Scientific Investigations Report 2014–5101
AbstractThe lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage. Annual tail-water salinity loads ranged from 48.0 to 2,750 tons in the Smith Fork Creek region. The largest tail-water salinity load was in subbasin SF3, and the lowest salinity load from tail water was in subbasin R1. The remaining four agricultural subbasins—AL1, B1, CK1, and SF2—had tail-water loads of 285 t/yr, 180 t/yr, 333 t/yr, and 1,700 t/yr, respectively. The deep percolation component of the agricultural salinity load ranged from 3,300 t/yr in subbasin AL1 to 51,800 t/yr in subbasin SF2. Subbasins R1, B1, CK1, and SF3 had deep percolation salinity loads of 4,940 t/yr, 15,200 t/yr, 21,200 t/yr, and 23,600 t/yr, respectively. The canal seepage component of the agricultural salinity load ranged from 1,100 t/yr in subbasin AL1 to 15,300 t/yr in subbasin CK1. Subbasins B1, R1, SF2, and SF3 had canal seepage salinity loads of 6,610 t/yr, 3,890 t/yr, 9,430 t/yr, and 12,100 t/yr, respectively. Four natural subbasins—RCG1, RCG2, SF1, and BkKm—were used to calculate natural salinity yields for the remaining subbasins. The appropriate salinity yield was applied to the corresponding number of acres and resulted in a natural salinity load for each subbasin. The annual salinity yields for the Dakota Sandstone and Burro Canyon Formation, Mancos Shale, and crystalline geologies are 0.217 tons per acre (t/acre), 0.113 t/acre, and 0.151 t/acre, respectively. Three of the four natural subbasins had little to no selenium load based on the measured data and calculated selenium loads. Subbasins RCG1 and RCG2 had surface-water selenium loads of 0.106±0.024 pounds (lb) and 0.00 lb, respectively. Subbasin BkKm did not have an estimated surface-water selenium load because of the lack of any water-quality samples during the study period. The subbasin designated by site CK1 had the highest selenium load with 135±38.7 lb, and the next highest subbasins in decreasing order are B1, SF3, AL1, SF1, and R1 with selenium loads of 69.6±28.4 lb, 56.5±23.8 lb, 30.5±16.6 lb, 26.8±6.95 lb, and 15.6±27.7 lb, respectively. |
First posted July 24, 2014 For additional information contact: Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here. |
Richards, R.J., Linard, J.I., and Hobza, C.M., 2014, Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008–2009: U.S. Geological Survey Scientific Investigations Report 2014–5101, 34 p., http://dx.doi.org/10.3133/sir20145101.
ISSN 328-0328 (online)
Abstract
Introduction
Data Collection and Analysis
Characterization of Salinity Loads and Selenium Loads
Summary
Acknowledgments
References
Appendixes