s)

Concentrations of chemical constituents in water are given either in milligrams per liter

(mg/L) or micrograms per liter (ug/L). Milligrams per liter are equivalent to “parts per million.”

Micrograms per liter are equivalent to “parts per billion.”

For water-quality loads, 28.32 liters per second (L/s) = 1 cubic foot per second (ft¥/s).

Abbreviations

BMPs best management practices

BMPSE Best Management Practices Statistical Estimator

CDF cumulative distribution function

EMC Event Mean Concentration

EPA U.S. Environmental Protection Agency

FHWA Federal Highway Administration

LBMPV lower bound of the most probable value

MIC minimum irreducible concentration

MICO the minimum of the minimum values of the positive MIC estimates
MIC1 the 25th percentile of the minimum values of the positive MIC estimates
MIC2 the median of the minimum values of the positive MIC estimates
MIC3 the median of the median values of the positive MIC estimates

MIC4 median of the positive MIC estimates for an individual monitoring site
MQLBE modified quantile lower-hound estimator

NWIS National Water Information System

r

r(log)

Pearson’s correlation coefficient

Pearson’s correlation coefficient for the common logarithms of concentrations

vii



ROS
SELDM
SSC
TCu

TP

TSS
UBMPV
USGS
VBA

Regression on Order Statistics

Stochastic Empirical Loading and Dilution Model
suspended sediment concentrations

total copper

total phosphorus

total suspended solids

upper bound of the most probable value

U.S. Geological Survey

Microsoft Visual Basic for Applications®



Statistics for Stochastic Modeling of Volume Reduction,
Hydrograph Extension, and Water-Quality Treatment by
Structural Stormwater Runoff Best Management Practices

(BMPs)

By Gregory E. Granato

Abstract

The U.S. Geological Survey (USGS) developed the
Stochastic Empirical Loading and Dilution Model (SELDM)
in cooperation with the Federal Highway Administration
(FHWA) to indicate the risk for stormwater concentrations,
flows, and loads to be above user-selected water-quality goals
and the potential effectiveness of mitigation measures to
reduce such risks. SELDM models the potential effect of miti-
gation measures by using Monte Carlo methods with statistics
that approximate the net effects of structural and nonstructural
best management practices (BMPs). In this report, structural
BMPs are defined as the components of the drainage path-
way between the source of runoff and a stormwater discharge
location that affect the volume, timing, or quality of runoff.
SELDM uses a simple stochastic statistical model of BMP per-
formance to develop planning-level estimates of runoff-event
characteristics. This statistical approach can be used to repre-
sent a single BMP or an assemblage of BMPs. The SELDM
BMP-treatment module has provisions for stochastic modeling
of three stormwater treatments: volume reduction, hydrograph
extension, and water-quality treatment. In SELDM, these
three treatment variables are modeled by using the trapezoi-
dal distribution and the rank correlation with the associated
highway-runoff variables. This report describes methods for
calculating the trapezoidal-distribution statistics and rank
correlation coefficients for stochastic modeling of volume
reduction, hydrograph extension, and water-quality treatment
by structural stormwater BMPs and provides the calculated
values for these variables. This report also provides robust
methods for estimating the minimum irreducible concentration
(MIC), which is the lowest expected effluent concentration
from a particular BMP site or a class of BMPs. These statistics
are different from the statistics commonly used to characterize
or compare BMPs. They are designed to provide a stochastic
transfer function to approximate the quantity, duration, and
quality of BMP effluent given the associated inflow values
for a population of storm events. A database application and
several spreadsheet tools are included in the digital media

accompanying this report for further documentation of meth-
ods and for future use.

In this study, analyses were done with data extracted from
a modified copy of the January 2012 version of International
Stormwater Best Management Practices Database, designated
herein as the January 2012a version. Statistics for volume
reduction, hydrograph extension, and water-quality treatment
were developed with selected data. Sufficient data were avail-
able to estimate statistics for 5 to 10 BMP categories by using
data from 40 to more than 165 monitoring sites. Water-quality
treatment statistics were developed for 13 runoff-quality
constituents commonly measured in highway and urban runoff
studies including turbidity, sediment and solids; nutrients;
total metals; organic carbon; and fecal coliforms. The medi-
ans of the best-fit statistics for each category were selected to
construct generalized cumulative distribution functions for the
three treatment variables. For volume reduction and hydro-
graph extension, interpretation of available data indicates that
selection of a Spearman’s rho value that is the average of the
median and maximum values for the BMP category may help
generate realistic simulation results in SELDM. The median
rho value may be selected to help generate realistic simulation
results for water-quality treatment variables.

MIC statistics were developed for 12 runoff-quality
constituents commonly measured in highway and urban runoff
studies by using data from 11 BMP categories and more
than 167 monitoring sites. Four statistical techniques were
applied for estimating MIC values with monitoring data from
each site. These techniques produce a range of lower-bound
estimates for each site. Four MIC estimators are proposed as
alternatives for selecting a value from among the estimates
from multiple sites. Correlation analysis indicates that the
MIC estimates from multiple sites were weakly correlated
with the geometric mean of inflow values, which indicates that
there may be a qualitative or semiquantitative link between the
inflow quality and the MIC. Correlations probably are weak
because the MIC is influenced by the inflow water quality
and the capability of each individual BMP site to reduce
inflow concentrations.
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Introduction

The U.S. Geological Survey (USGS) developed the
Stochastic Empirical Loading and Dilution Model (SELDM)
in cooperation with the Federal Highway Administration
(FHWA) to indicate the risk for stormwater concentrations,
flows, and loads to be above user-selected water-quality
goals and the potential effectiveness of mitigation measures
to reduce such risks (Granato, 2013). SELDM is designed to
be a tool that can be used to transform disparate and complex
scientific data into meaningful information about the risk for
adverse effects of runoff on receiving waters, the potential
need for mitigation measures, and the potential effective-
ness of such measures for reducing these risks. SELDM
was designed to help inform water-management decisions
for streams and lakes receiving highway runoff. SELDM
is a stochastic model because it uses Monte Carlo methods
to produce the random populations needed to generate the
values for each component variable. SELDM is designed to
facilitate an iterative approach that is consistent with environ-
mental risk-management methods used by the FHWA and the
U.S. Environmental Protection Agency (EPA) (Sevin, 1987,
Cazenas and others, 1996; FHWA, 1998; U.S. Environmental
Protection Agency, 1996).

SELDM models the potential effect of mitigation mea-
sures by using Monte Carlo methods with statistics approxi-
mating the net effects of structural and nonstructural best man-
agement practices (BMPs). In this report, structural BMPs are
defined as the components of the drainage pathway between
the source of runoff and a stormwater discharge location that
affect the volume, timing, or quality of runoff. Use of the term
BMP in this report, and much of the literature on stormwater
treatment, does not imply that these mitigation measures rep-
resent an optimal solution for any particular site. The potential
effects of nonstructural BMPs, such as street sweeping, can be
modeled implicitly by modifying input statistics to reflect the
effect of such measures on the quantity and quality of runoff
from the site of interest. SELDM also can explicitly model
potential effects of structural and nonstructural BMPs on the
volume, timing, and quality of runoff (Granato, 2013).

SELDM uses a simple stochastic statistical model of
BMP performance to develop planning-level estimates of
runoff-event characteristics rather than a complex theoreti-
cal or physical model. Planning-level estimates are defined as
the results of analyses used to evaluate alternative manage-
ment measures; planning-level estimates are recognized to
include substantial uncertainties, commonly orders of magni-
tude (Granato, 2013). The statistical approach used to model
BMPs in SELDM can be used to represent a single BMP or an
assemblage of BMPs. The SELDM BMP-treatment module
has provisions for stochastic modeling of three stormwater
treatments: volume reduction, hydrograph extension, and
water-quality treatment. Statistics for the ratios of inflow to
outflow are used to model volume reduction and water-quality
treatment, and statistics characterizing difference between
outflow and inflow durations are used to model hydrograph

extension. The BMP runoff-control options alter the highway,
upstream, and downstream outputs from the model. [f BMP
volume-reduction statistics are specified, the highway-runoff
flows and loads will be affected accordingly. If BMP volume-
reduction statistics are specified but water-quality treatment
statistics are not, then the highway-runoff and BMP discharge
concentrations will be the same, but the BMP discharge loads
and the concurrent downstream loads and concentrations will
all be different. If BMP hydrograph extension is specified, the
concurrent upstream and downstream flows and loads will be
different than for the untreated runoff because the discharge
period will be extended to include more of the upstream flow
and loads. If BMP water-quality treatment statistics are speci-
fied, BMP discharge concentrations and loads will be affected
as well as downstream concentrations and loads.

SELDM provides methods to model potential effects
of BMPs on concentrations, flows, and loads in runoff and
receiving waters, but methods for calculating the trapezoidal-
distribution statistics, rank correlation coefficients, and
minimum irreducible concentration (MIC) values used by
SELDM are not familiar to many potential SELDM users.
Commonly used software such as spreadsheets and statistical
packages do not have predefined algorithms for estimating the
minimum value, upper and lower bound of the most probable
value, and maximum value of the trapezoidal distribution.
Many statistical packages have predefined algorithms for
estimating rank correlation coefficients, but commonly used
spreadsheets do not. The MIC concept is recognized in the
literature, but a systematic method for estimating the MIC
is not. During the SELDM beta-test process, members of
the team, which included stormwater engineers, planners,
decisionmakers, and regulators, indicated that they wanted
standard methods for calculating BMP treatment variables and
representative values to be used as the defaults for modeling
widely used BMP categories.

Purpose and Scope

This report describes methods for calculating input statis-
tics for stochastic modeling of volume reduction, hydrograph
extension, and water-quality treatment by structural stormwa-
ter BMPs and provides BMP performance statistics for these
variables. This study was done by the USGS in cooperation
with the FHWA to inform professional judgments for stochas-
tic modeling of volume, timing, and quality of BMP effluent
given a stochastic population of inflows from a user-defined
site of interest. Specifically, this study was done to establish
methods for estimating the trapezoidal-distribution statistics,
rank correlation coefficients, and MIC values used by SELDM
and to develop default values for commonly used BMP
categories. The data, information, and statistics developed
in this analysis are intended to facilitate stochastic planning-
level analysis of the potential effects of stormwater runoff on
receiving waters at unmonitored sites (or sites with limited
monitoring data). The methods and statistics described in this



report were designed for use with SELDM, but may be used
with other methods or models. These methods and statistics
are designed to help evaluate the risk for adverse effects of
runoff on receiving waters, the potential need for mitigation
measures, and the potential effectiveness of such management
measures for reducing these risks.

The methods and statistics in this report are not intended
to replace accepted methods for evaluating and comparing
different types of BMPs. Such methods include the effluent
probability method (EPM) (Strecker and others, 2001;
Geosyntec Consultants and Wright Water Engineers, 2009)
and theoretical-analytical time-series analyses (Clar and
others, 2004a; Huber and others, 2006; National Cooperative
Highway Research Program, 2006). Existing methods
for BMP comparison provide information about BMP
performance at previously studied sites, which may or may
not represent the volume, timing, and quality of runoff from a
site of interest. The methods described in this report, however,
do provide statistics for estimating expected BMP effluent
characteristics and the reduction of risk for adverse effects of
runoff in receiving waters given user-defined site properties,
runoff quality, BMP performance statistics, and receiving-
water characteristics.

Runoff Volume Reduction

Volume reduction by BMPs is the practice of retain-
ing, detaining, or routing runoff flows to increase the amount
of infiltration, evapotranspiration, or diversion between the
pavement and the outfall (Goforth and others, 1983; Schueler,
1987; Urbonas and Roesner, 1993; Wanielista and Yousef,
1993; Young and others, 1996; Adams and Papa, 2000; Burton
and Pitt, 2002; National Cooperative Highway Research
Program, 2006; Poresky and others, 2011; Granato, 2013).
Volume reduction commonly is a design criterion for BMPs
to reduce flood flows, instream erosion, and runoff loads.
Features such as flow lengths (for swales) or design volumes
commonly are used with moisture-retention estimates and data
on local infiltration rates to estimate the volume-reduction
capacity of BMPs. Expected storm-event characteristics also
are considered in BMP designs because the volume, intensity,
and duration of events and the time between storms affect
the capacity of the BMP to reduce runoff volumes. Although
the term “volume reduction” is used to describe this process,
outflows can exceed inflows and therefore volume-reduction
ratios may be larger than one. Outflows may exceed inflows if
there is carryover in BMP storage from one runoff event to the
next or if there is groundwater discharge into the BMP during
or between some events.

