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Conversion Factors and Datums

Inch/Pound to SI

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

acre 4,047 square meter (m2)
acre 0.004047 square kilometer (km2)
square mile (mi2) 2.590 square kilometer (km2) 
acre-foot (acre-ft) 1,233 cubic meter (m3)
Kilo acre-foot (KAF) 1,233,000 cubic meter (m3)

Flow rate

cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s)
inch per day (in/d) 25.4 millimeter per day (mm/d)

Energy

langley (Ly) 41,841 Joule/square meter (J/m2)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: 
					     °F=(1.8×°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows: 
					     °C=(°F-32)/1.8

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.

Water year is the 12-month period from October 1 through September 30 of the following 
calendar year. The water year is designated by the calendar year in which it ends. For example, 
water year 2007 is the period from October 1, 2006 through September 30, 2007.

Abbreviations
DEM 			   digital elevation model

HRU 			   hydrologic response unit

GIS 			   Geographic Information System

GSFLOW		 Coupled Ground-Water and Surface-Water Flow Model

LUCA 			  Let Us Calibrate

MODFLOW	 Modular Ground-Water Flow Model
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MOVE.1		  Maintenance of Variance Extension, Type 1 

NS			   Nash-Sutcliffe efficiency statistic

NCDC			  National Climate Data Center

NOAA			  National Oceanic and Atmospheric Administration

NRCS 			  Natural Resources Conservation Service

NRMSE		  normalized root mean square error

NWS 			   National Weather Service

PE 			   potential evapotranspiration

PRMS 		  Precipitation-Runoff Modeling System

Reclamation 	 Bureau of Reclamation

SNOTEL 		 snowpack telemetry

SR 			   solar radiation

USGS 			  U.S. Geological Survey

Definitions
annual mean			   arithmetic mean of all daily mean values for a single 		
					     specified year

daily mean			   mean value for a single specified day

mean annual			   arithmetic mean of all annual mean values for the period of 	
					     record or for a specific period of multiple years

mean daily			   arithmetic mean of all daily mean values for a specified day 	
					     for the period of record or for a specific period of multiple 	
					     years

mean monthly			   arithmetic mean of all monthly mean values for a specified 	
					     month for the period of record or for a specific period of 	
					     multiple years

monthly mean			   arithmetic mean of all daily mean values for a single 		
					     specified month in a single specified year

observed streamflow		  streamflow for current conditions, including the effects 	
					     of reservoir regulation, diversions, and other water-		
					     resources development throughout the watershed

reconstructed-natural streamflow	 streamflow for natural conditions, for which the 		
					     effects of reservoir regulation, diversions, and 		
					     other water-resources development have been 		
					     removed

simulated-natural streamflow	 streamflow simulated using the precipitation-runoff model; 	
					     effects of reservoir regulation and diversions, and other 	
					     water-resources development were not included in the 	
					     model
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Abstract 
This report documents the construction of a precipitation-

runoff model for simulating natural streamflow in the Smith 
River watershed, Montana. This Precipitation-Runoff Model-
ing System model, constructed in cooperation with the Mea-
gher County Conservation District, can be used to examine the 
general hydrologic framework of the Smith River watershed, 
including quantification of precipitation, evapotranspiration, 
and streamflow; partitioning of streamflow between surface 
runoff and subsurface flow; and quantifying contributions to 
streamflow from several parts of the watershed.

The model was constructed by using spatial datasets 
describing watershed topography, the streams, and the hydro-
logic characteristics of the basin soils and vegetation. Time-
series data (daily total precipitation, and daily minimum and 
maximum temperature) were input to the model to simulate 
daily streamflow. The model was calibrated for water years 
2002–2007 and evaluated for water years 1996–2001. Though 
water year 2008 was included in the study period to evalu-
ate water-budget components, calibration and evaluation data 
were unavailable for that year. During the calibration and eval-
uation periods, simulated-natural flow values were compared 
to reconstructed-natural streamflow data. These reconstructed-
natural streamflow data were calculated by adding Bureau of 
Reclamation’s depletions data to the observed streamflows. 
Reconstructed-natural streamflows represent estimates of 
streamflows for water years 1996–2007 assuming there was 
no agricultural water-resources development in the watershed. 
Additional calibration targets were basin mean monthly solar 
radiation and potential evapotranspiration.

The model estimated the hydrologic processes in the 
Smith River watershed during the calibration and evalu-
ation periods. Simulated-natural mean annual and mean 
monthly flows generally were the same or higher than the 
reconstructed-natural streamflow values during the calibration 
period, whereas they were lower during the evaluation period. 

The shape of the annual hydrographs for the simulated-natural 
daily streamflow values matched the shape of the hydrographs 
for the reconstructed-natural values for most of the calibration 
period, but daily streamflow values were underestimated dur-
ing the evaluation period for water years 1996–1998.

The model enabled a detailed evaluation of the compo-
nents of the water budget within the Smith River watershed 
during the water year 1996–2008 study period. During this 
study period, simulated mean annual precipitation across the 
Smith River watershed was 16 inches, out of which 14 inches 
evaporated or transpired and 2 inches left the basin as stream-
flow. Per the precipitation-runoff model simulations, during 
most of the year, surface runoff rarely (less than 2 percent of 
the time during water years 2002-2008) makes up more than 
10 percent of the total streamflow. Subsurface flow (the com-
bination of interflow and groundwater flow) makes up most of 
the total streamflow (99 or more percent of total streamflow 
for 71 percent of the time during water years 2002–2008).

Introduction
The Smith River watershed is a valuable agricultural and 

recreational area in Meagher and Cascade Counties in west-
central Montana (fig. 1). In 2005, the U.S. Geological Survey 
(USGS), in cooperation with the Meagher County Conser-
vation District, began a multiyear study of the Smith River 
watershed. This study was designed to expand the knowledge 
of the hydrologic system through a systematic program of data 
collection and compilation, research, and analysis. The study 
included collection of hydrologic data (Nilges and Caldwell, 
2012), groundwater and surface-water interaction analyses 
(Caldwell and Eddy-Miller, 2013), and precipitation-runoff 
modeling (this study).

Purpose and Scope

The purpose of this report is to document the construction 
and results of a precipitation-runoff model for the Smith River 
watershed in west-central Montana. The distributed-parameter, 
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physically-based Precipitation-Runoff Modeling System 
(PRMS; U.S. Geological Survey, 2012b; Leavesley and oth-
ers, 1983; Leavesley and others, 2006; Markstrom and others, 
2008) was used to simulate the precipitation-runoff processes 
of the Smith River watershed for the study period (water years 
1996–2008). Summary tables and graphs of parameter values, 
model results, and data sources are included in this report.

This report describes the calibration of the model by 
using data from water years 2002–2007 and the evaluation 
of the model by using data from water years 1996–2001. 
(Though water year 2008 was included in the study period 
to evaluate water-budget components, reconstructed-natural 
streamflow data were not available for water year 2008 for cal-
ibration or evaluation.) Simulated-natural and reconstructed-
natural annual mean, mean monthly, and daily mean stream-
flow at USGS streamflow-gaging station (station identification 
number 06077500) Smith River near Eden, Montana, (fig. 1), 
as well as basin mean monthly solar radiation (SR) and poten-
tial evapotranspiration data (PE), were compared during model 
calibration and evaluation.

Description of Study Area

The Smith River is a tributary to the Missouri River with 
a watershed encompassing about 2,000 square miles (mi2) in 
Meagher and Cascade counties of west-central Montana. The 
model domain includes the 1,594 mi2 drainage area above 
USGS streamflow-gaging station (station identification num-
ber 06077500) Smith River near Eden, Montana (fig. 1).

The Smith River watershed lies within the Northern 
Rocky Mountains Physiographic Division described by 
Fenneman and Johnson (1946) and is characterized by rugged 
mountains and flat and incised river valleys. Surrounding 
mountain ranges include the Castle Mountains to the east, 
the Little Belt Mountains to the north and east, the Big Belt 
Mountains to the west, and the Crazy Mountains to the south. 
Elevations in the watershed range from about 9,500 feet (ft) 
in the Big Belt Mountains to about 3,320 ft at the mouth of 
the Smith River near Ulm, Montana (fig. 1). The elevation of 
USGS streamflow-gaging station (station identification num-
ber 06077500) Smith River near Eden, Montana is 3,500 ft.

The watershed has a low-density rural population and 
most (about 48 percent) of the total area land cover in the 
watershed is grass rangeland (U.S. Geological Survey, 2000). 
Conifer forests at the higher elevations in the watershed 
account for 39 percent of the total area. The more arid, lower 
elevation parts of the watershed are dominated by grasslands 
and riparian vegetation near the streams. Cultivated farm lands 
are also present in the lower elevations, adjacent to the Smith 
River and its tributaries.

The climate in the Smith River watershed is generally 
semiarid with some semi-humid areas in the higher mountains. 
Summer temperatures are mild in the valleys with cooler 
temperatures in the higher mountains. Winters are cold with a 
thick snowpack that accumulates in the mountains. Monthly 

mean temperatures during the study period (water years 
1996–2008) near White Sulphur Springs (fig. 1) ranged from 
14.7 degrees Fahrenheit (ºF) [-9.6 degrees Celsius (ºC)] in Jan-
uary 1996 to 72.3º F (22.4 ºC) in July 2007 (National Climatic 
Data Center, 2011). Precipitation varies both spatially and 
temporally. Average annual precipitation (1971–2000) ranges 
from less than 12 inches (in) per year in the lower elevations 
of the watershed to the west and northwest of White Sulphur 
Springs to more than 40 in per year in the Castle, Little Belt, 
and Big Belt Mountains (fig. 1; Oregon State University 
PRISM Group, 2006; Phil Farnes, Snowcap Hydrology, writ-
ten commun., 2007).

