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Abstract
Expected climatic changes in air temperature and 

precipitation patterns across the State of Wisconsin may alter 
future stream temperature and flow regimes. As a consequence 
of flow and temperature changes, the composition and dis-
tribution of fish species assemblages are expected to change. 
In an effort to gain a better understanding of how climatic 
changes may affect stream temperature, an approach was 
developed to predict and project daily summertime stream 
temperature under current and future climate conditions for 
94,341 stream kilometers across Wisconsin. The approach 
uses a combination of static landscape characteristics and dy-
namic time-series climatic variables as input for an Artificial 
Neural Network (ANN) Model integrated with a Soil-Water-
Balance (SWB) Model. Future climate scenarios are based on 
output from downscaled General Circulation Models (GCMs). 
The SWB model provided a means to estimate the temporal 
variability in groundwater recharge and provided a mecha-
nism to evaluate the effect of changing air temperature and 
precipitation on groundwater recharge and soil moisture. The 
Integrated Soil-Water-Balance and Artificial Neural Network 
version 1 (SWB-ANNv1) Model was used to simulate daily 
summertime stream temperature under current (1990–2008) 
climate and explained 76 percent of the variation in the daily 
mean based on validation at 67 independent sites. Results were 
summarized as July mean water temperature, and individual 
stream segments were classified by thermal class (cold, cold 
transition, warm transition, and warm) for comparison of cur-
rent (1990–2008) with future climate conditions. 

Integrating the SWB Model with the ANN Model 
provided a mechanism by which downscaled global or 
regional climate model results could be used to estimate the 
potential effects of climate change on future stream tempera-
ture on a daily time step. To address future climate scenarios, 
statistically downscaled air temperature and precipitation 
projections from 10 GCMs and 2 time periods were used with 
the SWB-ANNv1 Model to project future stream temperature. 
Projections of future stream temperatures at mid- (2046–65) 
and late- (2081–2100) 21st century showed the July mean 
water temperature increasing for all stream segments with 
about 80 percent of stream kilometers increasing by 1 to 
2 degrees Celsius (°C) by mid-century and about 99 percent 
increasing by 1 to 3 °C by late-century. Projected changes in 
stream temperatures also affected changes in thermal classes 
with a loss in the total amount of cold-water, cold-transition, 
and warm-transition thermal habitat and a gain in warm-water 
and very warm thermal habitat for both mid- and late-21st 
century time periods. The greatest losses occurred for cold-
water streams and the greatest gains for warm-water streams, 
with a contraction of cold-water streams in the Driftless Area 
of western and southern Wisconsin and an expansion of warm-
water streams across northern Wisconsin. Results of this study 
suggest that such changes will affect the composition of fish 
assemblages, with a loss of suitable habitat for cold-water 
fishes and gain in suitable habitat for warm-water fishes. In 
the end, these projected changes in thermal habitat attributable 
to climate may result in a net loss of fisheries, because many 
warm-water species may be unable to colonize habitats for-
merly occupied by cold-water species because of other habitat 
limitations (e.g., stream size, gradient). Although projected 
stream temperatures may vary greatly, depending on the emis-
sions scenario and models used, the results presented in this 
report represent one possibility. The relative change in stream 
temperature can provide useful information for planning for 
potential climate impacts to aquatic ecosystems. Model results 
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can be used to help identify vulnerabilities of streams to 
climate change, guide stream surveys and thermal classifica-
tions, prioritize the allocation of scarce financial resources, 
identify approaches to climate adaptation to best protect and 
enhance resiliency in stream thermal habitat, and provide 
information to make quantitative assessments of statewide 
stream resources.

Introduction
Water temperature is an important determinant of where 

fish and other aquatic organisms live in streams. Most fish are 
ectotherms, which exchange heat with and are generally the 
same temperature as their surrounding aquatic environment. 
The thermal environment in which a given species of fish ex-
ists can be defined by lower and upper lethal limits, and within 
these bounds are optimal temperatures for feeding, growth, 
and reproduction. Knowledge of how water temperature varies 
temporally and spatially within and among streams is critical 
to understanding how fish species are distributed in streams. 

In temperate regions such as Wisconsin, stream fishes 
typically encounter water temperatures in the range of 
0–30 degrees Celsius (°C). At any given time of year, water 
temperatures may vary within and among streams. Useful 
metrics for classifying streams can be derived from sum-
mertime water temperatures. Lyons and others (2009) clas-
sified Wisconsin streams into cold-water, cold-transition, 
warm-transition, and warm-water thermal classes based on the 
presence (or absence) of fish species, species abundance, and 
summertime water temperature metrics (June–August mean, 
July mean, and maximum daily mean) (table 1).

Cold-water and cold-transition streams can support high 
abundances of cold-water fishes such as brook trout Salve-
linus fontinalis and brown trout Salmo trutta. Cold-water 
fishes are less abundant in warm-transition streams and absent 
from warm-water streams during summertime but may occur 
in warm-water streams during colder seasons. Warm-water 
and warm-transition streams can support high abundances 
of warm-water fishes such as fathead minnows Pimephales 
notatus and smallmouth bass Micropterus dolomieu. Warm-

water fishes are less abundant in cold-transition streams and 
absent from cold-water streams. Summertime water tempera-
ture is therefore an important factor in explaining fish distribu-
tion patterns in streams of the Laurentian Great Lakes region 
(Wehrly and others, 2003; Chu and others, 2008; Steen and 
others, 2008; Lyons and others, 2009, 2010). Understanding 
the distribution of stream temperatures across all streams in a 
region will help in understanding how fish species are distrib-
uted. 

Water temperature in streams is affected by many factors 
operating at multiple spatial and temporal scales, often with 
complex interactions. Air temperature, for example, is a sig-
nificant climatic determinant of water temperature in streams 
in Wisconsin and other temperate regions (Magnuson and 
others, 1979; Stewart and others, 2006; Westenbroek, 2010b). 
However, stream temperatures in Wisconsin are highly hetero-
geneous as compared to air temperatures across the landscape. 
Streams or even stream reaches in close proximity to one 
another and under similar climate conditions may exhibit dif-
ferent temperature characteristics because of local variation 
in geology and groundwater input. Wehrly and others (1998, 
2006) have developed models to identify landscape effects on 
stream temperature. 

Given the important role that air temperature plays in 
the list of factors that determine stream temperature, resource 
managers are concerned that changes in climate will impact 
stream temperatures and fish distribution. Wisconsin has on 
average become warmer and wetter over the past 60 years, 
and this warming trend is predicted to continue and increase, 
with the statewide average air temperature increasing by up to 
3–4 °C by the year 2050 (WICCI, 2011). These increases in air 
temperature along with changes in the timing and amount of 
precipitation are expected to alter thermal and hydrologic re-
gimes of Upper Midwestern streams over the coming decades 
(Magnuson and others, 1997; Mosheni and others, 1999), 
affecting the distribution of fish and other aquatic species 
(Mosheni and others, 2003; Lyons and others, 2009, 2010). 
Current and future management of statewide stream resources 
would greatly benefit from an improved understanding of the 
current distribution of stream thermal habitat and the fish com-
munities that live there. 

Table 1.   Water temperature criteria for classifying Wisconsin streams into thermal classes and subclasses 
(Lyons and others, 2009). 

[deg C, degrees Celsius; <, less than; >, greater than] 

Thermal class Subclass
July mean 

(deg C)
June-August mean 

(deg C)
Maximum daily mean 

(deg C)

Cold water < 17.5 < 17 < 20.7
Cold transition 17.5 - 19.5 17.0 - 18.7 20.7 - 22.6
Warm transition 19.5 - 21 18.7 - 20.5 22.6 - 24.6
Warm water > 21 > 20.5 > 24.6
 very warm* > 24
*Very warm thermal subclass was added for purpose of estimating climate-change effects on warm-water streams.
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One limitation to stream and fisheries resource 
management in Wisconsin and elsewhere is the relatively 
small number of streams that can be physically sampled in a 
given year, whether sampling involves deploying data loggers 
to measure continuous stream temperature data or surveying 
fish populations. Modeling is a tool resource managers may 
use to make inferences from sampled stream sites to unsam-
pled stream sites to help address those limitations. 

To help gain a better understanding of statewide stream 
resources, an Artificial Neural Network (ANN) model was de-
veloped for Wisconsin using water temperature data collected 
at 254 stream sites over the summertime period for 1990–2002 
(Stewart and others, 2006; Westenbroek and others, 2010b). 
The model was applied to stream segments statewide to 
predict daily summertime stream temperature and classify 
streams into summer thermal classes (Lyons and others, 2009) 
and will be referred to as Artificial Neural Network version 1 
stream temperature model (ANNv1) throughout this report. 
ANN models also have been used to successfully predict 
water temperature in other regions of North America (Chenard 
and Caissie, 2008; McKenna and others, 2010; Risley and 
others, 2003). 

Lyons and others (2010) used the ANNv1 predictions to 
predict and project current and future distributions of 50 fish 
species in Wisconsin streams. In order to simulate stream 
temperature under three future climate-warming scenarios, 
Lyons and others (2010) adjusted July mean water temperature 
by 0.8 °C (low), 2.4 °C (medium), and 4 °C (high) to represent 
air temperature increases of low = 1 °C, medium = 3 °C, and 
high = 5 °C, based on Pilgrim and others (1998). A key limita-
tion to this effort was the oversimplification of the relation 
between air and water temperature as a single statewide ratio 
and lack of any connection between precipitation, groundwa-
ter, stream recharge, and water temperature. 

As Lyons and others (2010) demonstrated, stream 
temperature models can provide a means to make inferences to 
the potential impacts climate change may have on the stream 
environment and fish populations therein. However, new 
modeling efforts are required to improve how site-specific 
stream environmental landscape characteristics can be com-
bined with continuous climate data to make projections on 
how stream temperature may respond to changes in climatic 
variables under future conditions. Resource managers tasked 
with developing adaptation strategies to protect streams and 
fisheries opportunities can use such models to help prioritize 
the allocation of scarce financial resources and make quantita-
tive assessments of statewide stream resources.

Purpose and Scope

The purpose of this study was to develop models for 
predicting stream temperatures in all Wisconsin streams and 
to evaluate how stream temperatures may respond to climate 
change. This report describes the development of an Integrated 
Soil-Water-Balance and Artificial Neural Network version 1 

(SWB-ANNv1) Model to predict stream temperature from 
continuous climate time series and watershed-landscape 
characteristics under current climate conditions and project 
future stream temperature through integration with results of 
GCMs. The development of the SWB-ANNv1 model builds 
upon ANNv1 (Stewart and others, 2006), and the integration 
of the Soil-Water-Balance (SWB) model is an enhancement to 
this earlier modeling effort (Westenbroek and others, 2010b). 
The integration of SWB with the ANN provides a means to 
link changing climate patterns and precipitation amounts over 
time to stream temperature and potential groundwater re-
charge. Stream temperature is an important factor in determin-
ing the ecological status of temperate region streams in terms 
of which fish species can and cannot live and persist in those 
streams. The results of this study can be used subsequently to 
update stream fish models for predicting or projecting pres-
ence and absence of 50 fish species in Wisconsin streams 
under current and future climate scenarios (Lyons and others, 
2010). 

This study also is relevant to the mission of the 
U.S. Geological Survey (USGS) and its core science strategies 
with priorities to identify climate change impacts on fish and 
wildlife species. The resulting research and products can help 
provide the scientific foundation by which policymakers, 
resource managers, and the public make informed decisions 
about the management of natural resources on which they and 
others depend (Burkett and others, 2013). 

Study Area

The study area includes 94,341 km of streams 
(n = 38,423 segments) across the entire State of Wisconsin 
(1:100,000 scale U.S. National Hydrography data) and for 
two bordering watersheds: the Menominee River Basin (Up-
per Peninsula of Michigan) and the St. Croix River Basin 
(Minnesota) (fig. 1). Wisconsin includes rivers that drain to 
the Mississippi River Basin to the south and west, and  the 
U.S. Great Lakes Basin, to the north (Lake Superior) and east 
(Lake Michigan). The proximity to the Great Lakes has a 
strong influence on Wisconsin’s climate and plays a major role 
in seasonal climate variations. The landscape is dominated 
by forested lands in the north, agricultural lands in the central 
and southeast, and major urban centers in the southeast por-
tion of the State. The many rivers and lakes and other glacial 
landforms are common features of Wisconsin’s landscape, 
as glaciers once blanketed all but portions of western and 
southwestern Wisconsin. The unglaciated southwestern part 
of the State is commonly referred to as the Driftless Area 
and is characterized by rugged topography and groundwater-
dominated streams that support thriving cold-water fisheries 
for brook trout and brown trout. Cold-water streams also exist 
as part of the glaciated landscape in other parts of the State; 
however, warmer thermal classes of streams tend to be more 
prevalent in those areas (Trout Unlimited, 2005; Lyons and 
others, 2009).
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Approach

An approach was developed to predict stream 
temperature under current climate conditions and to project 
how stream temperature may change under future climate 
conditions. The approach uses a combination of static water-
shed landscape characteristics and dynamic time-series 
climatic variables as input for the SWB-ANNv1 model. Future 
climate scenarios are based on output of downscaled GCMs. 
The SWB-ANNv1 model was developed in order to simulate 
summertime mean daily stream temperature as a continuous 
time series for confluence-to-confluence stream segments us-
ing data collected at 371 stream temperature monitoring loca-
tions across Wisconsin. The SWB-ANNv1 model was applied 
across the study area to predict current and project future daily 
summertime stream temperature for all 94,341 km of stream. 
The summary variable July mean water temperature was used 
in this report to classify stream segments into thermal classes 
and for comparison to assess the effects of projected future 
climate on stream temperature (Lyons and others, 2009).

This study builds upon ANNv1 developed by Stewart and 
others (2006) that used water temperature data collected at 
254 stream sites over the summertime period for 1990–2002 
(Westenbroek and others, 2010b). The ANN model is a non-
linear model that uses neural network algorithms to link dy-
namic climate signals and static watershed landscape charac-
teristics to predict time series of stream temperature. The static 
variables provide a link to the spatial variability of stream 
temperature across the State, associated with the changing 
landscape, while the dynamic time-series climate variables 
provide a link to the temporal component of stream tempera-
ture, associated with climate patterns. The approach involves 
time-series clustering, a technique that was initially used to 
predict hourly stream temperatures in western Oregon (Risley 
and others, 2003) and by Roehl and others (2006) to generate 
spatially continuous water-level predictions for a Florida aqui-
fer. Stewart and others (2006) used a slightly modified time-
series clustering approach than these other studies for ANNv1 
because most of the Wisconsin stream temperature data were 
temporally discontinuous, having been measured during dif-
ferent summers over a 13-year period (1990–2002). The key 
climate signals in the ANNv1 model were 6 air temperature 
time-series variables obtained by clustering air temperature 
time-series data measured at 156 weather stations across the 
State into 6 groups. A key limitation to the approach taken in 
development of ANNv1 was the absence of any link between 
precipitation and stream temperature. 

This limitation was addressed by integrating a deterministic 
SWB model that uses precipitation and air temperature along with 
landscape characteristics as inputs to track soil moisture and gen-
erate a time-series estimate of potential groundwater recharge at a 
daily time step (Westenbroek and others, 2010a and b; Dripps and 
Bradbury, 2007; Hart and others, 2009). In addition to the SWB 
enhancement, the spatial and temporal extent of stream tempera-
ture measurements used in ANNv1 was expanded by including 
additional monitoring sites and extending the simulation period 
from the year 2002 to 2008. 