SELDM uses a simple stochastic representation of the net
volume reduction from a BMP or series of BMPs (Granato,
2013). Volume reduction is modeled to represent how BMPs
can affect flows and loads from the highway site. SELDM
models the potential effects of BMPs on the volume of runoff
by generating a stochastic population of the ratios of outflow
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to inflow volumes and applying these ratios to the stochas-
tic population of inflow volumes from the site of interest.
SELDM generates these ratios by using the trapezoidal distri-
bution and the rank correlation with the highway stormflow
volume. Rank correlation coefficients (Spearman’s tho) are
used by SELDM to help generate the volume-reduction ratios
associated with input runoff volumes, which helps to pre-
serve the structure of BMP monitoring data (Granato, 2013).
Volume-reduction statistics for the trapezoidal distribution
can be estimated by using expert judgment or by fitting the
distribution to data.

Hydrograph Extension

Hydrograph extension by BMPs is the practice of slow-
ing the discharge of runoff flows and releasing these flows to
the stream over an extended period of time (Granato, 2013).
Hydrograph extension is defined as the duration in hours of
discharge from the BMP that occurs after runoff from the
highway site has ceased. Hydrograph extension commonly is
a design criterion for BMPs to reduce flood flows, to reduce
instream erosion and, more recently, to mimic predevelopment
stormflow hydrographs. Historically, attempts to optimize
detention were done to maximize sediment settling time while
minimizing the chance of untreated overflows from subse-
quent storms (Goforth and others, 1983; Driscoll and others,
1986; Schueler, 1987; Wanielista and Yousef, 1993; Adams
and Papa, 2000; Chen and Adams, 2005, 2007; National
Cooperative Highway Research Program, 2006). These efforts
commonly resulted in extension of the outflow hydrograph.
Hydrograph extension also has the added benefit of increasing
dilution of runoff from small, highly impervious sites. Extend-
ing the duration of the highway-runoff hydrograph can make a
substantial difference in the amount of dilution in a receiving
stream, especially in the rising limb of the upstream storm-
event hydrograph.

SELDM calculates hydrograph-extension times (in hours)
from a BMP or series of BMPs (Granato, 2013). Hydrograph
extension is modeled to represent how BMPs can increase
dilution in receiving waters by extending the duration of
runoff from the highway site. SELDM models the potential
effects of structural BMPs on the timing of runoff by generat-
ing a population of BMP flow-extension durations and adding
these durations to the runoff duration from the site of interest.
SELDM generates these flow-extension durations by using
the trapezoidal distribution and the rank correlation with the
highway stormflow volume. Rank correlation coefficients
(Spearman’s rho) are used by SELDM to help generate the
flow-extension durations associated with input runoff volumes,
which helps to preserve the structure of BMP monitoring data
(Granato, 2013). Hydrograph-extension times can be estimated
by using expert judgment or by fitting the distribution to data.
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Water-Quality Treatment

Water-quality treatment is the practice of using physical
and chemical processes in an attempt to reduce the concen-
tration of runoff constituents in stormflow (Granato, 2013).
Hundreds of BMP studies have focused on water-quality treat-
ment during the past 40 years. Historically, process modeling
(for example, methods described by Huber and others, 2006;
and Park and others, 2011), theoretical statistical modeling
(for example, Adams and Papa, 2000), and data analysis (for
example, Strecker and others, 2001; Barrett, 2005, 2008; and
Leisenring and others, 2010, 2011) have been used to examine
BMP performance. Settling and filtration commonly are the
primary water-quality treatment mechanisms that form the
basis for reductions in influent concentrations for many
constituents in commonly used BMP designs (National
Cooperative Highway Research Program, 2006; Clary and
others, 2010, 2011; Leisenring and others, 2010, 2011).
Increasingly, however, chemical and biological processes
are being incorporated into BMP designs to enhance treat-
ment of runoff constituents. Although the term “concentration
reduction” is commonly used to describe these processes,
concentrations in outflows can exceed inflows and therefore
concentration-reduction ratios may be larger than one. Outflow
concentrations may exceed inflow concentrations if there is
carryover in BMP storage from one runoff event to the next; if
physical, chemical, or biological processes mobilize constitu-
ents between storms; or if flow through the BMP mobilizes
previously retained constituents during some events.

SELDM uses a simple stochastic representation of the
net change in concentration from a BMP or series of BMPs
(Granato, 2013). Water-quality treatment is modeled to rep-
resent changes in constituent concentrations that may result
from different treatment options. SELDM models the poten-
tial effects of BMPs on the concentrations of constituents in
runoff by generating a stochastic population of the ratios of
outflow to inflow concentrations and applying these ratios
to the stochastic population of inflow concentrations from
the site of interest. SELDM generates these ratios by using
the trapezoidal distribution and the rank correlation with the
highway stormflow concentrations. Rank correlation coeffi-
cients (Spearman’s rho) are used by SELDM to help generate
the concentration-reduction ratios associated with input runoff
concentrations, which helps to preserve the structure of BMP
monitoring data (Granato, 2013). Concentration-reduction
statistics for the trapezoidal distribution can be estimated by
using expert judgment or by fitting the distribution to data.

The Minimum Irreducible Concentration

The minimum irreducible concentration (MIC) is
commonly defined as the lowest concentration achievable for a
well-designed example of each type of BMP (Schueler, 1996;
Barrett and others, 2004; Barrett, 2005, 2008; Geosyntec
Consultants and Wright Water Engineers, 2009; Granato,
2013). The MIC also has been defined as a background

concentration (Wong and Geiger, 1997; Huber and others,
20006), the lower bound of first-order decay models (Kadlec
and Knight, 1996; Wong and Geiger, 1997; Huber and others,
2006), or the intercept of regression equations relating outflow
to inflow concentrations (Barrett, 2005, 2008; Barrett and
others, 2013). Use of a MIC reflects the fact that most BMPs
will not produce effluent that is free of sediment, solutes,

and bacteria; so there will be some lower limit to the effluent
concentrations that can be achieved with normal BMP unit
operations. In SELDM, the MIC estimate is used to replace
low concentrations calculated from stochastic influent and
concentration-ratio values for thousands of storm events that
may occur over one or more decades. If the MIC estimate is
set too high (based on results of short-term monitoring studies
with relatively small sample sizes), then the model results
may overestimate the risk for exceeding water-quality targets,
which may lead to use of the limited resources available for
mitigation at sites where such measures may not be warranted.
If the MIC estimate is set too low, however, model results may
underestimate the risks for exceeding water-quality targets.

Although the concept of the MIC is sound, determining
such a value from data may be difficult especially if data are
limited, the selected BMP is not characteristic of design stan-
dards, or a substantial proportion of the effluent concentrations
are below historical detection limits. Two of the most widely
cited articles on the subject in studies of urban and highway
runoff are by Schueler (1996) and by Barrett (2005). Schueler
(1996) examined available data and settling times to estimate
MICs for different types of BMPs. Barrett (2005) developed
regression relations between influent and effluent concentra-
tions and interpreted the intercept as a good estimate of the
MIC. The most widely cited report on MICs in studies of
wastewater treatment is Kadlec and Knight (1996), who added
a lower bound to the first-order decay models commonly used
to model concentrations in wetland systems, and increasingly,
in stormwater BMPs (Wong and Geiger, 1997; Huber and oth-
ers, 2006; Park and Roesner, 2012; Barrett and others, 2013).
These modified first-order decay models are commonly known
as k-C* models.

In some cases it is assumed that the MIC values represent
local background water quality (Kadlec and Knight, 1996;
Wong and Geiger, 1997; Huber and others, 20006). If this
assumption will be used, then SELDM modelers may want
to develop local MIC estimates using available water-quality
data. Granato and others (2009) developed and implemented
methods for data mining from the online version of the U.S.
Geological Survey National Water Information System data-
base, known as NWIS Web. They also collected and published
1,876,000 paired discharge and water-quality measurements
that include 24 constituents commonly measured in highway-
and urban-runoff studies. Such data may be used to character-
ize background concentrations in an area of interest.

SELDM uses a simple deterministic representation of
the net MIC from a BMP or series of BMPs (Granato, 2013).
Water-quality treatment ratios are modeled to represent
changes in constituent concentrations that may result from



different treatment options; the MIC provides a lower bound
to the modeled reductions. The MIC can be estimated by using
expert judgment, from literature values, or by statistical analy-
sis of available data.

Methods of Analysis

Quantitative methods were needed to estimate values of
the trapezoidal-distribution statistics and to develop a robust
estimator for the MIC from available data. The methods and
analysis tools were designed to analyze currently available
data and to replicate the analysis with user-supplied data in
the future. The triangular and rectangular distributions are in
use for risk analysis, but the trapezoidal distribution, which is
a more general and flexible form of both distributions, is not
widely used for risk analysis. Therefore, quantitative methods
were needed to estimate trapezoidal-distribution statistics for
analysis of BMP performance. Similarly, quantitative methods
for developing MIC estimates were needed. Standard methods
(Press and others, 1992; Helsel and Hirsch, 2002) were used to
estimate rank correlations because SELDM generates corre-
lated random BMP performance variables to help preserve the
structure of monitoring data (Granato, 2013). Properly model-
ing the performance of structural BMPs is a complex endeavor
and there are many explanatory variables that are difficult to
quantify, especially with limited monitoring data. Therefore,
available data are sufficient for planning-level estimates, but
there is great uncertainty in the representativeness and trans-
ferability of many available datasets.

Data Collection

The analyses documented in this report were done with
data that were extracted from the January 2012 version of the
International BMP Database (accessed at www.bmpdatabase.
org). These data were modified in cooperation with Jane Clary,
the project manager of the International BMP database project
to resolve a number of issues with data in the January 2012
version of that database as they were uncovered in this analy-
sis. This modified copy is designated herein as the January
2012a version. These data modifications appear in subsequent
versions of the official International BMP Database. The Inter-
national BMP Database was selected as the source of data for
this analysis because it is extensive. The January 2012 version
has data for 356 sites, 1,687 monitoring stations, 11,962 runoff
events, 20,795 flow measurements, and 283,559 water-quality
measurements. This compilation represents continuing efforts
of the project team to collect, format, check, and enter data
over a 17-year period from 1996 to 2012. In many cases, the
data have been vetted for use in various BMP performance
summaries (for example, Clary and others, 2011; Leisenring
and others, 2011; Poresky and others, 2011). In some cases,
however, the data used in this analysis are different from the
data found in the January 2012 version because the author
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worked closely with Jane Clary, the Project Manager of the
BMP database, to resolve a number of issues that were identi-
fied during the process for extracting, checking, and manipu-
lating the data for this analysis. These changes, however, are
reflected in subsequent versions of the International BMP
Database available at www.bmpdatabase.org (Jane Clary,
Wright Water Engineers, Inc., oral commun., 2012).

The results of analyses presented in this report are
organized by using the categories specified in the international
BMP database (table 1). The 2012 version of this database
contains 16 types of structural BMPs; for this analysis,

11 types of BMP were selected on the basis of available

data and applicability for modeling the quality and quantity
of stormwater runoff with SELDM. The selected BMPs

are designed to treat the quality and (or) quantity of runoff
between the source area and the discharge area. The selected
BMPs also are commonly used to treat highway and urban
runoff. The 2012 version of this database also contains

40 subcategories of BMP, but this analysis was done using the
categories in table 1. Despite the large amount of data in the
database, the availability of paired inflow and outflow data
from BMP sites for some categories and many subcategories
is not sufficient for quantitative characterization of BMP
performance. Data for BMP sites, monitoring sites, runoff
volumes, runoff durations, and constituent concentrations
were obtained from the BMP database using a series of queries
that were designed to obtain paired input and output values.
Although it is recognized that the outflow for one event

may represent the effects of inflows from one or more prior
events (Strecker and others, 2001), building a large dataset of
paired values for each category should provide the statistics
necessary to stochastically generate the wide variations in
output values that may occur over a large number of storms.

The extracted data were loaded into a derivative
Microsoft Access® database to facilitate retrieval and analysis
of the data. This database application, named the Best
Management Practices Statistical Estimator (BMPSE) tool, is
in the file BMPAnalysisDBver1.0.0.mdb on the digital media
accompanying this report. The BMPSE has commented open-
source code that documents the methods used in the database.
The BMPSE includes interface forms and Microsoft Visual
Basic for Applications® (VBA) modules to manipulate the
data, calculate summary statistics, and output the resultant
values for further analysis. Because SELDM uses rank
correlation to preserve the structure of inflow and outflow
data, these database modules also calculate the Spearman’s rho
and Kendall’s tau correlation coefficients with their respective
95-percent confidence limits and the probability that each
correlation coefficient value is not significantly different
from zero (Fisher, 1924; Hann, 1977; Press and others,

1992; Caruso and CIliff, 1997; Helsel and Hirsch, 2002).
This database includes the VBA subroutines and functions
that were developed to implement the Regression on Order
Statistics (ROS) analysis to estimate summary statistics for
left-censored data developed for use in the highway-runoff
database (Granato and Cazenas, 2009).
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Table 1. Explanation of structural best management practice (BMP) categories used in the International BMP Database (www.
bmpdatabase.org).
Code Name Description
BR  Bioretention Bioretention BMPs are shallow depressions lined with mulch or amended soils and vegetation. These
BMPs drain either to groundwater or to an underdrain that discharges to sewers or surface water bod-
ies. These BMPs are also known as rain gardens.
CO  Composite Composite BMPs are treatment trains that include different BMP categories in series that use a variety of
treatment methods.
DB  Detention basin Detention basins are normally dry ponds designed to empty after storm events by drainage over a weir

and through an orifice that controls the rate of release. This category also includes concrete-lined
basins and underground concrete vaults.