The Smith River is the primary stream that drains the 
watershed. The Smith River originates about 3 miles (mi) 
southwest of White Sulphur Springs at the confluence of the 
North Fork and South Fork Smith Rivers (fig. 1). The North 
Fork Smith River begins in the Little Belt Mountains to the 
northeast of White Sulphur Springs and flows for nearly 
40 mi to the southwest as it gains tributary inflow from both 
the Little Belt and the Castle Mountains before joining the 
South Fork Smith River. The South Fork Smith River begins 
in the Castle Mountains, and flows to the west and northwest 
for about 38 mi. The South Fork Smith River gains tributary 
inflow from both the Castle and Big Belt Mountains, and 
from an unsealed artesian well before meeting the North Fork 
Smith River. Together, the North Fork and South Fork Smith 
Rivers form the Smith River, which flows roughly northwest 
for about 125 mi until it ultimately joins the Missouri River 
near Ulm, Montana. In addition to the North and South Forks 
of the Smith River, major tributaries within the model domain 
include Big Birch Creek, Camas Creek, and Rock Creek from 
the Big Belt Mountains, and Newlan Creek, Sheep Creek, 
Eagle Creek, and Tenderfoot Creek from the Little Belt 
Mountains. Two reservoirs with more than 500 acre-feet (acre-
ft) capacities are in the upper part of the Smith watershed 
(Caldwell and Eddy-Miller, 2013; Montana Natural Resources 
Information System, 2010); Lake Sutherlin on the North Fork 
Smith River (14,200 acre-ft capacity) and Newlan Creek Res-
ervoir on Newlan Creek (15,600 acre-ft capacity).

Construction of the Precipitation-
Runoff Model

The Precipitation-Runoff Modeling System (PRMS) was 
used to simulate the precipitation-runoff characteristics of the 
Smith River watershed for the study period (water years 1996–
2008). This model was constructed, calibrated, and evaluated 
to represent natural streamflow conditions in the Smith River 
watershed. These natural streamflow conditions are herein 
defined as the streamflow for which the effects of agricultural 
water-resources development, such as diversions and irriga-
tion, have been removed. However, streamflows were not 
modified to remove effects of deforestation or road and build-
ing construction in the watershed. The model was calibrated to 
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represent annual mean, mean annual, mean monthly, and daily 
mean natural streamflow reconstructed from data collected 
at the USGS streamflow-gaging station (station identification 
number 06077500) Smith River near Eden, Montana, and 
mean monthly solar radiation and potential evapotranspiration 
averaged across the Smith River watershed. Simulated and 
observed values of streamflow, solar radiation, and potential 
evapotranspiration were compared to calibrate the model 
and assess the ability of the model to accurately simulate the 
hydrologic response to precipitation events for the watershed.

Description of the Precipitation-Runoff 
Modeling System

The PRMS is a distributed-parameter, physically-based 
precipitation-runoff model (U.S. Geological Survey, 2012b; 
Leavesley and others, 1983; Leavesley and others, 1996; 
Markstrom and others, 2008; U.S. Geological Survey, 2012b) 
that uses different modules (subroutines) to simulate daily 
hydrologic and energy processes occurring in a watershed. The 
watershed surface was divided into hydrologic response units 
(HRUs). HRUs are smaller areas of the watershed assumed to 
have a uniform response to precipitation, evaporation, transpi-
ration, and snow processes. 

The PRMS is conceptualized as a series of theoreti-
cal reservoirs (impervious zone, soil zone, subsurface, and 
groundwater) that contribute to runoff (fig. 2). Streamflow is 
partitioned between surface runoff, interflow, and groundwa-
ter flow (fig. 2). Surface runoff and infiltration are simulated 
in the srunoff_smidx module within PRMS (table 1, fig. 2). 
Water that is simulated as infiltration is stored in pores within 
the soil matrix in the soil-zone reservoir (and removed by 
evaporation and transpiration) until soil moisture storage 
capacities are exceeded. Excess water is then divided between 
interflow and the groundwater reservoir (fig. 2). Interflow 
(through the unsaturated-saturated zones in the subsurface 
reservoir) and groundwater flow (through the saturated zone in 
the groundwater reservoir) are simulated within the soilzone 
and gwflow modules within PRMS (table 1).

Interflow represents water moving laterally to the stream 
through pores in the soil in the subsurface reservoir (inter-
granular spaces between grains of clay, silt, sand, and gravel), 
perched atop a less permeable soil horizon (Markstrom 
and others, 2008). Interflow also can include water mov-
ing through larger macropores in the soil (Selker and others, 
1999). Macropores can be caused by cracks from seasonal 
shrinking and swelling of the soil, by holes from decaying 
plant matter such as roots and leaf litter, by holes from animal 
activity such as worms and gophers, and by cracks from 
landscape altering events such as earthquakes. Interflow is 
simulated as moving relatively rapidly to a stream channel.

Infiltrated water in excess of soil moisture capacities that 
does not become interflow enters the theoretical groundwater 
reservoir (fig. 2). This water in the theoretical groundwater 
reservoir is available to flow laterally to the stream. This 

groundwater flow typically often is described as base flow, or 
that part of stream discharge that is not attributable to direct 
runoff from precipitation or melting snow (Jackson, 1997). 
Groundwater is simulated as moving relatively slowly to the 
stream channel.

Unlike groundwater-flow models such as the Modular 
Ground-Water Flow Model (MODFLOW; Harbaugh, 2005), 
or coupled groundwater and surface-water flow models such 
as the Coupled Ground-Water and Surface-Water Flow Model 
(GSFLOW; Markstrom and others, 2008), the PRMS model 
does not include partial differential equations that describe 
the movement of groundwater. Instead, the PRMS model 
represents groundwater flow by using empirical and simplified 
equations that do not consider the effect of local geology and 
surface-water interactions (Markstrom and others, 2008).

A water balance, or tally of volumes of water enter-
ing and leaving each HRU, is calculated each day. Rainfall 
and snowmelt add water to an HRU, and processes such as 
evaporation, transpiration, and sublimation remove water from 
an HRU. An energy balance, or tally of amounts of energy 
entering and leaving each HRU, is computed twice each day. 
Air temperature (air temperature herein is simply referred to as 
“temperature”) and solar radiation add energy to an HRU, and 
evaporation, snowmelt, and sublimation from the snowpack 
remove energy from an HRU (fig. 2). The sum of the water 
balances of all HRUs, weighted by unit area, equals the daily 
watershed hydrologic response (Hay and others, 2006). The 
physical processes represented by the Smith River watershed 
PRMS model are illustrated in figure 2, and the 15 modules 
included in the model are described in table 1.

The Smith River model simulates daily mean streamflow 
by using two types of input files. The parameter input file con-
tains values of parameters that describe the watershed topog-
raphy, the stream network, correction factors for the precipita-
tion and temperature data, and the hydrologic characteristics 
of soils and vegetation in the watershed. The time-series data 
input files contain daily precipitation data, and daily minimum 
and maximum temperature data for each HRU in the Smith 
River watershed, as well as streamflow data for streamflow-
gaging stations along the Smith River.

Delineation of the Watershed Boundary and 
Hydrologic Response Units

The model boundary (or domain) for the Smith River 
watershed was delineated by using the Geographic Informa-
tion System (GIS) Weasel (Viger and Leavesley, 2007), which 
is a tool that helps process, organize, and extract data from 
spatial datasets for models like the PRMS. The GIS Weasel 
used a digital elevation model (DEM), with a cell size of 
308 ft by 308 ft, from the USGS National Elevation Dataset 
(U.S. Geological Survey, 1999) to delineate the model bound-
ary and to divide the watershed upstream from the USGS 
streamflow-gaging station (station identification number 
06077500) Smith River near Eden, Montana into 88 HRUs 
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Figure 2. A watershed and its climate inputs (precipitation, air temperature, and solar radiation) simulated by the 
Precipitation-Runoff Modeling System. Figure modified from Leavesley and others (1983), and Markstrom and others 
(2008).

by using methods described on page 8 in Chase (2011). The 
HRUs within the model ranged in size from 1.9 to 62 mi2 
(fig. 3).

Initial Parameter Values

Initial parameter values were obtained by using the GIS
Weasel or from default PRMS values (table 2; USGS, 2012b;
Leavesley and others, 1983; Leavesley and others, 1996; 
Markstrom and others, 2008). Some of the initial parameter 
values, such as those describing topography and vegetation 

types for each HRU, were calculated from existing datasets 
and were not adjusted during the calibration process. Other 
parameter values, such as those describing water-holding 
capacity of soils in each HRU, were more difficult to estimate 
based on existing information and were adjusted during the 
calibration process.

Parameter values that describe slope, aspect, and eleva-
 tion for each HRU were extracted from the DEM by using the 
 GIS Weasel (table 2). The GIS Weasel also was used to calcu-

late initial parameter values from datasets for soils (Wolock, 
1997; U.S. Department of Agriculture, Natural Resources 
Conservation Service, 1994), land cover (Zhu, 1994), and 
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forest type and density (Powell and others, 1993; Zhu and 
Evans, 1994). The GIS Weasel parameterization process and 
datasets are described in detail by Viger and Leavesley (2007). 
Some initial parameter values, such as the Jensen-Haise (Jen-
sen and Haise, 1963) PE coefficients, and coefficients used to 
estimate groundwater routing and storage, were default values 
(USGS, 2012b; Leavesley and others, 1983; Leavesley and 
others, 1996; Markstrom and others, 2008).