Future stream temperature will not only be influenced 
by changes in air temperature but also by changes in base 
flow that may be attributable to changes in precipitation. The 
amount of groundwater-derived base flow can play a key role 
in determining stream temperature and has been shown to 
be of critical importance to the viability of cold-water trout 
fisheries, particularly in the upper Midwest (Gaffield and oth-
ers, 2005; Zorn and others, 2002; Wehrly and others, 2006). 
The SWB model provided a means to estimate the temporal 
variability in groundwater recharge and provided a mechanism 
to evaluate the influence of changing air temperature and pre-
cipitation on groundwater recharge and soil moisture through 
the integration of GCMs downscaled for Wisconsin. Integrat-
ing the SWB model with the ANN model in turn provided a 
mechanism by which results from downscaled GCMs could be 
integrated to estimate the potential effects of climate change 
on stream temperature (fig. 2). 

OUTPUT

MODEL

INPUT

EXPLANATION

GCMs = General Circulation Models

SWB = Soil-Water-Balance Model

ANN = Artificial Neural Network Model

SWB–ANN = Integrated SWB and ANN Model

Estimated stream temperature

• Current (Climate observations)

• Future (GCMs Downscaled climate)

SWB

SWB–ANN

CLIMATE

Figure 2.  Conceptual modeling approach for evaluating 
stream temperature response to climate change in 
Wisconsin. 



6    A Model for Evaluating Stream Temperature Response to Climate Change in Wisconsin

To address future climate scenarios, this study used 
statistically downscaled air temperature and precipitation pro-
jections from the University of Wisconsin Center for Climatic 
Research (UWCCR) for 10 GCMs. The UWCCR used a pro-
cess known as statistical downscaling to relate the large-scale 
atmospheric conditions predicted by GCMs to the value of 
observed climate data at a given point. To allow for simulation 
of local climate variability and extremes while also simulating 
the large-scale weather pattern, the UWCCR related the large-
scale GCM results to a probability density function of values 
at each of 170 climate observing stations (Notaro and others, 
2011). This procedure is reported to reduce the variance and 
extremes that often occur when interpolating raw GCM data 
(Notaro and others, 2011).

 Statistical downscaling of daily air temperature and 
precipitation was available for three time periods—late-20th 
century-baseline historical hindcast (1961–2000), mid-21st 
century (2046–65), and late-21st century (2081–2100)—and 
three different future greenhouse-gas emissions scenarios 
(B2 scenario (low emissions), A1 scenario (high emissions), 
and the A1B scenario (moderate to high emissions) (Notaro 
and others, 2011)). Changes in stream temperature in future 
years will likely reflect realized changes in greenhouse-gas 
emissions; future stream temperatures described in this report 
assume that future carbon emissions develop as envisioned 
in the A1B emissions scenario. The A1B emissions scenario 
is a middle-of-the-road greenhouse-gas emissions scenario 
developed by the Intergovernmental Panel on Climate Change 
(IPPC) (IPCC, 2007). This scenario assumes continued use 
of fossil fuels and a continued and steady upward trajectory 
of carbon emissions over the next few decades, from about 
400 parts per million today to about 550 parts per million by 
mid-century. The three time periods—1961–2000, 2046–65, 
and 2081–2100—are treated as stationary periods, even 
though greenhouse-gas emissions are continuing to change 
through each timespan. This study considers only a single 
emissions scenario and single statistical realization owing 
to limited resources and time constraints. Climate data from 
UWCCR in the form of projected future daily air temperature 
and precipitation served as input for the SWB-ANNv1 model 
to estimate the effect of 10 GCMs on stream temperature.

The following sections describe the development of the 
SWB model and the integration of groundwater-recharge 
estimates from the SWB model into the ANN model (SWB-
ANNv1) to generate daily time-series estimates of stream 
temperature across Wisconsin. Both estimates were made 
under current and future climate conditions, using empirical 
climate observations for current conditions and statistically 
downscaled air temperature and precipitation projections from 
10 GCMs for future conditions. The SWB-ANNv1 model 
was applied to all stream segments statewide for current and 
future time periods. Model results are then presented, showing 
how stream temperature is projected to change across GCMs, 
future time periods, and thermal classes of streams.

The Soil-Water-Balance Model
The USGS SWB software (Westenbroek and others, 

2010a) was used to supply estimates of spatially explicit 
groundwater-recharge over time for use in the SWB-ANNv1 
stream temperature model. The USGS SWB model code 
estimated potential groundwater recharge for a grid of cells on 
a daily basis. The model simulated the major components of a 
water budget, including the processes of interception, runoff, 
evapotranspiration, snowfall, and snowmelt. Soil moisture 
is determined by calculating the net gain or loss of water 
to the soil in a given grid cell, and then by consulting the 
Thornthwaite-Mather soil moisture-retention tables; the tables 
allow one to estimate how much moisture may be extracted 
from a soil given the history of precipitation and evapotranspi-
ration to which it has been exposed (Thornthwaite and Mather, 
1957). The difference between the inputs and outputs of water 
for each cell, including the change in soil moisture storage, 
was assumed to be potential recharge. More detail about 
model formulation, parameterization, and calibration of the 
SWB model may be found in Westenbroek and others (2010a).

Source Data

Application of the SWB model required a tabular or 
gridded climate dataset, along with four gridded datasets 
describing landscape characteristics. The following sections 
describe how these source data were prepared for use with the 
SWB model.

Climate Observations

An interpolated climate dataset was created to encompass 
all Wisconsin streams and for streams outside of Wisconsin 
in two bordering watersheds: the St. Croix (Minnesota) and 
Menominee (Michigan) River Basins. Data from more than 
1,000 meteorological stations were extracted from the Data 
Series Index (DSI)-3200 daily surface database maintained 
by the National Climatic Data Center (NCDC) for the time 
period 1950–2008 (National Oceanic and Atmospheric 
Administration, 2011). Due to the grid-based nature of SWB, 
the selected stations extended beyond the study area, covering 
Wisconsin and parts of Michigan, Minnesota, Illinois, Indiana, 
and Iowa. Data elements included maximum and minimum 
daily air temperature, total daily precipitation, daily snowfall, 
and cumulative snow depth. Air temperature and precipita-
tion data elements were used as SWB input and snow data 
elements were used in SWB verification. The input for this 
gridded dataset was nearly identical to that used by Serbin and 
Kucharik (2009). Because their model domain did not extend 
beyond Wisconsin, it was necessary for us to include addi-
tional meteorological stations and create a similar grid for a 
slightly larger model domain. 
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Grids were prepared for each of the five climate variables 
by means of a custom R script (R Development Core Team, 
2011), in which a thin-plate spline—a two-dimensional 
smoothing technique—was calculated for each set of daily 
climate data (Fields Development Team, 2006) for the 
purposes of data interpolation and smoothing. Data were 
discarded from the analyses if there were duplicate records, 
if daily values were flagged as “accumulated” or “missing,” 
or if data values fell outside of realistic data ranges (e.g., a 
maximum air temperature greater than 49 °C, a minimum 
air temperature less than −34 °C, or total daily precipitation 
greater than 508 millimeters (mm)).

In addition, daily precipitation totals were adjusted on the 
basis of the recorded time of observation. A station at which 
precipitation values are recorded at 8:00AM is possibly more 
representative of the precipitation that fell during the 16 hours 
of the previous calendar day than the 8 hours of the recorded 
date. Thus, precipitation values were adjusted to account for 
the number of hours actually represented by the value on the 
recorded day. For example, 22.9 mm of precipitation recorded 
at a station with an observation time of 8:00AM would result 
in 15.2 mm of that precipitation amount reallocated to the pre-
vious day, retaining 7.7 mm for the current day. The resulting 
data were prepared for use in SWB model calibration.

Landscape Characteristics

Landscape-characteristic grids for SWB model input 
included land cover from the 2001 National Land Cover 
Database (NLCD), available water-holding capacity 
(AWC), and hydrologic soils group (HSG) from the Natural 
Resources Conservation Service Soil Survey Geographic 
Database (SSURGO), and a flow-direction grid derived from 
a hydrologically corrected version of the National Elevation 
Data (NED) (U.S. Geological Survey, 2003, 2004a; U.S. 
Department of Agriculture, 2009).

The source-data grids for the landscape characteristics 
were obtained at 30 meter (m) resolution; SWB model grid 
resolutions tested for this project ranged from 400 to 1,600 m. 
Generalization of the source-data grids to the SWB grids was 
performed as follows: for land cover, flow direction, and HSG 
grids, an SWB grid cell was assigned the value contained in 
the majority of the underlying input grid cells; for the AWC 
grid, an SWB grid cell was assigned a value equal to the 
simple mean of underlying grid cells.

Model Calibration for the Soil-Water-Balance 
Model

An initial SWB model for Wisconsin was created by 
combining the four landscape characteristics grids and the 
climate grids with a lookup table, which was populated with 
textbook values for the runoff curve number, rooting depth, 

and snow parameter values (Cronshey and others, 1986) for 
each combination of HSG and land-cover type. 

The SWB model was calibrated by use of parameter 
estimation software (PEST) (Doherty, 2009) in two steps. The 
first calibration step optimized the SWB model snow param-
eters to maximize model agreement with first-order climate 
station snowfall observations and included rain and snowfall 
correction factors and the assumed temperatures at which pre-
cipitation falls as entirely rain or snow. The second calibration 
step optimized SWB model runoff curve number, maximum 
infiltration rates, and rooting depth parameters to maximize 
model agreement with independently calculated groundwater-
recharge values for Wisconsin. The relation between each of 
these data types and the SWB code is shown in figure 3.

The estimates of recharge used in the calibration process 
were generated by Gebert and others (2007) by performing 
base-flow separation analysis on stream discharge records for 
the period 1970–99. For the calibration work, we chose a sub-
set (n = 44 gaging stations) of the basin recharge estimates that 
were judged to have the least amount of difference between 
groundwater and surface-water divide boundaries. Figure 4 
shows the ratio of the SWB model predicted recharge to the 
recharge calculated by Gebert and others, 2007, and figure 5 
shows SWB model output (recharge, inches per year) gener-
ated with calibrated snow, runoff, and soil depth parameters.

Model simulations were run at three resolutions (400, 
800, and 1,600 m) for the period 1989–2000 to determine 
optimal cell size. The finer resolution simulations did not ap-
preciably improve predictions; therefore, the 1,600 m cell size 
was selected for SWB model simulation. The SWB simula-
tions were then run for the 1,600 m cell size for the period 
1990–2008 to match up with the period of stream temperature 
observations and SWB-ANNv1 model simulation.

The Integrated Soil-Water-Balance and 
Artificial Neural Network version 1 
Stream Temperature Model

The SWB-ANNv1 model (fig. 6) was built upon the 
ANNv1 stream temperature model developed by Stewart and 
others (2006) for Wisconsin as described in the Approach 
section of this report. The spatial and temporal extent of the 
ANNv1 model was expanded in this study by including ad-
ditional stream measurement sites (from 254 in ANNv1 to 371 
sites in this study) and extending the simulation period from 
2002 to 2008. The approach and methods used in develop-
ment of ANNv1 and this study were nearly identical with the 
following exception: an SWB component, described in this 
report, was added as an enhancement to incorporate ground-
water-recharge estimates under current conditions and to 
provide a link to global climate models as a means to simulate 
future stream temperature conditions under different climate 
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Figure 3.  Approach and components of the Soil-Water-Balance Model (Westenbroek and others, 2010a). 
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Figure 4.  Ratio of Soil-Water-Balance predicted recharge to recharge calculated based on 
measured streamflow records (Gebert and others, 2007).
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Figure 5.  Results of the Soil-Water-Balance Model for Wisconsin, 1970–2000.



The Integrated Soil-Water-Balance and Artificial Neural Network version 1 Stream Temperature Model    11

scenarios (Roehl and others, 2006; Stewart and others, 2006, 
Westenbroek and others, 2010a and b). The output from SWB 
in the form of accumulated potential groundwater recharge, 
served as an additional ANN input variable in this study, in 
contrast to ANNv1. A detailed schematic of the SWB-ANNv1 
model approach is shown in figure 6. The calibrated SWB-
ANNv1 model was applied to all stream segments in the study 
area to estimate stream temperature statewide under current 
and future climate conditions.

Source Data

Development of the SWB-ANNv1 model utilized five 
input datasets including (1) empirical stream temperature 
time-series observations, (2) empirical climate time-series ob-
servations, (3) geographic information system (GIS)-derived 
landscape characteristics, (4) SWB estimates of groundwater 
recharge, and (5) climate time-series projections from down-
scaled GCMs. The following sections describe how these 
source data were prepared for development of the SWB-
ANNv1 model.

Stream Temperature Observations

Water temperature was measured each half hour from 
June 1 to August 31 at 371 stream sites for 1990–2008 by the 
Wisconsin Department of Natural Resources (WDNR) and the 
USGS. The data were discontinuous in that some stream sites 
were sampled over a single summer and others were sampled 
multiple summers over the 19-year period. The SWB-ANNv1 
stream temperature model was developed using 243 of the 
254 stream sites used in ANNv1, 11 of the ANNv1 sites 
were dropped in this study after they were determined to be 
outliers during model calibration, an additional 128 sites were 
added, and the time period was extended from 2002 to 2008. 
Most streams were wadeable (drainage area < 1,600 square 
kilometers (km2)), with the exception of 11 sites with drainage 
areas ranging from 1,784 to 15,923 km2. Stream sites were 
fairly evenly distributed across the full range of stream ther-
mal classes with 25 percent cold, 18 percent cold-transition, 
20 percent warm-transition, and 37 percent warm-water sites 
(Lyons and others, 2009). Time series of mean daily water 
temperature were calculated for each site and served as the 
response variable (fig. 7; appendix 1).

Sites were selected that had at least 62 out of 92 days of 
measurements during a single summertime (June–August) 
period. Temperature measurements outside of three standard 
deviations from the mean for the entire period of measure-
ment at a given site were considered outliers and were deleted 
(Wagner and others, 2011). Most water temperature sites 
(243 of 371) had only a single summer of data; the remaining 
128 sites had from 2 to 17 summers of water temperature mea-
surements for a total of 67,356 discrete daily stream tempera-
ture measurement data points.

Climate Observations from Empirical Data
Climatic data were acquired from the NCDC for weather 

stations across the study area (National Oceanic and Atmo-
spheric Administration, 2011). Climate stations with data col-
lected during 1990–2008 and with the most complete record 
during the summertime (June–August) period were identified. 
Daily time series were compiled and consisted of data from 
7 weather stations for air pressure, 160 stations for air temper-
ature, 13 stations for dew point, 160 stations for precipitation, 
and 13 stations for solar radiation. Mean daily values were 
calculated for all variables with the exception of precipitation, 
in which case total daily precipitation was calculated.