Biofilters are dry, grassy strips and swales designed to convey overland flow.

Infiltration basins are dry ponds that are not designed with a surface-water drainage structure. Infiltration
basins may have overflow drains for large storms. Some infiltration basins may have underdrains that

In the BMP database, low impact development (LID) BMPs are site-scale combinations of small dry and

Manufactured devices are prefabricated stormwater treatment methods. This category includes catchba-
sins, oil and grit seperators, hydrodynamic devices, baffle boxes, filter inserts, and other devices.

Media filters are self-contained infiltration BMPs with overflow structures and underdrains. Media filters
use sand, peat, perlite, zeolite, and (or) compost to treat infiltrating stormwater.

Retention ponds, also known as wet ponds, are artifical lakes designed to maintain a permanent pool and
a water-quality treatment volume. An orifice or weir commonly is used to drain the pool to the level of

Wetland basins are either surface wetlands with a semipermanent pool or wetland meadows that fill dur-
ing storms and drain between storms. The groundwater level in wetland meadows commonly is within

GS Biofilter (swale)
IB Infiltration basin
discharge to sewers or surface water bodies.
LD Low impact development
wet BMPs used in attempt to mimic the natural hydrology of an area.
MD  Manufactured device
MF  Media filter
RP Retention pond
the permanent pool between storms.
WB  Wetland basin
the root zone.
WC  Wetland channel

Wetland channels are normally wet swales designed to convey overland flow.

Fitting the Trapezoidal Distribution to Duration

and Ratio Data

SELDM generates random numbers that follow trapezoi-
dal distributions by using the inverse cumulative distribution
function (CDF) with an algorithm developed by Kacker and
Lawrence (2007). The trapezoidal distribution is defined by

In SELDM, volume-reduction, hydrograph-extension,
and concentration-reduction variables are modeled by using
the trapezoidal distribution and the rank correlation with
the associated highway-runoff variables. This family of
distributions was selected for modeling BMP performance
measures because it can be parameterized by using expert
judgment or by fitting the distribution to data if good data
are available (Johnson, 1997; Back and others, 2000;

U.S. Environmental Protection Agency, 2001; Scherer, 2003;
Kacker and Lawrence, 2007). The triangular distribution,
which is a special case of the trapezoidal distribution,
commonly is suggested when uncertainties in input data

that may be used to define a parametric distribution are

large (U.S. Environmental Protection Agency, 2001). The
trapezoidal distribution is bounded by a selected minimum
and maximum value. When data are uncertain or are limited

in scope, use of a bounded distribution reduces the chance that

unrealistic output values will be generated by extrapolating a
distribution beyond the range of available data.

four location variables: the lower bound (the minimum value),
the lower bound of the most probable value (LBMPV), the
upper bound of the most probable value (UBMPV), and the
upper bound (the maximum value), all of which are shown in
figure 1. The trapezoidal distribution is very flexible and can
assume a variety of shapes, including a positive-skewed trian-
gular distribution, a negative-skewed triangular distribution, a
symmetric (isosceles) triangular distribution, and a rectangular
(uniform) distribution (fig. 1). SELDM will produce stochas-
tic data that fit the triangular distribution if the LBMPV and
UBMPYV are specified as being equal. SELDM will produce
stochastic data that fit the rectangular distribution if the
LBMPV is set equal to the minimum and UBMPV is set equal
to the maximum. The triangular distribution is commonly used
in environmental risk analysis, but the rectangular distribution
is not (U.S. Environmental Protection Agency, 2001).
Least-squares optimization was used to fit the BMP mon-
itoring data to the parameters of the trapezoidal distribution.
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A. Symmetrical trapezoid

EXPLANATION
a. Lower bound (minimum value)
b. Lower bound of the most probable value
c. Upper bound of the most probable value
d. Upper bound (maximum value)
h h. Standardized height of the distribution
a b c d
B. Positive-skew triangular C. Negative-skew triangular
h 1 h 1
a=b=c d a b=c=d
D.Isosceles triangular E. Rectangular (uniform)
h —
h —
a b=c d a=b c=d

Figure 1. Five possible probability-density functions of the trapezoidal distribution as defined by the location
variables. The height of each trapezoid is calculated to normalize the area under the probability-density function to
equal one (Granato, 2013).
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Least-squares optimization was used because it has been
shown to be effective for fitting data to the triangular distribu-
tion (Johnson, 1997; Back and others, 2000; Joo and Casella,
2001; van Straalen, 2002). Least-squares methods have been
used in hydrology and other sciences to fit statistical distribu-
tions to data for more than 40 years (Snyder, 1972; Bensic,
2014). In the absence of reliable data, it is easier to estimate
the parameters of the trapezoidal distribution by using profes-
sional judgment than it is to estimate the parameters of other
commonly used distributions. More importantly, it is easier

to avoid generation of extreme outliers when large stochastic
datasets are generated because the trapezoidal distributions are
bounded. However, it is more difficult to estimate the param-
eters of the trapezoidal distribution using available data than
to estimate the parameters of other distributions commonly
used in hydrologic studies such as the exponential, normal,
lognormal, Pearson Type 111, and log Pearson Type III because
these distributions commonly are parameterized by using sum-
mary statistics such as the mean, standard deviation, and skew
(Stedinger and others, 1993).

The optimal fit to the trapezoidal distribution was cal-
culated by minimizing the least-squares difference between
the cumulative distributions of the flow-reduction ratios, the
flow-extension times, and the water-quality treatment ratios. In
each case the data were sorted, ranked, and assigned plotting
positions by using the Cunnane (1978) plotting-position for-
mula. The value for each data point was compared to the value
of the same plotting position for the theoretical trapezoidal
distribution with the input minimum, LBMPV, UBMPYV, and
maximum values, and the difference and squared difference
were calculated. The sum of squared differences was used as
the measure of fit.

The Microsoft Excel® solver tool available in the analysis
tool pack was used to find the optimal fit of the cumulative
distribution of a trapezoidal distribution to each dataset. The
Microsoft Excel® solver tool should be installed with Excel®,
but this tool must be activated using the Microsoft Excel®
“Add-Ins” menu. The solver was set up with the generalized
reduced gradient nonlinear solving package to minimize the
sum of squared errors between the data and the fitted distribu-
tion by varying the input statistics. The solver manipulated the
values of the minimum, LBMPYV, UBMPYV, and the maximum
values to do this optimization. The constraints on the solver
were that the values must be greater than or equal to zero, the
LBMPV must be greater than or equal to the minimum, the
UBMPYV must be greater than or equal to the LBMPYV, and the
maximum must be greater than or equal to the UBMPV. By
definition, the maximum must be greater than the minimum,;
this criterion is not available in the solver, but it represents a
trivial solution that was not encountered in this study.

To prepare for optimization, the BMPSE tool was used
to sort and rank the data, calculate plotting positions, calcu-
late initial estimates, and calculate potential correlations. For
the flow-extension and volume-reduction variables, initial
estimates were calculated by using the approximation equa-
tions for the triangular distribution developed by Johnson

(1997). These values were adjusted to ensure the minimum
was greater than or equal to zero, the most probable value

was greater than or equal to the minimum, the maximum was
greater than or equal to the most probable value, and the maxi-
mum was greater than the minimum. For the water-quality
treatment ratios, initial estimates were calculated from the
median ratio because the prior analyses indicated that the esti-
mates based on Johnson’s (1997) equations did not facilitate
rapid convergence to a final solution.

The solver was restarted with different input values
several times for each analysis to find the most optimal solu-
tion. In some cases, there are multiple combinations of input
variables that may produce what appears to be an optimal fit to
the generalized reduced gradient non-linear solving package.
The situation is analogous to the problem of finding the high-
est peak in a mountain range in the fog by following an uphill
gradient. Starting in different locations may result in discovery
of different peaks; selecting different starting locations should
help find the tallest peak. In an effort to find the most optimal
fit, the values calculated from the first solution were modified
and the solver was rerun. This was done several times and the
most optimum solution (having the smallest sum of square
errors) was selected. In many cases, there seemed to be only
one optimal solution.

For the volume-reduction ratio and the flow-extension
ratio runs, which were done manually, at least two additional
conditions were tested. In one run, the minimum was set equal
to zero; the LBMPV minimum was set equal to 50 percent
of the average; the UBMPV minimum was set equal to twice
the average; and the maximum was set equal to four times
the average. In another run, the values for the solution with
the lowest sum of square errors were adjusted. The minimum
was set equal to 0; the LBMPV minimum was reduced by 10
to 20 percent; the UBMPV minimum was increased by 10 to
20 percent; and the maximum was increased by 20 percent.
For these variables, the analyst evaluated the stability of
the solution and either picked the best solution if the results
were stable or continued to modify the starting points if
the solution seemed unstable. Finally, the solution with the
lowest value of the sum of square errors was selected as the
final result. The Microsoft Excel® spreadsheets used to do
these analyses named FitTriangleToBMP01v1.0.3.xlIs and
FitTrapezoidToBMPO1v1.0.3.xls are available on the digital
media accompanying this report. Sufficient data were available
to do the flow-reduction analyses on 94 BMP monitoring sites
and the flow-extension analyses on 40 BMP monitoring sites.

The trapezoidal-fit spreadsheet was automated to do the
analyses of the concentration ratios because 1,075 datasets had
to be optimized to determine trapezoidal fit statistics for each
site within the 10 BMP categories that had sufficient data for
analysis for one or more of the 13 commonly measured high-
way- and urban-runoff constituents. The BMPSE generates the
input files and the list of filenames for each constituent within
the Graphical User Interface (GUI). For the water-quality
treatment ratios, the minimum was set equal to one third of the
median; the LBMPV minimum was set equal to 65 percent of



the median; the UBMPV minimum was set equal to median;
and the maximum was set equal to three times the median

to do the initial optimization run. If a solution was reached,
then the minimum was set equal to 50 percent of the initial
estimate; the LBMPV was reduced to 75 percent of the initial
estimate; the UBMPYV was increased to 1.1 times the initial
estimate; and the maximum was increased to 2 times the initial
estimate, and the solver was rerun. If a solution was reached,
then the minimum was set equal to 50 percent of the first-
solution minimum; the LBMPV was reduced to 75 percent

of the first-solution LBMPYV; the UBMPYV was increased to
1.1 times the first-solution UBMPYV; and the maximum was
increased to 2 times the first-solution maximum, and the
solver was rerun. In the final trial, the values of the minimum,
LBMPV, UBMPYV, and maximum were changed to 0, 0.75,
0.75 and 1.5, respectively. If one of the trial solutions failed

to converge, the minimum was set equal to 0; the LBMPV
was set equal to 10 percent of the measured maximum; the
UBMPYV was set equal to 25 percent of the measured maxi-
mum; and the maximum was increased to 1.5 times the mea-
sured maximum ratio, and the solver was rerun. The concen-
tration-ratio solver program then sorted results to identify the
solution with the smallest sum of squared errors, and this solu-
tion was identified as the final result for that monitoring site.
The Microsoft Excel® spreadsheet used to do these analyses is
named ConcentrationRatioFitv1.0.0.xls and is available on the
digital media accompanying this report.

Methods for Estimating the Minimum
Irreducible Concentrations

Four statistical estimators were used to calculate MICs
from available BMP effluent-concentration-sample data.
These estimators are the measured minimum, the log-
triangular lower-bound estimator, Stedinger’s (1980) quantile
lower-bound estimator, and a modified quantile lower-bound
estimator. Two other lower-bound estimators, the measured
25th percentile estimate used by Job and Smith (2010) and the
measured 10th percentile estimate used by Susilo and others
(2008) and Chapman and Horner (2010 were not used in this
analysis. Although these two percentile estimators represent
a conservative assessment of outflow concentrations, these
values are not robust estimators for long-term MIC values
because most available BMP monitoring datasets are small.

The four selected statistical estimators for the MIC are
consistent with the theory that the effluent concentrations are
approximately lognormal. Stormwater-quality data and BMP
effluent-quality data commonly are characterized and modeled
as being from a lognormal distribution, but other distribu-
tions also are used (Athayed and others, 1983; DiToro, 1984;
Driscoll, and others, 1989; Driscoll and others, 1990; Van
Buren and others, 1997; Novotny, 2004; Burton and Pitt, 2002;
Maestre and others, 2004; Maestre and others, 2005; National
Cooperative Highway Research Program, 2006; National
Research Council, 2008). The four lower-bound estimators
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selected for use in this study are based on the assumption of
lognormality, but are not constrained to this assumption. Four
different estimators were selected for use because each estima-
tor has several potential advantages and disadvantages.

