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Conversion Factors

Inch/Pound to SI

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

square foot (ft2) 929.0 square centimeter (cm2)
square foot (ft2)  0.09290 square meter (m2)
square mile (mi2) 259.0 hectare (ha)
square mile (mi2)  2.590 square kilometer (km2) 

Volume

million gallons (Mgal)   3,785 cubic meter  (m3)
cubic foot (ft3) 28.32 cubic decimeter (dm3) 
cubic foot (ft3)  0.02832 cubic meter (m3) 
cubic yard (yd3) 0.7646 cubic meter (m3) 
cubic mile (mi3)  4.168 cubic kilometer (km3) 
acre-foot (acre-ft)    1,233 cubic meter (m3)

acre-foot (acre-ft)  0.001233 cubic hectometer (hm3) 
Flow rate

cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s)
cubic foot per second per square mile 

[(ft3/s)/mi2]
 0.01093 cubic meter per second per square 

kilometer [(m3/s)/km2]
cubic foot per day (ft3/d)  0.02832 cubic meter per day (m3/d)
gallon per minute (gal/min)  0.06309 liter per second (L/s)
gallon per day (gal/d)  0.003785 cubic meter per day (m3/d)
gallon per day per square mile  

[(gal/d)/mi2]
 0.001461 cubic meter per day per square 

kilometer [(m3/d)/km2]
million gallons per day (Mgal/d)  0.04381 cubic meter per second (m3/s)
million gallons per day per square mile 

[(Mgal/d)/mi2]
1,461 cubic meter per day per square 

kilometer [(m3/d)/km2]

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.



Abstract
Effective and responsible management of water resources 

relies on a thorough understanding of the quantity and quality 
of available water. Streamgages cannot be installed at every 
location where streamflow information is needed. As part of 
its National Water Census, the U.S. Geological Survey is plan-
ning to provide streamflow predictions for ungaged locations. 
In order to predict streamflow at a useful spatial and temporal 
resolution throughout the Nation, efficient methods need to 
be selected. This report examines several methods used for 
streamflow prediction in ungaged basins to determine the best 
methods for regional and national implementation. A pilot 
area in the southeastern United States was selected to apply 
19 different streamflow prediction methods and evaluate each 
method by a wide set of performance metrics. Through these 
comparisons, two methods emerged as the most generally 
accurate streamflow prediction methods: the nearest-neighbor 
implementations of nonlinear spatial interpolation using flow 
duration curves (NN-QPPQ) and standardizing logarithms 
of streamflow by monthly means and standard deviations 
(NN-SMS12L). It was nearly impossible to distinguish 
between these two methods in terms of performance. Further-
more, neither of these methods requires significantly more 
parameterization in order to be applied: NN-SMS12L requires 
24 regional regressions—12 for monthly means and 12 for 
monthly standard deviations. NN-QPPQ, in the application 
described in this study, required 27 regressions of particular 
quantiles along the flow duration curve. Despite this find-
ing, the results suggest that an optimal streamflow prediction 
method depends on the intended application. Some methods 
are stronger overall, while some methods may be better at pre-
dicting particular statistics. The methods of analysis presented 
here reflect a possible framework for continued analysis and 
comprehensive multiple comparisons of methods of prediction 
in ungaged basins (PUB). Additional metrics of comparison can 
easily be incorporated into this type of analysis. By consider-
ing such a multifaceted approach, the top-performing models 
can easily be identified and considered for further research. 

The top-performing models can then provide a basis for 
future applications and explorations by scientists, engineers, 
managers, and practitioners to suit their own needs.

Introduction
Effective and responsible management of water resources 

relies on a thorough understanding of the quantity and qual-
ity of available water. In regards to quantity, daily records of 
streamflow are some of the best sources of the information 
required for assessing water resources. These records can be 
used to determine specific characteristics of flow that influence 
a wide range of projects, from irrigation scheduling to water-
supply management and the development of hydropower, to 
name a few (Sivapalan, 2003; Sivapalan and others, 2003; 
Hrachowitz and others, 2013). Long-term historical records 
are also essential to understanding trends in climate and 
basin hydromorphology (Vogel, 2011). As human develop-
ment expands across the landscape, daily streamflow records 
are vital to answering a growing number of increasingly 
complex questions.

Historically, daily streamflow records have been pro-
duced by operating streamgages. Streamgage density and 
length of continuous record have thus been guided by fund-
ing availability and location chosen to address specific, often 
local, questions. Given the funding requirements and the 
length of operation needed to produce streamflow records of 
sufficient length for analysis, it is unreasonable to expect daily 
streamflow records at the outlet of every basin of interest (for 
example, HUC-12 outlets). The result is a network of gages 
in the United States with many spatial and temporal gaps 
in observed streamflow records (Kiang and others, 2013). 
Developing methods for filling these spatial and temporal 
gaps based on mathematical models is required to answer 
questions regarding the quantity and quality of available 
water in ungaged basins and is the goal of the Prediction in 
Ungaged Basins (PUB) initiative (Sivapalan and others, 2003; 
Hrachowitz and others, 2013).
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Recognizing the importance of water resources, the U.S. 
Department of the Interior (DOI) launched the WaterSMART 
initiative to describe the quality and quantity of the Nation’s 
water resources (Alley and others, 2013). The U.S. Geologi-
cal Survey’s (USGS) National Water Census, a component of 
WaterSMART, aims to provide water-accounting tools and to 
assess the availability of water resources to meet current and 
projected ecological and human water requirements at regional 
and national scales (Alley and others, 2013). While the 
National Water Census considers a number of different aspects 
of water resources, one specific research focus is to provide 
spatially and temporally continuous predictions of natural, his-
torical daily streamflow at the subwatershed (HUC-12) outlet 
scale. (In the southeastern United States, these outlet basins 
have a mean size of 853 mi2.) The daily streamflow product 
is an essential component of water budget estimates and will 
provide direct information for human and aquatic needs. 

While numerous methods exist to predict specific stream-
flow statistics in ungaged basins (see Thomas and Benson, 
1970, and Ries III, 2007, for a summary), the literature 
concerning prediction of complete time series is much more 
limited, often consisting of comparisons of a proposed method 
against one or two previous methods (Hirsch, 1979; Hughes 
and Smakhtin, 1996; Shu and Ouarda, 2012; Razavi and 
Coulibaly, 2013). In order to predict streamflow at a useful 
spatial and temporal resolution throughout the Nation, ideal 
methods must be accurate and efficient. In addition, ideal 
methods, so as to better understand the limits of their useful-
ness, should provide some means of characterizing the degree 
of uncertainty in predictions. Prior to national-scale implemen-
tation, methodological approaches to continuous streamflow 
prediction need to be developed and rigorously evaluated.

A pilot study in the southeastern United States, called the 
Southeast Model-Comparison study (SEMC), was conducted 
to determine the best prediction methods for regional and 
national model implementation. The SEMC was focused on 
conducting a comprehensive analysis and cross comparison 
of 19 prediction methods for ungaged basins (PUB methods) 
using a wide-ranging set of performance metrics while also 
characterizing uncertainty. The intention of the SEMC is to 
develop a framework of analysis that can incorporate existing 
and future PUB methods and provide a thorough analysis of 
the strengths and weaknesses of each. The result of the SEMC 
is a robust understanding of current PUB methods and their 
advantages and limitations.

Purpose and Scope

This report presents the results of the SEMC: a comparison 
of 19 methods for predicting streamflow at a daily time step 
in the southeastern United States (fig. 1). The report documents 
the ability of each model to predict observed daily stream-
flow, daily, no-fail storage-yield curves, and specific flow 
statistics at 182 locations over a 30-year period (water years 
1981–2010; water years are defined as the period of time 

between October 1 and September 30 of consecutive calendar 
years). Additionally, information regarding relative model 
performance is presented. The accuracy of the models is the 
principal basis for comparison, though the level of effort and 
data requirements for the various methods are also discussed. 
This report presents a method of analysis that is thorough, but 
not exhaustive, though the conclusions presented remain rela-
tive to the location and PUB methods evaluated, rather than 
unconditional or absolute. 

Study Area, Streamgage Selection, and 
Dataset Development

The Southeast Model Comparison study area covers 
approximately 137,000 mi2 and includes all or part of 
12 4-digit Hydrologic Unit Code (HUC-4) sub-basins in 
Alabama, Florida, Georgia, Mississippi, North Carolina, South 
Carolina, Tennessee, and Virginia (fig. 1). The majority of the 
study area eventually drains to the Gulf of Mexico, including 
the Alabama-Coosa-Tallapoosa, Apalachicola-Chattahoochee-
Flint, Choctawhatchee-Escambia, Mobile-Tombigbee, 
Ochlockonee, Pascagoula, Suwannee, and middle and upper 
Tennessee River Basins, with parts of two additional basins 
(Altamaha and Savannah Rivers) draining to the Atlantic 
Ocean. An analysis of the 2011 National Land Cover Data-
base (NLCD; Jin and others, 2013) shows that the study area 
consists of 49.4 percent forest cover, 17.6 percent agricultural 
lands, 12.1 percent scrub/shrub and grasslands, 9.0 percent 
developed lands, 9.0 percent wetlands, 2.5 percent open water, 
and 0.4 percent barren land. The study area is composed of six 
physiographic regions: the Appalachian Plateaus, Blue Ridge, 
Coastal Plain, Interior Low Plateaus, Piedmont, and Valley 
and Ridge. The Appalachian and Interior Low Plateaus include 
nearly horizontal layers of Mississippian- and Pennsylvanian-
age sedimentary rocks. The Blue Ridge and Piedmont are 
underlain mostly by Precambrian-age and older Paleozoic-age 
crystalline rocks. The Valley and Ridge, as its name suggests, 
consists of a series of northeast-trending linear ridges and 
valleys underlain by alternating beds of hard and soft Paleo-
zoic sedimentary rocks (Johnson and others, 2002). Lastly, 
the Coastal Plain is underlain by Mesozoic- and Cenozoic-age 
sedimentary rocks and unconsolidated sediments (Couch and 
others, 1995). 