With as many as 160 air temperature and precipitation 
climate stations, it was necessary to simplify the dataset to 
a more manageable number of climate variables for model 
development (Roehl and others, 2006; Stewart and others, 
2006; Westenbroek and others, 2010b). “Time-series cluster-
ing” is a data-mining technique that can optimally segment a 
large collection of time-series signals into a smaller number of 
dynamically similar “groups.” A cross-correlation of Pearson 
coefficients (r) was calculated for each of the climate time-
series variables (e.g., air temperature, precipitation), with 
individual climate stations each representing a separate time 
series; then the k-means clustering technique was applied to 
the cross-correlation matrix to determine the ideal number of 
clusters or groups for each climate variable. The k-means clus-
tering technique provided in the Data Miner Software Kit of 
Weiss and Indurkhya (1997) was implemented, which is based 
on the algorithm of Hartigan and Wong (1979). For k number 
of groups, the k-means algorithm optimizes which members of 
the overall group should be in groups 1 through k. The optimal 
partitioning of groups is determined by using the root mean 
square error (RMSE) as a measure of the difference in distance 
between each member and the mean of the group such that 
movement of any point from one group to another will not 
decrease the RMSE for either group. The k-means clustering 
technique was repeated for a range of group sizes (k values), 
and a mean RMSE for all groups was computed and plotted 
for each k value. The optimal number of groups was selected 
at the inflection point between a sharp vertical decline in mean 
RMSE and a horizontal plateau, or in some cases where a 
more gradual reduction in RMSE occurred with increasing 
number of groups. The mean time series for each climate 
variable group was determined by calculating the mean daily 
value of all climate station members within a group. 

The resulting time series were decorrelated by calculating 
an average time series for each group (average of all climate 
station members), assigning one group to be a reference time 
series (i.e., the group with the largest number of members), 
and calculating differences from the averages on a daily time 
step for the other groups. This greatly reduced the number of 
time-series variables (e.g., air temperature from 160 stations to 
6 time-series groups) while preserving a semblance of spatial 
and temporal variability. All climate variable time-series 
groups with the exception of air temperature were subsequently 
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dropped after they did not help to improve model performance 
during ANNv1 model calibration. The six remaining air 
temperature time-series groups served as variables for model 
training for both ANNv1 and the SWB-ANNv1 model (figs. 8 
and 9; appendix 2). 

Landscape Characteristics
The 1:100,000 scale National Hydrography Dataset 

(NHD) served as the framework to which all of the landscape 
characteristics were attributed (U.S. Geological Survey, 2004b). 
Watershed boundaries were delineated using the 30-m NED 
for every confluence to confluence stream reach; static land-
scape variables were derived using a GIS for the entire up-
stream contributing area, 60-m riparian buffer, and the stream 
network (U.S. Geological Survey, 2004a). The landscape 
variables included drainage area, land cover, geology, Darcy 
groundwater potential (Baker and others, 2003a and b), annual 
streamflow exceedance, topography, geographic location, and 
network position as described in Brenden and others (2006). 
Pearson’s correlation coefficient (r ≥ 0.75) was used to identify 
and cull highly correlated variables to reduce dimensionality of 
the dataset; for highly correlated pairs, we chose the variable 
more strongly correlated with water temperature, resulting in 
20 static landscape variables for model development. 

Because the stream temperature time series were 
discontinuous among years, clustering and classification were 
used to identify the best landscape variables to explain the 
interannual variability in stream temperature and further re-
duce the list of variables for use in model training (Risley and 
others, 2003; Roehl and others, 2006). This approach helped 

determine the variables that best discriminated stream temper-
ature sites across multiple summers and also sites with similar 
thermal characteristics (Stewart and others, 2006; Brenden and 
others, 2006). 

Clustering and classification involved three steps: 
(1) stream temperature time series were clustered to group 
measurement sites with similar patterns into time-series 
groups, (2) classification models were developed to determine 
the smallest set of landscape variables that best discriminated 
each group within a single summer, and (3) a scoring proce-
dure was developed to determine those landscape variables 
that best discriminated site groups across multiple summers. 
This process reduced the list of candidate static landscape 
variables to 10 (Westenbroek and others, 2010b; Brenden and 
others, 2006). All 10 variables were used in calibration of 
ANNv1 but 2 variables were dropped for calibration of SWB-
ANNv1 resulting in 8 variables, because they were either spa-
tial scale dependent (e.g., downstream link; Shreve, 1967) or 
they did not seem to improve model performance (e.g., percent 
fines; table 2).

Groundwater-Recharge Projections from the 
Soil-Water-Balance Model

The SWB model tracked and output a variety of variables 
of potential use in stream temperature prediction including 
growing degree-day (GDD), accumulated potential water loss 
(APWL), running sum of unmet potential evapotranspiration, 
soil moisture, and potential recharge. All of these variables 
except potential recharge had “lag-time” associated with them, 

Table 2.  Static landscape variables used as model predictors of stream temperature in Wisconsin (Brenden and others, 2006). 

[Spatial unit defines the spatial scale over which the values apply; WT, total upstream watershed;  CH, local channel; RT, total upstream 60 meter riparian 
buffer; USGS, U.S. Geological Survey]

Static variable (code, units) Spatial unit Mean Minimum Maximum Standard 
deviation

Source

Drainage area   
(AREAKM, square kilometers)

WT 310.2 0.7 15,923.40 1,460.30 Computed from 
(USGS, 2004a)

Sinuousity  
(SINUOUS, unitless)

CH 1.3 1.0 4.2 0.3 Computed from 
(USGS, 2004b)

Urban - land cover  
(URBWT, percent)

WT 12.6 0.0 100.0 19.9 (USGS, 2003)

Agriculture - land cover  
(AGWT, percent)

WT 42.9 0.0 95.3 30.2 (USGS, 2003)

Open water - land cover  
(WATWT, percent)

WT 1.5 0.0 29.7 3.8 (USGS, 2003)

Wetland  - land cover  
(WETWT, percent)

WT 7.6 0.0 53.3 10.4 (USGS, 2003)

Darcy - groundwater delivery  
(DARWT, meters day-1)

WT -87.5 -749.0 5.2 98.6 (Baker and others, 
2003a)

Darcy - groundwater delivery  
(DARRT, meters day-1)

RT 77.6 -43.7 474.2 88.2 (Baker and others, 
2003a)



The Integrated Soil-Water-Balance and Artificial Neural Network version 1 Stream Temperature Model    15

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

Base from U.S. Geological Survey (USGS) digital data, 1:2,000,000.

L
A

K
E

  
M

I C
H

I G
A N

L A K E   S U P E R I O R

42°

44°

46°

92° 90° 88°

0 20 40 60 KILOMETERS

0 20 40 60 MILES

!(

!(

!(

!(

!(

!(

Study area

Lake and streams

County boundary

States

1

2

3

4

5

6

Air temperature station 
time-series group

EXPLANATION

I L L I N O I S

I O W A

M I N N E S O T A

M I C H I G A N

W I S C O N S I N

Figure 8.  Location of 160 air temperature climate stations used for time-series clustering and for training of the 
Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) stream temperature model. 
Six air temperature station time-series groups are indicated by color.
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such that the value on a given day was highly correlated to 
the value on the preceding day. The accumulation of potential 
recharge is useful in that it serves as perhaps a better indicator 
of general groundwater availability during the course of a 
summer season. In order to provide a more stable indicator of 
general groundwater availability, a running sum of the daily 
potential recharge was calculated (beginning on January 1st of 
each year) as well as mean annual recharge for each cell in the 
SWB model for the period 1990–2008. The summed potential 
recharge grid was used in SWB-ANNv1 model calibration 
because it addressed both the spatial and temporal components 
of recharge, unlike mean annual recharge where recharge 
values were averaged over the entire year. Time series of 
potential recharge were generated for every grid cell in the 
SWB model domain.
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Figure 9.  Average daily air temperature for six air temperature time-series groups averaged over 19 years (1990–2008) 
for the summertime (June–August) period. 

In order to take advantage of the dynamic nature of the 
SWB model and reduce the number of daily time series of 
potential recharge to a more manageable number, the model 
domain was divided into 16 different relatively homogenous 
spatial landscape units based on a combined hill-climbing/
iterative minimum distance method (Rubin, 1967; Forgy, 
1965). The landscape units were derived using a GIS and 
represented a combination of landscape characteristics likely 
to affect groundwater recharge and included quaternary 
geology, HSG, land cover, and NED (Fullerton and others, 
2003; U.S. Department of Agriculture, 2009; U.S. Geological 
Survey, 2003 and 2004a). 

An average time series of mean daily accumulated 
potential recharge was extracted from the SWB model for 
each of the 16 spatial landscape units. Accumulated potential 
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recharge starting with January 1st were summed for all days 
leading up to June 1st, to match up with the beginning of the 
SWB-ANNv1 model calibration period; values for subse-
quent days were added to the total on a daily time step for the 
summertime (June–August) period.

One of the 16 SWB time series was dropped from further 
analysis because it represented the land-cover class of water. 
The remaining 15 SWB time series were tested for cross-
correlation using Pearson’s correlation coefficient to determine 
if some of the SWB time-series signals were similar to one 
another (r ≥ 0.85); highly correlated time series and time series 
with poor spatial representation across the landscape were 
dropped, leaving 3 SWB model accumulated daily potential 
recharge time-series groups for use in the SWB-ANNv1 model 
calibration. These 3 time series of accumulated daily potential 
recharge are referred to as Soil-Water-Balance groups 2, 6, and 
12 in figure 10. 

Climate Projections from General Circulation 
Models

Downscaled climate data were acquired from UWCCR 
for the A1B scenario and 10 GCMs for 3 time periods 
(late 20th century-baseline (1961–2000), mid-21st century 
(2046–65), and late-21st century (2081–2100)) as daily grids 
with a 0.1 × 0.1 degree resolution (or about 8 × 8 km). Air 
temperature and precipitation were extracted from the daily 
grids and used as input to the SWB-ANNv1 model to simu-
late future summertime mean daily stream temperatures for 
all 30 GCM-time period combinations (10 GCMs × 3 time 
periods) for all stream segments in the study area. 

In order to make use of the downscaled GCM data in the 
SWB-ANNv1 model, the downscaled results were distributed 
to each grid cell within the study area using a smoothing 
procedure. The R package “fields” (Fields Development Team, 
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Figure 10.  Soil-Water-Balance time series of accumulated potential groundwater recharge used for input to the Integrated 
Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) stream temperature model. 
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2006) was used to apply a kernel smoothing algorithm to the 
GCM output to produce a set of grids with the same projection 
and resolution as the SWB model domain (1,600 m × 1,600 m 
grid cell size). 

Projections of air temperature were generated for each 
of the 6 air temperature time-series groups for the 30 GCM-
time period combinations. Air temperature time series were 
extracted from each of the GCMs for grid cells that matched 
the location of the 160 climate stations used in SWB-ANNv1 
model calibration. Daily averages were then generated for 
each of the six air temperature time-series groups, followed 
by decorrelation of group averages on a daily time step. This 
resulted in 30 time series (3 time periods × 10 GCMs) for each 
of the 6 air temperature groups. The results were assembled 
into 30 data files of projected daily air temperature; each data 
file included values for all 6 groups for a specific time period 
and GCM.

Future projections of accumulated daily potential 
recharge were derived for each SWB time series by running 
the SWB model with air temperature and precipitation esti-
mates from the 10 GCMs (table 3) and 3 time periods (1961–
2000, 2046–65, and 2081–2100). Accumulated daily potential 
recharge time series were then extracted for the 3 SWB groups 
required for SWB-ANNv1 model input, resulting in 30 time 
series (3 time periods × 10 GCMs). The results were assem-
bled into 30 SWB data files of daily accumulated potential 
recharge; each data file included values for all 3 SWB time 
series for a specific time period and GCM. 

Model Development and Application for the 
Integrated Soil-Water-Balance and Artificial 
Neural Network version 1 Stream Temperature 
Model	

Modeling highly dynamic hydrologic systems on a 
statewide scale is challenging because the systems vary 
discontinuously both spatially and temporally. Stream 
temperature models come in many different varieties, but 
may be lumped into two groups: deterministic and statistical 
(Benyahya and others, 2007). Deterministic stream tempera-
ture models generally calculate a segment-by-segment energy 
balance and require detailed data on physical characteristics 
of the stream (Allen, 2008; Cox and Bolte, 2007), data that 
are largely unavailable statewide. Statistical models, such as 
ANNs, are attractive in that they generally require much less 
site-specific data to implement; however, building represen-
tative empirical models requires sufficient data to capture 
diverse causes and effects. We chose to use ANN models be-
cause they are able to handle non-linear relations, interactions 
among predictors, and discontinuous time-series climate data, 
and are relatively quick to develop while still having high 
predictive power (Conrads and others, 2013; McKenna and 
others, 2010; Risley and others, 2003; Roehl and others, 2006; 
Stewart and others, 2006; Westenbroek and others, 2010b). 

Artificial Neural Networks
ANN models are empirical; they are developed directly 

from data. These models are a multivariate, nonlinear curve 
fitting technique with a flexible mathematical structure capable 
of describing complex nonlinear relations between input 
and output datasets. The structure of ANN models is loosely 
based on the biological nervous system and contains intercon-
nected units that are analogous to neurons (Hinton, 1992). 
The neurons perform a simple “transfer function” whereby the 
input layer neurons are connected to all hidden layer neurons 
and all hidden layer neurons are connected to all output layer 
neurons. Each connection has a weight associated with it; the 
output of a neuron is the simple combination of the values it 
receives through its input connections, the associated weights, 
and the neuron’s transfer function (fig. 11). An ANN model is 
“trained” by iteratively adjusting its weights to minimize the 
error by which it maps inputs to outputs for a dataset com-
posed of input/output vector pairs. Prediction accuracy can be 
measured by metrics such as the coefficient of determination 
(R2) and RMSE, both during and after training. 

In developing ANN models, it is customary to split 
datasets into “training” and “validation” datasets. Train-
ing datasets are used for model development, and validation 
datasets are used for model testing to provide an independent 
evaluation of model performance. For a large dataset with 
broad representation over the range of historical behaviors, 
a small percentage of the dataset (10–25 percent) may be 
selected for the training dataset; for a limited dataset, a larger 
percentage (75–100 percent) may be used in the training 
dataset. To prevent overfitting, the ANN models can be conser-
vatively trained using a method referred to as “stop training.” 
Stop training allows the modeler to stop the training process 
before the ANN model has fit the data to the maximum extent 
possible. Adjustments to architectural and training parameters 
also allow the modeler to control the geometric complexity 
of the surface that the ANN model fits to the data. The data-
mining software used for this application writes R2 and RMSE 
to the graphical user interface (GUI) during training, and an 
inflection in the rate of change in these parameters indicates 
a transition from a generally linear, multivariate surface fit to 
a progressively nonlinear fit. This inflection point was used 
to trigger stop training. In general, a high-quality predictive 
model can be obtained when the data ranges are well distrib-
uted throughout the state space of variables describing the 
physical system of interest, the input variables selected by the 
modeler share mutual information about the output variables, 
and the functional form “prescribed” or “synthesized” by the 
model to “map” (correlate) input variables to output variables 
is a good one.