Some parameter values derived from the GIS datasets 
were adjusted during calibration, whereas others were not 
(table 2). For example, soils information from Wolock (1997) 
was used to estimate initial values for the parameter that 
describes the maximum water depth for the soil recharge zone 
(soil_rechr_max, table 2). Initial values of this parameter were 
approximated as a function of the rooting depth of dominant 
vegetation in each HRU (Viger and Leavesley, 2007) and 
ranged from 1.224 to 2.639 in. These values were adjusted 
during calibration (to the final values shown in table 2) 
because of uncertainties in the rooting-depth estimates. Land-
cover data from Zhu (1994) were used to estimate the most 
hydrologically important cover type (cov_type, table 2) on 
each HRU. The cover types used for the Smith River water-
shed were grasses, shrubs, and trees (fig. 3, table 2; cov_
types=1, 2, and 3, respectively). Because the “tree” cover type 
is hydrologically important in the PRMS model calculations, 

if more than 20 percent of an HRU area was covered by 
trees, then the HRU cov_type was set to 3 (Viger and Leaves-
ley, 2007). Remaining HRUs with less than 20 percent tree 
cover were classified as “grass” or “shrub” based on the land 
cover data. These cover type values were not changed during 
calibration.

Parameters describing the interflow and groundwater-
flow processes (table 2) initially were estimated based on 
soils data or defaults from other PRMS studies (Markstrom 
and others, 2008) and then adjusted during model calibra-
tion. The parameters fastcoef_lin, fastcoef_sq, pref_flow_den, 
slowcoef_lin, slowcoef_sq, soil_moist_max, soil_rechr_max, 
ssr2gw_exp, and ssr2gw_rate are used within PRMS, in the 
soilzone module, to simulate interflow. These parameters 
initially were estimated as defaults, or from soil data from 
U.S. Department of Agriculture (2013a and 2013b), and then 
adjusted during model calibration. The parameter gwflow_
coef is used within PRMS, in the gwflow module, as a 
groundwater-flow routing coefficient to simulate groundwater 
flow. Typically gwflow_coef is estimated based on the slope 
of the receding limb of the annual hydrograph (Linsley and 
others, 1982). However, measured natural flow hydrographs 
were unavailable for this study, so gwflow_coef was estimated 
based on soils information (U.S. Department of Agriculture, 
2013a and 2013b) and adjusted during calibration.

Table 1.  Modules used in the Precipitation-Runoff Modeling System.

[U.S. Geological Survey (2012b), Markstrom and others (2008). HRU, hydrologic response unit]

Name of  
module used

Module function

basin Declares basin and HRU physical parameters.
basin_sum Sums values for daily, monthly, annual, and total streamflow for the basin.
climate_hru Reads precomputed values of temperature, precipitation, and potential evapotranspiration directly from a file.
ddsolrad Computes daily solar radiation from temperature/cloud-cover relation.
gwflow Sums inflow to groundwater and computes outflow to streamflow. 
hru_sum Sums values for daily, monthly, annual, and total streamflow for each HRU.
intcp Computes amount of intercepted rain and snow, evaporation from intercepted rain and snow, and net rain and snow that 

reaches the soil or snowpack.
potet_jh Determines whether transpiration is occurring and computes potential evapotransiration using the Jensen-Haise (1963) 

approach.
snowcomp Initiates development of a snowpack, and simulates snow accumulation and depletion processes using an energy-budget 

approach.
soilzone Computes inflows to and outflows from soil zone of each HRU. Includes inflows from infiltration, groundwater, and 

upslope HRUs, and outflows to gravity drainage, interflow, and surface runoff to down-slope HRUs.
soltab Computes potential solar radiation, and sunrise and sunset times for a horizontal surface and for any slope/aspect combi-

nation.
srunoff_smidx Computes surface runoff and infiltration for each HRU using a nonlinear variable-source-area method.
strmflow Computes daily streamflow as the sum of surface runoff, shallow-subsurface flow, detention reservoir flow, and groundwa-

ter flow.
subbasin Computes daily streamflow as the sum of surface, subsurface, and groundwater flow contributions at the basin outlet and 

at internal subbasins.
transp_tindex Determines whether the current time step is in a period of active transpiration by the temperature index method.
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Table 2.  Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the Smith River Basin, Montana.

[HRU, hydrologic response unit; in., inches; ft, feet; GIS, Geographic Information System]

Model parameter Description of parameter
Value or range of 

values (or cover type) 
used in model1

Source of parameter 
values

GIS  
derived2 Calibrated3

HRU (spatially distributed) parameters

cov_type Vegetation cover type [bare soil (0), grasses (1), shrubs (2), trees (3)] Grasses, shrubs, trees X
covden_sum Vegetation cover density (decimal percent) for summer 001–0.668 X
covden_win Vegetation cover density (decimal percent) for winter 0–0.618 X
fastcoef_lin Linear preferential-flow routing coefficient 0.006–0.144 X
fastcoef_sq Non-linear preferential-flow routing coefficientl 0.15 X
gwflow_coef Groundwater rounding coefficient to obtain the groundwater flow contribution to streamflow 0.004–0.096 X
gwstor_init Storage in each groundwater reservoir at the beginning of the simulation (in.) 0.205 X
hru_area HRU area (acres) 1,217–39,892 X
hru_aspect HRU aspect (degrees) 0–353 X
hru_elev Mean HRU elevation (ft) 1,299–2,142 X
hru_percent_impervious HRU impervious area as a percent of the total HRU area 0–3 X
hru_slope HRU slope in decimal percent (vertical ft/horizontal ft) 0.032–0.35 X
jh_coef_HRU Air temperature coefficient used in the Jensen-Haise (Jensen and Haise, 1963) potential  

evapotranspiration computations for each HRU
15.178–17.792 X

pref_flow_den Preferential-flow pore density 0.1
rad_trncf Transmission coefficient for short-wave radiation through the winter canopy (decimal percent) 0.164–0.991 X
slowcoef_lin Linear gravity-flow resrvoir routing coefficient 0.014–0.106 X
slowcoef_sq Non-linear gravity-flow resrvoir routing coefficient 0.008 X
smidx_coef Coefficient in the nonlinear surface-runoff contributing-area algorithm 0 X
smidx_exp Exponent in the nonlinear surface-runoff contributing-area algorithm 0.201 X
snarea_thresh Maximum snow-water equivalent below which the snow-covered area depletion curve is applied (in.) 0–13.8 X
snow_intcp Snow interception storage capacity for the major vegetation type on an HRU (in.) 0.018–0.095 X
soil2gw_max Maximum amount of soil water excess for an HRU that is routed directly to the associated  

groundwater reservoir each day (in.)
0.06 X

soil_moist_max Maximum available water-holding capacity of soil profile (in.) 5.887–7.466 X
soil_rechr_max Maximum value for available water in the soil recharge zone (in.) 0.345–1.649 X
soil_type HRU soil type (sand, loam, or clay) Loam X
ssr2gw_exp Coefficient to route water from subsurface to groundwater 1 X
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Table 2.  Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the Smith River Basin, Montana.—Continued

[HRU, hydrologic response unit; in., inches; ft, feet; GIS, Geographic Information System]

Source of parameter 
Value or range of values

Model parameter Description of parameter values (or cover type) 
GIS  used in model1 Calibrated3

derived2

HRU (spatially distributed) parameters—Continued

ssr2gw_rate Coefficient to route water from subsurface to groundwater 0.004–0.165 X
srain_intcp Summer interception storage capacity for the major vegetation type on an HRU (in.) 0.017–0.048 X
wrain_intcp Winter rain interception storage capacity for the major vegetation type on an HRU (in.) 0.017–0.048 X

Selected spatially non-distributed parameters

adjmix_rain Monthly factor to adjust rain proportion in a mixed rain/snow event (decimal percent) 0 X
cecn_coef Convection condensation energy coefficient 0.005 X
dday_intcp Monthly intercept in the temperature degree-day relation (dday4)  -39.1–9.95 X
emis_noppt Emissivity of air on days without precipitation (decimal fraction) 0.757 X
freeh2o_cap Free-water holding capacity of snowpack (expressed as decimal fraction of total snowpack water 0.199 X

equivalent)
jh_coef Monthly air temperature coefficient used in the Jensen-Haise (Jensen and Haise, 1963) potential 0.005–0.016 X

evapotranspiration computations
potet_sublim Proportion of potential evapotranspiration sublimated from snow surface (decimal fraction) 0.101 X
rain_sub_adj Monthly (January to December) rain adjustment factor to measured precipitation for each subbasin 0.505–0.998 X
snow_sub_adj Monthly (January to December) snow adjustment factor to measured precipitation for each subbasin 0.503–1.00 X
tmax_allrain Monthly maximum temperature (degrees Fahrenheit) above which all precipitation is simulated as 62.67–72.89 X

rain
tmax_allsnow Monthly maximum temperature (degrees Fahrenheit) below which all precipitation is simulated as 35 X

snow
tmax_index Monthly index temperature used to determine precipitation adjustments to solar radiation (degrees 54.05–86.39 X

Fahrenheit)
1Where units are not shown, parameters are dimensionless. 
2Computed using the GIS Weasel (Viger and Leavesley, 2007) Geographic Information System (GIS) from digital coverages, not changed during calibration.
3Parameters that (a) cannot be estimated from available data and are adjusted during calibration or (b) have initial estimates from measured or published data that were adjusted during calibration.
4degree-day (dday) is a PRMS modeling unit used in the equations to estimate solar radiation (Markstrom and others, 2008).
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Time-Series Data

Observed time-series data are used in the model for 
model input, calibration and evaluation. Daily precipitation 
and minimum and maximum air-temperature data are required 
input data for the model to simulate streamflow. In addition, 
observed streamflow, solar radiation, snow-water equivalence, 
and potential evapotranspiration data can be used for model 
calibration. The time-series data used in the model were 
obtained from the following sources: the USGS, the National 
Oceanic and Atmospheric Administration (NOAA), the 
National Climate Data Center (NCDC), and the U.S. Depart-
ment of Agriculture, Natural Resources Conservation Service 
(NRCS), National Water and Climate Center, Snow Survey, 
and Water Supply Forecasting Program.