The SEMC study area is generally a warm and humid 
temperate climate. Air temperatures generally decrease with 
increasing latitude and elevation. Annual average temperatures 
range from a high of 67.8 °F in the southern part to a low 
of 50.7 °F in the northern part. Average annual precipitation 
accumulation in the study area is 54.4 inches (in.), with aver-
age values ranging from a low of 44.1 in. in the northeastern-
most part of the upper Tennessee River Basin to a high of 69.2 in. 
at the intersection of Georgia, North Carolina, and South 
Carolina. Generally, precipitation accumulation is greatest in 
the southern part of the study area near the Gulf of Mexico 
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Figure 1.  Southeast Model Comparison (SEMC) study area with four-digit Hydrologic Unit Codes (HUC) 
and Physiographic Provinces. HUC 4 units are as follows: (1) Upper Tennessee, (2) Middle Tennessee-
Hiwassee, (3) Middle Tennessee-Elk, (4) Savannah, (5) Mobile-Tombigbee, (6) Alabama-Coosa-Tallapoosa, 
(7) Apalachicola-Chattahoochee-Flint, (8) Altamaha, (9) Pascagoula, (10) Chocktawhatchee-Escambia, 
(11) Ochlockonee, and (12) Suwannee.
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and in the southern Appalachian Mountains, lowest in central 
Georgia and the northeastern most part of the study area, and 
closer to the average in the western half of the study area.

In order to assess the predictive power of the PUB meth-
ods, the streamgages considered for calibration and validation 
were required to exhibit near-natural streamflow records for 
an extended period of time. As the intention was to produce 
a 30-year continuous daily record between October 1, 1980, 
and September 30, 2010, each potential streamgage was 
required to have at least 10 complete water years within the 
period of interest. Based largely on the work of Falcone and 
others (2010), Falcone (2011) and Gotvald and others (2009), 
182 streamgages in the southeastern United States satisfied 
these criteria and were selected for use in this analysis (fig. 2; 
table 1). The selected records were assessed for missing peri-
ods. At seven streamgages (see app. A), short missing periods 
of 1 to 33 days were filled in consultation with surface-water 
specialists of each USGS Water Science Center where the data 
originated; often missing data were available from the local 
databases. Other methods used for filling included transfer of 
data from nearby stations and interpolation; see appendix A. 
After filling, only complete water years of data were used in 
the analyses.

More than 300 basin characteristics were obtained for 
the each of the catchments used in the study; a description of 
the characteristics and how they were computed can be found 
in the GAGES-II documentation (Falcone and others, 2010; 
Falcone, 2011); these include climate characteristics, drainage 
characteristics, characteristics describing geology and soils, 
characteristics describing land use, and topographic charac-
teristics. After some initial exploration of regional regressions 
following the methods for the prediction of streamflow means, 
standard deviations, and percentiles outlined below, this list 
was reduced to over 80 different variables that appeared most 
frequently in regressions based only on GAGES-II reference 
basins. These candidate variables were identified using best-
subsets regression (regsubsets in R) and the R package leaps 
(Lumley, 2012). The remaining 80 variables represented 
the full range of the basin characteristics mentioned above. 
(The set of basin characteristics considered here is included 
in app. B.) For streamgages used in this study that are not 
part of the GAGES-II dataset, the same protocols described 
in Falcone and others (2010) were employed to determine 
catchment characteristics. 

Methods to Predict Daily Streamflow 
Six basic methods were used to predict daily streamflow 

at ungaged locations. These methods include four statistical, 
transfer-based methods, one process-based method, and one 
quasi-process-based method. The transfer-based and quasi-
process-based methods require an index gage for the transfer 
of timing and magnitude information. Two such indexing 
algorithms were assessed, selecting either by minimum 

Euclidean distance (nearest neighbor) or maximum estimated 
correlation (Map Correlation; Archfield and Vogel, 2010). The 
transfer-based methods include drainage area ratio, nonlinear 
spatial interpolation using flow duration curves (Fennessey, 
1994; Hughes and Smakhtin, 1996), standardizing stream-
flows by a mean streamflow, standardizing streamflows by a 
mean, and standard deviation of streamflow. Standardizing by 
mean can be executed with annual or monthly means; stan-
dardizing by the mean and standard deviation can be imple-
mented with annual or monthly mean and standard deviations 
of natural, logarithmically transformed and untransformed 
streamflow. The Precipitation Runoff Modeling System 
(PRMS) (Leavesley and others, 1983; Markstrom and oth-
ers, 2008) is a process-based model that uses climatic, land 
use, and basin properties to predict time series of streamflow. 
The quasi-process-based method was a temporal downscaling 
of the monthly Analysis of Flows in Networks of Channels 
(AFINCH) model (Holtschlag, 2009). AFINCH uses land 
use and temporal climatic inputs, but is largely based on 
statistical relationships rather than physical processes. The 
temporal downscaling, or disaggregation, is accomplished 
using an index gage; additional information is provided below. 
Accounting for the possibilities for index-gage selection and 
particular use of moments, there were 19 complete methods 
considered; these are outlined in table 2. 

These 19 PUB methods were used to simulate the 
ungaged scenario for 182 sites in the southeastern United 
States. A threefold validation procedure was used whereby 
the 182 sites were divided into three groups. For each third of 
the sites, the remaining two-thirds were used to calibrate each 
PUB method, as needed. The parameters estimated through 
calibration were then used to predict the ungaged third. The 
two-thirds set used for calibration is referred to as the calibra-
tion network, while the remaining third is known as the valida-
tion set. Iterating which third is considered the validation set 
produces a single, “ungaged” estimate for each site, which 
allowed for an assessment of performance across all 182 sites.

Selection of Index Gages

All of the PUB methods compared in this paper require 
an index gage from which to transfer information. The 
statistical, transfer-based methods and the disaggregation 
of AFINCH require an index gage to determine streamflow 
timing and relative streamflow magnitudes. PRMS requires 
an index gage to obtain model parameters at the ungaged site. 
The index gages were identified by two different techniques: 
nearest neighbor or map correlation. Both of these techniques 
are widely used, though the nearest neighbor is used more 
often (Archfield and Vogel, 2010; Shu and Ouarda, 2012), 
largely because of its ease of use and relative success. In either 
case, the index gage was selected from the calibration network 
of gages as defined by the threefold validation procedure 
outlined above.
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Figure 2.  Study area and streamgage locations.
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Daily streamflow was predicted at validation sites from 
October 1, 1980, to September 30, 2010. However, for the 
PUB methods that require timing information, it was not 
always possible to find a single index gage in the calibration 
set that could be used to estimate daily streamflow for the 
entire period. To remedy this, the potential index gages for a 
validation site were ranked by the selected criteria (nearest 
neighbor or map correlation) and index gages were selected 
until the entire period of interest was represented. For exam-
ple, the top three index gages for a particular validation site 
might have had different periods of record: (1) October 1939–
September 1996; (2) January 1998–December 2010; and  
(3) October 1991–September 2005. In predicting the stream-
flow for this validation site, index gage (1) would have been 
used from October 1980–September 1996, gage (2) would 
have been used to predict January 1998–September 2010, 
and gage (3) would have been used to fill the gap between 
October 1996 and December 1997.

The nearest-neighbor index-selection technique ranks 
potential index gages based on spatial proximity. The location 
of each gage in the calibration network and validation set is 
defined by the latitude and longitude of the basin outlet. For 
the statistical, transfer-based methods and AFINCH, the index 
gages are ranked according to smallest Euclidean distance 
between the validation site and potential index gage. These 
methods then use the index gages to build a complete record, 
as described above. For PRMS, the nearest-neighbor procedure 
was augmented by restricting the calibration network to only 
gages where at-site calibration of PRMS exceeded a Nash-
Sutcliffe model efficiency of 0.80. Model parameters were 
transferred to the validation site from the nearest index gage 
with an acceptably efficient at-site calibration of PRMS.

Map correlation is predicated on the assumption that, 
when transferring daily time series of streamflow from a gaged 
to an ungaged location, the correlation in the daily streamflow 
time series would provide an improved metric of similarity 
over the use of the nearest index streamgage. Archfield and 
Vogel (2010) show this to be the case for ungaged locations 
in the northeastern United States and developed a geostatisti-
cally based kriging method termed map correlation to select 
an index streamgage estimated to be most correlated with the 
ungaged location. This method has been subsequently applied 
to the States of Pennsylvania and Iowa (Stuckey and others, 
2012; Linhart and others, 2013, respectively) and to the Con-
necticut River Basin (Archfield and others, 2013). 

The map-correlation method (Archfield and Vogel, 
2010) is an application of ordinary kriging that provides an 
estimate of the cross correlation in streamflow time series 
between any location in a region and an ungaged location 
and, when applied to a set of gaged catchments, can select the 
gaged catchment that has the highest estimated correlation 
in daily streamflow time series with the ungaged catchment. 
The map-correlation method has been successfully used 
with the drainage-area ratio method to improve estimates of 
daily streamflow time series in the northeastern United States 
(Archfield and Vogel, 2010). 

For each gaged catchment in a study region, the 
map-correlation method is implemented through the 
following steps:

•	 Compute the Spearman’s rho correlation between con-
current streamflow time series at the gaged catchment 
and all other gaged study catchments. 

•	 Fit a continuous spatial statistical model, termed a 
variogram model, to the relation between the observed 
differences in correlation and distance between each 
pair of gaged catchments. The resulting variogram 
model can then be used to map the spatial distribution 
of correlation between the gaged catchment and any 
other location in the study area.

•	 Use the variogram model to estimate the correlation 
between the gaged catchment and the ungaged 
location. 

When correlations are mapped for more than one gaged 
catchment, each map can be used to estimate the correlation 
at the ungaged location. By comparing multiple mapped 
estimates of correlation at the ungaged catchment, the map-
correlation method is able to select the gaged catchment that 
corresponds to the highest estimated correlation value at the 
ungaged catchment. Thus, the map-correlation method is able 
to select the gaged catchment having streamflows estimated to 
be most correlated with the ungaged location. 