Training and Validation
A single SWB-ANNv1 model was developed to simulate 

daily summertime stream temperature (June 1 to August 31) 
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for 1990–2008. The model was developed using the iQuest® 
(ADMi, 2011) data-mining software (Version 2.03C DM 
Rev31). Model input comprised static landscape variables 
and dynamic climate and SWB time series. The data matrix 
for SWB-ANNv1 model simulation was organized with each 
row representing a site on a particular day and the columns 
representing input and output variables. The data were stacked 
or concatenated by site, and time-series signals (air tempera-
ture, SWB, and stream temperature) were matched by calendar 
day. The SWB-ANNv1 model built upon the approach and 
results of the ANNv1 by using the same methodology and 
data sources; however, it expanded the spatial and temporal 
extent of stream temperature sites and observations and added 
the SWB component as an enhancement and a link to future 
climate projections. 

The SWB-ANNv1 model was trained with 90 percent of 
the available data (n = 304 sites; 60,618 measurement days); 
the remaining 10 percent were reserved for model validation 

(n= 67 sites; 6,738 measurement days) (fig. 7). Independent 
training data included sites with the highest information 
content that represent the breadth of behavior in the data; data 
with redundant or similar information were reserved for the 
independent validation dataset. Both training and validation 
sets included sites covering the range of thermal conditions, 
from cold-water to warm-water sites (Lyons and others, 2009). 
Sites with multiple years of measurements were assigned to 
the training set, whereas sites with a single summer of data 
were set aside for model validation. A number of candidate 
models were trained and evaluated for their statistical accuracy 
using measures of R2 and RMSE. 

The model development process involved training the 
SWB-ANNv1 model iteratively by starting with a candidate 
pool of static and dynamic input variables followed by adjust-
ing learning rates, the number of hidden layer neurons, and 
model weights to maximize the R2 and minimize the mean 
square error (MSE) across training and validation sets. In 

Table 3.  List of 10 General Circulation Models used in this study, run with the A1B emissions scenario, including their originating 
group, country, model identification, and model code (Notaro and others, 2011).

Originating group(s) Country Model identification Model code

Canadian Centre for Climate Modelling and Analysis Canada CGCM3.1 (T63) CGCM

Météo-France / Centre National de Recherches 
Météorologiques 

France CNRM-CM3 CNRM

Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) Atmospheric Research 

Australia CSIRO-Mk3.5 CSIRO

Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of the Korea 
Meteorological Administration (KMA), and 
Model and Data Group 

Germany / Korea ECHO-G ECHO

National Key Laboratory of Numerical Modeling for 
Atmospheric Sciences and Geophysical Fluid Dynamics /
 Institute of Atmospheric Physics (LASG / IAP) 

China FGOALS-g1.0 FGOALS

U.S. Department of Commerce / National Oceanic and 
Atmospheric Administration / Geophysical Fluid Dynamics 
Laboratory 

USA GFDL-CM2.0 GFDL

National Aeronautics and Space Administration / 
Goddard Institute for Space Studies 

USA GISS-AOM GISS

Instituto Nazionale di Geofisica e Vulcanologia Italy INGV-ECHAM4 INGV

Institut Pierre Simon Laplace France IPSL-CM4 IPSL

Center for Climate System Research (The University of 
Tokyo), National Institute for Environmental Studies, and 
Frontier Research Center for Global Change (JAMSTEC)

Japan MIROC3.2 (HiRes) MIROC
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addition to the use of “stop training” to prevent overfitting, we 
also slowed the training rates by a factor of 10 (e.g., .075 to 
.0075) when the training and (or) testing R2 values began to 
stabilize. We limited the number of hidden layer neurons to a 
maximum value of 3. Each time training rates were adjusted, 
model performance (R2) and input-output sensitivities were 
used to evaluate the stability of the model input variables and 
to remove those static variables with the least amount of influ-
ence on the output variable. The model was trained using stan-
dard back-error propagation (Rumelhart and others, 1986) by 
which the neural network software calculated an output value, 
compared it to the actual measured target value, determined 
the error, and readjusted model weights to reduce the error. 
This iterative process continued until the error was minimized, 
at which time no learning was taking place. This approach to 
model development is a common and widely used method for 
determining error weights and training a neural network. 

The ability of the model to predict daily mean stream 
temperature was evaluated using four ”goodness-of-fit” sta-
tistics for the 67 model validation sites and plots of measured 
and predicted stream temperatures. The importance of indi-
vidual variables was evaluated using model sensitivity reports. 
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The computed statistics included R2, MSE, RMSE, and 
percent model error (PME). The R2 indicated how much of 
the overall variability in the data was explained by the model 
and how well it captured the overall trend in the data; the MSE 
and RMSE provided a measure of prediction accuracy (i.e., 
whether the model underpredicted or overpredicted and the 
magnitude of that discrepancy); and the PME statistic divided 
the RMSE by the range of the measured data to determine the 
percent of error over the full range of modeled data. We also 
evaluated PME for each of four stream thermal classes (cold, 
cold transition, warm transition, and warm) defined by Lyons 
and others (2009). Each site was first assigned to a thermal 
class based on calculated average July mean, all site days were 
then grouped by thermal class and model partition (training 
and validation). PME was then calculated for all daily predic-
tions within each thermal class and model partition group.

Model Predictions and Projections for Current 
and Future Climate Conditions

The calibrated SWB-ANNv1 model was applied to all 
stream segments (n = 38,243) in the study area using the 
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dynamic (air temperature and SWB) and static (landscape 
characteristics) input variables to predict mean daily water 
temperature for each summertime date (June 1–August 31) for 
1990–2008 for a total of 1,748 daily water temperature predic-
tions for each stream segment (92 days per year for 19 years). 
The process was expedited by means of a custom R script 
(R Development Core Team, 2011). The daily predictions 
were summarized to generate a number of water temperature 
variables shown to be important for explaining fish distribu-
tion patterns in streams of the Laurentian Great Lakes region 
(Lyons and others, 2009, 2010). Water temperature variables 
included July mean, summertime (June–August) mean, 
summertime maximum daily mean, maximum of the 19 yearly 
July means, maximum of the 19 yearly summertime maximum 
daily means, and number of days when stream temperature 
exceeded a maximum threshold. These summary variables 
were generated for use in fish species occurrence models and 
for use in estimating the effects of projected future climate 
scenarios on stream temperature (Lyons and others, 2010). The 
summary variable July mean water temperature was used in 
subsequent analyses in this report to classify stream segments 
into thermal classes and for comparison to assess the effects of 
projected future climate on stream temperature. We used the 
cold, cold transition, warm transition, and warm-water thermal 
classes identified by Lyons and others (2009), then further 
subdivided the warm-water thermal class into warm and very 
warm in order to capture projected impacts of climate change 
on warm-water streams (table 1). 

We used the model calibration period 1990–2008 to 
represent what we considered “current” conditions along with 
climate observations extracted from the DSI-3200 daily sur-
face database maintained by the NCDC (National Oceanic and 
Atmospheric Administration, 2011). 

Future stream temperature estimates were made for 
three time periods (late 20th century (1961–2000), mid-21st 
century (2046–65), and late 21st-century (2081–2100)) using 
climate projections from 10 GCMs. This required running 
the SWB-ANNv1 model 30 times, each time replacing the air 
temperature and SWB time series with the appropriate data to 
represent the time period and GCM. The daily estimates were 
summarized to generate the average July mean stream tem-
perature for each stream segment for the 30 GCM-time period 
combinations.

Stream temperature projections derived from the 
10 GCMs for future time periods (2046–65 and 2081–2100) 
were referenced to late 20th century baseline (1961–2000) 
GCM-based projections, representing the “current” time pe-
riod (WICCI, 2011). In contrast, the statewide stream tempera-
ture estimates representing “current” (1990–2008) conditions 
were based on actual daily air temperature observations. In 
order to evaluate change in stream temperature from current 
to future time periods, it was necessary to adjust the future 
stream temperature projections for 2046–65 and 2081–2100 
so they could be referenced to observed current conditions 
(1990–2008) rather than modeled GCM-based “current” con-
ditions for the 20th century baseline (1961–2000). Model pro-

jections of stream temperature under future conditions based 
on projections from GCMs may be biased. Climate models 
capture general global trends reasonably well, but significant 
local biases in air temperature and precipitation may be pres-
ent in any given model (Haerter and others, 2011). A bias cor-
rection factor was applied to bring GCM-based projections of 
stream temperatures in line with stream temperatures projected 
from observed climate data for 1990–2008.

The bias correction factor represented the difference in 
degrees Celsius between GCM-based “current” and the “ob-
servation” based “current” July mean stream temperature. The 
GCM-modeled time period 1961–2000 baseline for current 
climate conditions and the 1990–2008 time period of stream 
temperature observations overlapped for the years 1990–2000. 
Therefore, 1990–2000 served as the baseline for calculation of 
the bias correction factor.

Bias correction factors were calculated separately for 
each combination of stream segment and GCM. Bias correc-
tion factors were calculated and applied as follows:
1.	 July mean stream temperature was calculated for stream 

temperature model outputs run with either the GCM-gen-
erated dynamic air temperature data for 1990–2000 or the 
observed air and stream temperature data for 1990–2000. 

2.	 Bias correction factors were calculated as the GCM-
derived July mean stream temperature minus the July 
mean stream temperature derived from observed air 
temperature data.

3.	 Bias correction factors were subtracted from projected 
stream temperatures derived from models using GCM 
projections of air temperatures for 2046–65 and 
2081–2100. 
As an example, if projections of July mean stream 

temperatures based on models using GCM-generated air tem-
perature input data were 2 °C higher than July mean stream 
temperatures based on observed air and stream temperature 
data, then the bias correction factor would be +2 °C. There-
fore, projected stream temperatures based on GCMs for future 
time periods (mid- and late-21st century) would be corrected 
by subtracting 2 °C.

After correcting the GCM-derived July mean stream 
temperature for each stream segment using the bias correc-
tion factor, the resulting stream temperatures were classified 
into 1 of 5 thermal classes (table 1) for each of the 10 runs of 
the SWB-ANNv1 model for both time periods. Results were 
summarized statewide by GCM and time period using the two 
metrics, July mean stream temperature and July mean thermal 
class. A “GCM average” July mean stream temperature was 
calculated for each stream segment by averaging the values 
of the bias-corrected GCM-derived July mean stream tem-
peratures that resulted from the 10 SWB-ANNv1 model runs 
using the GCM-climate source data. The July mean thermal 
class was then determined for each July mean “GCM average” 
value. Both the “GCM average” and individual results from 
running the SWB-ANNv1 model using each of the 10 GCM 
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datasets as climate input were used for comparison of current 
and future stream temperature projections. In subsequent 
sections of this report, individual results from the 10 SWB-
ANNv1 model runs with GCM climate source data will be 
referred to by the GCM model code (table 3), and the average 
of those results will be referred to as the GCM average.

Results and Discussion

Model Performance

The best model predictors of daily stream temperature 
were the six decorrelated air temperature time series, three 
SWB time series of accumulated potential groundwater re-
charge and eight static landscape variables. The sensitivity of 
the variables in the final model indicated that the daily stream 
temperature was most sensitive to two of the static variables, 
Darcy (network watershed; a measure of groundwater deliv-
ery) and drainage area, followed by one of the dynamic air 
temperature time-series groups and the static variable open 
water (table 4). 

The R2 for the training and validation data were 0.71 and 
0.76 for the SWB-ANNv1 model compared to 0.60 and 0.67 
for ANNv1, a nine percentage point improvement (Stewart 
and others, 2006; Westenbroek and others, 2010a). Evalua-

tions of daily predictions for the SWB-ANNv1 model resulted 
in an RMSE of 1.9 and 1.5 for training and validation data, 
respectively, and a PME of 8.8 percent for both training and 
validation data, respectively (table 5), which also are improve-
ments over ANNv1. Nearly one-half (49.2 percent) of sum-
mertime (June–August) mean stream temperature predictions 
using model validation sites were within 1 °C of observed 
values, 80.5 percent were within 2 °C, and 95.1 percent were 
within 3 °C (table 6). Nearly one-half (47.4 percent) of July 
mean predictions also were within 1 °C of observed values, 
77.2 percent were within 2 °C, and 93.3 percent were within 3 
°C (table 6) for model-validation sites. 

The range of measured values for model-validation 
sites was smallest for cold-water (about 11 °C) and largest 
for the warm-water sites (about 17 °C). This pattern also was 
observed for the training sites. Percent model error (which 
is a function of the range of measured values) by thermal 
class ranged from about 10 percent for warm water to about 
14 percent for cold water, for both validation and training sites 
(table 7). The PME also was summarized for two validation 
sites representing the 25th and 75th percentiles for each of 
the four thermal classes (cold, cold transition, warm transi-
tion, and warm) (table 8). The PME interquartile range was 
about 14 to 28 percent for the cold-water sites, about 10 to 
17 percent for cold-transition sites, about 12 to 18 percent for 
warm-transition sites, and about 12 to 17 percent for warm-
water sites. 

Table 4.  Variables used to calibrate the Integrated Soil-Water-Balance and Artificial Neural Network version 1 
(SWB-ANNv1) Model and the average absolute sensitivity.

[Spatial unit defines the spatial scale over which the values apply; WT, total upstream watershed; na, not applicable; RT, total upstream 
60 meter riparian buffer; CH, local channel] 

Variable (code, units)
Spatial 

unit
Variable type

Average absolute 
sensitivity

Groundwater delivery - Darcy (DARWT, meters day-1) WT static 0.210
Drainage area  (AREAKM, square kilometers) WT static 0.161
Air temperature cluster 6 (AT6, degrees Celsius) na dynamic 0.157
Open water (WATWT, percent) WT static 0.143
Wetland (WETWT, percent) WT static 0.071
Agricultural land cover (AGWT, percent) WT static 0.046
Urban land cover (URBWT, percent) WT static 0.038
Groundwater delivery - Darcy (DARRT, meters day-1) RT static 0.034
Air temperature cluster 3 (AT3, degrees Celsius) na dynamic 0.032
Sinuousity (SINUOUS, unitless) CH static 0.021
Air temperature cluster 1 (AT1, degrees Celsius) na dynamic 0.021
Air temperature cluster 4 (AT4, degrees Celsius) na dynamic 0.019
Groundwater recharge - Soil-water-balance cluster 6 (SWB6, inches) na dynamic 0.011
Groundwater recharge -  Soil-water-balance cluster 1 (SWB1, inches ) na dynamic 0.010
Air temperature cluster 2 (AT2, degrees Celsius) na dynamic 0.010
Air temperature cluster 5 (AT5, degrees Celsius) na dynamic 0.009
Groundwater recharge - Soil-water-balance 8 (SWB8, inches ) na dynamic 0.007
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Table 5.  Summary of performance statistics for the models used to estimate stream temperature for 254 sites (1990–2002) and 
371 sites (1990–2008) in Wisconsin.

[R2, coefficient of determination; RMSE, root mean square error; deg C, degree Celsius; PME, percent model error = root mean square error of the model 
predictions divided by the range of measured data; ANNv1, Artificial Neural Network version 1 stream temperature Model (Stewart and others, 2006); 
SWB-ANNv1, Integrated Soil-Water-Balance and Artificial Neural Network version 1 Model]

Model name Time period
Model 

partition

Measured data, in degrees Celsius
Number 
of sites

Number of  
observations

R2 RMSE 
(deg C)

PME 
(percent)

Minimum Maximum Range*

ANNv1 1990–2002
Training 7.4 30.5 23.1 223 25,472 0.60 2.3 9.8
validation 9.8 28.3 18.5 31 2,799 0.67 2.0 11.0

SWB-ANNv1 1990–2008
Training 7.4 30.8 23.4 304 60,618 0.71 1.9 8.8
validation 10.1 28.5 18.4 67 6,738 0.76 1.5 8.8

*Difference in maximum and minimum measured values.