Precipitation and Air Temperature
Precipitation and air-temperature data used in the model 

were obtained from Daymet (Thornton and others, 2012). 
Daymet uses meteorological data from NCDC climate stations 
and NRCS snowpack telemetry (SNOTEL) stations to gener-
ate daily gridded surfaces of air temperature and precipitation 
(as well as other meteorological variables) over the United 
States (Thornton and others, 1997). The data were down-
loaded for each HRU in the Smith River watershed by using 
the USGS GeoData Portal (Blodgett and others, 2011; Lauren 
Hay, U.S. Geological Survey, written commun., 2012). Three 
data files from Daymet were used as input to the precipitation-
runoff model: one containing daily total precipitation for each 
HRU, one containing maximum daily air temperature for each 
HRU, and one containing minimum daily air temperature for 
each HRU.

Streamflow
Four types of daily mean streamflow data are described 

in this report: measured, observed, reconstructed-natural, and 
simulated-natural. Measured streamflow data are obtained 
from USGS streamflow-gaging stations (table 3; U.S. Geo-
logical Survey, 2012a). Observed streamflow data include 
the measured streamflow data as well as synthesized stream-
flow data for periods when USGS streamflow-gaging station 
data are not available. Both measured and observed stream-
flow data reflect actual streamflow conditions; these data 
include effects of reservoir regulation, diversions, and other 

water-resources development throughout the Smith River 
watershed. Reconstructed-natural streamflow data reflect 
natural conditions for which the effects of water-resources 
development have been removed. These data were calcu-
lated by adding agricultural depletions data (discussed in the 
section “Calculation of the Reconstructed-Natural Stream-
flow Dataset”) to the observed streamflow data. Finally, 
simulated-natural streamflow data were simulated by using 
the model.

Data from streamflow-gaging station (station identifi-
cation number 06077500; table 3) Smith River near Eden, 
Montana were used for model calibration and evaluation. 
Data from other streamflow-gaging stations in the Smith 
River watershed (station identification numbers 6076690 
and 6076560; Nilges and Caldwell, 2012) were not used 
because of the level of effort, and the uncertainties involved, 
in synthesizing observed streamflow data for missing peri-
ods and estimating reconstructed-natural streamflow data 
(see sections “Calculation of the Reconstructed-Natural 
Streamflow Dataset” and “Potential Uses and Limitations of 
the Model”).

The precipitation-runoff model simulates natural stream-
flow conditions in the Smith River watershed. The effects of 
diversions, reservoir regulation, and other water-resources 
development were not simulated in the model. Spatial and 
temporal data for diversions, reservoir regulation, and other 
water-resources development were not compiled for this study. 
The simulated-natural data were compared to reconstructed-
natural data to calibrate and evaluate the model.

Calculation of the Observed Streamflow Dataset
A complete set of observed daily streamflows was neces-

sary to evaluate water-budget components for the study period 
(water years 1996–2008) and to calculate data for the model 
calibration (water years 2002-2007) and evaluation (water 
year 1996–2001) periods. These observed data include both 
measured streamflows from the USGS streamflow-gaging 
station (station identification number 06077500) Smith River 
near Eden, Montana (fig. 1, table 3), and synthesized flows. 
This was accomplished by a 3-step process: (1) obtaining mea-
sured daily mean streamflow data from the USGS streamflow-
gaging station, (2) synthesizing monthly mean streamflow 
data for periods when measured streamflow data were not 
available, and (3) by using synthesized monthly streamflows 
to synthesize daily mean streamflow data for periods when 
measured streamflow data were not available.

Table 3.  Information for selected streamflow gaging stations in and near the Smith River Basin, Montana (U.S. Geological Survey, 
2012a).

Station 
number

Station name
Drainage area  
(square miles)

Period of record (through 2012)

06077200 Smith River below Eagle Creek near Fort Logan, Montana 1,088 1996–2012
06077500 Smith River near Eden, Montana 1,594 1951–69, 2006–10 (seasonal records only) 2010–12
06120500 Musselshell River at Harlowton, Montana 1,125 1907–29, 1930–33, 1934–2012
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To calculate the observed-streamflow dataset (fig. 4), 
daily mean streamflow data at the USGS streamflow-gaging 
station (station identification number 06077500) Smith River 
near Eden, Montana, were obtained from the USGS National 
Water Information System (U.S. Geological Survey, 2012a) by 
using the Downsizer (Ward-Garrison and others, 2009). Dur-
ing the study period (water years 1996–2008) these daily data 
were available for March 1–September 30, 2006, March 1–
September 30, 2007, and March 1–September 30, 2008.

Then, monthly mean streamflows (referred to herein as 
monthly streamflows) for periods of missing records were 
synthesized by using the Maintenance of Variance Extension, 
Type 1 (MOVE.1) curve-fitting procedure described by Hirsch 
(1982) and Alley and Burns (1983) by using methods similar 
to those described in Chase (2013). Data from nearby USGS 
streamflow-gaging stations (station identification numbers 
06120500 and 06077200; table 3) Musselshell River at Har-
lowton, Montana, and Smith River below Eagle Creek near 
Fort Logan, Montana, respectively, were used in the MOVE.1 
analyses.

Finally, the synthesized monthly streamflows were used 
to synthesize daily mean streamflows by using methods simi-
lar to those described in Chase (2013). These synthesized daily 
mean streamflows and the measured daily mean streamflows 
herein are referred to as observed daily streamflows.

Calculation of the Reconstructed-Natural Streamflow 
Dataset

For the USGS streamflow-gaging station (station identi-
fication number 06077500) Smith River near Eden, Montana, 
reconstructed-natural streamflows (fig. 4) were calculated by 
adding agricultural depletions data from Reclamation (appen-
dix; Clayton Jordan, U.S. Department of the Interior Bureau 
of Reclamation, written commun., 2011; U.S. Department of 
the Interior Bureau of Reclamation, 2012; U.S. Department 
of the Interior Bureau of Reclamation, 2005) to the observed 
streamflows. Reconstructed-natural streamflows represent esti-
mates of streamflows during water years 1996–2007 assuming 
no agricultural water-resources development in the watershed. 
The reconstructed-natural daily streamflows were only calcu-
lated through 2007 because the Bureau of Reclamation data 
used in the calculations were only available through 2007. 
Agricultural water-resources development includes diversions, 
on-farm and conveyance losses, and crop irrigation require-
ments. The agricultural depletions data also include effects of 
irrigation return flows. Effects of reservoir regulation were not 
included in the agricultural depletions data.

The Bureau of Reclamation developed monthly estimates 
of agricultural depletions (in Kilo acre-feet) for the Mis-
souri River basin, including the Smith River watershed, for 
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Figure 4. Reconstructed-natural and observed daily mean streamflow for U.S. Geological Survey streamflow-gaging station 
(station identification number 06077500) Smith River near Eden, Montana.
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water years 1929–2007, and supplied the USGS Wyoming-
Montana Water Science Center with the agricultural depletions 
for the Smith River watershed (appendix; Clayton Jordan, 
U.S. Department of the Interior Bureau of Reclamation, writ-
ten commun., 2011; U.S. Department of the Interior Bureau of 
Reclamation, 2012; U.S. Department of the Interior Bureau of 
Reclamation, 2005). The term “depletion” refers to changes to 
natural streamflows that result from water-resources devel-
opment. In almost all cases, water-resources development 
results in net decreases in streamflow over periods of one to 
multiple years. Some agricultural water-resources develop-
ment (for example irrigation operations), however, can result 
in decreases in streamflow (relative to natural conditions) 
during some seasons and increases in streamflow during other 
seasons. Thus, the term “depletion,” as used by Reclamation 
(U.S. Department of the Interior Bureau of Reclamation, 2012; 
U.S. Department of the Interior Bureau of Reclamation, 2005) 
and in this report, does not imply a decrease in streamflow, 
especially on a seasonal basis. Positive depletions indicate 
decreases in streamflow relative to natural conditions, and 
negative depletions indicate increases in streamflow relative to 
natural conditions (Chase, 2013).

The historic agricultural depletions determined by Rec-
lamation (U.S. Department of the Interior Bureau of Recla-
mation, 2005) included estimates of diversions, on-farm and 
conveyance losses, and crop irrigation requirements. Those 
estimates were based on climatological records, irrigated 
area, and irrigation methods for each year. Reclamation also 
calculated municipal depletions, but the municipal depletions 
for the Smith River watershed were less than 0.1 percent of 
the agricultural depletions; therefore, only the agricultural 
depletions were used in this study. The monthly depletions 
were distributed to daily depletions assuming a constant value 
for each day of each month. Depletions from reservoir opera-
tions were not determined by Reclamation for the Smith River 
watershed.

The uncertainties or confidence intervals associated with 
the depletions estimates for the Smith River watershed are 
unavailable and were assumed to be plus or minus 25 percent 
for this study. Reclamation calculated the depletions to assist 
the United States Army Corps of Engineers with determin-
ing unregulated (or natural) flows in the main stem Missouri 
River. The drainage area of the Smith River watershed is 
less than 0.4 percent of the drainage area of the Missouri 
River watershed included in Reclamation (2012). Because 
the depletion estimates were calculated to estimate unregu-
lated flows on the main-stem Missouri River, it is unclear 
how well they represent depletions for rivers in smaller 
watersheds such as the Smith River watershed. Depletion 
calculation inputs included estimates for number of irrigated 
acres in each HUC, type of irrigation category (furrow, 
waterspreader, sprinkler, or other method), length of irriga-
tion season, type of crop, climate (monthly mean temperature 
and total monthly precipitation), crop irrigation and diversion 
requirements, return flow distribution patterns, and depletions 
because of groundwater irrigation. Masoner and others (2003) 

compared irrigation water uses calculated by two different 
methods and calculated differences of 10–200 percent. If each 
of the Reclamation depletion calculation inputs contained 
uncertainties that lead to errors of 5 percent in the resulting 
depletion calculations, and the uncertainty values were addi-
tive, the uncertainty in the depletion calculation could be as 
high as 40 percent. In addition, the Reclamation depletions 
data do not include effects of reservoir regulation on stream-
flows. Reservoir operations could result in augmentation of 
low flows and dampening of high flows (Caldwell and Eddy-
Miller, 2013). Because of the uncertainties in the Reclamation 
depletion estimates, and the exclusion of reservoir operations 
from the depletion estimates, an uncertainty of plus or minus 
25 percent was chosen for calibrating and evaluating the 
Smith River model. This plus or minus 25 percent is lower 
than the highest uncertainties based on Masoner and oth-
ers (2003) and lower than the 40 percent uncertainty based 
on adding 5 percent for each of the depletion calculation 
inputs, and so it is slightly more conservative for describing 
how well the model simulated natural streamflows (a higher 
uncertainty would lead to a wider target range for compari-
son with simulated streamflows). The uncertainties in the 
reconstructed-natural flows could be higher or lower, but plus 
or minus 25 percent was used for comparing reconstructed-
natural with simulated-natural in figures and tables herein. 
Further evaluation of stream diversions, reservoir regulation, 
and other water-resource development in the Smith River 
watershed likely would help quantify the uncertainty of the 
depletion values.