The Measured Minimum Value

The measured minimum value is the simplest method
for estimating the MIC and is commonly used for this pur-
pose in the literature (see the spreadsheet LiteratureMIC.xls
on the digital media accompanying this report). The mea-
sured minimum value method has three advantages and two
disadvantages.

The advantages are:

e itis simple to calculate;

* it is generally accepted because it is commonly used;
and

* it is completely nonparametric because the result does
not depend on the assumption that the data fit any
given probability distribution.

The disadvantages are:

* the probability that the measured minimum is repre-
sentative of the MIC may be low especially if sample
sizes are small; and

* it may not be possible to quantify the measured mini-
mum value because there may be one or more censored
values below one or more detection limits.

The probability that the measured minimum value is
representative of the MIC is low because most BMP monitor-
ing studies collect relatively few samples. The probability that
the measured minimum value is representative of the MIC
depends on sample size, and the difference between the actual
MIC and the median value. If sample sizes are large or the
difference between the median effluent concentration and the
actual MIC is small, then the measured minimum may be a
good approximation for the MIC for a given BMP at the data
collection site. Queries of the January 2012 version of the
International BMP database indicate that in many cases, the
sample sizes are small. For example, about 30 percent of data-
sets for total suspended solids (TSS), total copper (TCu) and
total phosphorus (TP) have fewer than 10 samples, and about
70 percent of these datasets have fewer than 20 samples.

If the measured minimum is censored, then the value may
be estimated by using half the lowest detection limit or by
using statistical methods, but neither method is recommended
for estimating an individual value to replace a censored
measurement (Helsel and Hirsch, 2002; Helsel, 2005). The
robust regression ROS method (Helsel and Hirsch, 2002;
Helsel, 2005) was used to estimate values below detection
limits for all the MIC estimates. When necessary, the
measured minimum value was estimated from the minimum
percentile calculated by using the selected plotting-position
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formula. The Blom, Cunnane, Gringorten, Hazen, or Weibull
plotting-position formulas (Helsel and Hirsch, 2002) may

be selected for calculating this minimum percentile by using
the BMPSE tool in the file BMPAnalysisDBver1.0.0.mdb

on the digital media accompanying this report. There is,
however, substantial uncertainty in the exact minimum value if
estimates are made using ROS or other methods.

The Log-Triangular Lower-Bound Estimator

Scherer and others (2003) developed the triangular lower-
bound estimator to provide a simple algebraic solution for
calculating values of the CDF for data that could be approxi-
mated using a normal distribution. They note that the trian-
gular distribution has a fixed upper and lower bound, which
may be more realistic for many data than the upper and lower
bounds of plus or minus infinity that are characteristic of the
normal distribution. For the lognormal distribution, the lack of
a lower bound results in values that are infinitely close to zero.
To develop the estimator, Scherer and others (2003) optimized
the fit of the triangular CDF to the standard-normal CDF and
calculated the lower bound by using the method of moments.
To estimate the MIC, calculate the lower bound as

(-0, x6) (1)

LB=10
where
is the triangular lower-bound estimate;
Y is the average of the logarithms of the BMP
effluent data; and
oy is the standard deviation of the logarithms of
the BMP effluent data.

The triangular lower-bound estimator has five advantages
and two potential disadvantages.
The advantages are:

* it is simple to calculate;

* it is robust because it will always produce a value that
is greater than zero;

* it is robust to presence of data below one or more
detection limits because it is calculated using the aver-
age and standard deviation of the logarithms of data,
which can be calculated using commonly accepted
standard methods for censored data (Helsel and Hirsch,
2002; Helsel, 2005);

* it provides an empirical solution to BMP effluent data
that can be approximated using the lognormal distribu-
tion because the triangular distribution provides a good
fit to the standard normal distribution; and

* it can be adapted to data such as pH, which cannot be
modeled using a lognormal distribution, by using the

average and standard deviation of the untransformed
data.

The disadvantages of the triangular lower-bound estimator are:

* it may not be the best estimator if the CDF of the loga-
rithms of the BMP effluent data is substantially asym-
metrical above and below the geometric mean because
the estimator developed by Scherer and others (2003)
is based on a symmetrical distribution; and

* the triangular distribution is empirical, whereas the log-
normal distribution is supported by the multiplicative
environmental processes that give rise to data that fit a
lognormal distribution (Chow, 1954; Chow and others,
1988; Stedinger and others, 1993).

Stedinger’s Quantile Lower-Bound Estimator

Stedinger (1980) developed the quantile lower-bound
estimator to calculate the minimum value of the three-
parameter lognormal distribution. The three-parameter
lognormal distribution commonly is used to model
environmental data that are well approximated by a lognormal
distribution, but do not have a lower-bound value of zero
(Stedinger, 1980; Hoshi and others, 1984; Stedinger and
others, 1993). To develop the estimator, Stedinger (1980) used
the theoretical properties of the three-parameter lognormal
distribution to formulate the quantile lower-bound estimator
and Monte Carlo methods to optimize the fit of the selected
quantiles. Stedinger (1980) and Hoshi and others (1984)
demonstrated that this method consistently outperformed
many of the alternate parametric methods using different input
values and varying (generated) sample sizes. The equation for
estimating the MIC using this estimator is

2

LB = M )
X +X,-2X,,

is the quantile lower-bound estimate;

X is the minimum of the BMP effluent data

values;

X is the maximum of the BMP effluent data
values;

is the median of the BMP effluent data values;
and

n is the number of values in the dataset.

med

Stedinger’s quantile lower-bound estimator has four
advantages and four potential disadvantages.
The advantages are:

* it is simple to calculate;
¢ the three-parameter lognormal distribution is well

accepted in theory and in practice (Stedinger and oth-
ers, 1993; Maestre and others, 2005);



* the quantile lower bound can be used to estimate the
MIC for BMP effluent data that can be approximated
using the lognormal distribution; and

* the three-parameter lognormal distribution will fit data
that are not symmetrical above and below the geomet-
ric mean.

The disadvantages of Stedinger’s quantile lower-bound esti-
mator are:

* it is not robust because it can produce a lower-bound
value that is less than zero;

* it is not robust to presence of data below one or more
detection limits because it is calculated using the mini-
mum value;

* the minimum value can be estimated using commonly
accepted standard methods, but use of individual
censored-value estimates below one or more detection
limits are not commonly recommended (Helsel and
Hirsch, 2002; Helsel, 2005); and

* the lower-bound estimated using the three-parameter
lognormal distribution cannot be adapted to data that
cannot be modeled using a lognormal distribution (pH
for example).

The Modified Quantile Lower-Bound Estimator

The Iwai quantile lower-bound estimator is not used to
estimate the MIC, but this estimator forms the basis for the
modified quantile lower-bound estimator (MQLBE) that is
used to estimate the MIC in this report. The Iwai quantile
lower-bound estimator commonly is used to calculate the
minimum value of the three-parameter lognormal distribution
used for flood frequency analysis in Japan (Hoshi and others,
1984). The Iwai quantile lower-bound estimator is similar to
the Stedinger (1980) estimator, but an average of the extreme
values is used instead of the minimum and maximum value.
Hoshi and others, (1984) used Monte Carlo methods to
demonstrate that the Iwai method outperformed many of the
alternate parametric methods and was as good or almost as
good as the Stedinger method in many cases. The equation
for estimating the MIC using the Iwai quantile lower-bound
estimator is

LB _ (_X(i:1 to m) X _X(i:n7m+l to n) ) - Xried (3)
-2X

med

(i=1 to m) (i=n7m+1 to n)

where
LB s the quantile lower-bound estimate;

X -1wm 18 theaverage of the m lowest BMP effluent
data values;
X (nmtt o) is the average of the m highest BMP effluent

data values;
is the median of the BMP effluent data values;

med

Methods of Analysis 1"

i is the index number of a given values in the
dataset;
n is the number of values in the dataset; and
is the number of values used to calculate the
upper and lower average values, which
commonly is the integer closest to one-
tenth of the » values.

Iwai’s quantile lower-bound estimator has four advan-
tages and three potential disadvantages.
The advantages are:

* it is relatively simple to calculate;

* the three-parameter distribution is well accepted in
theory and in practice (Stedinger and others, 1993;
Maestre and others, 2005);

* the quantile lower bound can be used to estimate the
MIC for BMP effluent data that can be approximated
using the lognormal distribution; and

* the three-parameter lognormal distribution will fit data
that are not symmetrical above and below the geomet-
ric mean.

The disadvantages of Iwai’s quantile lower-bound estimator
are:

* it is not robust because it can produce a lower-bound
value that is less than zero;

* it may not be robust to presence of data below one or
more detection limits (however, the Iwai estimator
may be more robust than the Stedinger’s method in
this respect because the Iwai estimator is calculated
using the average of lower values rather than just one
minimum value); and

* the lower-bound value estimated using the three-
parameter lognormal distribution cannot be adapted
to data that cannot be modeled using a lognormal
distribution.

The MQLBE was developed to estimate MIC values
using an iterative process. This estimator was developed
because the Stedinger and Iwai estimators produced negative-
value estimates for about 30 percent of the TSS effluent
datasets in the International BMP Database that have 20
or more storm events. The modified quantile lower-bound
estimator is hybrid of the Stedinger and Iwai estimator
calculated using the equation:

Xoum XX, |- X
LB = (_ (i=1 to m) n) med (4)
X +X,-2X, .,

(i:l to m)

The variables in equation 4 are the same as those defined for
equations 2 and 3. The modified quantile lower-bound estima-
tor is calculated by setting m to two and then incrementing
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the value of m until LB is greater than zero. In the worst case
scenario, m may increase to include values that are greater
than the median value.

The modified quantile lower-bound estimator has six
advantages and three disadvantages.
The advantages are:

* the three-parameter distribution is well accepted in
theory and in practice (Stedinger and others, 1993;
Maestre and others, 2005);

* it can be used to estimate the MIC for BMP effluent
data that can be approximated using the lognormal
distribution;

* the three-parameter lognormal distribution will fit data
that are not symmetrical above and below the geomet-
ric mean;

* it is robust because it will produce a lower-bound value
that is greater than zero;

* it is more robust to the effects of censored data than the
minimum value or Stedinger’s methods because the
minimum value used in the equation is the average of
two or more values; and

* using an average of selected lower values incorporates
more information about the entire sample than select-
ing a single estimated minimum value.

The disadvantages are:

* because it is iterative, this estimator is not as easy to
calculate as some of the other estimators used to esti-
mate the MIC values;

* the lower-bound value estimated using the three-
parameter lognormal distribution cannot be adapted
to data that cannot be modeled using a lognormal
distribution; and

« although potential adverse effects of using one or more
censored-value estimates is reduced by averaging two
or more of the lowest values, use of individual cen-
sored estimates is not highly recommended (Helsel and
Hirsch, 2002; Helsel, 2005).

Selecting Minimum Irreducible Concentrations
from Lower-Bound Estimates

Application of these lower-bound estimators to monitor-
ing data indicates that there is wide variation in lower-bound
estimates for each monitoring site and among the lower-bound
estimates for different monitoring sites. Figure 2 shows the
distribution of site-specific minimum and median MIC esti-
mates for TSS concentrations calculated from data collected
at 202 study sites. Among the individual BMPs, ratios of the
median of MIC estimate to the minimum of MIC estimate for

individual sites (documented in the spreadsheet SiteValues-
MIC.xlsx in the digital media accompanying this report) range
from 1 to 37 with an average of 3.7 and a median of 2. The
absolute difference between median of MIC estimates and
minimum of MIC estimates ranges from 0 to 61 mg/L with

an average of 4.1 and a median of 1.24 mg/L. Among the

202 sites, about 48 percent of these alternate MIC estimates
differ by less than 1 mg/L and about 63 percent differ by less
than 2 mg/L. Data in figure 2 also indicate that the at-site MIC
estimates can range over 2 to 4 orders of magnitude for BMP
categories with more than a few monitoring sites.

Four methods (denoted as MICO through MIC3) were
chosen for selecting representative MIC values from among
the four statistical lower-bound estimators for each category
of BMP, and one method (denoted as MIC4) was chosen for
selecting a representative MIC for an individual monitoring
site from among the four methods for calculating a statistical
lower-bound estimate. In both cases, only the BMP monitoring
sites with enough data points above the detection limits to
calculate the four statistical MIC estimators (minimum, log-
triangular, Stedinger, and MQLBE) were used to develop
the three representative MIC values for each category
(fig. 2). The first category-level method (MICO) is to use
the minimum of the minimum values of the positive MIC
estimates. The second category-level method (MIC1) is to
use the 25th percentile of the minimum values of the positive
MIC estimates. The third category-level method (MIC2)
is to use the median of the minimum values of the positive
MIC estimates. The fourth category-level method (MIC3) is
to use the median of the median values of the positive MIC
estimates. The median of the positive MIC estimates for an
individual monitoring site (MIC4) was chosen for selecting a
representative MIC for that site because many of the datasets
include one or more values below detection limits, which
means that an individual minimum MIC estimate may be
uncertain for any one site. However, the MIC1 and MIC2
estimates from all available sites were chosen as the primary
methods for estimating the MIC for a category or group of
BMP sites because the MIC3 estimates may be biased high
and the MICO may be biased low if the objective is to select a
representative MIC for a class of BMPs.