Table 6.  Summary of residuals (absolute value) for the Integrated Soil-Water-Balance and Artificial Neural Network 
version 1 (SWB-ANNv1) Model used to estimate stream temperature for 371 sites in Wisconsin (1990–2008). 

[percent, percent of measured observations; <, less than; >, greater than]

Summer (June–August) mean July mean

Training Validation Training Validation

Degrees Celsius
Number 
of obser-
vations

Percent
Number 
of obser-
vations

Percent
Number 
of obser-
vations

Percent
Number 
of obser-
vations

Percent

< 1 degree 24,009 39.6 3,313 49.2 7,789 37.8 1,107 47.4

> 1 - 2 degrees 18,039 29.8 2,106 31.3 6,131 29.8 696 29.8

> 2 - 3 degrees 10,955 18.1 982 14.6 3,801 18.5 376 16.1

> 3 - 4 degrees 5,191 8.6 283 4.2 1,918 9.3 135 5.8

> 4 - 5 degrees 1,889 3.1 51 0.8 753 3.7 19 0.8

> 5 - 6 degrees 431 0.7 2 0.03 159 0.8 0 0

> 6 - 7 degrees 72 0.1 1 0.01 36 0.2 0 0

> 7 - 8 degrees 19 0.03 0 0 11 0.1 0 0

> 8 - 9 degrees 11 0.02 0 0 2 0.01 0 0

> 9 - 10 degrees 2 0.003 0 0 0 0 0 0

Total 60,618 6,738 20,600 2,333
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Table 7.  Percent model error by thermal class for the Integrated Soil-Water-Balance and Artificial Neural Network 
version 1 (SWB-ANNv1) Model used to estimate stream temperature for 371 sites in Wisconsin (1990–2008). 

[PME, percent model error = root mean square error of the model predictions divided by the range of measured data]

Thermal class

Training Validation

Number of 
observa-

tions

Percent of 
observa-

tions

Range of 
measured 

values*

PME
(percent)

Number of 
observa-

tions

Percent of 
observa-

tions

Range of 
measured 

values

PME
(percent)

Cold water 13,640 22.5 15.8 13.7 1,976 29.3 10.5 14.5

Cold transition 11,447 18.9 18.4 10.5 1,275 18.9 12.2 10.6

Warm transition 9,039 14.9 16.5 10.4 1,733 25.7 13.5 11.5

Warm water 26,492 43.7 20.2 9.5 1,754 26.0 16.7 10.0

*Difference in maximum and minimum measured values.

Table 8.  Statistical measure of prediction accuracy for eight validation sites representing the 25th and 75th percentile for cold, 
cold-transition, warm-transition, and warm-water sites for the Integrated Soil-Water-Balance and Artificial Neural Network 
version 1 (SWB-ANNv1) Model (1990–2008).  

[R2, coefficient of determination; MSE, mean square error; deg C, degrees Celsius; RMSE, root mean square error; PME, percent model error = root mean 
square error of the model predictions divided by the range of measured data]

Site  
number

Thermal class
Year  

measured

Inner  
quartile 
range  

(percentile)

Number of  
observations

R2 MSE  
(deg C)

RMSE  
(deg C)

Range of  
measured 

data  
(deg C)*

PME
(percent)

420 Cold water 2008 25th 92 0.66 0.5 0.7 5.0 13.8
426 Cold water 2007 75th 92 0.8 6.0 2.4 8.7 28.2
228 Cold transition 1998 25th 92 0.85 0.7 0.8 8.7 9.5
353 Cold transition 2000 75th 84 0.77 0.8 0.9 5.1 17.3
287 Warm transition 2004 25th 92 0.77 1.3 1.1 9.5 11.9
242 Warm transition 2000 75th 92 0.72 2.7 1.6 8.9 18.4

20 Warm water 1999 25th 78 0.76 1.3 1.1 9.3 12.2
46 Warm water 1999 75th 91 0.74 2.4 1.5 9.3 16.6

*Difference in maximum and minimum measured values.

Predicted stream temperature appeared to track the daily 
time-series pattern for all eight validation sites representing 
the 25th and 75th percentiles by thermal class (fig. 12). The 
measured and predicted daily temperatures for the 25th per-
centile sites appeared to match closely with no bias. For the 
75th percentile sites that are classified as cold-water, cold-
transition, or warm-transition, however, predicted values were 
biased high; temperature values for the cold-water, cold-
transition, and warm-transition classes were overpredicted 
when compared to measured values (fig. 12). Conversely, 
the 75th percentile values for sites classified as warm water 
appear to be biased low. The PME statistic provides a mea-
sure of the percent error across the range of measured data, 
where the R2 provides a measure of prediction accuracy and 
how well it captured the overall trend in the data. This can 

be observed in figure 12 where sites with similar R2 values 
(i.e., warm-transition sites; site 287, 25th percentile, R2 = 0.77, 
PME = 11.9; site 242, 75th percentile, R2 = 0.72, PME = 18.4) 
have very different PME values. For these warm-transition 
sites, the measured versus predicted graphs follow a similar 
overall trend for both sites as indicated by the R2; however, for 
site 242 (75th percentile) the higher PME (18.4 percent) can 
be observed by viewing the magnitude of differences between 
the graph lines across the full range of measured values when 
compared to the graph for site 287 (25th percentile). A similar 
pattern was observed for the cold-water, cold-transition 
and warm-water sites (table 8; fig. 12) when comparing R2 
and PME. The PME was greatest for cold-water sites when 
compared to other thermal classes (table 7) indicating a higher 
percent error across the range of measured data.
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Cold (25th percentile): Validation site: 420 
R2 = 0.66, MSE = 0.5, RMSE = 0.7, PME = 13.8  

Cold transition (25th percentile): Validation site: 228 
R2 = 0.85, MSE = 0.7, RMSE = 0.8, PME = 9.5 

Warm transition (25th percentile): Validation site: 287 
R2 = 0.77, MSE = 1.3, RMSE = 1.1, PME = 11.9  

Cold transition (75th percentile): Validation site: 353 
R2 = 0.77, MSE = 0.8, RMSE = 0.9, PME = 17.3  

Warm transition (75th percentile): Validation site: 242 
R2 = 0.72, MSE = 2.7, RMSE = 1.6, PME = 18.4  

Warm (25th percentile): Validation site: 20 
R2 = 0.76, MSE = 1.3, RMSE = 1.1, PME = 12.2  

Warm (75th percentile): Validation site: 46 
R2 = 0.74, MSE = 2.4, RMSE = 1.5, PME = 16.6  

Cold (75th percentile): Validation site: 426 
R2 = 0.8, MSE = 6.0, RMSE = 2.4, PME = 28.2  
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Figure 12.  Simulations of stream temperature for eight validation sites, representing 25th and 75th percentiles, 
based on percent model error for four thermal classes (cold, cold transition, warm transition, and warm) from the 
integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) stream temperature Model.
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Model Predictions for Current Conditions

Modeled water temperatures for the current time period 
(1990–2008), as measured by July mean water temperature, 
ranged across stream segments from about 9.0 to 32.0 °C with 
a mean of 18.7 °C and median of 18.8 °C. More than one-half 
of the stream kilometers in the study area (56.7 percent) were 
thermally suitable for supporting cold-water fishes such as 
trout, having thermal classifications of cold (27.1 percent) or 
cold transition (29.6 percent) (table 9; figs. 13, 14, and 15). 
The spatial distribution of streams by thermal class indicated 
a predominance of cold and cold-transition streams in the 
Driftless Area of western and southern Wisconsin and in the 
north along Lake Superior (figs. 1, 14, and 15). The remaining 
stream kilometers were thermally suitable for supporting 
warm-water fishes such as minnow and sunfishes, having 
thermal classifications of warm transition (29.6 percent), warm 
(12.5 percent), and very warm (1.1 percent) (table 9; figs. 13, 
14, and 15). The spatial distribution of streams by thermal 
class indicated a predominance of warm and warm-transition 
streams in the eastern half of Wisconsin, with warm-transition 
streams also prominent across northern Wisconsin adjacent to 
the Upper Peninsula of Michigan (figs. 1, 14, and 15). 

For the Wisconsin portion of the study area (excluding 
the St. Croix River Basin in Minnesota and the Menominee 
River Basin in Michigan), the SWB-ANNv1 stream tem-
perature model classified streams, based on stream length, as 
29.2 percent cold, 30.3 percent cold transition, 27.1 percent 
warm transition, and 13.4 percent warm. The ANNv1 stream 
temperature model, in contrast, classified Wisconsin streams 
as 7.9 percent cold, 45.9 percent cold transition, 28.6 percent 
warm transition, and 17.6 percent warm (Lyons and others, 
2009). Overall, the SWB-ANNv1 model predicted an ad-
ditional 5.7 percent of stream kilometers as suitable for 
cold-water fishes, as compared to the ANNv1 model, with 
about equal proportions of cold and cold transition stream 
kilometers.

Model Projections for Future Climate Conditions

	 Future projections of stream temperature were made 
using climate projections downscaled for Wisconsin from 
10 GCMs for the mid-21st century (2046–65) and late-21st 
century (2081–2100). The projections from the individual 
GCMs vary widely; therefore, we provide both the GCM aver-
age results as well as the results from individual GCMs as a 
means to show the range of projected values (IPCC, 2007).

Average GCM-based water temperature projections: 
2046–65 time period—Projected water temperatures (July 
mean) for the mid-21st century ranged from about 9.2 to 
33.0 °C for all stream segments, similar to the current time pe-
riod, however the mean (19.9 °C) and median (20.0 °C), were 
both about 1.0 °C higher when compared to current. Almost 
two-fifths of the stream kilometers in the study area (38.7 per-
cent) were projected to be thermally suitable for supporting 

cold-water fishes at mid-century, having thermal classifications 
of cold (15.5 percent) or cold transition (23.2 percent) (table 9; 
fig. 13). The remaining 61.3 percent of stream kilometers were 
thermally suitable for supporting warm-water fishes, having 
thermal classifications of warm transition (21.3 percent), warm 
(36.8 percent), and very warm (3.2 percent). These projected 
mid-21st century changes represent a loss of thermal habitat 
for cold-water fishes, with a loss of 18 percent of stream kilo-
meters and a concomitant gain of thermal habitat for warm-
water fishes.

Average GCM-based water temperature projections: 
2081–2100 time period—During the late-21st century 
projected water temperatures (July mean) ranged from about 
9.3 to 31.7 °C, again similar to the current time period, 
however the mean (20.4 °C) and median (20.5 °C) were both 
1.7 °C higher when compared to current. About one-third of 
the stream kilometers in the study area (33.2 percent) were 
projected to be thermally suitable for supporting cold-water 
fishes at late-century, having thermal classifications of cold 
(11.0 percent) or cold transition (22.2 percent) (table 9; 
fig. 13). The remaining 66.8 percent of stream kilometers were 
thermally suitable for supporting warm-water fishes, having 
thermal classifications of warm transition (18.8 percent), warm 
(42.4 percent), and very warm (5.8 percent). These projected 
late-21st century changes represent a loss of thermal habitat 
for cold-water fishes, with a loss of 23.5 percent of stream 
kilometers and a concomitant gain of thermal habitat for 
warm-water fishes. 

Individual GCM-based water temperature 
projections: 2046–65 and 2081–2100 time period—Among 
SWB-ANNv1 models using climate data from the 10 indi-
vidual GCMs, the percentage of stream kilometers projected 
to be suitable for cold-water fishes at mid-century ranged from 
a high of 46.7 percent (model CGCM climate data) to a low 
of 25.7 percent (model GFDL climate data) (table 9; fig. 13). 
By late-century, the percentage of stream kilometers projected 
to be suitable for cold-water fishes ranged from a high of 
48.2 percent (model CSIRO climate data) to a low of 23.5 per-
cent (model MIROC climate data) for stream kilometers suit-
able for cold-water fishes. In the worst-case scenario for cold-
water fishes, a comparison of projections using GCM climate 
data to predictions under current climate conditions indicates a 
loss of 30.9 percent of total stream kilometers at mid-century 
(model GFDL climate data) and a loss of 33.2 percent at late-
century (model MIROC climate data) as no longer suitable for 
supporting cold-water fishes. These projected losses based on 
data from individual GCMs represent more than a 10 percent 
reduction in cold-water habitat over the GCM-based average.

Despite the shift from stream kilometers suitable for 
cold-water fishes (lower percentage) to stream kilometers 
suitable for warm-water fishes (higher percentage), the gain in 
stream kilometers occurred only among warm and very warm 
streams (table 9; fig.13); warm-transition streams also suf-
fered losses. There were about 2.9 times as many warm stream 
kilometers projected by mid-century and about 3.4 times as 
many projected by late-century for the GCM average. For very 
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Figure 13.  Percent stream length for stream temperature thermal classes under current (1990–2008) and future 
(2046–2065 and 2081–2100) climate conditions for 10 General Circulation Models (GCMs).
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warm streams, there were about 2.9 times as many projected 
by mid-century and about 5.3 times as many projected by 
late-century for the GCM average. These directional shifts 
occurred and varied in magnitude by as much as 15 percent 
in SWB-ANNv1 models using climate data from each of the 
10 GCMs (table 9; fig. 13).

Change in the Amount of Stream Habitat 
Summarized by Thermal Class

The change in the amount of stream habitat was evaluated 
by comparing the percent of stream kilometers lost or gained 
by thermal class from current to future time periods. Losses 
occurred for cold-water, cold-transition, and warm-transition 
streams and gains occurred for the warm-water and very 
warm streams for both mid- and late-century. The greatest and 
comparable losses occurred for cold streams for both mid- and 
late-century and the greatest gains occurred for warm streams 
by mid-century, and for very warm streams by late-century 
based on the GCM average (table 9; fig. 13).

Cold-Water Streams
The GCM average projected a mid-century loss of 

42.9 percent and late-century loss of 59.3 percent of the 
25,597 stream kilometers predicted to be cold under current 
climate conditions. Mid-century projected losses ranged 
from a low of 24.3 percent (model CGCM climate data) to a 
high of 80 percent (model GFDL climate data). Late-century 
projected losses ranged from a low of 19.7 percent (model 
CSIRO climate data) to a high of 84.6 percent (model MIROC 
climate data). This worst-case scenario using model MIROC 
climate data projected only 4.2 percent (3,940 km) of all 
stream kilometers remaining as cold at late-century compared 
to 27.1 percent under current climate conditions.

Cold-Transition Streams
For cold-transition streams, the SWB-ANNv1 model 

GCM averages projected a mid-century loss of 21.6 percent 
and late-century loss of 25.1 percent of the 27,958 stream 
kilometers predicted to be cold transition under current climate 
conditions (table 9; fig. 13). Mid-century projected losses 
ranged from a low of 12.0 percent (model CGCM climate 
data) to a high of 31.4 percent (model GFDL climate data). 
Late-century projected losses ranged from a low of 10.9 per-
cent (model CSIRO climate data) to a high of 34.8 percent 
(model MIROC climate data). 