Solar Radiation and Potential Evapotranspiration
Observed mean monthly solar radiation (SR) and poten-

tial evapotranspiration (PE) data were used for model calibra-
tion and assessment. For the Smith River watershed, SR and 
PE calibration data were derived by following procedures 
developed by Hay and others (2006). Mean monthly SR 
values (12 values, 1 for each month, for the entire Smith River 
watershed) were interpolated from regression analysis of data 
for calendar years 1961–90 from a nationwide climate network 
of NRCS SNOTEL stations and NOAA National Weather 
Service (NWS) climate stations (Hay and others, 2006). Mean 
monthly PE values (12 values, 1 for each month, for the entire 
Smith River watershed) were calculated for 1956–70 from the 
free-water evaporation atlas of Farnsworth and others (1982). 
These SR and PE datasets were consistent with other PRMS 
modeling efforts across the United States (Hay and others, 
2006; Chase, 2011).

Model Calibration Approach

A split-sample evaluation, similar to that used by Hay 
and others (2006), was used for calibration and evaluation 
of the model, as described on page 14 in Chase (2011). The 
model was calibrated for water years 2002–2007. Then, the 
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model was evaluated for water years 1996–2001. An auto-
mated calibration computer program called Let Us Calibrate 
(LUCA; Hay and Umemoto, 2006) was used for calibration 
by adjusting parameter values until the simulated values of 
calibration targets matched the observed values as closely as 
possible (as described on page 14, Chase, 2011). Calibration 
involved several steps. In each calibration step, simulated and 
observed values for one of the calibration targets (table 4) 
were compared, and values of the parameters associated 
with that calibration target were adjusted to obtain the best 
agreement between simulated and observed calibration target 
values.

Multiple targets were used for calibration. Because SR 
and PE affect the overall water balance in the watershed, 
values of parameters associated with SR and PE (table 4) 
were adjusted first. Then, values of parameters associated with 
mean annual streamflow and mean monthly streamflow (also 
related to the overall water balance) were adjusted. Because 
of uncertainties related to the depletions data (discussed in the 
section “Calculation of the Reconstructed-Natural Streamflow 
Dataset”), a range (plus or minus 25 percent) of streamflow 
values was used for calibration instead of a single value for 
each month or year. After the water-balance parameters were 
adjusted, the parameters associated with daily mean stream-
flow were adjusted, again by using a range (plus or minus 
25 percent) of streamflow values for each day instead of a 
single value for each day. The parameters listed in table 4 for 
each calibration target were determined from a single param-
eter sensitivity analysis conducted for a snowmelt-dominated 
watershed by using Monte Carlo techniques (Hay, Leavesley, 
Clark, and others, 2006).

Model Calibration Results

At the USGS streamflow-gaging station (station identi-
fication number 06077500) Smith River near Eden, Montana, 
simulated-natural mean annual and mean monthly flows 
generally were the same or higher than the reconstructed-
natural streamflows during the calibration period (water years 
2002–2007), whereas they were lower during the evaluation 
period (water years 1996–2001). Both simulated-natural mean 
annual streamflow and simulated-natural mean April–July 
streamflow values fell within the target-value range for the 
calibration period, and were 11–14 percent lower than the bot-
tom of the target range during the evaluation period (table 5). 
Simulated mean monthly streamflow values fell close to (less 
than 15 percent above the top or below the bottom of the 
target-value range) or within the target-value range during 
the calibration period, except for October, when values were 
overestimated by 56 percent, and March, when values were 
underestimated by 20 percent during the calibration period 
(table 5). For all months except October, June, and September, 
mean monthly streamflow values were underestimated during 
the evaluation period by 6 to 60 percent below the bottom of 
the target-value range (table 5).

Annual mean simulated-natural streamflow values were 
within the target-value range for the calibration period, and 
were 0 to 33 percent lower than the bottom of the target-value 
range for the evaluation period (table 6). The shape of the 
annual hydrograph for the simulated-natural daily streamflow 
values generally matched the shape of the hydrograph for the 
reconstructed-natural values for most of the calibration period 
(fig. 5A), which indicates that interflow and groundwater 
processes likely were well-represented within the model. In 
water year 2003, an early observed March streamflow peak 
in the reconstructed-natural streamflow, that could have been 
caused by snowmelt on frozen ground or ice jams within 
the stream channel, was not simulated by the model. Higher 
reconstructed-natural streamflows in May and June of that 
same year also were underestimated. During the evaluation 
period, the highest (or peak) simulated-natural daily stream-
flow values for each year were underestimated in water years 
1996–1998 and overestimated in water year 1999 (fig. 5B). 
The simulated-natural daily peak streamflow occurred later 
than the reconstructed-natural streamflow in water years 2000 
and 2001.

The Nash-Sutcliffe efficiency (NS) statistic (Moriasi 
and others, 2007) was used to evaluate how well the model 
simulated daily natural streamflow as compared to the recon-
structed-natural streamflow (plus or minus the 25 percent 
target-value range). The NS is a normalized statistic that pro-
vides a measure of how well simulated values match measured 
datasets. NS values range from negative infinity to 1. Values of 
0 or less indicate that the average value of all the reconstructed-
natural streamflow data is a better predictor than simulated 
daily natural streamflow. A value of 0 indicates the simulated 
daily natural streamflow is as good as using the average value 
of all the reconstructed-natural streamflow data, and a value of 
1 indicates a perfect fit between reconstructed-natural stream-
flow and simulated daily natural streamflow. Moriasi and others 
(2007) suggest that a NS of greater than 0.50 is satisfactory for 
streamflows simulated by using models such as PRMS. NS sta-
tistics for the calibration (water years 2002–2007) and evalu-
ation (water years 1996–2001) periods were 0.92 and 0.87, 
respectively, by using the plus or minus 25 percent target-value 
range around the reconstructed-natural streamflow values. 
NS statistics for the calibration and evaluation periods were 
0.87 and 0.69, respectively, by using the reconstructed-natural 
streamflow values without the target-value range.

The underestimation of streamflow during the evalua-
tion period could be because of climatological differences 
between the calibration and evaluation periods. Mean annual 
reconstructed-natural streamflow was lower during the calibra-
tion period (309 ft3/s) than for the evaluation period (400 ft3/s, 
table 5); and the simulated mean annual temperature during 
the calibration period (41 ºF, or 5 ºC) was higher than for the 
evaluation period (40 ºF, or 4.4 ºC). Therefore, the model was 
calibrated during a drier, warmer period, which could have 
resulted in underestimated flows during the wetter, cooler 
evaluation period. Model uncertainties are further discussed in 
the section “Potential Uses and Limitations of the Model”.
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Table 4.  Calibration targets and parameters used in the Let Us Calibrate (LUCA) calibration procedure for the precipitation-runoff 
model.

[Table modified from Hay, Leavesley, Clark, and others (2006). LUCA, Let Us Calibrate; SR, solar radiation; PE, potential evapotranspiration; NRMSE, normal-
ized root mean square error; HRU, hydrologic response unit]

Calibration 
target

Objective function
Parameters used 

to calibrate 
model 

Parameter description

Basin mean 
monthly SR

Sum of the absolute 
difference in the loga-
rithms of simulated 
and observed SR 

dday_intcp Intercept in temperature degree-day relation.
tmax_index Index temperature used to determine precipitation adjustments to SR.

Basin mean 
monthly PE

Sum of the absolute 
difference in the loga-
rithms of simulated 
and observed PE 

jh_coef Coefficient used in PE computations.

Mean annual 
streamflow

Mean monthly 
streamflow

NRMSE rain_sub_adj Monthly adjustment factor to precipitation for each subbasin.
snow_sub_adj Monthly snow adjustment factor to precipitation for each subbasin.

Daily mean 
streamflow

NRMSE adjmix_rain Factor to adjust rain proportion in mixed rain/snow event.
tmax_allrain If HRU maximum temperature is greater than or equal to this value, pre-

cipitation assumed rain.
tmax_allsnow If HRU maximum temperature is less than or equal to this value, precipita-

tion assumed snow.
cecn_coef Convection condensation energy coefficient.
emis_noppt Emissivity of air on days without precipitation.
fastcoef_lin Linear preferential-flow routing coefficient.
fastcoef_sq Non-linear preferential-flow routing coefficient.
freeh2o_cap Free-water holding capacity of snowpack.
gwflow_coef Groundwater routing coefficient.
gwstor_init Initial storage in each groundwater reservoir.
pref_flow_den Preferential-flow pore density.
potet_sublim Proportion of PE that is sublimated from snow surface.
rad_trncf Transmission coefficient for short-wave radiation through the winter veg-

etation canopy.
slowcoef_lin Linear gravity-flow reservoir routing coefficient.
slowcoef_sq Non-linear gravity-flow reservoir routing coefficient.
smidx_coef Coefficient for nonlinear surface-runoff contributing-area algorithm.
smidx_exp Exponent for nonlinear surface-runoff contributing-area algorithm.
soil2gw_max Maximum rate of soil-water excess moving to groundwater.
soil_moist_max Maximum available water-holding capacity of soil profile.
soil_rechr_max Maximum available water-holding capacity of soil-recharge zone.
ssr2gw_rate Coefficient to route water from gravity reservoir to groundwater reservoir.
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Table 5.  Simulated-natural and reconstructed-natural mean monthly, mean annual, and mean April–July streamflow 
for the calibration and evaluation periods for U.S. Geological Survey streamflow-gaging station (station identification 
number 06077500) Smith River near Eden, Montana.