The more conservative MIC estimates based on relatively
small sample sizes may not be representative of long-term
performance in BMP simulations. SELDM generates sto-
chastic populations with about 800 to 2,300 storms. All BMP
effluent concentrations calculated as being below the MIC
will be set equal to the MIC. In large long-term simulations, a
substantial proportion of effluent concentrations may equal the
MIC estimate generated from small short-term studies, which
will result in a seemingly unrealistic distribution of effluent
concentrations. SELDM was designed with the MIC as a con-
stant variable, whereas further research indicates that it may
be a stochastic variable that varies at a site and between sites.
Selection of the MIC1 estimate or a lower percentile value
will allow for more variation in low-end concentrations. Selec-
tion of a lower MIC estimate will reduce the proportion of
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constant-value lower-end concentrations, but is not expected
to substantially change the proportion of water-quality excur-
sions or total annual loads in most cases because absolute
differences in MIC values are small in comparison to the range
of BMP effluent concentrations.

Correlation Coefficients

Correlation coefficients were calculated for the volume-
reduction ratios, flow-extension durations, concentration-
reduction ratios, and MIC values. Rank correlations were
calculated by using Spearman’s rho and Kendall’s tau, and
data correlations were calculated using Pearson’s R (Haan,
1977; Helsel and Hirsch, 2002). Correlation coefficients and
associated 95-percent confidence intervals and probability
values were calculated by use of standard methods (Fisher,
1924; Haan, 1977; Press and others, 1992; Caruso and CIiff,
1997; Helsel and Hirsch, 2002). Inflow volumes were used
to calculate nonparametric correlation coefficients for the
volume-reduction ratios and flow-extension durations. Inflow
concentrations were used to calculate rank correlation coef-
ficients for the water-quality treatment ratios. The geometric
means of inflow concentrations were used to calculate rank-
and Pearson’s R-correlation coefficients for the MIC values.
Rank correlations for volume reduction, flow extension, and
water-quality treatment ratios were calculated to provide input
for the Monte Carlo analyses in SELDM (Granato, 2013). The
Spearman’s rho values are provided in this report; the values
of Kendall’s tau and the confidence intervals and probability
values are provided in the “SiteValues” spreadsheets within
the compressed archive file “SiteValues.zip” in the digital
media accompanying this report. The rank correlations and
Pearson’s linear correlation coefficients on the arithmetic and
logarithmic values of the geometric mean inflow concentration
and the estimated MIC value were calculated to help inform
the choice of MIC values and to explore the feasibility of
predictive equations for these variables. These values of the
correlation coefficients are provided in this report.

The rank correlation between the inflow volume and the
ratio of outflow to inflow volume or the inflow concentration
to the concentration ratios should not be used for statistical
inference. Because the inflow concentration and runoff are
included in the ratios, the correlations are spurious (Haan,
1977). However, these rank correlations can be used in a
Monte Carlo analysis to help preserve the structure of the
input data (Granato, 2013). Thus, for example, if the rank
correlations between inflow volumes and ratios are positive,
then large inflows would be associated with large ratios and
small inflows would be associated with small ratios when the
performance data were generated. Conversely, if the rank cor-
relations are negative, large inflows would be associated with
small ratios and small inflows would be associated with large
ratios when the performance data were generated.

Sample sizes of seven or more storms per BMP monitor-
ing site were selected for calculating correlation coefficients

for the volume-reduction ratios, flow-extension durations, and
concentration ratios. This sample-size criterion was applied
for selection of datasets to estimate correlation coefficients
because Abdel-Megeed (1984) determined that at least 5 data
pairs were necessary to begin to quantify the correlation. A
minimum sample size of seven was selected to improve on the
minimum estimate of five storms while retaining two or more
datasets for each BMP category.

Limitations of the BMP Performance Analyses

The BMP performance estimates identified in this study
are based on several assumptions about available data in the
international BMP database and the methods used for analysis,
which may or may not be robust for some applications. These
assumptions are:

 the BMPs in the database are representative of the
category;

* the monitored BMPs were properly designed for local
conditions;

* the designs, and therefore performance, are transferable
to other sites and other areas if the designs are rescaled
for local hydrology;

* monitoring protocols and data management protocols
result in valid and representative data;

* short-term monitoring results characteristic of most
datasets are representative for long-term performance
statistics; and

* the statistical methods chosen to estimate the perfor-
mance metrics are sufficient approximations for char-
acterizing long-term BMP effluent characteristics.

Application of results from BMP monitoring studies is
highly uncertain; few studies provide reliable predictions of
treatment performance even with large datasets and com-
plex models (Strecker and others, 2001; Wong and others,
2006; Park and others, 2011). Uncertainties arise because of
the many categories of BMPs, wide variations in design and
construction of BMPs within each category, and wide varia-
tions in the operation and maintenance of BMPs once they
are installed. Similar BMPs are used at sites with widely
varying site characteristics including different precipitation,
site hydraulics, constituent characteristics and loads, and total
stormwater loads. For example, local soil characteristics can
influence the amount of runoff generated by a given storm,
the concentrations of sediment in runoff, and the settling rate
of the sediments within a BMP. Variations in BMP design
also can affect actual and modeled BMP effectiveness. For
example, BMP structures may have overflow or bypass struc-
tures that have a substantial effect on performance once the
BMP volume has been filled. These design features may affect
performance only during large storms or storms that occur



in rapid succession (Strecker others, 2001). Uncertainties in
effectiveness also arise because BMP monitoring is a complex
endeavor that requires a high degree of expertise. Although
BMP monitoring protocols have become more standardized,
many BMP studies still are conducted individually with differ-
ent protocols and data-reporting standards rather than as part
of a large consistent and coordinated monitoring effort (Jane
Clary, Civil Engineer, International BMP Database Project,
written commun., May 2011).

Uncertainties in results also are compounded by available
sample sizes. Driscoll and others (1979) recommend the col-
lection of 20 to 40 Event Mean Concentration (EMC) samples
to characterize runoff on the basis of the variability of com-
monly measured runoff constituents. Similarly, Burton and Pitt
(2002) indicate that, at a minimum, 25 to 50 EMC samples
may be needed. The California Department of Transportation
(2009) provides examples in their BMP monitoring handbook
indicating that 50 to 113 paired samples may be needed just
to detect differences in mean concentrations. In comparison,
Leisenring and others (2011) looked at TSS data for 10 types
of BMPs in a recent summary of solids-removal data in stud-
ies in the International BMP Database. Although TSS is one
of the most widely monitored constituents in BMP studies, the
average number of paired samples per category ranged from
6 to 16 with a median of about 12 per study. Schneider and
McCuen (2006) calculated that monitoring data from about
90 storms would be necessary to fully quantify the hydraulic
performance of a stormwater-detention cistern in Maryland
on the basis of local precipitation-event characteristics. In
comparison, Poresky and others (2011) looked at volume-
reduction data from the International BMP Database; they
found that the number of storm events ranged from 5 to 173
with a median of about 11 per study. As with other hydrologic
data, uncertainty in data related to BMP performance increases
when data from one site are extrapolated to estimate condi-
tions at a different site. The confidence intervals of correlation
coefficients are strongly influenced by sample size; the true
value may substantially depart from the estimated value when
sample sizes are smaller than 20 values (Fisher, 1924; Haan,
1977; Caruso and CIliff, 1997). In addition, small sample sizes
limit the ability to select and parameterize statistical distribu-
tions for modeling BMPs with data.

Despite decades of BMP-monitoring efforts, data are
limited for some BMP categories, and substantial uncertain-
ties in the volume-reduction and flow-extension performance
of many BMPs remain. In an analysis of flow data in the
International BMP Database, Poresky and others (2011) noted
that because many older studies were designed to monitor
reductions in concentration instead of volume, measurements
of volume were made only during the collection of flow-
weighted water samples. Thus, flow-duration and volume data
may include only the period used for water-quality sampling
rather than the complete duration of inflows and outflows.
They also noted that the inflow and outflow data from some
BMP studies could not be truly paired because these studies
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measured BMP inputs at only one of many inlets to the BMP
or at a reference site that was not associated with the moni-
tored BMP outlet. Poresky and others (2011) emphasize that
data are not available for many types of BMPs and that the
level of uncertainty of the available data is high.

Many studies have been done to measure and model
volume reduction, but accurate categorical determination is
hampered by the stochastic nature of antecedent conditions,
precipitation, and runoff (Goforth and Heany, 1983; Adams
and others, 1986; Driscoll and others, 1986; Schueler, 1987,
Driscoll, and others, 1989; Urbonas and Roesner, 1993;
Wanielista and Yousef, 1993; Young and others, 1996; Adams
and Papa, 2000; Huber and others, 2006; Poresky and others,
2011). For example, Emerson and Traver (2008) attributed
seasonal two-fold variations in infiltration rates during a
4-year period at BMPs in Maryland to changes in the viscosity
of ponded water with changes in temperature.

Although hydrograph extension is a BMP design
variable, it is not well defined or well characterized in the
literature describing BMP monitoring results. In theory, runoff
from a highway site or a BMP may continue to trickle forth for
an extended period of time. In practice, however, the duration
of runoff should be defined so that it is truncated at some
measurable and meaningful value. For example, minimum
precipitation-monitoring depths commonly are about
0.01 inches (in.) per hour, which would yield about 0.01 cubic
feet per second per acre (ft¥/s/acre) (Church and others, 2003).
This threshold, however, may not be measurable at small
sites. For example, Smith and Granato (2010) used a storm-
monitoring threshold of about 0.009 ft*/s to distinguish the
presence of flow because it was the minimum value that was
reliably discernible for a level sensor to detect the presence of
flow in 8-in. pipes draining 12,000 to 24,000 square feet (ft?)
of pavement (about 0.03 and 0.016 ft¥/s/acre, respectively).

The stochastic approach used in SELDM is warranted
because there are large uncertainties in available information,
and the level of effort required to develop detailed simulation
models may be beyond the scope of an initial planning-level
estimate. If, however, the initial analysis done with SELDM
indicates the potential need for mitigation, then detailed simu-
lation models such as those described by Huber and others
(2006) or detailed statistical models such as those described by
Adams and Papa (2000) may be used to develop the perfor-
mance statistics used by SELDM. Furthermore, if the initial
analysis without BMP treatment indicates the potential need
for mitigation, then SELDM can easily be used to develop the
BMP-performance statistics needed to reduce storm loads or
the frequencies of water-quality excursions in receiving waters
to an acceptable level. This analysis can be done by varying
BMP flow-reduction statistics to meet water-quality objec-
tives. Such an analysis may indicate that it is impossible to
meet water-quality objectives by using the treatment capabili-
ties of feasible BMP designs.
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Results of Analyses

SELDM uses the trapezoidal distribution to model runoff
volume-reduction ratios, hydrograph extension values, and
water-quality treatment ratios stochastically and models the
MIC used for the lower bound of effluent concentrations
deterministically (Granato, 2013). SELDM uses rank cor-
relation coefficients between inflow values and the runoff
volume-reduction ratios, hydrograph extension values, and
water-quality treatment ratios to model the structure of envi-
ronmental datasets. After data from many monitoring sites
were analyzed for these variables, it was determined that the
median of best-fit statistics would be the most robust approach
for selecting BMP-performance statistics. Analysis of MIC
values for 12 water-quality constituents that are commonly
measured in highway and urban-runoff studies provides
several options depending on whether a category of BMPs is
being modeled or if data from an individual monitoring site
are being modeled.

Runoff Volume Reduction

In this study, volume-reduction statistics were developed
for 7 BMP categories using data from 94 BMP monitoring
sites with 3 or more storm events (table 2). There was
insufficient paired inflow and outflow data for composite
BMPs, infiltration basins, and low impact development sites.
Net volume reductions for composite BMPs can be estimated

from reductions of the component BMPs. The lack of data
for infiltration basins and low impact development sites could
be interpreted as complete reductions, but many of these
designs have overflow or bypass structures and therefore will
produce some outflows (Northern Virginia Planning District
Commission, 1992, 1996; Young and others, 1996; Clar and
others, 2004a, b; National Cooperative Highway Research
Program, 2006; Denver Urban Drainage and Flood Control
District, 2008, 2010). Manufactured devices were not included
in the analysis; although they may lose water to leakage or
evapotranspiration, they are not commonly designed for
volume reduction and therefore the reductions observed for
some sites may be the result of sampling artifacts. Volume
reduction statistics for individual BMP monitoring sites are
available in the spreadsheet “SiteValues-VR xIsx” within the
compressed archive file “SiteValues.zip” in the digital media
accompanying this report.