Archfield and Vogel (2010) use the Pearson r correlation 
coefficient to estimate correlation between the logarithms of 
concurrent streamflow time series at the gaged catchments; 
however, this measure of correlation has its disadvantages. 
The Pearson r correlation coefficient assumes a linear relation 
between the correlated time series (Helsel and Hirsch, 2002). 
Archfield and Vogel (2010) obtained an approximately linear 
relation between streamflow time series by taking the loga-
rithms of the streamflows before computing the Pearson 
r correlation coefficient. This approach is not feasible if there 
are zero values in the streamflow record and, furthermore, this 
approach does not fully ensure a linear relation between the 
streamflow time series. To avoid these concerns, the methods 
applied here use the rank-based Spearman rho correlation 
metric (Helsel and Hirsch, 2002) to estimate the correlation 
between streamflow time series. Just as with Pearson r correla-
tion coefficient values, Spearman rho correlation values range 
from –1 to 1, with extremes indicating a perfect negative or 
positive correlation, respectively.

For each site in the calibration network, variogram mod-
els were fit to the Spearman rho correlation values according 
to the methods explained in Archfield and Vogel (2010) and 
summarized here. The R statistical program (R Development 
Core Team, 2005) and the related geoR software package 
(Ribeiro Jr. and Diggle, 2001) were used to fit the variogram 
models to the observed correlations between a particular site 
in the calibration network and any other site within the calibra-
tion network. The variogram model was fit using weighted 
least squares from binned values of the observed correlation 
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across the calibration sites, as a function of inter-site distances, 
with the weights determined by the number of points used to 
estimate each bin (Ribeiro, Jr. and Diggle, 2001). Because of 
its relatively simple formulation, its visual agreement with the 
majority of the sample variograms, and the previous success 
of this model form by Archfield and Vogel (2010), the model 
fit to the calibration network was a spherical variogram model. 
The spherical variogram, (see Ribeiro, Jr. and Diggle 2001), 
has the form

( )
3

1 1.5 0.5 ,  0 ,
0 ,  

h h if hh a a
otherwise

γ
 − + < =  

          

 (1)

where 

	 γ(h) 	 is the variogram model (also referred to as the 
correlation function), 

	 h 	 is the separation distance, and 
	 a 	 is the range parameter. 

Following from traditional geostatistics techniques for ordi-
nary kriging as presented in Isaaks and Srivastava (1989), 
when γ(h) (eqn. 1) is multiplied by the partial sill, σ2, the 
covariance function, C(h), is obtained (Ribeiro, Jr. and Diggle, 
2001): 

( )C h =  σ
2
 ( )hγ .                            (2)

The parameters a and σ2 were estimated for each of the 
variogram models, corresponding to each of the calibration 
sites, and when used in conjunction with equations 1 and 2, 
the covariance between two correlation values at any distance 
apart from one another can be estimated (Ribeiro, Jr. and 
Diggle, 2001). This application of the map-correlation method 
also estimated a nugget value, which is a constant value added 
to equation (1) when the variability in the data is such that γ(h) 
does equal zero when h is zero Isaaks and Srivastava (1989). 
Fitting a model for each site in the calibration network allows 
for an approximation of the correlation between a validation 
site and each calibration site. The potential index gages can 
then be ranked according to the estimated correlation between 
streamflow records.

Table 3 presents the root-mean-squared error (RMSE) 
associated with the fit of each calibration variogram. Apart 
from the threefold validation, these results are from a leave-
one-out validation and give an indication of how well these 
models are performing in the region. The RMSE is computed 
for each variogram model by first fitting the model to the 
entire dataset and then systematically leaving one of the 
gages out of the fitting procedure. Archfield and Vogel (2010) 
report much lower RMSE values than reported here; however, 
because the scope of this report is to evaluate existing methods 
to estimate daily streamflow, the reasons for this difference 
were not explored. In the streamflow predictions presented 

below, the variogram models were fit following the threefold 
validation framework.

The map correlation techniques were used to select index 
gages for the statistical, transfer-based methods and AFINCH, 
but were not used to identify the parameters for PRMS. The 
statistical, transfer-based methods ranked potential index 
gages by the correlation between streamflow time series. 
AFINCH, for reasons explained below, ranked potential index 
gages by applying map correlation to the time series of ratios 
between daily and monthly streamflow.

Methods to Estimate Streamflow Moments at 
Ungaged Sites

Estimates of the streamflow mean and standard deviation 
on a monthly and annual basis are required for several of the 
statistical, transfer-based methods, including the standardiza-
tions with means and the standardizations with both means and 
standard deviations. The means and standard deviations must 
be calculated using untransformed and natural, logarithmically 
transformed streamflow data. For these applications, monthly 
and annual moments of untransformed and natural, logarithmi-
cally transformed streamflows were estimated for the ungaged 
validation sites via regional regression techniques documented 
and developed by Farmer and Vogel (2013). Depending on the 
implementations of the PUB methods, a different number of 
regressions were required. Standardizing with an annual mean 
requires a single regression, while standardizing with monthly 
means requires 12 regressions. Similarly, standardizing with 
an annual mean and an annual standard deviation requires 
two regressions, while standardizing with analogous monthly 
moments requires 24 regressions.

Monthly and annual means and standard deviations 
were estimated using a regression technique similar to the 
automated approach proposed by Farmer and Vogel (2013). A 
set of regional regressions for the prediction of these means 
was developed using only the calibration network and associ-
ated basin characteristics. A large set of basin characteristics 
was passed through a set of filters, described in some detail 
in appendix A of Farmer and Vogel (2013). In general terms, 
this process consisted of passing the calibration set of explana-
tory variables through a stepwise regression to identify the 
most significant variables. The remaining explanatory vari-
ables were passed through a loop of weighted multivariate 
regressions, removing the most insignificant variables at each 
step until all variables were significant according to a t test 
on the regression coefficient. The inverse lengths of known 
records were used to weight observations. This technique was 
used to estimate both annual and monthly moments. In the 
monthly case, these regressions were recursive, with a single 
lagged variable, allowing the mean from one month to be 
used as an explanatory variable in the subsequent month and 
tying the 12 monthly equations into a simultaneous solution 
of parameters—an adjustment on the iterative solutions of 
Farmer and Vogel (2013).
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Methods to Estimate the Quantiles of Flow 
Duration Curves at Ungaged Sites 

The PUB method of nonlinear spatial interpolation using 
flow duration curves involves the transfer of streamflow infor-
mation from the index gage to the validation site via exceed-
ance probabilities and flow duration curves (FDCs). This 
requires the FDCs at both the index and validation sites be 
available before implementing the nonlinear spatial interpola-
tion using flow duration curves. Each FDC was represented by 
discrete percentiles of the streamflow distribution rather than 
a continuous function. The percentiles used here corresponded 
to nonexceedance probabilities of 0.02, 0.05, 0.1, 0.2, 0.5, 1, 
2, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 98, 99, 99.5, 
99.8, 99.9, 99.95, and 99.98 percent. The percentiles of the 
FDCs at the calibration sites, which possess gaged records, 
were obtained via empirical estimators. The percentiles of 
the FDCs at the validation sites were estimated with regional 
multiple-linear regressions based on the calibration network.

For each calibration site, the value of each of the 
27 percentiles of the streamflow distribution was computed 
by linearly interpolating between the observed daily discharge 
values and the nonexceedance probability, ip . These prob-
abilities were computed using the standard formula of the 
plotting position ( ) ( )1 2ip i a n a= − + − , where pi is the non-
exceedance probability, i is the rank of the daily streamflow 
value (1 to n, smallest to largest), n is the number of observa-
tions, and a is a constant. In this case, setting the constant to 
a = 0.375, the Blom plotting position was used. The Blom 
plotting position gives unbiased percentiles for the normal 
distribution (Stedinger and others, 1993), which is usually a 
reasonable approximation for log-transformed daily stream-
flow. The Blom formula is also numerically similar to the 
Cunnane formula with 0.4a = , which is approximately 
quantile unbiased for a range of distributions (Cunnane, 
1978). The dense set of 27 percentiles was chosen in order 
to minimize the need for extrapolation of extremes and gap 
over which values must be interpolated when applying the 
nonlinear spatial interpolation using flow duration curves. 
Because the minimum record length of calibration sites 
was set to 10 years of daily data, which means there were 
at least 3,650 observed values, the upper and lower percen-
tiles were set to ( )min 1 0.0017p p i= = =  percent and 

( )max 99.983p p i n= = =  percent.
Seeking to minimize the curvature of the FDCs, the val-

ues of the percentiles were logarithmically transformed with 
the common logarithm. A few of the calibration sites, as noted 
in table 1, contained zero flow values and produced zero-valued 
percentiles. The zeroes could not be logarithmically transformed. 
The smallest nonzero flow in the published records was 
0.01 ft3/s, for which 10log 0.01 2= − . As a placeholder, the 
published zeroes were marked as a value of –3 when logarith-
mically transformed. The logarithmically transformed value 
–2 was later used as a censoring level in regional regression.

The percentiles of the distribution of daily streamflow at 
the validation sites were estimated using a regional multiple-
linear regression based on the calibration network. This regres-
sion provided estimates of the logarithmically transformed 

percentile at each site as a function of at-site basin characteris-
tics, following the form below:

( ) ( ) ( ) ( ) ( )10log 0 ,p p p p p
j

Q i b b j B i j iε= + +∑ ,      (3)

where 

	 ( )10log pQ i  	 is the base-10 logarithm of the pth quantile of 
streamflow at the ith station,

	 ( )0pb  	 is the estimated intercept of the linear 
regression model of the pth quantile,

	 ( )pb j  	 is the estimated coefficient of the jth (j = 1, k) 
basin characteristic in linear regression 
model of the pth quantile,

	 ( ),pB i j  	 is the value of the jth basin characteristic 
for the pth quantile of the ith station, and 

( )p iε  is the residual (error) of estimation 
of ( )10log pQ i , where ( ) ( )2

p pVar e i iσ ω  =   , 
where 2

pσ  is the ordinary least squares 
regression residual variance of the pth 
quantile (to be estimated) and ( )iω  is 
the residual’s variance weight of the 
ith station, which is assumed to be 
proportional to its record length, in 
particular,  ( ) ( ) ( )

1

n

i
i nN i N iω

=

= ∑ , where ( )N i  is 
the number of years of record of the ith 
station.