[The reconstructed streamflow data for this gage were calculated by adding Bureau of Reclamation depletions data (Clayton Jordan, Civil 
Engineer, Bureau of Reclamation, written commun., 2011) to the reconstructed-natural streamflow data1. If A>D, E=(A-D)/D, if A<C, 
E=(A-C)/C, if C<A<D, E=0. Negative percent errors indicate simulations underestimated; positive percent errors indicate simulations 
overestimated. ft3/s, cubic feet per second; ±, plus or minus; Water year, 12-month period from October 1 through September 30 of the fol-
lowing calendar year. The water year is designated by the calendar year in which it ends]

Month

Streamflow

A 
Mean  

simulated-
natural 
(ft3/s)

B 
Mean  

reconstructed-
natural 
(ft3/s)

Mean reconstructed-natural range  
(± 25 percent) (ft3/s) E 

Error outside  
of range 
(percent)

C 
Bottom of range

(ft3/s)

D 
Top of range

(ft3/s)

Calibration period: water years 2002–2007

Mean monthly
October 171 88 66 110 56
November 127 90 68 113 13
December 83 77 58 97 0
January 70 82 62 103 0
February 73 85 64 106 0
March 125 209 157 261 -20
April 339 297 223 372 0
May 666 743 557 929 0
June 876 1,010 758 1,263 0
July 372 559 419 698 -11
August 229 297 223 372 0
September 192 171 128 214 0

Mean annual

Mean 277 309 232 386 0
Mean for April–July

Mean 563 652 489 815 0
Evaluation period: water years 1996–2001

Mean monthly
October 143 133 100 166 0
November 103 145 109 181 -6
December 79 137 103 172 -23
January 62 173 130 216 -52
February 60 203 152 254 -60
March 122 225 169 281 -28
April 219 389 292 486 -25
May 510 836 627 1,045 -19
June 931 1,231 923 1,539 0
July 457 700 525 875 -13
August 251 406 305 508 -18
September 169 224 168 281 0

Mean annual

Mean 259 400 300 500 -14
Mean for April–July

Mean 529 789 592 986 -11
1Observed streamflow is defined as streamflow for current conditions, including the effects of reservoir regulation, diversions, 

and other water-resources development throughout the watershed.
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Calibrating the model to SR and PE improved the 
model representation of evapotranspiration processes. 
Simulated mean monthly SR values were lower (less than 
30 percent) than observed values from November to Febru-
ary for both calibration and evaluation periods, and were 
lower than observed from April to July for the evalua-
tion period (fig. 6A). Simulated PE values were equal to 
observed values for the calibration period except for during 
the month of January (difference of less than 0.01 inch per 
day [in/d]; fig. 6B). Simulated PE values for the evaluation 
period were lower than observed values for May through 
July (largest difference of less than 10 percent in July), 
which corresponded with the lower simulated SR values 
during those months. Simulated PE values for the evalua-
tion period were slightly (less than 0.01 in/d) higher than 
observed for August and September, which corresponded 
to higher SR values during those months (figs. 6A and 6B). 
These differences between simulated and observed SR and 
PE values are similar to other PRMS studies (Chase, 2011; 
Dudley, 2008).

Model Results for Simulated Natural 
Streamflow Conditions

Various spatial and temporal components of the water 
budget for the Smith River watershed can be evaluated by 
using the model. For example, model results indicate that dur-
ing the water year 1996–2008 study period, simulated mean 
annual precipitation across the Smith River watershed was 
16 in., out of which 14 inches evaporated or transpired and 
2 inches left the basin as streamflow (fig. 7). Model results 
also illustrate how the generalized annual water budget varies 
by year (fig. 8) and by month (fig. 9). During each year, water 
flowing into storage is about equal to water flowing out of 
storage, resulting in relatively small total changes in storage 
each year relative to the annual water budget (fig. 8). How-
ever, simulated month-to-month changes in storage are large 
relative to the monthly water budget (fig. 9; only water years 
2002–2008 shown for clarity). Storage simulated in PRMS 
can occur in the groundwater, in pores in the soil, and in the 

Table 6.  Simulated-natural and reconstructed-natural  annual mean streamflow for the calibration and 
evaluation periods for U.S. Geological Survey streamflow-gaging station (station identification number 
06077500) Smith River near Eden, Montana.

[The reconstructed-natural streamflow data for this gage were calculated by adding Bureau of Reclamation depletions data 
(Clayton Jordan, Civil Engineer, Bureau of Reclamation, written commun., 2011) to the observed streamflow data1. If A >D, 
E=(A-D)/D, if A<C, E=(A-C)/C, if C<A<D, E=0. Negative percent errors indicate simulations underestimated; positive percent 
errors indicate simulations overestimated. ft3/s, cubic feet per second; ±, plus or minus; Water year, 12-month period from Octo-
ber 1 through September 30 of the following calendar year. The water year is designated by the calendar year in which it ends]

Water Year

Annual mean streamflow

A 
Simulated-

natural 
(ft3/s)

B 
Reconstructed-

natural 
(ft3/s)

Reconstructed-natural range  
(± 25 percent) (ft3/s) E 

Error outside  
of range 
(percent)

C 
Bottom of range 

(ft3/s)

D 
Top of range 

(ft3/s)

Calibration period: water years 2002–2007

2002 184 217 162 271 0
2003 237 314 236 393 0
2004 297 271 203 339 0
2005 306 386 290 483 0
2006 328 341 256 427 0
2007 311 331 248 414 0

Evaluation period: water years 1996–2001

1996 276 552 414 690 -33
1997 475 786 590 983 -19
1998 246 414 311 518 -21
1999 221 274 206 343 0
2000 180 204 153 255 0
2001 158 181 136 226 0

1Observed streamflow is defined as streamflow for current conditions, including the effects of reservoir regulation, 
diversions, and other water-resources development throughout the watershed.
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Figure 5. Simulated-natural and reconstructed-natural daily mean streamflow for U.S. Geological Survey streamflow-gaging station 
(station identification number 06077500) Smith River near Eden, Montana. A, Water years 2002–2007 (calibration period). B, Water 
years 1996–2001 (evaluation period).
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Figure 6. Simulated and observed climate variables for the Smith River watershed, Montana. A, Mean monthly solar radiation. B, 
Mean monthly potential evapotranspiration.
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Figure 7.  Simulated-natural average annual water budget for the Smith River watershed, water years 1996–2008. 
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Figure 8.  Simulated-natural annual water budget for the Smith River watershed, water years 1996–2008. 
[Water year is the 12-month period from October 1 through September 30 of the following calendar year. The 
water year is designated by the calendar year in which it ends]
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Figure 9.  Simulated-natural monthly water budget for the Smith River watershed, water years 2002–2008. 
[Water year is the 12-month period from October 1 through September 30 of the following calendar year. 
The water year is designated by the calendar year in which it ends]
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snowpack. As discussed in the section “Streamflow,” the 
model does not simulate effects of reservoir regulation in the 
watershed.

Per the model simulations, during most of the year, 
surface runoff rarely (less than 2 percent of the time during 
water years 2002–2008) makes up more than 10 percent of the 
total streamflow (fig. 10; only water years 2002–2008 shown 
for clarity). Subsurface flow (the combination of interflow 
and groundwater flow) makes up most of the total streamflow 
(99 or more percent of total streamflow for 71 percent of the 
time during water years 2002–2008). Similar distributions 
between surface runoff and subsurface flow have been docu-
mented in other PRMS simulations of snowmelt-dominated 
streamflow, in mountainous terrain in the Western United 
States (Mastin and Vaccaro, 2002; Koczot and others, 2005; 
Laenen and Risley, 1995), and in the rolling hills along the 
Atlantic coast (Dudley, 2008).

The model can be used to examine the contributions 
from various parts of the watershed relative to the total 
streamflow within the watershed. For example, the watershed 
above USGS streamflow-gaging station (station identification 
number 06077200) Smith River below Eagle Creek near Fort 
Logan, Montana, makes up 68 percent of the total drainage 
area above USGS streamflow-gaging station (station identi-
fication number 06077500) Smith River near Eden, Montana 
(fig. 11). Accordingly, the simulated-natural mean annual 

streamflow for water years 1996–2008 at U.S. Geological Sur-
vey streamflow-gaging station (station identification number 
06077200) Smith River below Eagle Creek near Fort Logan, 
Montana is 189 cubic feet per second (ft3/s) or 69 percent of 
the simulated-natural mean annual streamflow at U.S. Geolog-
ical Survey streamflow-gaging station (station identification 
number 06077500) Smith River near Eden, Montana (fig.11).

Potential Uses and Limitations of the 
Model

The model constructed for the Smith River watershed can 
be used to examine the general hydrologic framework of the 
Smith River watershed, including quantification of precipi-
tation, evapotranspiration, and streamflow; partitioning of 
streamflow between surface runoff and subsurface flow; and 
quantifying contribution to streamflow from different parts of 
the watershed. The model can be further refined to simulate 
regulated (or observed) flows by adding algorithms to simulate 
reservoir operation, diversions, and return flows. Remotely-
sensed evapotranspiration values could provide further 
information for the refined model. That refined model could 
be used to estimate possible future streamflow scenarios, such 
as changes to irrigation practices or land use, or streamflow 

EXPLANATION
Total simulated-natural streamflow

Note: Bureau of Reclamation depletions 
data were added to observed streamflows 
to represent natural conditions. 
Reconstructed-natural streamflow not 
available for water year 2008. [Water year 
is the 12-month period from October 1 
through September 30 of the following 
calendar year. The water year is 
designated by the calendar year in which it 
ends]
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Figure 10. Partition of total simulated-natural streamflow into subsurface flow and surface runoff for the Smith River watershed, 
Montana, water years 2002–2008.