The median volume-reduction statistics in table 2 indicate
that outflows range from about 6 percent of inflows (for
swales) to about 185 percent of inflows (for wetland channels).
With the exception of Bioretention, all the BMP categories
have some outflows that exceed inflows for some storms.
Among the other BMP categories, the percentage of storms
in which outflows exceed inflows ranges from 1 percent for
swales to 40 percent for retention ponds.

Examples of the cumulative distribution functions for
the trapezoidal distribution of volume-reduction ratios for
29 biofilter (grass swale) sites and 13 detention-basin sites are
shown with the cumulative distribution functions constructed

Table 2. Median of stormflow volume-reduction statistics for the trapezoidal distribution and Spearman’s rho correlation coefficient

statistics for best management practices (BMPs) by category.

[NR, number of sites with at least three storms used to calculate the median ratio statistics; LBMPV, lower bound of the most probable value; UBMPYV, upper
bound of the most probable value; Pct GT 1, the percentage of storms in which outflows exceed inflows and thus, ratio is greater than 1; NS, number of sites
with at least seven storms used to calculate the Spearman’s rho statistics; NA, not applicable; --, insufficient data. The volume-reduction statistics are for the
trapezoidal distribution of the ratio of outflow to inflow volume. The Spearman’s rho correlation coefficients are calculated using the ranks of the inflow vol-

umes and the associated ratios of outflow to inflow volumes]

Volume-reduction statistics

Spearman’s rho correlation coefficients

International BMP category

NR  Minimum LBMPV UBMPV Maximum PctGT1 NS Median Minimum Maximum

BR  Bioretention 8 0.0000  0.0185 0.1518  0.9467 0 8 0.61 -0.72 0.81
CO Composite - - - -- - - - - -- -
DB  Detention basin 13 0.1466  0.1466  0.6570  1.2315 5.9 8 0.07 -0.57 0.48
GS  Biofilter (swale) 29 0.0602  0.3059 0.4948 1.0845 1 17 0.29 -0.27 0.90
IB  Infiltration basin - - - - - - - - -- -
LD Low impact development  -- - - -- -- -- - - -- -
MD Manufactured device NA NA NA NA NA NA NA NA NA NA
MF  Media filter 4 0.1125 0.7424  0.7424  1.2623 12 3 -0.04 -0.15 0.57
RP  Retention pond 31 0.2080  0.6652 0.9026  1.8322 40 23 -0.06 -0.72 0.79
WB  Wetland basin 6 0.1355  0.9342 09342 1.2325 17 5 0.21 -0.20 0.61
WC Wetland channel 3 0.1160  0.5478  0.5478  1.8492 32 3 0.27 0.04 0.50




using the medians of the best fit statistics in figure 3. The
graph indicates the large range in performance of each type
of BMP among the different studies. In both cases, use of
the medians of each of the trapezoidal statistics among sites
shown in table 2 produces a seemingly reasonable CDF for
the category. Volume-reduction ratio statistics for the other
types of BMPs also show similar patterns with wide variations
in the CDFs within each category and representative CDFs
constructed from the median values. The CDF constructed
with the medians of statistics have outflows that exceed
inflows for about 1 percent of runoff events for the grassy
swale CDF and about 6 percent of runoff events for the
detention basin CDF (fig. 3).

In this study, rank correlation coefficients between vol-
ume-reduction ratios and inflow volumes were calculated for
use in the Monte Carlo analysis to help preserve the structure
of the input data (Granato, 2013). Rank correlation statistics
were developed for 7 BMP categories using data from 67 BMP
monitoring sites with 7 or more storm events (table 2). The
rank correlation coefficients (Spearman’s rho) were ambigu-
ous for six of the seven BMP categories with correlations
ranging from positive to negative values. The rank correla-
tion coefficients for the seventh category (wetland channels)
were consistently positive but rather weak (from 0.04 to 0.5).
The potential for wide variations in correlation coefficients
is expected for small sample sizes; it is highly likely that the
sample correlation coefficient may be substantially different
from the actual correlation coefficient for a given site (Haan,
1977; Caruso and Cliff, 1997). In theory, the ratio of outflow
to inflow volumes would be expected to increase with increas-
ing storm volumes because it is reasonable to assume that a
smaller fraction of the total inflow may be lost to infiltration
or evapotranspiration for large storms than for small storms.
Therefore, positive rank correlation coefficients would be
expected. However, if the number of storms is small and the
range of monitored storm volumes is not large in comparison
to the expected range of precipitation volumes, then the fact
that the inflow volume is in the denominator of the flow-
reduction ratio may explain the negative correlations between
inflow volumes and ratios. Alternatively because the maxi-
mum ratios are substantially greater than 1 and it is unlikely
that a large storm will result in a large surplus outflow volume,
the largest storms may not be associated with the largest ratios.
Given these factors, selecting a Spearman’s rho value that is
the average of the median and maximum values in table 2 for
use in SELDM may help generate realistic simulation results.

Hydrograph Extension

In this study, hydrograph-extension statistics were
developed for 5 BMP categories using data from 40 BMP
monitoring sites with 3 or more storm events (table 3). The
median values of the minimum, LBMPV, and UBMPV
of the trapezoidal distributions were equal to zero for all
5 BMP categories with sufficient data to do the analysis.
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Therefore, these distributions are the positive-skew triangular
distributions shown in figure 1B, which means that most of
the values generated will be substantially greater than zero.
As indicated in table 3, 44 to 97 percent of flow extensions
generated by using these trapezoidal-distribution statistics
will be greater than or equal to 1 hour. A decreasing number
of generated flow-extension values will be greater than 6,

12 and 24 hours. Only the media filter and retention pond
categories have flow extension in excess of 24 hours; only
the media filters exceed the 72 hour threshold. Hydrograph-
extension statistics for individual BMP monitoring sites are
available in the spreadsheet “SiteValues-HE.xIsx”” within the
compressed archive file “SiteValues.zip” in the digital media
accompanying this report.

The cumulative distribution functions of the fitted
hydrograph-extension results for individual BMP sites are
shown with the category median CDF for the biofilters (grass
swales) and detention basins (dry ponds) in figure 4. Although
the biofilter results seem plausible and the upper bound of
the detention basin seems correct, less variation in the hydro-
graph-extensions from an engineered basin would be expected.
However, the hydrograph extensions are the drain times from
the end of the inflow hydrograph rather than a full-basin or full
water-quality treatment-volume drain time and therefore, may
be shorter than the design-storm drainage duration.

Hydrograph-extension estimates made using data from
the International BMP Database may underrepresent actual
BMP performance because, as Poresky and others (2011)
noted, measurements of volume were made only during the
collection of flow-weighted water samples in many older stud-
ies. Thus, flow-duration data may include only the period used
for water-quality sampling rather than the complete duration
of inflow and outflow hydrographs. Although the values in
table 3 provide initial and conservative flow-extension statis-
tics that can be used for a preliminary runoff-quality analysis,
simple hydraulic analysis and use of professional judgment
for estimating flow extension ratios as described by Granato
(2013) to develop SELDM input may, currently (2013), be
more reliable than use of the duration data from the interna-
tional BMP database.

Queries of the design tables in the BMP database
indicate that design-flow durations for BMPs in the database
(table 4) may exceed many of the durations that would be
modeled using the statistics developed from the monitoring
data (table 3). The values in table 4 represent at-site estimates
of the brim-full and half-full drain times rather than the
trapezoidal performance statistics shown in table 3. About
52 percent of the 371 BMP sites in the database with design
information include values of variables that can be used to
estimate design drain-down times for that BMP (table 4).
Drawdown times for bioretention BMPs are estimated by
using the ponding depths and infiltration rates. Drawdown
times for biofilters (swales) and wetland channels are
estimated by using the length and longitudinal slope values
with the basin lagtime equation (Granato, 2012), which
provide a simple plug-flow estimate. These minimum
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Figure 3. Fitted cumulative trapezoidal-distribution functions of the flow-reduction statistics for A, 29 biofilter (grassy swale or strip)
monitoring sites and B, 13 detention-basin monitoring sites. The graphs also show cumulative distribution functions that are fitted to the
median of the flow-reduction statistics for each category.
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Table 3. Median of stormflow-extension statistics for the trapezoidal distribution and Spearman’s rho correlation coefficient statistics

for best management practices (BMPs) by category.

[NR, number of sites with at least three storms used to calculate the median ratio statistics; Min, minimum value; LBMPV, lower bound of the most prob-

able value; UBMPYV, upper bound of the most probable value; Max, maximum; h, hour(s); NS, number of sites with at least seven storms used to calculate the
Spearman’s rho statistics; Med, Median; NA, not applicable; --, insufficient data. The flow-extension statistics are for the trapezoidal distribution of the number
of hours that outflows exceed inflows. The Spearman’s rho correlation coefficients are calculated using the ranks of the inflow volumes and the associated flow-

extension values]

Stormflow-extension statistics,

Percentage of outflows Spearman’s rho correlation

International BMP category in hours greater than coefficients

NR Min LBMPV UBMPV Max 1h 6h 12h 24h NS Med Min Max
BR Bioretention - -- -- -- - -- -- - -- -- -- -- --
CO Composite -- -- - -- -- -- -- -- -- -- -- -- --
DB  Detention basin 12 18 89 44 11 0 7 042 -0.59 0.71
GS  Biofilter (swale) 11 0 0 0 3 44 0 0 0 11 0.04 -023 041
IB  Infiltration basin -- -- -- -- -- -- -- -- -- -- -- -- --
LD Low impact development  -- -- - - - -- -- - -- -- -- -- --
MD Manufactured device NA NA NA NA NA NA NA NA NA NA NA NA NA
MF  Media filter 4 0 77 97 85 71 47 0.41 -- --
RP  Retention pond 10 40 95 72 49 16 4 0.3 -0.17  0.59
WB  Wetland basin 3 8 76 6 0 0 0.15 -043 024
WC Wetland channel -- -- -- -- -- -- -- -- -- -- -- - -

estimates are comparable to minimum recommended contact
times documented by Young and others (1996). If the 6-minute
contact-time estimate from table 4 is substituted into the
minimum, LBMPV, and UBMPYV values of the swale statistics
in table 3, then about 46 percent of flow-extension values
will exceed 1 hour rather than the 44 percent in table 3. If
the 9-minute contact-time value recommended by Young and
others (1996) is used, then 49 percent of flow-extension values
will exceed 1 hour. Detention basins commonly are designed
to drain the water-quality volumes over 24 hours or more
(Northern Virginia Planning District Commission, 1992, 1996;
Young and others, 1996; Clar and others, 2004a, b; Denver
Urban Drainage and Flood Control District, 2008, 2010). If,
for example, the maximum brimful drain time from table 4
is substituted into the maximum value of the detention-basin
statistics for table 3, then about 97, 85, 71, and 46 percent
of flow-extension values will exceed 1, 6, 12, and 24 hours,
respectively. Although the statistics in table 4 are not best-
fit trapezoidal-distribution statistics, they may help inform
professional judgment for adjusting values modeled with the
statistics in table 3.

Increasingly, structural BMPs are designed to process
a water-quality volume for a relatively frequent design
storm and an excess urban runoff volume, which is used to
process larger, less frequent storms (American Society of
Civil Engineers and Water Environment Federation, 1992,
1998; Northern Virginia Planning District Commission, 1992,

1996; Clar and others, 2004a, b; Denver Urban Drainage and
Flood Control District, 2008, 2010; Wyoming Department of
Environmental Quality, 2013). In many areas of the country,
BMPs commonly are designed to process a water-quality
design volume within 12 to 48 hours. BMPs are sized and
outlet structures are designed to meet these criteria so as to
maximize the water-quality treatment without the need to
bypass flows in subsequent storms. BMPs commonly are
designed with one or more secondary drainage structures
to handle higher flows from larger storms. These structures
commonly are designed to accommodate high flow rates and
to draw down the excess urban runoff volume to the water-
quality control volume relatively rapidly. The water-quality
outflow structures are designed to have lower flow rates to
meet the extended holding times. Figure 5A is an example of a
stage-discharge hydrograph for a detention basin from FHWA
Hydraulic Engineering Circular 22 (Brown and others, 2009).
At low water depths, discharge from the pond is controlled
by the low-flow orifice design. As the water depth rises, the
larger riser-orifice design increases the rate of outflows. Once
the water depth reaches the emergency spillway, the spillway
further increases the rate of outflows. The volume in the basin
exhibits an exponential decay once inflows cease and the pond
stage and associated outflow discharges decrease (fig. SB).
Although the example in figure 5 is for a detention pond,
many types of structural BMPs may have a combination of
hydraulic outflow mechanisms. For example, flow controls
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Table 4. Summary of water-quality volume drawdown times from design tables in the January 2012 version of the International BMP

Database (www.bmpdatabase.org).