Warm-Transition Streams
The SWB-ANNv1 model GCM averages projected a 

mid-century loss of 28.1 percent and late-century loss of 
36.6 percent of the 27,924 stream kilometers predicted to be 
warm transition under current climate conditions. Mid-century 
projected losses ranged from a low of 0.7 percent (model 
CGCM climate data) to a high of 38.2 percent (model GFDL 

climate data). Late-century projected losses ranged from a 
low of 1.3 percent (model CSIRO climate data) to a high of 
42.5 percent (model MIROC climate data).

Warm-Water Streams
The SWB-ANNv1 model GCM averages projected the 

greatest gain at mid-century of 194 percent and late-century 
gain of 237 percent of the 11,830 stream kilometers predicted 
to be warm under current climate conditions (table 9; fig. 13). 
Mid-century projected gains ranged from a low of 75.1 percent 
(model CGCM climate data) to a high of 274 percent (model 
GFDL climate data). Late-century projected gains ranged from 
a low of 65.6 percent (model CSIRO climate data) to a high of 
248 percent (model GFDL climate data).

Very Warm Streams
The SWB-ANNv1 model GCM averages projected a 

mid-century gain of 189 percent and late-century gain of 
429 percent of the 1,033 stream kilometers predicted to be 
very warm under current climate conditions (table 9; fig. 13). 
Mid-century projected gains ranged from a low of 82.3 percent 
(model CGCM climate data) to a high of 726 percent (model 
GFDL climate data). Late-century projected gains ranged from 
as little as 68.2 percent (model CSIRO climate data) to as high 
as 1,653 percent (model MIROC climate data).

Change in the Distribution of Stream Habitat 
Summarized by Thermal Class

Maps of the spatial distribution of streams by thermal 
class showed how the distribution of thermal classes were 
projected to change for SWB-ANNv1 GCM averages and 
each individual GCM at mid-century (fig. 14) and late-century 
(fig. 15). Under current climate conditions, cold and cold-
transition streams are predominantly located across western 
and southern Wisconsin, including the Driftless Area (fig. 1), 
and in the north along Lake Superior. Warm and warm-
transition streams are predominantly located in the eastern 
half of Wisconsin, with warm-transition streams also located 
across northern Wisconsin adjacent to the Upper Peninsula of 
Michigan. At mid- and late-century, based on GCM averages, 
mapped projections showed a contraction of cold streams in 
the Driftless Area and an expansion of warm streams across 
northern Wisconsin as compared to current climate conditions 
(figs. 14 and 15). When considering individual GCMs, the 
range of projected cold-water contraction versus warm-water 
expansion varied among models for both mid- and late-century 
(figs. 14 and 15). 

At mid-century, the map of projections based on model 
CGCM climate data showed the lowest loss of cold, cold tran-
sition, and warm transition stream kilometers and the lowest 
gain of warm and very warm stream kilometers (fig. 14). Con-
versely, the map of projections based on model GFDL showed 
the highest loss of cold, cold transition, and warm transition 
stream kilometers and the highest gain of warm and very 
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warm stream kilometers (fig. 14). At late-century, the map of 
projections based on model CSIRO climate data showed the 
lowest loss of cold, cold transition, and warm transition stream 
kilometers and the lowest gain of warm and very warm stream 
kilometers (fig. 15). Conversely, the map of projections based 
on model MIROC climate data showed the highest loss of 
cold, cold transition, and warm transition stream kilometers 
and the highest gain of very warm stream kilometers (the gain 
for warm stream kilometers was slightly higher for projec-
tions based on model GFDL climate data, 249 percent) versus 
model MIROC climate data (221 percent) (fig. 15).

Change in Absolute Temperature
All stream segments were projected to become warmer, 

by mid- and late-century for all SWB-ANNv1 model results 
based on climate data from each of the GCMs (table 10; 
figs. 16 and 17). On average, about 80 percent of stream 
kilometers were projected to increase by 1 to 2 °C in July 

mean stream temperature by mid-century; the other 20 percent 
were projected to increase by less than 1 °C. By late-century, 
about 99 percent were projected to increase more than 1°C by 
late-century, with 31 percent of those increasing by more than 
2 °C. Increases in stream temperature were projected to be 
greater at late-century than at mid-century for SWB-ANNv1 
models based on climate data from 8 of the 10 GCMs. The 
projected change was about equal for future time periods using 
model CSIRO climate data; for model GFDL climate data, 
projected increases were slightly greater at mid-century as 
compared to late-century.

The maximum change in July mean stream temperature 
projected by SWB-ANNv1 models varied based on climate 
data from different GCMs. Projections based on climate data 
from two GCMs projected mid-century maximum changes in 
July mean stream temperatures less than 1 °C, from six GCMs 
projected maximum changes between 1 and 2 °C, and from 
two GCMs projected maximum changes between 2 and 3 °C 
(table 10). For the late-century time period, SWB-ANNv1 
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Figure 16.  Absolute change in stream temperature summarized by percent stream length 
for future (2046–2065 and 2081–2100) climate conditions for 10 General Circulation Models 
(GCMs) relative to current (1990–2008) climate conditions. 
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Table 10.  Projections of absolute change in stream temperature summarized by length and as a percentage of total  
length (94,341 kilometers) for current (1990–2008) and future (2046–2065 and 2081–2100) climate conditions for 10 General  
Circulation Models. 

[GCM, General Circulation Model; km, kilometer; >, greater than] 	

GCM code
Change  

(degrees Celsius)
Future (2046–2065) Future (2081–2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

GCM Average 0 0 0 0 0
> 0 to 1 19,287 20.4 1,062 1.1
> 1 to 2 75,054 79.6 64,069 67.9
> 2 to 3 0 0 29,210 31.0
> 3 to 4 0 0 0 0
> 4 to 5 0 0 0 0

CGCM 0 0 0  0 0
> 0 to 1 94,341 100 26,368 27.9
> 1 to 2 0 0 67,973 72.1
> 2 to 3 0 0 0 0
> 3 to 4 0 0 0 0
> 4 to 5 0 0 0 0

CNRM 0 0 0 0 0
> 0 to 1 21,351 22.6 680 0.7
> 1 to 2 72,990 77.4 54,548 57.8
> 2 to 3 0 0 39,113 41.5
> 3 to 4 0 0 0 0
> 4 to 5 0 0 0 0

CSIRO 0 0 0 0 0
> 0 to 1 94,284 99.9 94,341 100
> 1 to 2 57 0.1 0 0
> 2 to 3 0 0 0 0
> 3 to 4 0 0 0 0
> 4 to 5 0 0 0 0

ECHO 0 0 0 0 0
> 0 to 1 36,352 38.5 610 0.6
> 1 to 2 57,989 61.5 49,123 52.1
> 2 to 3 0 0 44,397 47.1
> 3 to 4 0 0 211 0.2
> 4 to 5 0 0 0 0

FGOALS 0 0 0 0 0
> 0 to 1 53,790 57 1,244 1.3
> 1 to 2 40,551 43 87,125 92.4
> 2 to 3 0 0 5,972 6.3
> 3 to 4 0 0 0 0
> 4 to 5 0 0 0 0
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Table 10.  Projections of absolute change in stream temperature summarized by length and as a percentage of total  
length (94,341 kilometers) for current (1990–2008) and future (2046–2065 and 2081–2100) climate conditions for 10 General  
Circulation Models.—Continued

[GCM, General Circulation Model; km, kilometer; >, greater than] 	

GCM code
Change  

(degrees Celsius)
Future (2046–2065) Future (2081–2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

GFDL 0 0 0 0 0
> 0 to 1 278 0.3 290 0.3
> 1 to 2 17,241 18.3 31,647 33.5
> 2 to 3 76,822 81.4 61,406 65.1
> 3 to 4 0 0  998 1.1
> 4 to 5 0 0 0 0

GISS 0 0 0 0 0

> 0 to 1 54,565 57.8 1,612 1.7

> 1 to 2 39,775 42.2 92,017 97.5

> 2 to 3 0 0 712 0.8

> 3 to 4 0 0 0 0

> 4 to 5 0 0 0 0

INGV 0 0 0 0 0

> 0 to 1 56,135 59.5 1,039 1.1

> 1 to 2 38,206 40.5 56,342 59.7

> 2 to 3 0 0 36,960 39.2

> 3 to 4 0 0 0 0

> 4 to 5 0 0 0 0

IPSL 0 0 0 0 0

> 0 to 1 28,232 29.9 1,863 2.0

> 1 to 2 66,109 70.1 67,280 71.3

> 2 to 3 0 0 25,198 26.7

> 3 to 4 0 0 0 0

> 4 to 5 0 0 0 0

MIROC 0 0 0 0 0

> 0 to 1 493 0.5 266 0.3

> 1 to 2 52,657 55.8 6,033 6.4

> 2 to 3 41,191 43.7 50,661 53.7

> 3 to 4 0 0 36,524 38.7

> 4 to 5 0 0 857 0.9
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models projected a maximum change in July mean stream 
temperature less than 1 °C using climate data from one GCM, 
a maximum change between 1 and 2 °C for climate data from 
one GCM, maximum changes between 2 and 3 °C for climate 
data from five GCMs, maximum changes between 3 and 4 °C 
for climate data from two GCMs, and a maximum change 
between 4 and 5 °C for climate data from one GCM (table 10).

The average change in July mean stream temperature 
between the current time period and mid-century, across all 
stream segments and for all GCM climate data, ranged from 
0.63 °C (model CGCM climate data) to 2.25 °C (model GFDL 
climate data); the minimum change ranged from 0.07 °C 
(model GISS climate data) to 0.41 °C (model GFDL climate 
data); and the maximum change ranged from 0.87 °C (model 
CGCM climate data) to 2.95 °C (model GFDL climate data) 
(fig. 17). Between the current time period and late-century, the 
average change in July mean stream temperature, across all 
stream segments and for all GCM climate data, ranged from 
0.53 °C (model CSIRO climate data) to 2.77 °C (model MI-
ROC climate data); the minimum change ranged from 0.09 °C 
(model CSIRO climate data) to 0.41 °C (model GFDL climate 
data); and the maximum change ranged from 0.77 °C (model 
CSIRO climate data) to 4.28 °C (model MIROC climate data).

Stream segments in the cold thermal class showed the 
greatest amount of variation in warming (fig. 17). In compari-
sons of July mean stream temperatures between the current 
time period and mid-century or late-century, the “coldest” 
streams within the cold thermal class warmed the least and 
the “warmest” streams within the cold thermal class warmed 
the most. For those stream segments classified as cold for 
the current time period, as the July mean stream temperature 
approached the 17.5 °C thermal threshold between cold and 
cold transition (table 1), the projected difference in July 
mean stream temperature became greater. As stream segment 
temperature predictions increased past 17.5 °C the projected 
difference became less and began to plateau, as can be seen 
by the flattening of the graphed points in figure 17. Maps 
of the spatial distribution of temperature change from the 
current time period to the mid-21st century showed that for 
projections based on GCM averages, in general there are 
smaller changes in the southwestern portion of the State and 
along Lake Superior (i.e., changes between 0 and 1 °C) and 
larger changes in the eastern and northern portions of the State 
(i.e., changes between 1 and 2 °C) (fig. 18). The spatial distri-
bution of temperature change for SWB-ANNv1 model projec-
tions based on climate data from individual GCMs ranged 
from changes only between 0 and 1 °C statewide (model 
CGCM climate data) to about 81 percent of streams changing 
between 2 and 3 °C (model GFDL climate data), with the 
remainder changing less and largely confined to the Driftless 
Area and Lake Superior shoreline (table 10; fig. 18).

Maps of the spatial distribution of temperature change 
from the current time period to the late-21st century (fig. 19) 
showed largely the same pattern as projected for mid-century 
(fig. 18) but with a wider range of temperature change among 

SWB-ANNv1 models based on climate data from individual 
GCMs and a larger change when based on GCM averages. For 
the SWB-ANNv1 model GCM averages, the greatest change 
of 2 to 3 °C was projected to occur predominantly across the 
north and to a lesser extent across the eastern half of the State. 
Projections based on model CSIRO climate data showed the 
least amount of change, with all streams projected to change 
between 0 and 1 °C. Projections based on model MIROC 
climate data showed the most change, with about 54 percent of 
stream segments across the State changing between 2 and 3 °C 
and about 39 percent of stream segments predominantly across 
the north and to a lesser extent the east projected to change 
between 3 and 4 °C (table 10; fig. 19).

Change in Thermal Class
The effect of temperature change on fish distribution may 

be understood by evaluating changes in thermal classes of 
streams. Projected changes in stream temperature for both the 
mid- and late-21st century time periods indicated that streams 
either remained in the same thermal class or changed to a 
warmer thermal class, either one or two classes warmer, but 
never changed to a colder thermal class (table 11). On average, 
and for all individual GCMs, there were fewer streams project-
ed in cold, cold-transition, and warm-transition thermal classes 
in future time periods and more projected in warm and very-
warm thermal classes. Such changes in thermal classes would 
shift the composition of fish communities across Wisconsin 
(Lyons and others, 2010).

Stream segments classified as cold for the current time 
period either remained cold or changed to cold transition by 
mid-century and late-century for GCM averages (table 11). 
The loss of 43 percent of cold stream segments by mid-century 
and 59 percent by late-century for projections based on GCM 
averages (table 9) translated solely to gains for the cold-tran-
sition thermal class (table 11). The spatial distribution of these 
cold transition gains, while necessarily confined to the original 
predicted distribution of cold thermal class streams, occurred 
largely on the periphery of the Driftless Area (figs. 1, 20, and 
21). However, for SWB-ANNv1 models based on climate 
data from individual GCMs, two (models GFDL and MIROC 
climate data) projected a small percentage of stream segments 
changing from cold to warm transition by mid-century and 
late-century (table 11).

Stream segments classified as cold transition for the 
current time period either remained cold transition or changed 
to warm transition or warm by mid- and late-century for 
SWB-ANNv1 models based on GCM averages (table 11). 
Those stream segments that changed thermal class, however, 
predominantly changed to warm transition. At mid-century, 
the loss of cold-transition streams as projected by models 
using climate data based on GCM averages resulted in about 
60 percent of cold-transition stream kilometers changing to 
warm transition and 0.7 percent changing to warm. At late-
century, the loss of cold-transition streams resulted in about 



Results and Discussion    39

Table 11.  Projections of change in stream temperature thermal class (Lyons and others, 2009) summarized by length and as 
a percentage of total length (94,341 kilometers) for 10 General Circulation Models for the mid-21st century (2046–2065) and 
late-21st century (2081–2100).