22    A Precipitation-Runoff Model for Simulating Natural Streamflow Conditions in the Smith River Watershed, Montana

responses to drought. The model also can be combined with a 
groundwater model to further investigate interactions between 
surface water and groundwater under changing land use and 
irrigation scenarios.

The model is a mathematical representation of the physi-
cal conditions and processes in the Smith River watershed. 
Potential uncertainties include uncertainties in the mathemati-
cal representation of the physical conditions and processes 
(model uncertainties); uncertainties in the precipitation, air 
temperature, streamflow, SR, and PE data (time-series data 
uncertainties); uncertainties in the distribution of the time-
series data to the HRUs (time-series data interpolation uncer-
tainties); and uncertainties associated with the values of the 
model parameters (parameter uncertainties).

Unlike groundwater-flow models such as MODFLOW, or 
coupled groundwater and surface-water flow models such as 
GSFLOW, the PRMS model does not include partial differ-
ential equations that describe the movement of groundwater. 
Instead, the PRMS model represents groundwater flow by 
using empirical and simplified equations that do not consider 
the effect of local geology and surface-water interactions 
(Markstrom and others, 2008). For this study, interflow and 
groundwater-flow data were not used for model input, calibra-
tion, or evaluation. In addition, hydraulic properties of the 
aquifer or groundwater system were not quantified as part of 
this study.

The model was calibrated to daily mean and mean 
monthly reconstructed-natural streamflow at USGS stream-
flow-gaging station (station identification number 06077500) 
Smith River near Eden, Montana. The model was not cali-
brated to extremely high or low daily streamflow, nor was it 
created to simulate storm events (storm events can be better 
simulated with air temperature and precipitation data at hourly 
or minute intervals). Uncertainties associated with the Recla-
mation data used to calculate reconstructed-natural streamflow 
values for calibration are unknown; further evaluation of 
site-specific diversion and reservoir regulation data might help 
quantify these uncertainties. The parameter values for soils, 
land cover, and forest type do not reflect changes caused by 
periodic forest fires or land use practices.

Summary

This report documents the construction of a precipitation-
runoff model for simulating natural streamflow in the Smith 
River watershed, Montana. This Precipitation Runoff Model-
ing System model, constructed in cooperation with the Mea-
gher County Conservation District, can be used to examine the 
general hydrologic framework of the Smith River watershed, 
including quantification of precipitation, evapotranspiration, 

EXPLANATION
Simulated-natural streamflow above 

U.S. Geological Survey station 06077500
Note: effects of water-resources 
development not included in the model

Simulated-natural streamflow, upper 
watershed above U.S. Geological 
Survey station 06077200 
Note: effects of other water-resources 
development not included in the model
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Figure 11.  Simulated-natural streamflow for the Smith River watershed at Smith River at U.S. Geological Survey streamflow-gaging 
station (station identification number 06077500) Smith River near Eden, Montana, and at U.S. Geological Survey streamflow-gaging 
station (station identification number 06077200) Smith River below Eagle Creek near Fort Logan, Montana. [Water year is the 12-month 
period from October 1 through September 30 of the following calendar year. The water year is designated by the calendar year in 
which it ends]
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and streamflow; partitioning of streamflow between surface 
runoff and subsurface flow; and quantifying contribution to 
streamflow from different parts of the watershed.

Five input files were used to run, calibrate and evalu-
ate the model. The parameter input file contains values of 
parameters that describe the basin topography, the stream 
network, and the hydrologic characteristics of the basin soils 
and vegetation. Three time-series input data files are required 
to run the model; one data file contains values of daily total 
precipitation for the Smith River watershed, and the other two 
data files contain values of maximum and minimum daily air 
temperature for the Smith River watershed. A fifth input file 
containing reconstructed-natural daily mean streamflow at 
USGS streamflow-gaging stations along the Smith River was 
used for model calibration and evaluation.

The model was calibrated for water years 2002–2007 and 
evaluated for water years 1996–2001. An automated calibra-
tion computer program, called Let Us Calibrate (LUCA), was 
used for calibration by adjusting parameter values until the 
simulated values of calibration targets matched the observed 
values as closely as possible. During the calibration and evalu-
ation periods, simulated-natural flow values were compared to 
reconstructed-natural streamflow data. These reconstructed-
natural streamflow data were calculated by adding Bureau 
of Reclamation’s agricultural depletions data to the observed 
streamflows. Reconstructed-natural streamflows represent esti-
mates of streamflows during water years 1996–2007 assuming 
there was no agricultural water-resources development in the 
watershed. Additional calibration targets included basin mean 
monthly solar radiation and potential evapotranspiration.

The model estimated the hydrologic processes occurring 
in the Smith River watershed. Both simulated-natural mean 
annual streamflow and simulated-natural mean April–July 
streamflow values fell within the target-value range values 
for the calibration period (water years 2002–2007), and were 
11-14 percent lower than the bottom of the target-value range 
for the evaluation period (water years 1996–2001). Simu-
lated mean monthly streamflow values fell close to (less than 
15 percent above the top or below the bottom of the target 
range) or within the target-value range during the calibration 
period, except for October, when values were overestimated 
by 56 percent, and March, when values were underestimated 
by 20 percent. For all months except October, June, and Sep-
tember, mean monthly streamflow values were underestimated 
during the evaluation period by 6 to 60 percent below the bot-
tom of the target-value range.

Annual mean simulated-natural streamflow values were 
within the target-value range for the calibration period and 
were 0 to 33 percent lower than the bottom of the target-
value range for the evaluation period. The shape of the annual 
hydrographs for the simulated-natural daily streamflow values 
matched the shape of the hydrographs for the reconstructed-
natural values fairly well for most of the calibration period. 
During the evaluation period simulated-natural daily peak 
streamflow values were underestimated in water years 

1996–1998 and overestimated in water year 1999. NS statis-
tics for the calibration (water years 2002–2007) and evaluation 
(water years 1996–2001) periods were 0.92 and 0.87, respec-
tively, by using the plus or minus 25 percent target-value range 
around the reconstructed-natural streamflow values.

The precipitation-runoff model enabled a detailed evalu-
ation of the various components of the water budget within 
the Smith River watershed. During the water year 1996–2008 
study period, simulated mean annual precipitation across the 
Smith River watershed was 16 inches, out of which 14 inches 
evaporated or transpired and 2 inches left the basin as stream-
flow. Per the model simulations, during most of the year, sur-
face runoff rarely (less than 2 percent of the time during water 
years 2002–2008) makes up more than 10 percent of the total 
streamflow. Subsurface flow (the combination of interflow 
and groundwater flow) makes up most of the total streamflow 
(99 or more percent of total streamflow for 71 percent of the 
time during water years 2002–2008). The model also enabled 
an evaluation of the relative contribution of streamflow from 
various parts of the watershed.

The model can be further refined by adding algorithms 
to simulate regulated (or observed) flows and by including 
remotely-sensed evapotranspiration data. The refined model 
could be used to estimate possible future streamflow scenarios 
under changed watershed conditions or in response to drought. 
The model also can be combined with a groundwater model 
to further investigate interactions between surface water and 
groundwater under current and potential future land use and 
irrigation scenarios. Limitations include uncertainties in the 
model algorithms; time-series, parameter, and depletions data; 
calibration to streamflow values that did not include extremely 
high or low daily streamflow or storm events; and simulation 
of static soils and land-cover conditions that do not reflect 
changes caused by periodic forest fires or land use practices .
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Appendix 1.  Historical depletion data for the Smith River, Montana, Calendar Years 1929–2007.

[Depletions for 1929–2007 from Bureau of Reclamation (Clayton Jordan, U.S. Department of Interior Bureau of Reclamation, written commun., 2011; 
U.S. Department of Interior Bureau of Reclamation, 2012). Depletion data are rounded to 1 decimal place, as provided by Bureau of Reclamation; differences 
in significant figures do not imply differences in accuracy. Positive depletions indicate decreases in streamflow relative to unregulated conditions, and negative 
depletions indicate increases in streamflow relative to unregulated conditions. KAF, kilo acre-foot]

Historical agricultural depletions (KAF)

