Skip Links

USGS - science for a changing world

Scientific Investigations Report 2014–5196

Modeling Uncertainty in Coal Resource Assessments, With an Application to a Central Area of the Gillette Coal Field, Wyoming

By Ricardo A. Olea and James A. Luppens

Thumbnail of and link to report PDF (13.8 MB)Abstract

Standards for the public disclosure of mineral resources and reserves do not require the use of any specific methodology when it comes to estimating the reliability of the resources. Unbeknownst to most intended recipients of resource appraisals, such freedom commonly results in subjective opinions or estimations based on suboptimal approaches, such as use of distance methods. This report presents the results of a study of the third of three coal deposits in which drilling density has been increased one order of magnitude in three stages. Applying geostatistical simulation, the densest dataset was used to check the results obtained by modeling the sparser drillings. We have come up with two summary displays of results based on the same simulations, which individually and combined provide a better assessment of uncertainty than traditional qualitative resource classifications: (a) a display of cell 90 percent confidence interval versus cumulative cell tonnage, and (b) a histogram of total resources. The first graph allows classification of data into any number of bins with dividers to be decided by the assessor on the basis of a discriminating variable that is statistically accepted as a measure of uncertainty, thereby improving the quality and flexibility of the modeling. The second display expands the scope of the modeling by providing a quantitative measure of uncertainty for total tonnage, which is a fundamental concern for stockholders, geologists, and decision makers. Our approach allows us to correctly model uncertainty issues not possible to predict with distance methods, such as (a) different levels of uncertainty for individual beds with the same pattern and density of drill holes, (b) different local degrees of reduction of uncertainty with drilling densification reflecting fluctuation in the complexity of the geology, (c) average reduction in uncertainty at a disproportionately lesser rate than the reduction in area per drill hole, (d) the proportional effect of higher uncertainty in areas of higher tonnages, despite a regular drilling pattern, (e) the possibility of a local increase in uncertainty despite drilling densification to reflect a more complex geology as the deposit is known in more detail, and (f) for exactly the same drilling pattern, tonnage per individual beds with different uncertainty than the aggregated tonnage. These results should be considered realistic improvements over distance methods used for quantitative classification of uncertainty in coal resource, such as U.S. Geological Survey Circular 891.1 The approach should be a welcome addition to the toolkit of Competent Persons preparing public disclosures according to international mineral codes such as those promoted by the Combined Reserves International Reporting Standards Committee2 and the Joint Ore Reserve Committee.3

1 Wood, G.H., Jr., Kehn, T.M., Carter, M.D., and Culbertson, W.C., 1983, Coal resources classification system of the U.S. Geological Survey: U.S. Geological Survey Circular 891, 65 p.

2 CRIRSCO (Combined Reserves International Reporting Standards Committee), 2013, International reporting template for the public reporting of exploration results, mineral resources and mineral reserves: Accessed February 2014 at http://www.crirsco.com/crirsco_template_may2013.pdf.

3 JORC (Joint Ore Reserves Committee), 2012, Australasian code for reporting of exploration results, mineral resources and ore reserves: Accessed September 2014 at http://www.jorc.org/docs/jorc_code2012.pdf.

First posted December 19, 2014

For additional information, contact:
Center Director, Eastern Energy Resources Science Center
U.S. Geological Survey
12201 Sunrise Valley Drive
Mail Stop 956
Reston, VA 20192
(703) 648-6401
http://energy.usgs.gov/GeneralInfo/ScienceCenters/Eastern.aspx

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here.


Suggested citation:

Olea, R.A., and Luppens, J.A., 2014, Modeling uncertainty in coal resource assessments, with an application to a central area of the Gillette coal field, Wyoming: U.S. Geological Survey Scientific Investigations Report 2014–5196, 46 p., http://dx.doi.org/10.3133/sir20145196.

ISSN 2328-0328 (online)



Contents

Abstract

Introduction

Methodology

Geology of the Study Area

Uncertainty Modeling of the Gillette Field

Conclusions

Acknowledgments

References Cited

Glossary

Toolkit for Generating Coal Deposit Realizations by Stochastic Simulation


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2014/5196/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Friday, 19-Dec-2014 16:37:35 EST