[GCM, General Circulation Model; km, kilometer] 

GCM code  Change in thermal class
Future (2046–2065) Future (2081–2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

GCM 
average

Cold (no change) 14,628 15.5 10,417 11.0
Cold to cold transition 10,969 11.6 15,180 16.1
Cold to warm transition 0 0 0 0
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 10,961 11.6 5,758 6.1
Cold transition to warm transition 16,790 17.8 17,701 18.8
Cold transition to warm 207 0.2 4,499 4.8
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 3,286 3.5 0 0
Warm transition to warm 24,638 26.1 27,924 29.6
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0

Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 9,874 10.5 7,398 7.8
Warm to very warm 1,955 2.1 4,431 4.7
Very warm (no change) 1,033 1.1 1,033 1.1

CGCM
 

Cold (no change) 19,389 20.6 15,238 16.2
Cold to cold transition 6,208 6.6 10,358 11.0
Cold to warm transition 0 0 0 0
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 18,402 19.5 11,551 12.2
Cold transition to warm transition 9,555 10.1 16,327 17.3
Cold transition to warm 0 0 80 0.1
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 18,186 19.3 3,934 4.2
Warm transition to warm 9,738 10.3 23,990 25.4
Warm transition to very warm 0 0 0 0
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Table 11.  Projections of change in stream temperature thermal class (Lyons and others, 2009) summarized by length and as 
a percentage of total length (94,341 kilometers) for 10 General Circulation Models for the mid-21st century (2046–2065) and 
late-21st century (2081–2100).—Continued

[GCM, General Circulation Model; km, kilometer] 

GCM code  Change in thermal class
Future (2046–2065) Future (2081–2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

CGCM, 
continued

Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 10,979 11.6 9,922 10.5
Warm to very warm 851 0.9 1,907 2.0
Very warm (no change) 1,033 1.1 1,033 1.1

CNRM
 

Cold (no change) 14,748 15.6 9,157 9.7
Cold to cold transition 10,849 11.5 16,421 17.4
Cold to warm transition 0 0 19 0.02
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 11,400 12.1 4,405 4.7
Cold transition to warm transition 16,557 17.6 17,088 18.1
Cold transition to warm 0 0 6,465 6.9
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 5,433 5.8 0 0
Warm transition to warm 22,491 23.8 27,924 29.6
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 10,134 10.7 5,874 6.2
Warm to very warm 1,695 1.8 5,955 6.3
Very warm (no change) 1,033 1.1 1,033 1.1

CSIRO
 

Cold (no change) 18,271 19.4 20,543 21.8
Cold to cold transition 7,326 7.8 5,054 5.4
Cold to warm transition 0 0 0 0
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 16,585 17.6 19,864 21.1
Cold transition to warm transition 11,372 12.1 8,094 8.6
Cold transition to warm 0 0 0 0
Cold transition to very warm 0 0 0 0
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Table 11.  Projections of change in stream temperature thermal class (Lyons and others, 2009) summarized by length and as 
a percentage of total length (94,341 kilometers) for 10 General Circulation Models for the mid-21st century (2046–2065) and 
late-21st century (2081–2100).—Continued

[GCM, General Circulation Model; km, kilometer] 

GCM code  Change in thermal class
Future (2046–2065) Future (2081–2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

CSIRO, 
continued

Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 14,902 15.8 19,459 20.6
Warm transition to warm 13,022 13.8 8,465 9.0
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 10,786 11.4 11,125 11.8
Warm to very warm 1,043 1.1 705 0.7
Very warm (no change) 1,033 1.1 1,033 1.1

ECHO Cold (no change) 15,597 16.5 8,419 8.9
Cold to cold transition 10,000 10.6 17,128 18.2
Cold to warm transition 0 0 50 0.1
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 12,003 12.7 3,394 3.6
Cold transition to warm transition 15,524 16.5 17,021 18.0
Cold transition to warm 431 0.5 7,543 8.0
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 3,324 3.5 0 0
Warm transition to warm 24,600 26.1 27,924 29.6
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 9,846 10.4 4,815 5.1
Warm to very warm 1,983 2.1 7,015 7.4
Very warm (no change) 1,033 1.1 1,033 1.1
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Table 11.  Projections of change in stream temperature thermal class (Lyons and others, 2009) summarized by length and  
as a percentage of total length (94,341 kilometers) for 10 General Circulation Models for the mid-21st century (2046–2065) and  
late-21st century (2081–2100).—Continued

[GCM, General Circulation Model; km, kilometer]  
  

GCM code  Change in thermal class
Future (2046–2065) Future (2081–2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

FGOALS
 

Cold (no change) 17,390 18.4 11,582 12.3
Cold to cold transition 8,207 8.7 14,015 14.9
Cold to warm transition 0 0 0 0
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 14,975 15.9 7,486 7.9
Cold transition to warm transition 12,983 13.8 18,042 19.1
Cold transition to warm 0 0 2,430 2.6
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 6,859 7.3 202 0.2
Warm transition to warm 21,065 22.3 27,722 29.4
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 10,193 10.8 8,875 9.4
Warm to very warm 1,637 1.7 2,954 3.1
Very warm (no change) 1,033 1.1 1,033 1.1

GFDL
 

Cold (no change) 5,120 5.4 5,834 6.2
Cold to cold transition 19,025 20.2 19,528 20.7
Cold to warm transition 1,452 1.5 235 0.2
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 156 0.2 570 0.6
Cold transition to warm transition 15,817 16.8 17,042 18.1
Cold transition to warm 11,984 12.7 10,345 11.0
Cold transition to very warm 0 0 0 0
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Table 11.  Projections of change in stream temperature thermal class (Lyons and others, 2009) summarized by length and  
as a percentage of total length (94,341 kilometers) for 10 General Circulation Models for the mid-21st century (2046–2065) and  
late-21st century (2081–2100).—Continued

[GCM, General Circulation Model; km, kilometer]  
  

GCM code  Change in thermal class
Future (2046–2065) Future (2081–2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

GFDL, 
continued

Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 0 0 0 0
Warm transition to warm 27,924 29.6 27,924 29.6
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 4,328 4.6 2,957 3.1
Warm to very warm 7,502 8.0 8,873 9.4
Very warm (no change) 1,033 1.1 1,033 1.1

GISS
 

Cold (no change) 17,442 18.5 11,041 11.7
Cold to cold transition 8,155 8.6 14,556 15.4
Cold to warm transition 0 0 0 0
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 14,944 15.8 6,225 6.6
Cold transition to warm transition 13,014 13.8 19,259 20.4
Cold transition to warm 0 0 2,474 2.6
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 7,416 7.9 9 0.01
Warm transition to warm 20,508 21.7 27,915 29.6
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 10,201 10.8 8,755 9.3
Warm to very warm 1,628 1.7 3,075 3.3
Very warm (no change) 1,033 1.1 1,033 1.1
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Table 11.  Projections of change in stream temperature thermal class (Lyons and others, 2009) summarized by length and  
as a percentage of total length (94,341 kilometers) for 10 General Circulation Models for the mid-21st century (2046–2065) and  
late-21st century (2081–2100).—Continued

[GCM, General Circulation Model; km, kilometer]  
  

GCM code  Change in thermal class
Future (2046-2065) Future (2081-2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

INGV
 

Cold (no change) 16,928 17.9 9,787 10.4
Cold to cold transition 8,668 9.2 15,805 16.8
Cold to warm transition 0 0 6 0.01
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 14,092 14.9 4,645 4.9
Cold transition to warm transition 13,865 14.7 17,337 18.4
Cold transition to warm 0 0 5,975 6.3
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 9,726 10.3 0 0
Warm transition to warm 18,198 19.3 27,924 29.6
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 10,384 11.0 6,359 6.7
Warm to very warm 1,446 1.5 5,471 5.8
Very warm (no change) 1,033 1.1 1,033 1.1

IPSL
 

Cold (no change) 15,042 15.9 12,077 12.8
Cold to cold transition 10,555 11.2 13,520 14.3
Cold to warm transition 0 0  0 0
Cold to warm 0 0  0 0
Cold to very warm 0 0  0 0
Cold transition to cold 0 0  0 0
Cold transition (no change) 11,287 12.0 7,590 8.0
Cold transition to warm transition 16,152 17.1 16,930 17.9
Cold transition to warm 519 0.5 3,437 3.6
Cold transition to very warm 0 0 0 0
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Table 11.  Projections of change in stream temperature thermal class (Lyons and others, 2009) summarized by length and  
as a percentage of total length (94,341 kilometers) for 10 General Circulation Models for the mid-21st century (2046–2065) and  
late-21st century (2081–2100).—Continued

[GCM, General Circulation Model; km, kilometer]  
  

GCM code  Change in thermal class
Future (2046-2065) Future (2081-2100)

Length (km) Length (percent of total) Length (km) Length (percent of total)

IPSL, 
continued

Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 2,831 3.0 274 0.3
Warm transition to warm 25,093 26.6 27,650 29.3
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 9,804 10.4 7,884 8.4
Warm to very warm 2,025 2.1 3,946 4.2
Very warm (no change) 1,033 1.1 1,033 1.1

MIROC
 

Cold (no change) 8,101 8.6 8,419 8.9
Cold to cold transition 17,489 18.5 17,128 18.2
Cold to warm transition 6 0.006 50 0.1
Cold to warm 0 0 0 0
Cold to very warm 0 0 0 0
Cold transition to cold 0 0 0 0
Cold transition (no change) 3,080 3.3 3,394 3.6
Cold transition to warm transition 17,813 18.9 17,021 18.0
Cold transition to warm 7,064 7.5 7,543 8.0
Cold transition to very warm 0 0 0 0
Warm transition to cold 0 0 0 0
Warm transition to cold transition 0 0 0 0
Warm transition (no change) 0 0 0 0
Warm transition to warm 27,924 29.6 27,924 29.6
Warm transition to very warm 0 0 0 0
Warm to cold 0 0 0 0
Warm to cold transition 0 0 0 0
Warm to warm transition 0 0 0 0
Warm (no change) 6,274 6.6 4,815 5.1
Warm to very warm 5,556 5.9 7,015 7.4
Very warm (no change) 1,033 1.1 1,033 1.1
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63 percent of stream kilometers changing to warm transi-
tion and 16 percent changing to warm (table 11). The spatial 
distribution of the change in stream segments at mid-century 
from cold transition to warm transition occurred across the 
State but with a heavier concentration of changed stream seg-
ments along the southern border of the State (fig. 22). At late-
century, additional stream segments changed to warm transi-
tion across the southern part of the State, and changes to warm 
stream segments occurred across the northern part of the State 
(fig. 23). Among models based on climate data from the 10 in-
dividual GCMs, at mid-century 6 projected only changes from 
cold transition to warm transition and the other 4 projected 
additional changes to warm (table 11; fig. 22). At late-century 
only one model, using model CSIRO climate data, projected 
changes solely to warm transition, and nine projected changes 
to both warm transition and warm (table 11; fig. 23).

The greatest projected change in thermal class was 
for warm-transition stream segments, of which 88 percent 
of stream kilometers were projected to change to warm by 
mid-century and 100 percent were projected to change to 
warm by late-century for the GCM average (table 11). The 
SWB-ANNv1 model using climate data from 8 of the 10 
individual GCMs projected some warm-transition stream seg-
ments to remain as such at mid-century, ranging from about 
10 percent of stream kilometers (model IPSL climate data) 
to about 65 percent (model CGCM climate data). Despite 
SWB-ANNv1 model projecting a 100 percent change from 
warm transition to warm at late-century for the GCM average, 
projections based on climate data for five individual GCMs 
showed some stream segments remaining as warm transition at 
late-century (table 11). The SWB-ANNv1 model using climate 
data from model CSIRO projected about 70 percent of stream 
kilometers remaining as warm transition; however, the use of 
climate data from model CGCM projected about 14 percent 
remaining and the use of climate data from three other GCMs 
projected less than 1 percent remaining (table 11). Maps of the 
spatial distribution of thermal class change, or lack thereof, 
among warm-transition stream segments showed changes 
occurring throughout the State at both mid- and late-century 
(figs. 24 and 25).

Stream segments classified as warm using current climate 
data mostly remained warm at mid-century (83 percent of 
stream kilometers) and late-century (63 percent of stream 
kilometers) with the remainder changing to very warm, as 
projected by the SWB-ANNv1 model GCM average (table 
11). The SWB-ANNv1 model using climate data from each of 
the 10 GCMs projected some change in thermal classes among 
stream segments, from warm to very warm. At mid-century, 
SWB-ANNv1 models projected from about 7 percent (model 
CGCM climate data) to about 63 percent (model GFDL cli-
mate data) of stream kilometers changing from warm to very 
warm (table 11). At late-century, SWB-ANNv1 models 
projected from about 6 percent (model CSIRO climate data) 
to about 75 percent (model GFDL climate data) of stream 
kilometers changing from warm to very warm (table 11). 

Maps of the spatial distribution of stream segments remain-
ing warm and changing to very warm showed these changes 
occurring throughout the State at both mid- and late-century 
(figs. 26 and 27).

Data and Model Limitations

Model output of stream temperatures for mid- and late-
21st century time periods were considered projections of what 
could happen rather than predictions of what will happen. 
Projections are probabilistic statements about the future con-
cerning what is possible under certain conditions as described 
in the model should those conditions be realized in the future. 
For example, our models assumed the A1B emissions scenario 
for the remainder of the 21st century. The A1B emissions 
scenario is a “middle-of-the-road” scenario, developed by the 
Intergovernmental Panel on Climate Change (IPCC, 2007), 
which assumes a balanced approach to energy production 
between fossil and non-fossil fuels. Should carbon emissions 
increase at a slower rate (B2 emissions scenario) or a faster 
rate (A1 emissions scenario), then the climate input data used 
in our model would not accurately represent future conditions. 
Predictions of what changes in climate will occur are inher-
ently difficult to make because predictions of realized future 
emissions of greenhouse gases are uncertain.

Model projections were further constrained by the use of 
statistical downscaling to project future climate conditions at a 
scale appropriate for the study area of Wisconsin. The UWC-
CR used statistical downscaling to relate climate trends at the 
global scale to climate conditions at the State level in Wiscon-
sin (Notaro and others, 2011). In this application of down-
scaling, large-scale air temperature and precipitation variables 
from GCMs were statistically related to local climate condi-
tions in Wisconsin. The UWCCR validated this technique 
using historical climate data for Wisconsin (WICCI, 2011). 
Researchers at the UWCCR are continuing work on down-
scaling additional climatological parameters, which may be of 
relevance to our understanding of climate change impacts on 
stream temperature. Such parameters include evapotranspira-
tion, humidity, and solar radiation. Future advances in our 
understanding of climate change at local versus global scales 
may lead to improvements in our ability to relate changes in 
climate to changes in stream temperature.

Additional model assumptions critical to understanding 
climate impacts on stream temperature include changes in land 
use and streamflow. Land use was assumed to remain constant 
at current conditions. Although land use is expected to change 
over time, the extent to which land use will change is difficult 
to predict. For example, land use may change in response to 
economic conditions. In recent years, increases in commodity 
prices and demand for ethanol have led to the rotation of pro-
tected land out of the Conservation Reserve Program (CRP) 
and into agricultural production (Streitfeld, 2008; Allen and 
Vandever, 2012). If environmentally sensitive CRP land is 



Applications of the Integrated Soil-Water-Balance and Artificial Neural Network version 1 Stream Temperature Model    51

returned to corn production, there is the potential for increased 
surface-water runoff and less infiltration into groundwater, 
which may affect stream temperatures (Panuska and others, 
2007; Marshall and others, 2008).

Future changes in urbanization also may affect how 
changes in climate impact stream temperature. Urbanization is 
expected to increase over time, but predictions of such change 
are inherently uncertain. Wang and others (2003) measured 
urbanization as the percent of connected impervious area in a 
watershed. Urbanization may impact stream temperature in a 
number of ways. Impervious surfaces may limit groundwater 
recharge and reduce stream base flow and may increase 
surface-water input to streams, including warmer thermal 
inputs following precipitation events during summertime. 
Wang and others (2003) found that streams in watersheds with 
levels of connected imperviousness in the threshold region 
of 6–11 percent can experience major changes in thermal 
conditions as a result of minor changes in urbanization. Any 
changes in urbanization, as well as other forms of land use, 
may affect how changes in climate impact stream tempera-
tures.

