Scientific Investigations Report 2014–5102
AbstractThe U.S. Geological Survey, in cooperation with the Municipio Autónomo de Ponce and the Puerto Rico Department of Natural and Environmental Resources, conducted a study of the hydrogeology and hydrology of the Punta Cabullones area in Ponce, southern Puerto Rico. (Punta Cabullones is also referred to as Punta Cabullón.) The Punta Cabullones area is about 9 square miles and is an ecological system made up of a wetland, tidal flats, saltflats, mangrove forests, and a small fringing reef located a short distance offshore. The swales or depressions between successive beach ridges became development avenues for saline to hypersaline wetlands. The Punta Cabullones area was designated by the U.S. Fish and Wildlife Service as a coastal barrier in the 1980s because of its capacity to act as a buffer zone to ameliorate the impacts of natural phenomenon such as storm surges. Since 2003, Punta Cabullones has been set aside for preservation as part of the mitigation effort mandated by Federal and State laws to compensate for the potential environmental effects that might be caused by the construction of the Las Américas Transshipment Port. Total rainfall measured during 2008 within the Punta Cabullones area was 36 inches, which is slightly greater than the long-term annual average of 32 inches for the coastal plain near Ponce. Two evapotranspiration estimates, 29 and 37 inches, were obtained for the subarea of the Punta Cabullones area that is underlain by fan-delta and alluvial deposits by using two variants of the Penman semi-empirical equation. The long-term water stage and chemical character of the wetland in Punta Cabullones are highly dependent on the seasonal and annual variations of both rainfall and sea-wave activity. Also, unseasonal short-term above-normal rainfall and sea-wave events resulting from passing storms may induce substantial changes in the water stage and the chemical character of the wetland. In general, tidal fluctuations exert a minor role in modifying the water quality and stage of the wetland in Punta Cabullones. The role of the tidal fluctuations becomes important during those times when the outlets/inlets to the sea are not blocked by a sand bar and is allowed to freely flow into the wetland interior. The salinity of the wetland varies from brackish to hypersaline. The hypersaline conditions, including the occurrence of saltflats, within the Punta Cabullones wetland area result from a high evapotranspiration rate. The hypersaline conditions are further enhanced by a sand bar that blocks the inlet/outlet of the wetland’s easternmost channel, particularly during the dry season. Groundwater in Punta Cabullones mostly is present within beds of silisiclastic sand and gravel. During the study period, the depth to groundwater did not exceed 4 feet below land surface. The movement and direction of the groundwater flow in Punta Cabullones are driven by density variations that in turn result from the wide range of salinities in the groundwater. The salinity of the groundwater decreases within the first 60 to 100 feet of depth and decreases outward from a mound of hypersaline groundwater centered on piezometer nest PN2. The main groundwater types within the Punta Cabullones area vary from calcium-bicarbonate type in the northernmost part of the study area to a predominantly sodium-potassium-chloride groundwater type southward. According to stable-isotope data, groundwater within the study area is both modern meteoric water and seawater highly affected by evaporation. The chemical and stable-isotopic character of local groundwater is highly influenced by evapotranspiration because of its shallow depth. Equivalent freshwater heads indicate groundwater moves away from a mound centered on piezometer nest PN2, in a pattern similar to the spatial distribution of groundwater salinity. Vertical groundwater flow occurs in Punta Cabullones due to local differences in density. In the wetland subarea of Punta Cabullones, groundwater and surface water are hydraulically coupled. Locally, surface-hypersaline water sinks into the aquifer, providing recharge and serving as a mechanism to redistribute salt throughout the study area. The evapotranspiration in the wetland subarea is estimated at about 11 million gallons per day (Mgal/d) that is equivalent to about 12,586 acre-feet per year. The balance of evapotranspiration, in excess of the about 0.5 Mgal/d of groundwater flow within the wetland, is supplied by saline to hypersaline surface water that may include seawater and meteoric water highly affected by evaporation with dissolved salts. In one of the extreme scenarios in which no groundwater is intercepted by pumpage at the Restaurada well field, the amount of saline to hypersaline water in the wetland consumed by evapotranspiration is about 10.5 Mgal/d. In the opposite extreme in which the entire regional groundwater flow is intercepted by pumpage in the Restaurada well field, the entire evapotranpiration requirement is met by saline to hypersaline water. Hydrologic, isotopic, and chemical data indicate that all of, or a large portion of, the historical groundwater flow to Punta Cabullones is being captured by the Puerto Rico Aqueducts and Sewer Authority pumpage at the Restaurada well field at a rate of about 2 Mgal/d. As a consequence, seawater intrusion into the aquifer at the Punta Cabullones area seems to be occurring, while the current pumpage at the Restaurada well field is sustained by storage depletion of the aquifer. |
First posted August 20, 2014 For additional information, contact: Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here. |
Rodríguez-Martínez, Jesús, and Soler-López, Luis, 2014, Hydrogeology and hydrology of the Punta Cabullones wetland area, Ponce, southern Puerto Rico, 2007–08: U.S. Geological Survey Scientific Investigations Report 2014–5102, 58 p., http://dx.doi.org/10.3133/sir20145102.
ISSN 2328–0328 (online)
Abstract
Introduction
Description of the Study Area
Methods of Study
Study Area Climate
Surface Water
Subsurface Geology
Hydrogeology
Groundwater/Surface-Water Relations
Origin of Salinity in Water
Evapotranspiration Estimates
Water Budget
Summary and Conclusions
References
Appendix 1
Appendix 2