If all the validation sites exhibited nonzero percentiles, 
the regression model could be solved as a weighted least-
squares regression for each quantile. For example, Judge and 
others (1985, p. 420–421) show how to transform weighted 
least squares to an ordinary least-squares problem. However, 
as mentioned, some of the daily streamflow quantiles are 
published as zeroes, and so the method of estimation must take 
this into account. In particular, when zero-valued percentiles 
are present, least-squares methods cannot be used. Instead, 
the logarithmically transformed percentiles were estimated 
with “tobit” regression, as the maximum likelihood estima-
tion method is often called in this situation (Greene, 1997, 
p. 962–967). Tobit regression was implemented using the 
survreg() function of the survival package of R (Therneau, 
2013) and a censoring level of 10log 0.01 2= − . By using this 
regression method, the logarithmically transformed values of 
some streamflow percentiles may be estimated as being less 
than –2, corresponding to streamflow values less than 0.01 ft3/s. 
When no censored values are present, tobit regression reduces 
to least-squares regression.

For validation sites, the regression models were developed 
for three flow regimes and composed of one to six basin char-
acteristics. The basin characteristics were comprised of subsets 
of the GAGES-II variables, with various transformations (for 
example, logarithmic or square-root transformations) that 
improved the normality of the regression residuals. The flow 
regimes included high- (exceedance probabilities less than 
5 percent), medium- (exceedance probabilities between 5 and 
95 percent), and low-flow events (exceedance probabilities 
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greater than 95 percent). For a particular candidate model in 
a particular flow regime, the same basin characteristics were 
used to predict each percentile, resulting in a unique set of 
coefficients for each percentile. Candidate models were ranked 
by combined goodness of fit across the flow regime. Selecting 
models by flow regime reduced the likelihood of non-mono-
tonicity and noisiness in the estimated FDCs while reducing 
the number of basic characteristics required for prediction. 
Although not tested here, alternative strategies for reducing 
noise in estimated FDCs attempt to account for the cross cor-
relations between quantiles; these include the regression-on 
quantiles approach utilized by Archfield and others (2013) and 
seemingly unrelated regressions (Tasker, 1997). The analysis 
of PUB methods below applied the threefold validation pro-
cedure to percentile estimation, but the regional results of the 
percentile regression, using all sites as calibration data, are 
included in table 4.

Statistical, Transfer-Based Methods

Drainage-Area Ratio
The drainage-area ratio (DAR) method has been used 

for decades to predict daily streamflow at ungaged locations. 
Asquith and others (2006) provide a summary of the history, 
development, and application of the DAR method. The DAR 
method assumes that the streamflow per unit drainage area at 
the index gage and validation site are equal to one another. 
In the DAR method, daily streamflows on a given day, t, are 
predicted as 



, ,
Y

Y t X t
X

AQ Q
A

=
                               

(4)

and ,Y tQ  is the predicted streamflow on day t at the validation 
site, ,X tQ  is the measured streamflow on day t at the index 
gage, YA  is the drainage area of the validation site, and XA  
is the drainage area to the index gage. 

Standardization with Mean
An alternative to standardizing streamflow by the drain-

age area is to standardize streamflows by the mean stream-
flow. This method can be applied with either an annual mean 
(SM1) or a set of 12 monthly means (SM12). Farmer and 
Vogel (2013) found that standardizing streamflows by monthly 
means produced accurate predictions of monthly flows. Espe-
cially when applied with monthly means, this method corrects 
for some of the seasonality observed in the application of the 
more-traditional drainage-area ratio.

The SM technique maps streamflow information from an 
index gage, X, to the validation site, Y, as



, ,
Y

Y t X t
X

Q Qµ
µ

= ,                               (5)

where 

	 

,Y tQ  	 is the predicted streamflow on day t at the 
validation site, 

	 ,X tQ  	 is the measured streamflow on day t at the 
index gage, 

	 Yµ  	 is the mean streamflow at the validation site, and 
	 Xµ  	 is the mean streamflow at the index gage. 

In practice, estimates of the mean at 
the ungaged site are required prior to 
the application of SM techniques. As 
in Farmer and Vogel (2013), regression 
techniques described above were used to 
apply these methods.

Standardization with Mean and Standard 
Deviation

A common method for the extension of streamflow 
records is the Maintenance of Variance Extension (MOVE) 
(Hirsch, 1979 and 1982). Hirsch (1979) noted the potential of 
a similar technique for prediction in ungaged basins, calling 
it a method of regional statistics. Farmer and Vogel (2013) 
considered several variations of this method for the prediction 
of monthly records and these same variations can be applied to 
daily streamflow records. Standardizing by mean and standard 
deviation (SMS) can be implemented using untransformed or 
normal, logarithmically transformed streamflow.

Standardizing untransformed streamflows, the informa-
tion at a validation site can be related to an index gage as

 X X Y Y

X Y

Q Qµ µ
σ σ
− −

= ,                        (6) 

where X and Y indicate two sites and µ and σ are the 
mean and standard deviation of the flows at the subscripted 
site. This standardization produces a new standardized vari-
able with zero mean and unit variance, regardless of the prob-
ability distribution of the original flows. SMS techniques can 
also be used to standardize the logarithms of streamflows, in 
which case the above equation becomes

( )

( )

( )

( )

ln ln

ln ln

ln( ) ln( )
X Y

X Y

X YQ Q

Q Q

Q Qµ µ

σ σ

− −
=

              
(7)

with the same definitions as above. When relating an index 
gage to a validation site, either of these equations can be 
manipulated to solve for the ungaged streamflow. Furthermore, 
either method can be applied with an annual mean and 
an annual standard deviation of streamflow or a series of 
12 monthly means and standard deviations, resulting in four 
closely related methods: standardizing streamflow with an 
annual mean and standard deviation (SMS1R), standardizing 
the natural logarithms of streamflow with an annual mean and 
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standard deviation, standardizing streamflows with monthly 
means and standard deviations (SMS12R), and standardizing 
the natural logarithms of streamflow with monthly means and 
standard deviations (SMS12L) (table 2). In practice, the means 
and standard deviations would need to be estimated; the esti-
mation procedure used here is described above.

SMS techniques have been shown to be extremely 
powerful in practice. In a study of Virginia watersheds, Hirsch 
(1979) found the SMS class of methods, referred to as the 
method of regional statistics, to be “distinctly superior” to the 
drainage-area ratio technique, among others, for the prediction 
of monthly series. Farmer and Vogel (2013) found, in a study 
of unaltered basins across the United States, that SMS tech-
niques outperformed a wide range of techniques when there 
was little uncertainty in the estimated moments—an idealized 
case. Of course, as one is required to estimate moments in 
truly ungaged basins, the degree of superiority is directly 
linked with the ability to parameterize this PUB method.

Nonlinear Spatial Interpolation Using Flow 
Duration Curves 

The method nonlinear spatial interpolation using flow 
duration curves assumes that the exceedance probability of 
streamflow on a given day is identical between two hydro-
logically similar sites, between an index and validation site. 
As noted in Archfield and others (2013), with an index gage 
selected and estimated daily flow duration curve (FDC) at 
the validation site, a time series of daily streamflow for the 
simulation period can be constructed by use of the nonlinear 
spatial interpolation (Fennessey, 1994; Hughes and Smakhtin, 
1996; Smakhtin, 1999; Mohamoud, 2008; Archfield and others 
2010; Shu and Ouarda, 2012). For example, if the streamflow 
on October, 1, 1994, was at the 90-percent-exceedance prob-
ability at the index gage, then it is assumed that the streamflow 
on that day at the ungaged location also was at the 90-percent 
exceedance probability; this probability can then be converted 
to a streamflow value via the estimated FDC. Therefore, to 
implement the method of nonlinear spatial interpolation using 
flow duration curves, an FDC is required at both the index and 
validation site. The time series of exceedance probabilities is 
transferred from the index gage to the validation site without 
transformation.

In this application, the discretization of FDCs neces-
sitated several additional steps for the application of nonlin-
ear spatial interpolation using FDCs. At the index gage, the 
percentiles of the streamflow distribution are determined by 
ranking the observations. At the validation site, the streamflow 
percentiles are estimated with regional regression, as outlined 
above. The nature of nonlinear spatial interpolation with FDCs 
requires that streamflows be estimated between the discrete 
percentiles as well. A Gaussian interpolation technique was 
used here. The following details describe the additional steps 
required to implement the nonlinear spatial interpolation 
using FDCs.

FDCs are typically represented as streamflow values (Q) 
plotted against exceedance probabilities (p) on semi-log axes. 
In an attempt to better linearize the curve, especially towards 
the tails, the FDCs are represented here as the common loga-
rithms of the 27 percentiles (q) plotted against the standard 
normal (Gaussian) quantiles associated with each exceedance 
probability (Zp). The standard normal quantiles are computed 
as the quantiles of a normal distribution with a mean of zero 
and standard deviation of one, each with a given exceedance 
probability p. This approach was designed to address the 
“hooks” in the extreme tails noted by Archfield and others 
(2010) when plotting FDCs with log-linear axes. 

Estimating the streamflow QY,t on day t at the validation 
site Y begins by observing the logarithm of the streamflow 
on the same day at the index gage X, where ( ), ,lnX t Y tq Q= . 
More often than not, this value falls between 2 of the 27 
observed quantiles on the empirical FDC associated with site 
X, qX,lower and qX,upper . These two quantiles are associated with 
two normal quantiles, Zp,lower and Zp,upper. The normal quantile 
associated with qX,t and time t, Zt, can then be obtained by 
linearly interpolating between these two ordered pairs.