Streamflow also may change over time as a result of 
climate change, and changes in streamflow may impact 
stream temperature. UWCCR projections of climatic change 
in precipitation for Wisconsin are uncertain; projections from 
individual climate models indicate changes both positive and 
negative to streamflow may occur in the future, depending on 
the time of year. Increases in precipitation may positively im-
pact groundwater recharge and help maintain lower summer-
time stream temperatures, particularly in cold-water streams. 
However, increases in precipitation during warmer summer-
time months may lead to increases in warm surface runoff that 
may increase stream temperatures. The interaction of precipi-
tation and land use will be important in determining how these 
factors impact stream temperature as climate changes occur. 
Unpublished data for cold-water streams in the Driftless Area 
of Wisconsin shows how stream temperature relates to pre-
cipitation events. Streams heavily influenced by groundwater 
remained consistently cold during the absence of precipitation 
events in summer 2012, whereas spikes in stream temperature 
closely tracked the many precipitation events that occurred 
in summer 2010 (Matthew Mitro, Wisconsin Department of 
Natural Resources, oral commun., [2013]).

Applications of the Integrated Soil-
Water-Balance and Artificial Neural 
Network version 1 Stream Temperature 
Model

The SWB-ANNv1 stream temperature model described 
in this report represents an important advance over ANNv1 
described by Stewart and others (2006). The development and 

integration of the SWB model with the ANN model allowed 
for the parameterization of the connection between precipita-
tion, groundwater, and stream temperature. This approach also 
provided a way to link projections of future changes in climate 
to groundwater recharge and ultimately to stream temperature. 
The thermal predictions for streams from the SWB-ANNv1 
model under current climate conditions and projections under 
future climate scenarios will enhance the ability of fisheries 
managers to make appropriate recommendations and decisions 
pertaining to stream management.

The SWB-ANNv1 stream temperature model will serve 
as an important tool for fisheries management because of the 
importance of water temperature to fish and the ability of the 
model to make inferences about temperature and fish assem-
blages in all stream segments across Wisconsin. Fish assem-
blages in streams vary in relation to differences in thermal 
conditions in streams (Lyons and others, 2009). However, 
the thermal characteristics of many Wisconsin streams are 
unknown. The stream temperature model will serve as an 
important tool in mapping and quantifying streams by ther-
mal class, guiding stream surveys, mapping distributions of 
stream fishes, and making management decisions pertaining to 
stream-habitat protection and restoration to support important 
fisheries.

Wisconsin is recognized as an important cold-water 
State from the perspective of both trout fisheries and fish 
biodiversity. Brook trout are the only native salmonid found 
in cold-water streams in Wisconsin. However, Wisconsin is 
at the southern edge of the brook trout’s distributional range, 
where the species is at increased risk to changes in climate. 
The SWB-ANNv1 stream temperature model estimates can be 
used in fish species occurrence models to project those streams 
that may have suitable habitat for brook trout under future 
climate scenarios (Lyons and others, 2010; Mitro and others, 
2010a; WICCI, 2011). 

In addition to cold-water streams, Wisconsin hosts a 
diversity of streams across a continuous thermal gradient, 
which can be categorized into discrete thermal classes, each 
represented by fish assemblages adapted to particular thermal 
conditions and potentially threatened by changes in climate. 
Warm-water and warm-transition streams have almost a com-
pletely different fish fauna compared to cold-water and cold-
transition streams (Lyons and others, 2010). Lyons and others 
(2009) identified the thermal guild for 99 fish species found 
in Wisconsin and Michigan streams. There were 65 species 
classified as warm water, 26 as transitional (i.e., cold transition 
or warm transition), and 8 as cold water. Warm-water streams, 
while being small in number, support a significantly higher 
number of fish species than cold-water and transitional streams 
combined. SWB-ANNv1 model predictions may be helpful in 
identifying the small percentage of streams that may be critical 
to preserving warm-water fish species diversity in Wisconsin 
streams and in identifying potential impacts of climate change 
on these streams.
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The Wisconsin Initiative on Climate Change Impacts 
(WICCI) (WICCI, 2011) produced the first adaptive assess-
ment for Wisconsin to address the vulnerabilities and sensi-
tivities of natural resources to climate change impacts and to 
propose adaptation strategies to build resiliency and lessen 
the impacts. The ANNv1 stream temperature model (Stewart 
and others, 2006; Westenbroek and others, 2010b) played an 
integral role in identifying the vulnerabilities and sensitivities 
of Wisconsin streams and stream fishes to potential warm-
ing scenarios associated with changes in climate (Lyons and 
others, 2010; Mitro and others, 2010a; WICCI, 2011). The 
SWB-ANNv1 model will further advance our understanding 
of climate impacts on Wisconsin streams and aid in the devel-
opment of adaptation strategies managers can use to protect 
fisheries.

An important initial use of the SWB-ANNv1 model 
has been as a tool to understand current and future distribu-
tions of trout and smallmouth bass as part of the development 
of a master plan for managing WDNR land holdings and 
easements along streams in the Driftless Area of Wisconsin 
(WDNR, 2013). The Driftless Master Plan is a forward-
looking document, and the use of SWB-ANNv1 model 
predictions (current time period) and projections (mid-21st 
century time period) represents the first time a WDNR master 
plan explicitly addresses climate change impacts on streams 
as an important factor in making decisions on agency land 
management (WDNR, 2013). The plan includes the identifica-
tion of where trout and smallmouth bass are currently found 
in streams and where they are likely to be in the future given 
changing climate conditions. The plan ultimately will guide 
land-protection goals, objectives, and strategies to ensure 
public access to desired fisheries recognizing the threat posed 
by climate change to the existence of such fisheries in some 
streams.

Thermal predictions (current climate conditions) and 
projections (future climate scenarios) for streams will enhance 
the ability of resource managers to make appropriate recom-
mendations and decisions pertaining to stream and fisheries 
management. One example is the WDNR’s classification of 
streams as “trout waters.” Streams shown by fish surveys to 
support trout are classified as trout streams. Such classifica-
tion is important from a resource-management perspective in 
that trout water classification affords a stream a higher level of 
protection from activities that may lead to the degradation of 
cold-water thermal habitat. SWB-ANNv1 model predictions 
that more than one-half of Wisconsin’s stream kilometers are 
thermally suitable for trout (as compared to the 24 percent cur-
rently classified as trout waters) will be instrumental in sup-
porting efforts to survey and classify additional trout waters. 
Cold stream temperatures are necessary, but not sufficient, to 
support trout. Thermal class predictions can be used to help 
guide stream survey efforts to focus on those streams most 
likely to contain trout and thus warrant trout-classification 
status. 

Another use of SWB-ANNv1 model predictions and 
projections of stream temperatures is to guide the expenditure 

of financial resources on stream habitat projects. Anglers fish-
ing Wisconsin streams are required to purchase a trout stamp, 
in addition to a fishing license, and the trout stamp funds are 
dedicated to trout stream habitat projects (WDNR, 2011). 
Similar to the use of the SWB-ANNv1 model in the Driftless 
master planning process, modeling the impacts of future 
climate scenarios on stream thermal class will be used to guide 
trout stream habitat projects (Mitro and others, 2010a). Mitro 
and others (2010a) describe a triage approach to prioritizing 
fund expenditures on stream habitat projects. Fisheries manag-
ers may forgo spending limited funds on streams projected to 
change thermal classes such that trout losses may be inevi-
table. Streams projected to be resilient to climate change 
impacts on thermal class such that they are likely to remain 
cold-water streams may be best suited to protection efforts. 
Rather, funds may be dedicated to streams in which the per-
sistence of trout may be contingent upon management actions 
likely to build resiliency to climate change impacts on stream 
temperature. Stream-restoration efforts to build resiliency to 
climate impacts may include in-stream habitat work used to 
narrow and deepen the stream channel and reduce bank ero-
sion to help maintain cold groundwater temperatures over the 
course of the stream (Mitro and others, 2010a and b). Riparian 
management to provide shade cover also may help maintain 
cold thermal temperatures in streams (Cross and others, 2013).

Summary and Conclusions 
This study simulated daily summertime water 

temperatures under current (1990–2008) climate conditions 
and projected water temperature under future climate condi-
tions for 94,341 kilometers (km) of streams across Wisconsin 
(1:100,000 scale U.S. National Hydrography Dataset). Water 
temperature is a critical factor in identifying the suitability 
of streams for different species of fish across this geographic 
area. As ongoing changes in climate progress, stream thermal 
conditions and fish distributions are expected to change and 
models may help quantify such change.

A stream temperature model (SWB-ANNv1) to predict 
stream temperatures in all stream segments during the 
summertime (June–August) period was developed by building 
upon an Artificial Neural Network (ANN) version 1 model 
(ANNv1) by Stewart and others (2006). The ANN model is 
an empirical model that captures the dynamics of spatially 
expansive and behaviorally heterogeneous hydrologic systems 
using static landscape data and dynamic climate time-series 
data. ANNv1 methodology was further expanded upon by 
integrating a Soil-Water-Balance (SWB) model with the ANN 
model to parameterize potential groundwater recharge, thereby 
linking precipitation, groundwater, and stream temperature. 
The resulting integrated SWB and ANN version 1 (SWB-
ANNv1) Model was used to predict daily summertime stream 
temperatures using current climate data and to project daily 
stream temperatures at mid- and late-21st century time periods 
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(2046–65 and 2081–2100). Mid- and late-century climate 
projections were based on the A1B emissions scenario and the 
downscaled projections of air temperature and precipitation 
amounts from 10 Global Circulation Models (GCMs) (Notaro 
and others, 2011). The July mean stream temperature was 
derived from mean daily stream temperatures and was used to 
identify the thermal classification of each stream segment: cold 
(<17.5 degrees Celsius (°C), cold transition (17.5–19.5 °C), 
warm transition (19.5–21 °C), warm (21–24 °C), and very 
warm (>24 °C) (Lyons and others, 2009).

The SWB-ANNv1 model captured the overall trend in 
daily summertime stream temperature data with a percent 
model error (PME) of 8.8 percent. The SWB-ANNv1 model 
explained 76 percent of the variation in stream temperature, 
as compared to 67 percent for the ANNv1 model, a nine 
percentage point improvement (Stewart and others, 2006). 
The approach for integrating SWB with the ANN model also 
provided a means to evaluate the effect of changing air tem-
perature and precipitation on groundwater recharge and soil 
moisture and in turn provided a mechanism by which down-
scaled global or regional climate model results could be used 
to estimate the potential effects of climate change on stream 
temperature.

The SWB-ANNv1 model was based on eight static 
landscape variables (six describing the total upstream water-
shed, one the total upstream 60-meter riparian buffer, and one 
the local channel), six dynamic climate variables describing 
air temperature groups, and three dynamic variables describing 
groundwater recharge. The SWB-ANNv1 model was devel-
oped using a training dataset and tested using an independent 
validation dataset. About 47 percent of the July mean stream 
temperature predictions were within 1 °C of observed values, 
about 77 percent were within 2 °C, and about 93 percent were 
within 3 °C. More than one-half of the stream kilometers 
were predicted suitable for cold-water fishes such as trout or 
sculpins for the current time period (27.1 percent cold and 
29.6 percent cold transition). The remaining stream kilometers 
were predicted suitable for warm-water fishes such as min-
nows and sunfishes (29.6 percent warm transition, 12.5 per-
cent warm-water, and 1.1 percent very warm). Cold and cold-
transition streams were predicted to primarily occur in the 
Driftless Area of western and southern Wisconsin and along 
Lake Superior to the north. Warm-transition and warm streams 
were primarily in the eastern half of Wisconsin, with warm-
transition streams also prominent across the north. Overall, 
the SWB-ANNv1 model predicted an additional 5.7 percent of 
stream kilometers as suitable for cold-water fishes in Wiscon-
sin, as compared to the ANNv1 model, with about equal 
proportions of cold and cold transition stream kilometers.

Projections of stream temperatures at mid- and late-
century based on climate data from 10 GCMs showed warm-
ing for all stream segments. The GCM average projected about 
80 percent of stream kilometers increasing by 1 to 2 °C by 
mid-century and about 99 percent increasing by 1 to 3 °C by 

late-century, with 31 percent of those increasing by more than 
2 °C in the late-century. Stream segments in the cold thermal 
class showed the greatest amount of variation in warming 
with the “coldest” streams warming the least and those ap-
proaching the upper end of the cold thermal class warming 
the most, based on July mean stream temperature. This may 
suggest that cold-water streams dominated by groundwater 
contributions may have a higher capacity for maintaining cold 
temperatures than cold-water streams with a lower propor-
tion of groundwater input even under future climate warming 
scenarios.

The effect of temperature change on fish distribution may 
be understood by evaluating changes in thermal classes of 
streams. Projected changes in stream temperature for both the 
mid- and late-21st century time periods indicated that streams 
either remained in the same thermal class or changed to a 
warmer thermal class, but never changed to a colder thermal 
class. On average, and for all individual GCMs, there were 
fewer stream kilometers projected in cold, cold-transition, and 
warm-transition thermal classes in future time periods and 
more projected in warm and very-warm thermal classes. Such 
changes in thermal classes would shift the composition of fish 
communities across Wisconsin, with a loss in the distribution 
of cold-water fishes and increase in the distribution of warm-
water fishes. Less than two-fifths of stream kilometers at mid-
century and one-third at late-century would be thermally suit-
able for cold-water fishes resulting in an 18 to 23 percent loss 
of suitable habitat at mid- and late-21st century, respectively, 
based on the GCM averages. These directional shifts occurred 
and varied in magnitude by as much as 15 percent in SWB-
ANNv1 models using climate data from each of the 10 GCMs. 
The range of cold and cold-transition streams is projected to 
contract within the Driftless Area and along Lake Superior, 
and the range of warm streams is projected to expand in the 
east and particularly across the north in Wisconsin.

Projected losses of cold-water stream habitat may result 
in losses of cold-water stream fisheries for species such as 
brook trout and brown trout. Concomitant increases in warm-
water stream habitat may benefit many warm-water fishes, 
but warm-water sport fishes like smallmouth bass may not 
replace fisheries for trout because of other habitat limitations. 
Many headwater streams that currently support trout, for 
example, are physically too small to support smallmouth 
bass. Therefore, projected changes in thermal habitat attribut-
able to climate change may result in net losses of fisheries, 
posing a challenge to fisheries and resource managers. The 
SWB-ANNv1 model developed in this study provides a tool 
to resource managers to assist in identifying vulnerabilities in 
streams to climate change impacts; to guide stream surveys 
and classification, land-protection strategies, and expenditures 
of financial resources for habitat restoration; and to aid in 
making strategic decisions concerning approaches to climate 
change adaptation to best protect and enhance resiliency in 
stream thermal habitat.
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Appendix 1.  Stream identification information, location information, 
agency collecting stream temperature data, number of summers with stream 
temperature data collection, years of stream temperature data collection, 
July mean stream temperature, stream temperature thermal class, and model 
partition for 371 stream temperature modeling sites.

Available as a seperate download. 

Appendix 2.  Climate station identification and location information for 160 air 
temperature stations. 

Available as a seperate download. 
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