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1929 -0.4 -0.2 -0.1 -0.1 4.8 14.3 21.9 17.8 0.7 -0.6 -1 -0.5
1930 -0.3 -0.1 -0.1 0 4.3 19.3 16.4 15.2 4.4 -1.7 -1 -0.5
1931 -0.2 -0.1 -0.1 0.2 7.7 12.7 15.4 17.3 4.4 -0.6 -1.1 -0.5
1932 -0.3 -0.1 -0.1 0 8 5.2 20.4 13.5 10.1 -1.7 -1.2 -0.6
1933 -0.3 -0.1 -0.1 0 2.7 21.5 22.9 5.6 5.9 -0.8 -1 -0.5
1934 -0.2 -0.1 -0.1 0.2 10 6.9 21.8 19.5 2 -2.1 -1.3 -0.7
1935 -0.3 -0.2 -0.1 0 0.2 15.6 20.3 14.2 8.8 -1.8 -1.1 -0.6
1936 -0.3 -0.1 -0.1 0 10.2 11.2 22.9 15.3 5.8 -1.6 -1.1 -0.6
1937 -0.3 -0.1 -0.1 0.2 10.9 4.7 18.8 17.3 4.9 -0.8 -1.1 -0.5
1938 -0.3 -0.1 -0.1 0 0 9.9 21.4 15.2 11.5 -2.9 -1.7 -0.8
1939 -0.4 -0.2 -0.1 -0.1 4.7 7.3 27.3 17.1 6 -2.6 -1.5 -0.8
1940 -0.4 -0.2 -0.1 0 2.7 13.9 18.5 19.3 3 -1.2 -1 -0.5
1941 -0.3 -0.1 -0.1 0 3.5 7.4 21.4 15.3 -2 -1 -1 -0.5
1942 -0.2 -0.1 -0.1 0.3 -0.1 8.1 25.5 17.1 8.3 -2 -1.7 -0.8
1943 -0.4 -0.2 -0.1 -0.1 2 3.6 21.9 15.6 9.9 -1.7 -1.6 -0.8
1944 -0.4 -0.2 -0.1 -0.1 6 0.4 24.2 13.4 7.1 -0.7 -1.5 -0.8
1945 -0.4 -0.2 -0.1 0 0 1.9 29.4 17.1 2.4 -0.9 -1.4 -0.7
1946 -0.3 -0.2 -0.1 0.2 -0.1 10.2 19.9 16.3 2.3 -2.2 -1.1 -0.6
1947 -0.3 -0.1 -0.1 0 9 4.3 25.4 16.4 2.1 -1 -1.3 -0.7
1948 -0.3 -0.2 -0.1 0 0 2.7 18.2 17.8 7.5 -1.1 -1.4 -0.7
1949 -0.4 -0.2 -0.1 0 0 12.2 16.2 17.1 6.4 -2.5 -1.3 -0.6
1950 -0.3 -0.2 -0.1 0 1.3 3.9 17.4 13.4 5.4 -0.5 -1.2 -0.6
1951 -0.3 -0.2 -0.1 0 0.5 5.9 18.5 10.2 3.8 -1.5 -0.9 -0.5
1952 -0.2 -0.1 -0.1 0.2 0 15.2 18.9 11.2 9.1 -0.9 -1 -0.5
1953 -0.3 -0.1 -0.1 0 0 4.9 23.5 15.2 7.2 -0.4 -1.1 -0.5
1954 -0.3 -0.1 -0.1 0 2.4 4 23.4 8.2 4 -1.1 -1 -0.5
1955 -0.3 -0.1 -0.1 0 0 13.5 15.4 20.3 7.7 -1.2 -1.6 -0.8
1956 -0.4 -0.2 -0.1 -0.1 3.1 16.2 20.5 14.3 9.3 -1.8 -1.6 -0.8
1957 -0.4 -0.2 -0.1 -0.1 0 6.7 25.2 15.4 7.1 -2.6 -1.3 -0.7
1958 -0.3 -0.2 -0.1 0 13.9 1 12.2 22.5 11.2 -1.2 -1.8 -0.9
1959 -0.5 -0.2 -0.1 -0.1 0 16.3 27.5 14.6 4.7 -1.2 -1 -0.5
1960 -0.3 -0.1 -0.1 0 1.4 24 27.6 11.1 9.8 -1.1 -1.3 -0.6
1961 -0.3 -0.2 -0.1 0 1.9 26.7 21.7 19.1 -0.1 -0.5 -1 -0.5
1962 -0.3 -0.1 -0.1 0 0 13.7 21.6 15.1 10.3 -1.8 -1.7 -0.8
1963 -0.4 -0.2 -0.1 -0.1 3.2 5 25.7 19.8 10.7 -1.4 -1.9 -0.9
1964 -0.5 -0.2 -0.1 -0.1 0 7.5 29.3 15.4 8.6 -0.9 -1.7 -0.9
1965 -0.4 -0.2 -0.1 -0.1 2.5 6.8 20.9 14.1 -2.8 0.4 -0.9 -0.5
1966 -0.2 -0.1 -0.1 0 5.9 14 19.8 14.2 10.2 -1.7 -1.1 -0.6
1967 -0.3 -0.1 -0.1 0 0 4.1 24.9 19.1 10.2 -1.6 -1.2 -0.6
1968 -0.3 -0.2 -0.1 0 0 3.2 27.6 8.9 0.6 -0.3 -0.9 -0.5
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Appendix 1.  Historical depletion data for the Smith River, Montana, Calendar Years 1929–2007.—Continued

[Depletions for 1929–2007 from Bureau of Reclamation (Clayton Jordan, U.S. Department of Interior Bureau of Reclamation, written commun., 2011; 
U.S. Department of Interior Bureau of Reclamation, 2012). Depletion data are rounded to 1 decimal place, as provided by Bureau of Reclamation; differences 
in significant figures do not imply differences in accuracy. Positive depletions indicate decreases in streamflow relative to unregulated conditions, and negative 
depletions indicate increases in streamflow relative to unregulated conditions. KAF, kilo acre-foot]

Historical agricultural depletions (KAF)

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1969 -0.2 -0.1 -0.1 0 2.8 2.7 20.3 19.3 9.6 -1.6 -1.1 -0.6
1970 -0.3 -0.1 -0.1 0 2.1 10.7 20 18.6 6 -1.2 -1 -0.5
1971 -0.3 -0.1 -0.1 0 0 13.2 21.6 17.1 5.2 -0.7 -1 -0.5
1972 -0.3 -0.1 -0.1 0 1.1 19.9 15.7 12.5 8 -1.8 -1.4 -0.7
1973 -0.3 -0.2 -0.1 0 8.6 17.7 23.9 15.2 2.9 -1.1 -1 -0.5
1974 -0.3 -0.1 -0.1 0 0 24.1 25.4 7 9 -1.3 -1.6 -0.8
1975 -0.4 -0.2 -0.1 -0.1 0 5 23.3 13.3 10.9 -2.8 -1.4 -0.7
1976 -0.4 -0.2 -0.1 0 9.7 6.7 22.7 13.3 10.7 -1.6 -1.7 -0.8
1977 -0.4 -0.2 -0.1 0.3 0.6 21.3 18 8.9 1.3 -0.2 -1.1 -0.5
1978 -0.3 -0.1 -0.1 0 0 19.8 17.2 16 4.2 -0.6 -1.4 -0.7
1979 -0.4 -0.2 -0.1 0 6.1 14.2 20.2 19 11.4 -1.6 -1.3 -0.7
1980 -0.3 -0.2 -0.1 0 0 7.7 27.7 13.1 8.2 -2.7 -1.4 -0.7
1981 -0.3 -0.2 -0.1 0.6 -0.1 17.6 24.4 17.4 12.1 -2.8 -1.9 -0.9
1982 -0.5 -0.2 -0.1 -0.1 0 11.9 26.6 20.8 1.1 -1.2 -1.4 -0.7
1983 -0.4 -0.2 -0.1 0 0 14.1 15.5 22 3.9 -0.6 -1.5 -0.7
1984 -0.4 -0.2 -0.1 -0.1 10 14 25 13.8 2.7 -2.4 -1.2 -0.6
1985 -0.3 -0.2 -0.1 0 2.2 18.6 25.3 6.4 -2.5 -0.9 -0.8 -0.4
1986 -0.2 -0.1 0 0 3.5 18.8 9.9 16.5 -2.5 -0.5 -0.9 -0.5
1987 -0.2 -0.1 -0.1 0 0 18.3 12 13.6 7.2 -0.7 -1.4 -0.7
1988 -0.4 -0.2 -0.1 0 0 19.1 18.3 15.1 2.9 -1.3 -1.2 -0.6
1989 -0.3 -0.2 -0.1 0 0.6 10.7 20.5 5.8 7.5 -1.9 -1.1 -0.5
1990 -0.3 -0.1 -0.1 0 0 13.2 17.1 9.2 13.2 -1.8 -1.5 -0.8
1991 -0.4 -0.2 -0.1 -0.1 0 4.2 19.7 15.8 1.7 -1.3 -1 -0.5
1992 -0.2 -0.1 -0.1 0 0 8.6 10 11.3 6.4 -1.9 -0.9 -0.5
1993 -0.2 -0.1 -0.1 0 0 4.9 3.4 3.9 6.1 -1.1 -0.6 -0.3
1994 -0.1 -0.1 0 0 0.3 16.7 17.9 14.7 10.3 -2.5 -1.5 -0.8
1995 -0.4 -0.2 -0.1 -0.1 0 5.6 9.9 18.1 2.8 -1.8 -0.9 -0.5
1996 -0.2 -0.1 -0.1 0 0 14.9 16.3 14.2 0.8 -1.3 -1 -0.5
1997 -0.2 -0.1 -0.1 0 0 2.7 14.2 13.2 9.6 -2 -1.2 -0.6
1998 -0.3 -0.2 -0.1 0 0 3.9 16 13.5 9.2 -1.3 -1.3 -0.7
1999 -0.3 -0.2 -0.1 0 0 6.8 17.8 14.2 6.2 -1 -1.3 -0.6
2000 -0.3 -0.2 -0.1 0 0 6.2 21.4 16.6 3.4 -2.2 -1.1 -0.5
2001 -0.3 -0.1 -0.1 0 6 5.3 13.3 18.1 6.2 -1.6 -1.3 -0.6
2002 -0.3 -0.2 -0.1 0 0 2.9 19.4 10.2 6 -1.5 -1 -0.5
2003 -0.3 -0.1 -0.1 0 0 15 23.5 14.9 3.7 -1.5 -1.3 -0.6
2004 -0.3 -0.2 -0.1 0 0 5.5 21.7 9.1 4.5 -1.1 -1 -0.5
2005 -0.3 -0.1 -0.1 0 1.4 2.4 20 13.3 6.2 -1.6 -1.1 -0.6
2006 -0.3 -0.1 -0.1 0 3.8 9.4 21.5 13.2 2.1 -2 -1 -0.5
2007 -0.3 -0.1 -0.1 0 0 10.7 19 14.3 3.8 -1.5 -1.1 -0.6
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