Having obtained Zt, an estimate of QY,t is arrived at by 
conducting the same process in reverse, with the regression-
estimated FDC at the validation site used in place of the index 
gage’s empirical FDC. On the regression-estimated FDC at 
the validation site, the same normal quantiles that surround 
Zt, namely Zp,lower and Zp,upper, are associated with estimated 
common logarithms of two quantiles, ,ˆY lowerq  and ,ˆY upperq . 
The estimate ,Y tQ  is obtained by conducting a linearly inter-
polation of Zt between these two points. The estimate of 
streamflow at the validation site on day t is then given as 




,
, 10 Y tq

Y tQ = .
Given that the highest and lowest quantiles considered 

here were at exceedance probabilities of 0.02 percent and 
99.98 percent, at any particular site it would be expected that 
0.04 percent of the days had streamflow values and probabili-
ties beyond the highest or lowest available quantile. In such 
a case, it is impossible to conduct an interpolation to transfer 
information from one site to another. Rather than attempting 
a more-involved extrapolation technique, the drainage-area 
ratio was applied in substitution. This procedure of Gaussian 
interpolation worked well for this study region.

The method of nonlinear spatial interpolation using flow 
duration curves, known by several different names, is referred 
to here as QPPQ. Fennessey (1994) first coined this technique 
the QPPQ TRANSFORM. It has also been published by 
Smakhtin (1999), Mohamoud (2008), and Archfield and others 
(2010) under names including “nonlinear spatial interpolation 
technique” (Hughes and Smakhtin, 1996; Smakhtin, 1999) and 
“reshuffling procedure” (Mohamoud, 2008). Recently, Shu 
and Ouarda (2012) demonstrated the advantages of the nonlin-
ear spatial interpolation using flow duration curves and it has 
become more and more popular. 
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Analysis of Flows in Networks of Channels 
Model, Temporally Disaggregated

The Analysis of Flows in Networks of Channels 
(AFINCH) model estimates monthly streamflow at ungaged 
locations (Holtschlag, 2009). AFINCH uses observed tem-
perature, precipitation and streamflow data, as well as land use 
information to estimate monthly streamflow at ungaged loca-
tions. It is a quasi-process-based method because although it is 
based on empirically derived statistical relationships between 
streamflow and climate and land use variables, the monthly 
streamflow estimates are driven by the climate variables as 
occurs in a rainfall-runoff model. Monthly precipitation and 
temperature were obtained from the Processing Routines 
in IDL for Spectroscopic Measurements (PRISM) dataset 
(Gibson and others, 2002) via the USGS Center for Integrated 
Data Analytics GeoDataPortal, while land use information 
was derived from the 1992 version of the National Land Cover 
Dataset (Vogelmann and others, 2001). AFINCH is designed 
to provide streamflow estimates based on the National 
Hydrography Dataset Plus (NHDPlus) framework (U.S. 
Environmental Protection Agency (EPA) and U.S. Geological 
Survey, 2010); version 1 of NHDPlus (http://www.horizon-
systems.com/NHDPlus/NHDPlusV1_home.php) was used for 
this analysis. Using a calibration network, AFINCH begins by 
fitting monthly regressions (12 equations) to predict the runoff 
(“water yield”, or streamflow per unit area) as a function of 
basin characteristics. These equations then allow the predic-
tion of water yield along each stream segment in NHDPlus. 
After predicting the streamflow according to the regression 
equations, AFINCH then adjusts the predictions to match 
streamflows at the gaged locations by applying the observed-
to-predicted streamflow ratios to the upstream water yields.

This analysis applied the beta version of AFINCH 
version 2c (accessed on October 31, 2012). AFINCH version 
2c allows the user to define regions for analysis by selecting 
eight-digit hydrologic unit code (HUC) watersheds within a 
given water resources region (two-digit HUC). Because the 
region of interest for this study includes parts of regions 03 
and 06, and subregions were not defined for the other methods 
used here, the AFINCH analysis was done as two disparate 
regions, splitting the 182 sites by two-digit HUC. Therefore, 
for each of these two regions and each calendar month, regres-
sion coefficients relating candidate explanatory variables were 
determined from the observed monthly streamflow, and those 
coefficients that were significant were used to predict the 
streamflow at the ungaged locations in each region.

For this application, the monthly streamflow values pre-
dicted by AFINCH were temporally disaggregated to estimate 
daily values. Monthly streamflows at the validation site were 
temporally disaggregated by adjusting the simulated monthly 
by the contemporaneous ratio of daily-to-monthly streamflow 
from an index gage and a bias correction, that is,

( ) ( ) ( )S
d mY t cR t Y t= ,                             (8)

where

	 ( )dY t  	 is the disaggregated daily average streamflow 
on day t at the validation site, 

	 ( )S
mY t  	 is the monthly average streamflow 

corresponding to the month of day t,
	 ( )R t  	 is the daily-to-monthly ratio at the index gage 

X, and c is a site-dependent constant that 
corrects for bias. 
 

In this study, a 31-day centered running mean of monthly 
values was used to reduce temporal edge effects and is 
represented by the equation ( ) ( )

15

15
31

s t
S

m m
s t

Y t Y s
= +

= −

= ∑ , where ( )mY s
is the predicted monthly flow associated with day t. The ratio 
of daily-to-monthly streamflow at an index gage, ( )R t , was 
estimated using ( ) ( ) ( )d mX t X t R t= . The constant c is given 
as ( ) ( ) ( )( )s

m mt t
c Y t Y t R t= ∑ ∑ . The application and temporal 

disaggregation of the monthly AFINCH model was executed 
using the same threefold validation procedure identified previ-
ously. Additionally, the index gages, from which the stream-
flow ratios were obtained, were selected by either the nearest-
neighboring index gage or the map-correlated index gage 
based on the correlation of ratios rather than streamflows.

Precipitation Runoff Modeling System

The Precipitation-Runoff Modeling System (PRMS) is a 
deterministic hydrologic modeling system (Leavesley and oth-
ers, 1983; Markstrom and others, 2008). The primary uses of 
PRMS are to (1) simulate land-surface hydrologic processes, 
including evapotranspiration, runoff, infiltration, interflow, 
snowpack, and soil moisture, on the basis of distributed 
climate information (temperature, precipitation, and solar 
radiation); and (2) simulate water budgets at the watershed 
scale with temporal scales ranging from days to centuries. 
PRMS is useful because it can integrate with models used for 
natural-resource management or other scientific disciplines 
and provides a modular design that allows the user to select 
alternative hydrologic-process algorithms from either the stan-
dard module library or user-provided provisional modules. 

PRMS models are developed by dividing a watershed 
into homogeneous areas called hydrologic response units 
(HRUs) and stream segments derived from the Geospatial 
Fabric for National Hydrologic Modeling (Viger and Bock, 
2014), a dataset based on the spatial units of the NHDPlus v.1 
dataset (U.S. Environmental Protection Agency and U.S. Geo-
logical Survey, 2010). Saturated zone, unsaturated zone, and 
surface-runoff flow components were computed for each HRU 
in response to precipitation, air temperature, and hydrologic 
processes defined by land-surface and subsurface charac-
teristics (Leavesley and others, 1983) and were routed and 
accumulated to the watershed outlet using the modeled stream 
network. Spatial datasets for land cover type, imperviousness, 
canopy cover, soils information, and shallow permeability 
maps are used to parameterize the HRUs.

http://www.horizon-systems.com/NHDPlus/NHDPlusV1_home.php
http://www.horizon-systems.com/NHDPlus/NHDPlusV1_home.php
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For each site in the calibration network, an automated 
parameter estimation procedure based on the Shuffled Complex 
Evolution algorithm (Duan and others, 1992, 1993, 1994) was 
used to calibrate the PRMS model. Parameters were calibrated 
in six steps: (1) solar radiation, (2) potential evapotranspira-
tion, (3) water balance, (4) daily flows, (5) high flows, and 
(6) low flows. For each step, a subset of PRMS parameters 
was selected that was determined to be most influential in 
adjusting the simulations to match each calibration step. For 
steps 1 and 2, the objective functions targeted minimizing 
the absolute error between simulated and observed long-term 
mean-monthly solar radiation and potential evapotranspiration 
data, respectively. For steps 3 through 6, the objective functions 
targeted minimizing the root-mean-square-normalized error 
between simulated and observed streamflow at several time 
steps (annual, monthly, mean monthly, and daily).

As described previously, when the PRMS model was 
developed, initial parameter values were computed based on 
various spatial datasets of land cover type, imperviousness, 
canopy cover, soils information, and shallow permeability 
maps. During calibration, these initial parameters were 
allowed to vary across specified ranges as the calibration 
algorithm searched for an optimal parameter set; as there may 
be many parameter sets that provide acceptable estimates of 
streamflow due to the equifinality concept in mechanistic mod-
eling described by Beven and Freer (2001). As the parameters 
vary across the study area (as opposed to being a constant 
value for all HRUs), the algorithm adjusts the mean of the 
distributed values across the HRUs for a particular parameter 
in the calibration, and then that adjustment to the mean value 
is applied back to the individual parameter values for each 
HRU. For ungaged locations, the relative changes made to 
parameters contained in the calibration watershed are applied 
to the ungaged watershed parameter values, as opposed to 
transferring the actual values from the calibration watershed. 
PRMS was calibrated in a one-to-many fashion using this 
transfer method. Each gage was used to inform the calibra-
tion of all remaining gages used in the study, resulting in a 
matrix of each gage being used to calibrate every other gage. 
Then, with a matrix of each gage calibrated by every other 
gage, the specific streamflow predictions that pertain to the 
methodology of threefold validation could be extracted from 
the calibration results to determine the performance of PRMS 
predictions calibrated by the optimization of flow predictions 
at adjacent sites.