[The number of sites is the number in the design information table for each best management practice (BMP); No., is the number of sites with the specified

emptying time; ND, not documented]

Brim-full emptying time,

Half-full emptying time,

International BMP category Nu:;:)eesr of in hours in hours
No. Minimum  Median Maximum No. Minimum  Median Maximum
BR Bioretention' 31 6 5 6.4 6.6 ND ND ND ND
CO Composite 25 ND ND ND ND ND ND ND ND
DB  Detention basin 29 19 0 24 75 11 0 6.4 30
GS Biofilter (swale)? 79 77 0.1 0.6 1.83 ND ND ND ND
IB  Infiltration basin 1 ND ND ND ND ND ND ND ND
LD Low impact development 2 ND ND ND ND ND ND ND ND
MD Manufactured device 82 23 0 0 6 15 0 0 4.2
MF  Media filter 26 16 0 56 72 ND ND ND ND
RP  Retention pond 55 19 0 40 768 16 34.5 624
WB  Wetland basin 25 8 0 7 600 8 0 3.5 360
WC Wetland channel® 16 9 0.05 0.46 2.6 ND ND ND ND

The emptying time is estimated by dividing the average ponding depth above bioretention media surface by the design infiltration rate.

>The emptying time is estimated by using the basin lagtime equation (Granato, 2012) from length and longitudinal slope values with the assumption that the

basin development factor is three, because the swale is an engineered channel and the recession ratio is equal to 1.

through a swale with rip-rap check dams may be constrained
by the roughness of the channel, weir discharge over the
check dam, then Darcian flow through the rip-rap (Haan

and others 1994, Flanagan and Nearing, 1995). Similarly,
swales, bioretention BMPs, infiltration basins, low impact
development designs, and media filters may be designed with
an underdrain that produces head-dependent Darcian flow,
which discharges to a sewer system or surface water body
(Northern Virginia Planning District Commission, 1996;
Young and others, 1996; Denver Urban Drainage and Flood
Control District, 2010). BMP designs commonly have bypass
or overflow structures to handle high flows. If the hydraulic
controls are not obstructed, the combination of flow rates from
the different controls provides a deterministic relation between
the BMP stage at the end of the inflow hydrograph and the
remaining duration of outflows (for example, fig. 5B). Outlet
designs can be complex, but practitioners have designed
spreadsheets to facilitate many of the calculations (for
example, Denver Urban Drainage and Flood Control District,
2012; Guo and MacKenzie, 2013).

Although the designs are deterministic, the performance
of the BMPs is stochastic because the volume produced by
each storm and the time between storms (and therefore the
residual volume from the previous storm) result in a random
pattern of drain-down times. To calculate hydrograph-
extension statistics SELDM modelers can:

* run the model to produce a stochastic series of inflow
volumes and runoff durations;

* use local BMP design standards to define stage storage
outflow relations for a BMP;

* apply the stage storage outflow relations for prospec-
tive BMPs to the series of SELDM runoff volumes;

+ calculate the resulting hydrograph extension times;

+ fit the population of hydrograph extension times to
the trapezoidal distribution by using the spreadsheets
provided with this report; and

* calculate the rank correlation coefficient between the
runoff volumes and the flow extension durations.

Rank correlation coefficients between hydrograph-
extension durations and inflow volumes were calculated for
use in the Monte Carlo analysis to help preserve the structure
of the input data (table 3). The rank correlation coefficients
were ambiguous, with correlations ranging from positive to
negative values for five of the six BMP categories that had
data for more than one site. As with the volume-reduction
statistics, small sample sizes are expected to produce wide
variation in correlation coefficients (Haan, 1977; Caruso and
Cliff, 1997). In theory, hydrograph extension times would be
expected to increase with increasing storm volumes because
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larger storms would tend to fill the water-quality and excess
runoff volumes in the BMP. Therefore, one would expect
positive rank correlation coefficients. However, as indicated
by the diagrams in figure 5, initial drawdowns are rapid. The
total drawdown time may depend on antecedent conditions;
for example, the duration and intensity of storms may affect
hydrograph extension beyond the duration of inflows. Given
these factors, selecting a Spearman’s rho value that is the
average of the median and maximum values in table 3 for use
in SELDM may help generate realistic simulation results.

Water-Quality Treatment

In this study, water-quality treatment statistics were
developed for 13 commonly measured runoff-quality
constituents by using data from more than 165 monitoring
sites (representing 10 BMP categories) with paired inflow and
outflow concentrations from 7 or more storm events (table 5).
The constituents included turbidity, sediment, and solids;
nutrients; total metals; organic carbon, and fecal coliforms.
Constituents were selected on the basis of available data,
potential transferability, and the perceived quality of data
in the database. The median of best-fit concentration ratios
for all 10 BMP categories in table 5 range from 0 to values
greater than 1 for one or more runoff-quality constituents.
Because of the form of the equations for the cumulative
distribution function of the trapezoidal distribution (Kacker
and Lawrence, 2007), the maximum value has the largest
influence on the proportion of ratios that are greater than 1.

As the maximum value increases from 1 to 2, the percentage
of generated values that are greater than one increases from
zero to about 40 percent. As the maximum value increases
from 2 to 4, the percentage of generated values that are greater
than one increases from about 40 to 60 percent. Water-quality
treatment statistics for individual BMP monitoring sites are
available in the spreadsheet “SiteValues-WQT.xlsx” within the
compressed archive file “SiteValues.zip” in the digital media
accompanying this report.

Performance statistics for suspended-sediment concentra-
tions (SSC) were estimated from total suspended solids (TSS)
data in the international database because many studies have
shown that TSS is an unreliable measure of sediment if sand-
size particles are present (Granato, 2013) and there are very
few SSC samples in the International BMP Database. The rela-
tion between TSS and SSC developed by Granato and Cazenas
(2009) was used to estimate inflow concentrations. TSS con-
centrations were used as estimates for concentrations of SSC
in BMP outflows on the assumption that most BMPs could
remove the coarse sediment fractions that cannot be effec-
tively measured by using TSS measurement methods. Several
studies have shown that SSC and TSS values tend to converge
as the percentage of large diameter particles decreases (Gray
and others, 2000; Guo, 2006).

The cumulative distribution functions of the fitted sus-
pended-sediment concentration-reduction results for individual
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BMP sites are shown with the category median CDF for the
biofilters (grass swales, fig. 6A) and detention basins (dry
ponds, fig. 6B). As with the other treatment statistics, there are
wide variations among the CDFs for each type of BMP. The
CDFs constructed with the median of best-fit statistics (shown
in table 5) provide reasonable models for the BMPs in each
category. The graph indicates that about 13 percent of biofilter
effluent concentrations and about 1 percent of detention basin
effluent concentrations will exceed the inflow concentrations if
these CDF values are used.

In this study, rank correlation coefficients between
concentration-reduction ratios and inflow concentration were
calculated for use in the Monte Carlo analysis to help preserve
the structure of the input data (Granato, 2013). With only a
few exceptions, the rank correlation coefficients in table 5
are negative, indicating that the larger ratios are associated
with the smaller concentrations. The fact that BMPs are not
good at reducing concentrations when input concentrations
are low is one of the primary criticisms made against the use
of ratios (Strecker and others, 2001; Leisenring and oth-
ers, 2010, 2011). Use of rank correlation for generating data
helps to represent such low-concentration effects. The rank
correlations generally are moderate (most are between -0.3
and -0.7), so there may be some higher inflow concentrations
that are greater than effluent concentrations. This situa-
tion is not uncommon for many BMPs in the International
BMP database.

Minimum Irreducible Concentrations

In this report, it is assumed that the MIC is a property
of the type of BMP, the design and implementation of each
type for the local hydrologic conditions, and, potentially, the
quality of water entering the BMP. In this study, MIC statistics
were developed for 12 runoff-quality constituents commonly
measured in highway and urban runoff studies by using data
from 11 BMP categories and more than 167 monitoring
sites. Table 6 shows the category-level MICO, MIC1, MIC2,
and MIC3 estimates for TSS and the 11 other water-quality
constituents that are commonly measured in highway- and
urban-runoff studies. For TSS, the MICO estimates range from
0.002 to 0.7 mg/L, the MIC1 estimates range from 0.06 to
1.9 mg/L, the MIC2 estimates range from 0.17 to 3.7 mg/L,
and the MIC3 estimates range from 0.62 to 5.3 mg/L. In
comparison, the MIC estimates for TSS from the literature
(please see the spreadsheet LiteratureMIC.xls on the digital
media accompanying this report) range from 1 to 40 mg/L
(fig. 7). Most of the MIC estimates in table 6 are within
or below the lowest quartile of values from the literature
(fig. 7). This is to be expected because many of the values
in figure 7 were based on values at or above the measured
minimums from studies with relatively small sample sizes,
whereas the values in table 6 are statistical estimates that are
meant to represent expected minimums over hundreds or
thousands of storms. Furthermore, values in figure 7 (and in
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A. Biofilter (grassy swale or strip)

Ratio of concentration out to concentration in, unitless

Ratio of concentration out to concentration in, unitless

N

N

- EXPLANATION
——— Fitted cumulative distribution function for an individual site

Cumulative distribution function fitted to the median statistics for all sites in a category

=== Concentration out = concentration in

0.1 05 1 2 5 10 20 30
B. Detention basin (dry pond)
[T 1 I I I

=== Concentration out = concentration in

0
0.1 05 1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 995 99.9
Percentage of storm events with ratios that are less than or equal to a given value
Figure 6. Fitted cumulative trapezoidal-distribution functions of the suspended sediment water-quality treatment statistics for A, 17

biofilter (swale) monitoring sites and B, 16 detention-basin monitoring sites. The graphs also show cumulative distribution functions that
are fitted to the median of the flow-reduction statistics for each category.



the spreadsheet LiteratureMIC.xIs) may represent analytical
detection limits, one-half of the analytical detection limits,

or some other substitute value, whereas the MIC estimates in
this report are designed to estimate actual minimum values,
which may fall below current and historic detection limits.
MIC statistics for individual BMP monitoring sites are
available in the spreadsheet “SiteValues-MIC.xIsx” within the
compressed archive file “SiteValues.zip” in the digital media
accompanying this report.

There were variations in which of the four lower-bound
estimators (minimum, log-triangular, Stedinger, or MQLBE)
were used for the MIC estimates shown in table 6 because
the relative values of the estimators changed from dataset to
dataset. The MICO, MIC1 and MIC2 estimates are based on
the minimum of the positive MIC estimates. The value of
Stedinger’s quantile lower-bound estimator for TSS was less
than or equal to zero for 41 percent of the 202 BMP monitor-
ing sites with TSS data; these values were therefore disquali-
fied from further consideration. The value of the log-triangular
lower-bound estimate, which is by definition greater than zero,
was most commonly the minimum value among the positive-
value estimators. The percentages of values that were the
minimum positive value among the estimates were: 3 percent
for the minimum measured value, 48 percent for the log-
triangular lower bound estimate, 31 percent for the modified
quantile lower-bound estimate, and, 18 percent for Stedinger’s
quantile lower-bound estimator. The MIC3 estimates are
based on the median of positive MIC estimates; 50 percent
of MIC3 estimates were the average of two different estima-
tors and 9 percent were tied values. When cases of tied values
are ignored, the percentages for each type of estimator were
12.6 percent for the minimum measured value, 21 percent for
the log-triangular lower-bound estimate, 9.7 percent for the
modified quantile lower-bound estimate, and, 6.7 percent for
Stedinger’s quantile lower-bound estimator.

Because the MIC commonly is thought to represent a
local background concentration rather than an absolute limit
for a BMP design, it may be desirable to adjust the expected
MIC to reflect the conditions at a site by using expected inflow
concentrations. The effect of the contributing area is described
by Leisenring and others (2010, 2011) as the “clean water in
= clean water out” phenomenon. The MIC estimates shown in
table 6 for a given BMP category do not account for the effect
of the surrounding area, which may not be known. In theory,
comparison of the geometric mean inflow concentrations from
site to site should represent variations in inflow concentrations
that may be used to adjust MIC estimates on the basis of
the background conditions at a given site. If correlations
between the MIC estimators and the geometric mean inflow
concentrations are robust, regression equations may be used
to refine category estimates based on influent water quality.
Pearson’s r for the concentrations and common logarithms of
concentrations (denoted as r(log)) and Spearman’s rho on the
ranks of the concentrations for the MIC3 estimators of TSS
and 11 other constituents are shown in table 6. In this analysis,
each site that has a geometric-mean inflow concentration and
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a MIC value is used as a single data point. This table includes
11 types of BMPs and 12 different water-quality constituents;
45 percent of these combinations do not have the proper data
at enough sites to calculate a correlation coefficient. Among
the absolute values of the calculated Pearson’s r, 36 percent
are less than 0.5 (defined herein as weak correlations),

29 percent are greater than or equal to 0.5 and less than

0.75 (defined herein as moderate correlations), 16 percent are
greater than or equal to 0.75 and less than 0.85 (defined herein
as semistrong correlations), and 19 percent are greater than or
equal to 0.85 (defined herein as strong correlations). Among
the absolute values of the Pearson’s r for the logarithms of
data r(log), 29 percent are weak correlations, 42 percent are
moderate correlations, 18 percent are semistrong correlations,
and 11 percent are strong correlations. Among the absolute
values of Spearman’s rho, 44 percent are weak correlations,
39 percent are moderate correlations, 12 percent are
semistrong correlations, and 5 percent are strong correlations.