Methods of Analysis
The performance of the PUB methods was assessed using 

several goodness-of-fit metrics, observing the reproducibility 
of a no-fail storage-yield curve, determining the accuracy with 
which particular streamflow statistics were reproduced and 
conducting a robust rank-based evaluation across metrics. The 
overall goodness of fit and reproducibility of the daily, no-fail 

storage-yield curve were assessed with seven metrics, includ-
ing the Nash-Sutcliffe of the untransformed (NSE) and natural, 
logarithmically transformed (NSEL) streamflow predictions, 
the root-mean-square error in streamflow predictions (RMSE), 
the root-mean-square-normalized error in streamflow predic-
tions (RMSNE), the average percent error in streamflow esti-
mates, the Pearson correlation coefficient between observed 
and predicted streamflow, and the Spearman correlation coeffi-
cient between observed and predicted streamflow. In addition, 
the reproducibility of several streamflow statistics was 
assessed with the percent error; these statistics included the 
coefficient of variation of annual streamflow, the coefficient of 
variation of daily streamflow, the 10th and 50th percentiles of 
the distribution of 7-day-average annual-minimum flows, the 
90th percentile of the distribution of annual-maximum flows, 
and the 10th, 25th, 50th, 75th, and 90th percentiles of the dis-
tribution of annual streamflow. This analysis also considered 
the reproducibility of the seven fundamental daily streamflow 
statistics, consisting of the mean streamflow, coefficient of 
variation as an L-moment ratio (L-CV), skewness (L-skew), 
kurtosis (L-kurtosis) and autoregressive lag-one autocorrela-
tion coefficient of daily streamflow, and the amplitude and the 
phase of the sinusoidal seasonal signal (Archfield and others, 
2013). Details on the metrics noted here, as well as specific 
notes on the calculation of the no-fail storage-yield curve and 
the robust rank-based evaluation, are included below. The 
body of this report focuses on the NSE, NSEL, and average 
percent error, but full results and descriptions of the other indi-
vidual goodness-of-fit metrics are included in appendix C.

The Nash-Sutcliffe efficiency was used to assess the 
accuracy of streamflow predictions and the daily, no-fail 
storage-yield curve. The NSE is a widely used metric for 
understanding overall goodness of fit, especially in hydrology 
(Nash and Sutcliffe, 1970). The NSE is typically estimated for 
a set of observed, O , and simulated, S , data values as 
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where 

	 n  	 is the number of observations and 
	 Oµ  	 is the mean of the observations. 

Careful inspection reveals that this can be understood as 
a measure of mean squared error standardized by the variance 
of the observations, and thus is a function of the RMSE. 
Upon further analysis, NSE is an amalgamation of bias in the 
estimate relative to the variability in the observations, correla-
tion between observed and simulated flows, and the similarity 
of the variances of the observed and simulated records (Gupta 
and Kling, 2011; Gupta and others, 2009). The NSE ranges 
from a perfect-fit value of 1 to negative infinity; a value of 
zero indicates that the mean would provide just as reliable of 
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an estimate. Because differences between observed and simu-
lated values are squared and an arithmetic mean is implied, 
NSE can be highly sensitive to outliers and skewed data.

When applied to heavily skewed data, the NSE can be 
somewhat misleading: Large absolute errors, typically associ-
ated with high-flow values, tend to have undue influence on 
the statistic when the distributions of flows exhibit distinct 
positive skew. In order to remove some skew from the data 
and avoid this problem, it is useful to consider the NSE of 
the natural logarithms of all nonzero flows (NSEL). While a 
useful transformation, this method is limited by its inability 
to handle zero values. Nonetheless, it provides an NSE that is 
affected more evenly by all nonzero flows. Of 182 sites con-
sidered, only 7 had observed zero-flow days; these days were 
removed from the analysis for this particular metric.

The average percent error measures the tendency of each 
PUB method to overpredict or underpredict nonzero daily 
streamflow estimates. This is a common measure of goodness 
of fit, as it gives an indication of the sign and magnitude of the 
average error. Like the NSEL, the average percent error can-
not handle zero-valued flows; the seven sites with zero flows 
were not considered by this metric. The average percent error 
is closely related to the percent bias of an estimator, which 
measures the tendency of each PUB method to overpredict or 
underpredict streamflow, on average. By definition, the percent 
bias is merely the percent error in the mean value, which 
is discussed with the assessment of the fundamental daily 
streamflow statistics.

Estimates of Daily, No-Fail Storage-Yield Curves

The storage-yield curve (SYC) is a common tool for 
understanding the relation between basin storage and yield 
or volume of flow. These curves are often used to aid in the 
design of reservoir systems and the management of irrigation. 
The SYC represents the cumulative and sequential behavior of 
the streamflow record, accounting for the variability, timing, 
and magnitude of flows and can be thought of as a cumulative 
signature of the streamflow record.

The SYC is derived from a continuous record of stream-
flow. There are many techniques for estimating the SYC, 
depending on the intended reliability of yield and the level 
of acceptable risk. One common method is the Sequent-Peak 
Algorithm (Thomas and Burden, 1963). This is a no-fail tech-
nique, which means that the algorithm is designed such that 
enough water will always be available to meet the yield. The 
result is a curve that specifies the amount of storage required 
to produce a specific, constant yield. Storage-yield curves are 
useful in helping water-resources engineers and managers plan 
abstractions and design of reservoirs.

Several examples of the observed sequent-peak, daily, 
no-fail SYC are shown in figure 3. In order to compare curves 
across sites, the storage is represented as time—volume 
divided by mean streamflow—while the yield is expressed as a 
fraction of the mean streamflow. These graphs can be read two 
ways: By specifying a daily, no-fail yield, as a fraction of the 
mean streamflow, along the horizontal axis, one can determine 

Figure 3.  Several examples of daily, no-fail storage-yield curves for sites in the study area of the Southeast 
Model Comparison. The horizontal axis gives the daily yield, as a fraction of the mean streamflow. The vertical 
axis gives the required days of storage (volume divided by mean streamflow) required to meet the given yield. 
Refer to the text for a discussion of the methodology used to develop these curves.
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the days of storage required to meet that demand. Or, given 
a specific storage capacity, one can determine the expected 
daily, no-fail yield. The daily variability of streamflow dictates 
how quickly the storage increases with yield.

The overall goodness-of-fit metrics used to assess stream-
flow, like the NSE and NSEL of streamflow, cannot capture 
the intangible, cumulative properties represented by the SYC. 
Therefore, understanding how reliably a PUB method can 
reproduce an SYC gives an important indication of the ability 
of that PUB method to reproduce higher order properties of 
the streamflow record. Here, the SYC was estimated from 
the observed and predicted records using the daily, no-fail, 
constant-yield sequent-peak algorithm with several yield 
fractions. The yield fractions considered ranged from 0 to 1 
at a step of 0.05. The reproducibility of these curves was 
assessed by calculating the NSE, NSEL, root-mean-square 
error, root-mean-square-normalized error, and the Pearson and 
Spearman correlations between observed and predicted SYC. 
The NSE and average percent error of the SYCs are discussed 
in the body of this report; additional metrics are included in 
appendix C.

As the SYC is often used to answer design questions con-
cerning the size of reservoirs and safe yields, the average error 
in the storage-yield curve can be interpreted in terms of the 
intended design. Consider the case of attempting to determine 
the size of a reservoir required for a particular yield. A positive 
error amounts to requiring more storage than is needed for a 
particular yield fraction. On the other hand, a negative error 
suggests that one would underestimate the storage needed, 
causing the effective yield to be less than desired. This is a 
tradeoff between overdesign and underdesign. Overdesign 
can be costly because of a waste of materials, while underde-
sign can be costly in that the design goals are not satisfied. In 
general, a slight overdesign might be more acceptable than 
underdesign, but a full cost-benefit analysis would be required 
for any particular project.

Robust Rank-Based Evaluation

Robust Rank-Based Evaluation (RRBE) is presented 
herein as a tool for comparing the performance of several PUB 
methods simultaneously. A largely graphical method, RRBE 
seeks to find an optimal balance with high average perfor-
mance and low variability of performance for any particular 
method. In RRBE, each PUB method is represented as a point 
defined by the average and standard deviation of a performance 
metric. (The average and standard deviation are used here, but 
any measures of central tendency and spread may be accept-
able.) When these points are created for each PUB method, the 
result is a RRBE cloud. The optimal PUB method, which will 
perform well on average (high NSE or low RMSE) and have 
minimal variability of performance, will appear near an edge 
of the cloud. The optimal edge depends on the performance 
metric, for example, ideal NSEs are near one, while ideal 
RMSEs are near zero. Methods appearing on the optimal edge 

of the cloud are said to exist along the optimal or efficient 
frontier. In many cases, several methods may exist at or near 
the frontier, representing a tradeoff between central tendency 
and spread; one method may offer a better average perfor-
mance but possess greater variability of performance. 

RRBE can be used to assess the performance of several 
PUB methods across a single performance metric, or it may be 
used to compare several PUB methods across several perfor-
mance metrics. When working with different performance 
metrics, it is often difficult to draw general conclusions: each 
metric highlights a different aspect of performance and is 
affected by its own idiosyncrasies, making a cross-metric 
comparison problematic. In order to draw general conclusions, 
it must be possible to compare these metrics in commensurate 
units. Such a comparison would show which methods are 
performing best across all the performance metrics, on aver-
age. This can be achieved by considering the relative ranks 
of the PUB methods at each site, according to any performance 
metric, rather than the values of the performance metric. In this 
manner, the performance is relative and all metrics are on the 
same relative scale. Thus, the RRBE cloud shows the average 
relative performance against the variability of relative perfor-
mance. By averaging the relative performances across metrics, 
multiple performance metrics can be assessed simultaneously.

Here, RRBE is conducted by selecting each metric in 
turn, starting with the NSE, for example. For each site, taken 
in turn, the 19 PUB methods are ranked from 1 to 19. The best 
performing method (greatest NSE, in this case) is given a rank 
of 1; the second best is given a rank of 2; and so on. Ties are 
given the best ranking available. One could apply a RRBE 
here by graphing each PUB method as a point in Cartesian 
coordinates, where one axis is the mean of the ranks and the 
other axis is the standard deviation of the ranks. This would 
give the efficient frontier according to a single metric, infor-
mation that can be inferred from the boxplots presented in this 
report. Instead, the mean and standard deviation of the relative 
ranks were taken for each PUB method and each performance 
metric. Multiple performance metrics were assessed by taking 
the average relative ranking across performance metrics and 
the average standard deviation across performance metrics, 
thus creating a cross-metric RRBE.

Results and Discussion
Daily streamflow was predicted for water years 1981 

through 2010 for each of the 182 sites using each of the 
19 PUB methods and the threefold validation procedure. 
The goodness of fit of these predictions was assessed at each 
site by comparing the portion of the observed record with 
complete water years against the corresponding predictions. 
The daily predictions for each PUB method were evaluated 
using three comparisons: (1) the overall goodness of fit of 
the streamflow records; (2) the accuracy of the reproduced 
storage-yield curve; and (3) the accuracy of reestimated 
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streamflow statistics, including the FDC and fundamental 
daily streamflow statistics. A final analysis combined each of 
these comparisons to evaluate the overall performance of each 
PUB method.

Overall Goodness of Fit of Predicted Streamflow 
Records

Daily streamflow estimates were assessed for goodness 
of fit using Nash-Sutcliffe efficiencies and the average percent 
bias to give a coarse measure of how well each method 
performs. NSE was calculated for untransformed and normal, 
logarithmically transformed streamflow predictions. Results 
for root-mean-squared error (RMSE), root-mean-square- 
normalized error (RMSNE), Pearson correlation, and Spearman 
correlation are presented in appendix C, but are not part of the 
discussion below. All seven metrics, however, are used for a 
cross-metric RRBE. These measures quantify how well daily 
streamflow is estimated, on average. None of these measures 

explicitly capture the sequencing or the serial correlation of 
errors. These metrics summarize the average error of daily 
flows and do not quantify the error associated with any par-
ticular flow statistic or distribution.

NSE was estimated for each of the 182 sites for each of 
the 19 PUB methods; the distribution for each PUB method 
can be seen in figure 4 (outliers were not plotted because their 
inclusion inflates the scale of the axis so as to obscure the 
characteristics of the distribution). Based on NSE, the accu-
racy of PUB methods varies widely. Notably, PUB methods 
using the nearest-neighbor approach to index selection fared 
better than those using map correlation. PRMS had the great-
est median (0.5615), though NN-AFINCH, NN-QPPQ, and 
NN-SMS12R were nearly as high. NN-DAR, NN-SMS12L, 
and NN-SM12 were only slightly inferior. PRMS also had the 
smallest interquartile range. Annualized methods (SMS1R, 
SMS1L, SM1) were originally included because they per-
formed well on a monthly time step (Farmer and Vogel, 2013), 
but they are not competitive here. Measuring by the NSE, 
PRMS is the best PUB method at 30 percent of sites and 

Figure 4.  The distribution of Nash-Sutcliffe efficiencies of daily streamflow predictions for each 
method of prediction in ungaged basins (PUB) considered in the Southeast Model Comparison. The 
horizontal axis indicates each PUB method. The Nash-Sutcliffe efficiency is along the vertical axis. 
Nash-Sutcliffe efficiency ranges from one to negative infinity; a value of one indicates a perfect fit, 
while a value of zero indicates that a mean value would have produced the same level of accuracy. (The 
dark line indicates the median of the distribution, the box outlines the 25th and 75th percentiles, and the 
whiskers extend to the data point a distance not more than 1.5 times the interquartile range away from 
the nearest quartile. Data points beyond this whisker length are defined as outliers and, to increase the 
visibility of the distribution, have not been drawn.) Method abbreviations are in table 1.

N
N

−D
AR

N
N

−Q
PP

Q

N
N

−S
M

S1
R

N
N

−S
M

S1
L

N
N

−S
M

S1
2R

N
N

−S
M

S1
2L

N
N

−S
M

1

N
N

−S
M

12

M
C−

DA
R

M
C−

QP
PQ

M
C−

SM
S1

R

M
C−

SM
S1

L

M
C−

SM
S1

2R

M
C−

SM
S1

2L

M
C−

SM
1

M
C−

SM
12

PR
M

S

N
N

−A
FI

N
CH

M
C−

AF
IN

CH

−1.0

−0.5

0

0.5

1.0

Ef
fic

ie
nc

y

Method of prediction in ungaged basins

Figure 4.     Nash-Sutcliffe efficiencies of daily streamflow predictions.
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outperforms each other method, taken one by one, at more 
than 50 percent of sites.

Compared to the values of NSE, taking the NSE of 
normal, logarithmically transformed streamflows (NSEL) sug-
gests that most of the PUB methods perform better when the 
range of streamflow values is weighted more evenly (fig. 5; 
outliers not drawn). However, some of the worse-performing 
methods by the NSE criterion have even lower NSEL values. 
Still, the general comparison among methods is quite simi-
lar: The nearest-neighbor methods have generally greater 
NSELs than the map-correlation methods. The same seven 
methods (NN-DAR, NN-QPPQ, NN-SMS12R, NN-SMS12L, 
NN-SM12, PRMS, and NN-AFINCH) have the highest distri-
butions of NSEL.

Interestingly, NSEL demonstrates poorer performance of 
PRMS than was previously indicated by the NSE. This could 
be a result of the calibration procedure, which minimized 
RMSE between observed and simulated streamflow in linear 
space, where high flows tend to dominate the Nash-Sutcliffe 

efficiency metric. When the simulated streamflows are analyzed 
in log space (fig. 5), the low flows have more influence on 
the Nash-Sutcliffe efficiency. This result indicates that this 
calibration of PRMS is weighted more towards matching the 
high flows than the low flows. Perhaps future calibrations that 
focus on matching logarithmically transformed streamflows 
would improve the fit across all flow magnitudes. Regardless, 
this suggests that fully calibrated models may be adversely 
affected by their calibration criteria.

Balancing the performance of PUB methods in terms 
of both NSE and NSEL begins to highlight the need for a 
more comprehensive analysis. Looking at the PUB methods 
through several different lenses provides an understanding of 
how a method performs under different circumstances and in 
different ways. In the case of PRMS, the physical constraints 
imposed by the model structure may reduce the median per-
formance while restricting the range of outcomes. For NSEL, 
NN-AFINCH, followed closely by PRMS, demonstrated the 
smallest interquartile range, but NN-SM12 had the greatest 
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Figure 5.     Nash-Sutcliffe efficiencies of the logarithms of daily streamflow predictions.
Figure 5.  The distribution of the at-site Nash-Sutcliffe efficiencies of the logarithms of daily streamflow 
predictions for each method of prediction in ungaged basins (PUB) is considered here. The horizontal 
axis indicates each PUB method. The Nash-Sutcliffe efficiency of the logarithms is along the vertical 
axis. Nash-Sutcliffe efficiency ranges from one to negative infinity; a value of one indicates a perfect fit, 
while a value of zero indicates that a mean value would have produced the same level of accuracy. (The 
dark line indicates the median of the distribution, the box outlines the 25th and 75th percentiles, and the 
whiskers extend to the data point a distance not more than 1.5 times the interquartile range away from 
the nearest quartile. Data points beyond this whisker length are defined as outliers and, to increase the 
visibility of the distribution, have not been drawn.) Method abbreviations are in table 1.
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median. Though not drawn here, graphing the median value 
versus the spread (IQR) of the distribution shows a distinct 
tradeoff between metric centrality and spread. Improvement in 
the median NSEL often results in a larger IQR and vice versa. 
It is noteworthy, therefore, that the NN-DAR continues to be 
competitive with the more complicated methods, suggesting it 
may be particularly robust across performance metrics.

The average percent error measures the tendency of each 
PUB method to overpredict or underpredict nonzero daily 
streamflow estimates. (Zero-flow days were excluded from the 
analysis.) This is a common measure of goodness of fit, as it 
gives an indication of the sign and magnitude of the average 
error. In all cases, there is a wide variability of the average 
percent error (fig. 6). From here on out, only the seven PUB 
methods identified with better performance based on NSE 
are included, while figures including all PUB methods are 
included in appendix C. The transfer-based methods (NN-DAR, 
NN-QPPQ, NN-SMS12R, and NN-SMS12L) show the small-
est median error (10–20 percent), though they still present 
an overprediction. NN-SMS12R offers the smallest range 

and median. PRMS has a median error of 50 percent, while 
NN-AFINCH had a median error of 27 percent. The average 
percent error is closely related to the percent bias of an estima-
tor, which measures the tendency of each PUB method to 
overpredict or underpredict streamflow, on average. By defini-
tion, the percent bias is merely the percent error in the mean 
value, which is discussed below in reference to the fundamen-
tal daily streamflow statistics. For comparison, the range of 
percent bias can be seen in appendix C, figure C25. 

In addition to the three metrics discussed above, several 
other metrics were used to characterize the overall goodness 
of fit of the PUB methods. These include the RMSE (which is 
closely related to NSE), the RMSNE error, Pearson correlation 
between observed and simulated streamflows, and Spearman 
correlation of the same. Full results can be found in appendix C. 
The general conclusions are identical to those presented 
here. PRMS is most accurate in terms of Pearson correlation, 
with regard to both median and range. NN-AFINCH is 
most accurate in terms of RMSE. The five top transfer-
based methods are most accurate in terms of Spearman 

Figure 6.  The distribution of at-site average percent errors of daily streamflow predictions for the 
seven most accurate methods of prediction in ungaged basins (PUB). The horizontal axis indicates 
each PUB method. The vertical axis shows the average percent bias. Unbiased methods display a 
median near zero and minimum the variability of at-site bias. (The dark line indicates the median of the 
distribution, the box outlines the 25th and 75th percentiles, and the whiskers extend to the data point 
a distance not more than 1.5 times the interquartile range away from the nearest quartile. Data points 
beyond this whisker length are defined as outliers and, to increase the visibility of the distribution, have 
not been drawn.) Method abbreviations are in table 1.
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correlation and root-mean-square-normalized error. While not 
discussed in detail, these metrics did play a role in the RRBE 
discussed below.