Spearman’s rho is a robust estimator of a monotonic
relation between two variables that is resistant to outliers
(Helsel and Hirsch, 2002). If a rho value is equivalent to one
or more of the associated r values, then it may be assumed
that the representative linear relation also is robust. If the rho
value is greater than one or more of the associated r values, it
may be assumed that a different transformation of either the
geometric mean or MIC estimates (or both) may produce a
linear relation that corresponds to the rho estimate. However,
if one or more r value is substantially greater than the associ-
ated rho value, it may be assumed that one or more far outliers
are responsible for artificially inflating the r values. Taking
the logarithms of the values tends to decrease the leverage of
high outliers, but this increases the leverage of small outli-
ers. Among the 80 entries in table 6 that have correlation
coefficients, only 2 entries have the r, r(log), and rho values
that are the strong correlations, which would provide highly
quantitative estimates of MIC values from the geometric mean
of inflow values. Only 9 entries have semistrong r and rho
values, 10 entries have semistrong r(log) and rho values and
8 have semistrong r, r(log), and rho values that would provide
semiquantitative estimates of MIC values from the geometric
mean of inflow values. Twenty-seven entries have moderate r
and rho values, 40 entries have moderate r(log) and rho values,
and 19 have moderate r, r(log), and rho values that would pro-
vide qualitative estimates of MIC values from the geometric
mean of inflow values. These values indicate that regression
relations developed by using the logarithms of the MIC esti-
mates and the geometric mean of inflows may provide better
predictive power than the untransformed alternative. However,
development of regression equations may be limited by the
number of data points or the range of available geometric
mean influent concentrations.

Figure 8 shows the different MIC estimates for TSS from
biofilters (grass strips or swales) from 22 sites with geometric
mean influent concentrations that range from 9.9 to 165 mg/L.
Although there is some trend and the slope of the regression
line for estimating the median and minimum of MIC values
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at each site is positive, these relations are very weak with

R? values of 0.19 and 0.11, respectively. The correlation
coefficients for this group of sites are less than or equal to
0.5, so the regression lines shown on the graph are qualitative
at best. These equations, which were developed by using

the Kendall-Theil Robust line, seem to produce estimates
that are much too low for sites with geometric-mean influent
concentrations less than 20 mg/L. These equations, however,
do seem to produce reasonable estimates for sites with higher
influent concentrations. Ignoring geometric mean influent
concentrations below 30 mg/L increases the R? values to
about 0.4, which is still qualitative at best. Although the lines
are nonquantitative, the positive slopes would indicate that it
would be prudent to select higher MIC values for modeling
sites with higher inflow concentrations.

All the original MIC estimates used to calculate the sta-
tistics in table 6 are included in the spreadsheet “SiteValues-
MIC .xlsx” on the digital media accompanying this report. A
value 0f -9999 for the influent geometric mean indicates that
there were no influent data available. A value of -8888 for the
influent geometric mean indicates that fewer than five values
measured above one or more detection limits were available.
The values in the spreadsheet include the four MIC estimators
(minimum, log-triangular, Stedinger, and MQLBE) described
in this report and the 10th percentile of measured values for
each BMP monitoring site. The spreadsheet also contains
information about the dataset, the site, and the number of
available concentrations above and below detection limits.

Summary

The U.S. Geological Survey (USGS) developed the
Stochastic Empirical Loading and Dilution Model (SELDM)
in cooperation with the Federal Highway Administration
(FHWA) to indicate the risk for stormwater concentrations,
flows, and loads to be above user-selected water-quality
goals and the potential effectiveness of mitigation measures
to reduce such risks (Granato, 2013). SELDM models the
potential effect of mitigation measures by using Monte
Carlo methods with statistics approximating the net effects
of structural best management practices (BMPs). In this
report, structural BMPs are defined as the components of
the drainage pathway between the source of runoff and
a stormwater discharge location that affect the volume,
timing, or quality of runoff. SELDM uses a simple stochastic
statistical model of BMP performance to develop planning-
level estimates of runoff-event characteristics rather than
a complex theoretical or physical model. This statistical
approach can be used to represent a single BMP or an
assemblage of BMPs. The SELDM BMP-treatment module
has provisions for stochastic modeling of three stormwater
treatments: volume reduction, hydrograph extension, and
water-quality treatment. The BMP runoff-control options alter
the highway, upstream, and downstream outputs from the

model. If BMP volume-reduction statistics are specified, the
highway-runoff flows and loads will be affected accordingly.
If BMP volume reductions are specified but concentration
changes are not, then the highway-runoff and BMP discharge
concentrations will be the same, but the BMP discharge loads
and the concurrent downstream loads and concentrations will
all be different. If BMP hydrograph extension is specified,
the concurrent upstream and downstream flows and loads
will be different than those for the untreated runoff because
the discharge period will be extended to include more of the
upstream flow and loads. If BMP water-quality treatment
statistics are specified, BMP discharge concentrations and
loads will be affected as well as downstream concentrations
and loads.

This report describes methods for calculating the trape-
zoidal-distribution statistics and rank correlation coefficients
for stochastic modeling of volume reduction, hydrograph
extension, and water-quality treatment by structural stormwa-
ter BMPs and provides BMP performance statistics for these
variables. The trapezoidal-distribution statistics and rank cor-
relation coefficients are different from the statistics commonly
used to characterize or compare BMPs. They are designed to
provide a stochastic transfer function to approximate the quan-
tity, quality, and duration of BMP effluents given a population
of inflow values. This report also provides robust methods
for estimating the minimum irreducible concentration (MIC),
which is the lowest expected effluent concentration from a
particular BMP site or a class of BMPs. This study was done
to inform professional judgments for stochastic modeling of
volume, timing, and quality of BMP effluent given a stochastic
population of inflows from a user-defined site of interest. The
data, information, and statistics developed in this analysis are
intended to facilitate stochastic planning-level analysis of the
potential effects of stormwater runoff on receiving waters at
unmonitored sites (or sites with limited monitoring data). The
methods and statistics described in this report were designed
for use with SELDM, but may be used with other methods
or models. The methods and statistics described in this report
are designed to help evaluate the risk for adverse effects of
runoff on receiving waters, the potential need for mitigation
measures, and the potential effectiveness of such manage-
ment measures for reducing these risks. A Microsoft Access®
database application and several Microsoft Excel® Spreadsheet
tools that were used to estimate these statistics are included in
the digital media accompanying this report for further docu-
mentation of methods and for future use.

In SELDM, volume-reduction, hydrograph-extension,
and water-quality treatment variables are modeled by using
the trapezoidal distribution and the rank correlation with the
associated highway-runoff variables. This family of distribu-
tions was selected for modeling BMP performance measures
because it can be parameterized by using expert judgment
or by fitting the distribution to data. The triangular distribu-
tion, which is a special case of the trapezoidal distribution,
commonly is suggested when uncertainties in input data that
may be used to define a parametric distribution are large. The



trapezoidal distribution is bounded by a selected minimum and
maximum value. The trapezoidal distribution is further defined
by the lower and upper most probable values. When data are
uncertain or are limited in scope, use of a bounded distribu-
tion reduces the chance that unrealistic output values will be
generated by extrapolating a distribution beyond the range of
available data.

Volume reduction by BMPs is the practice of retaining,
detaining, or routing runoff flows to increase the amount of
infiltration, evapotranspiration, or diversion between the pave-
ment and the outfall. Although the term “volume reduction”
is used to describe this process, outflows can exceed inflows,
and therefore volume-reduction ratios may be larger than one.
Outflows may exceed inflows if there is carryover in BMP
storage from one runoff event to the next or if there is ground-
water discharge into the BMP during some events. SELDM
models the potential effects of BMPs on the volume of runoff
by generating a stochastic population of the ratios of outflow
to inflow volumes and applying these ratios to the stochastic
population of inflow volumes from the site of interest. In this
study, volume-reduction statistics were developed for 7 BMP
categories using data from 94 BMP monitoring sites with 3 or
more storm events. The medians of the best-fit statistics for
each category were selected to construct generalized cumula-
tive distribution functions for volume reductions. Rank cor-
relation statistics were developed for 7 BMP categories using
data from 67 BMP monitoring sites with 7 or more storm
events. Interpretation of the correlation coefficients indicates
that selection of a Spearman’s rho value that is the average of
the median and maximum values for the BMP category may
help generate realistic simulation results in SELDM.

Hydrograph extension by BMPs is the practice of slowing
the discharge of runoff flows and releasing these flows to the
stream over an extended period of time. Hydrograph extension
is defined as the duration in hours of discharge from the BMP
that occurs after runoff from the highway site has ceased.
SELDM calculates hydrograph-extension times (in hours)
from a BMP or series of BMPs (Granato, 2013). Hydrograph
extension is modeled to represent how BMPs can increase
dilution in receiving waters by extending the duration of run-
off from the highway site. In this study, hydrograph-extension
statistics were developed for 5 BMP categories using data
from 40 BMP monitoring sites with 3 or more storm events.
The medians of the best-fit statistics for each category were
selected to construct generalized cumulative distribution
functions for hydrograph extensions, but professional judg-
ment for estimating flow extension ratios may be warranted
because measurements of flow volume were made only during
the collection of flow-weighted water samples in many older
studies. Rank correlation statistics were developed for 5 BMP
categories using data from 26 BMP monitoring sites with 7 or
more storm events. As with volume reduction, interpretation
of available data indicates that selection of a Spearman’s rho
value that is the average of the median and maximum values
for the BMP category may help generate realistic simulation
results in SELDM.

Summary 33

Water-quality treatment is the practice of using physical
and chemical processes in an attempt to reduce the concentra-
tion of runoff constituents in stormflow. Although the term
“concentration reduction” commonly is used to describe this
process, concentrations in outflows can exceed inflows, and
therefore water-quality treatment ratios may be larger than
one. Outflow concentrations may exceed inflow concentrations
if there is carryover in BMP storage from one runoff event to
the next; if physical, chemical, or biological processes mobi-
lize constituents between storms; or if flow through the BMP
mobilizes previously retained constituents during some events.
Outflow concentrations also may exceed inflow concentrations
if the concentrations in runoff entering the BMP are less than
minimum background concentrations produced by the BMP.
These low background concentrations are known as minimum
irreducible concentrations (MIC). In this study, water-quality
treatment statistics were developed for 13 commonly mea-
sured runoff-quality constituents by using data from more
than 165 monitoring sites (representing 10 BMP categories)
with paired inflow and outflow concentrations from 7 or more
storm events. The selected constituents included turbidity, sed-
iment, and solids; nutrients; total metals; organic carbon; and
fecal coliforms. The median of the best-fit statistics for each
category was selected to construct generalized cumulative
distribution functions for water-quality treatment ratios. With
only a few exceptions, the rank correlation coefficients calcu-
lated for water-quality treatment ratios are negative, indicating
that the larger ratios are associated with the smaller concentra-
tions. The rank correlations generally are moderate (most are
between -0.3 and -0.7), so there may be some higher inflow
concentrations that are greater than effluent concentrations.

In this study, MIC statistics were developed for 12
runoff-quality constituents commonly measured in highway
and urban runoff studies by using data from 11 BMP
categories and more than 167 monitoring sites. The primary
MIC variable selected for each category is the MIC1 estimate,
which is the 25th percentile of the minimum of MIC estimates
from available sites. Alternatives are the MICO estimate,
which is the category minimum of minimum MIC estimates;
the MIC2 estimate, which is the category median of the
minimum of MIC estimates; and the MIC3 estimate, which
is the category median of the median of MIC estimates from
available sites. For an individual site the MIC4 estimate,
which is based on the median of MIC estimates at that site,
may be most representative. The MIC estimates developed in
this study are generally less than or equal to values compiled
from the literature because the MIC values in this study are
estimates of the population minimums rather than sample
minimums. Correlation analysis indicates that the MIC
estimates were weakly correlated with the geometric mean of
inflow values, which indicates that there may be a qualitative
or semiquantitative link between the inflow quality and the
MIC. Correlations are weak because the MIC is influenced
by the inflow water quality and the capability of each BMP to
reduce inflow concentrations.
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