In total, seven metrics were used to characterize the 
overall goodness of fit of each PUB method. The information 
contained in these metrics was combined by conducting a 
cross-metric RRBE. For each metric, the PUB methods were 
ranked at each site. The average and standard deviation of 
these ranks for each PUB method are provided in tables 5 and 6. 
The cross-metric RRBE cloud of the overall goodness of fit 
is composed of the average ranking across the seven metrics 
and the average standard deviation across metrics (fig. 7). (An 
example of the efficient edge of the cloud is drawn in fig. 7.) 
The frontier presented here consists of NN-QPPQ, NN-SM12, 
and NN-SMS12R. NN-QPPQ and NN-SM12 have more 
variability, while NN-SMS12R has less variability but a better 
ranking across these seven metrics. Of the seven best methods, 
all except NN-DAR and PRMS hover near the frontier 
of efficiency.

From the metrics used here to characterize overall 
goodness of fit, it is nearly impossible to select a single PUB 
method that is best PUB method for this region. NN-SM12 

performed well across all metrics, but a strong case can be 
made for QPPQ as well as SMS12R. Still, some general 
conclusions can be drawn: Many of the PUB methods that 
worked well for monthly predictions (Farmer and Vogel, 2013) 
do not perform well in the context of daily flows. The nearest-
neighbor algorithm for selecting an index gage outperforms 
the map-correlation algorithm, generally. 

Regarding the overall goodness of fit of the predicted 
streamflow time series, the five most accurate methods are 
NN-DAR, NN-QPPQ, NN-SMS12R, NN-SMS12L, and 
NN-SM12. Methods that relied on more standardization 
(SMS12R and L) were not necessarily better than those requir-
ing less (SM12). This is particularly true for SMS12R, which 
does not account for the skewness of the observations. In addi-
tion, two of the more process-based methods, NN-AFINCH 
and PRMS, also performed well. When considering the 
RRBE cloud, all of these seven methods, except NN-DAR 
and PRMS, clustered near the efficient edge. Finally, it is 
noteworthy that the parsimonious, even simplistic, methods of 
standardizing by drainage area or mean monthly flow perform 
so well. This suggests that the additional investment required 
for some PUB methods provides relatively little improvement 
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Figure 7.  The robust rank-based evaluation cloud showing the tradeoff between the mean ranking 
and standard deviation of the ranks of the seven overall goodness-of-fit metrics for each method of 
prediction in ungaged basins. The horizontal axis shows the mean average rank, while the vertical axis 
gives the average standard deviation of the ranks. Optimal methods would display minimal spread and 
a low mean-average ranking. The dashed line notes the optimal edge of the cloud. The seven most 
competitive methods have been labeled. Method abbreviations are in table 1.
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over DAR. NN-SM12, which requires the only slightly 
more investment that NN-DAR, provided the largest return 
on investment.

Daily, No-Fail Storage-Yield Curves

The reproducibility of the SYC indicates how well each 
PUB method captures the cumulative, sequential behavior of 
the daily streamflow record. For each PUB method, the accu-
racy of the estimated daily, no-fail SYC was assessed using 
the average percent error and the NSE of the estimated storage 
values. Though not discussed here, the RMSE, RMSNE, 
NSEL, and Pearson and Spearman correlations between 
observed and estimated storages are presented in appendix 
C. All seven metrics are used in the cross-metric RRBE of 
the SYC.

Because the storage-yield curves considered here are 
derived from a uniform distribution of yield fractions from 

zero to one and SYCs are monotonic, the points along the 
SYC are unlikely to exhibit strongly skewed behavior. This 
means that the Nash-Sutcliffe efficiency can be directly 
applied to the estimated storages rather than the logarithms 
of the storage. The NSE of the SYC therefore gives a reliable 
estimate of the goodness of fit of the estimated storage 
yield curve.

According to the NSE, all of the methods produce the 
SYC reasonably well, with the majority of values falling 
above 0.4 (fig. 8). The variability in performance is greater for 
NN-AFINCH, PRMS, and NN-SMS12R than for the remain-
ing four methods. For NN-DAR, NN-QPPQ, NN-SMS12L, 
and NN-SM12, more than 75 percent of the SYCs had NSE 
values greater than 0.8, a common level of “acceptable” per-
formance when applied to the estimation and interpretation of 
daily and monthly streamflow (Moriasi and others, 2007). 

The average percent error of the storage-yield curve indi-
cates how much, on average, the PUB method overpredicts or 

N
N

−D
AR

N
N

−Q
PP

Q

N
N

−S
M

S1
2R

N
N

−S
M

S1
2L

N
N

−S
M

12

PR
M

S

N
N

−A
FI

N
CH

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Method of prediction in ungaged basins

Figure 8.  The distribution of the at-site Nash-Sutcliffe efficiencies of the daily storage-yield curve 
for the seven most accurate methods of prediction in ungaged basins (PUB). See text for a description 
of the methodology used to predict the storage-yield curve. The horizontal axis indicates each PUB 
method. The Nash-Sutcliffe efficiency is along the vertical axis. Nash-Sutcliffe ranges from one to 
negative infinity; a value of one indicates a perfect fit, while a value of zero indicates that a mean 
value would have produced the same level of accuracy. (The dark line indicates the median of the 
distribution, the box outlines the 25th and 75th percentiles, and the whiskers extend to the data point 
a distance not more than 1.5 times the interquartile range away from the nearest quartile. Data points 
beyond this whisker length are defined as outliers and, to increase the visibility of the distribution, have 
not been drawn.) Method abbreviations are in table 1.
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underestimates the storage required for each yield fraction. All 
of the methods produce a significant error on average (fig. 9). 
Several of the transfer-based approaches (NN-DAR, NN-QPPQ, 
NN-SMS12L and NN-SM12) produce a relatively low level 
of error in the SYC storages on average, with medians rang-
ing between 5 percent and 20 percent. This is the same group 
that clustered close to the efficient frontier when consider-
ing overall goodness of fit. NN-SMS12R, though, produces 
a much more variable average error, with a median of nearly 
120 percent. The more process-based methods underestimate 
storage, while reducing the variability of the average error. 
PRMS underestimates the storage by 36 percent on average, 
while NN-AFINCH underestimates the required storage by a 
median of 14 percent. Underestimating the storage required 
for a reservoir system by more than 15 percent may be more 
costly than overestimating by 10 percent.

The cross-metric RRBE of the SYC shows that NN-
SMS12L and NN-SM12 reproduce the SYC most accurately 
(fig. 10). Each point in the RRBE cloud shows the average 
ranking and average standard deviation across the seven 

metrics used to assess the reproducibility of the SYC (see 
tables 5 and 6). NN-SMS12L and MC-SMS12L (unlabeled) 
define the optimal edge of the RRBE cloud; NN-SM12 is also 
near the frontier. NN-SMS12R, NN-AFINCH, and PRMS all 
are relatively far from the frontier. Though not too dissimilar 
to the result of overall goodness of fit, this analysis shows that 
the ability to reproduce the SYC varies across methods; some 
methods that performed poorly with overall goodness of fit are 
capable of reproducing the SYC accurately.

Assessing the ability of each PUB method to reproduce 
the storage-yield curve helps to evaluate how well each PUB 
method reproduces the cumulative behavior of the streamflow 
record. Most of the PUB methods considered here reproduce 
the SYC similarly. NN-DAR, NN-QPPQ, NN-SMS12L, and 
SM12 all overestimate the SYC. PRMS and NN-AFINCH 
produce significant underestimates of the storage required for 
a specific yield. NN-SMS12R does not perform nearly as well 
as the other transfer-based methods. It is again noteworthy that 
simple methods, like NN-DAR and NN-SM12, perform well 
when compared against substantially more complex models. 
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Figure 9.  The distribution of at-site average percent errors of the estimated daily storage-yield curve 
for the seven most accurate methods of prediction in ungaged basins (PUB). See text for a description 
of the methodology used to predict the storage-yield curve. The horizontal axis indicates each PUB 
method. The vertical axis shows the average percent bias. Unbiased methods display a median near 
zero and minimum variability of at-site bias. (The dark line indicates the median of the distribution, the 
box outlines the 25th and 75th percentiles, and the whiskers extend to the data point a distance not 
more than 1.5 times the interquartile range away from the nearest quartile. Data points beyond this 
whisker length are defined as outliers and, to increase the visibility of the distribution, have not been 
drawn.) Method abbreviations are in table 1.
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Even standardizing flows by an annual mean is promising, 
if one desires only to reproduce the SYC and cares little for 
producing a reliable estimated record. On average, MC-SM12, 
NN-SM12, and NN-SMS12L provide the greatest relative 
performance with the smallest variability.

Streamflow Statistics

Instead of predicting continuous daily streamflow 
records, a large amount of PUB exploration has focused on 
the prediction of specific streamflow statistics (Hrachowitz 
and others, 2013; Ries III, 2007; Thomas and Benson, 1970). 
Often, a designer or manager is concerned only with a specific 
streamflow parameter: be it the flow duration curve, an eco-
logical flow statistic, a measure of base flow, or something else 
altogether. Because of the importance of these statistics, the 
best PUB methods for daily record reconstruction should also 
yield reliable estimates of many such statistics. This analysis 
considers a handful of flow statistics, namely the flow dura-
tion curve and the fundamental daily streamflow statistics 
(Archfield and others, 2013). Additional statistics were also 
considered in appendix C. The number of statistics that could 

be assessed is endless; this analysis considers only a few to 
augment the overall goodness-of-fit statistics. Future research 
should expand on these comparisons.

Flow Duration Curves

The daily flow duration curve (FDC) is a representation 
of the distribution of daily streamflows at a given site. It is 
identical to the cumulative distribution function, with the flow 
on the vertical axis corresponding to a particular probability 
of exceedance along the horizontal axis. An FDC is used to 
understand the average flows and extreme events in a basin. 
They can be used to determine design events, which dictate 
the design parameters of certain water-management structures, 
including reservoirs, ecological flow standards, and hydro-
power installations (Vogel and Fennessey, 1995).

Because of the importance of FDCs, optimal PUB meth-
ods should produce reliable approximations of the flow dura-
tion curve. Here, the FDC was approximated by reestimating 
specific percentiles from observed and predicted stream-
flow records. Five percentiles were considered: 10 percent, 
25 percent, 50 percent, 75 percent, and 90 percent. The 

Figure 10.  The robust rank-based evaluation cloud showing the tradeoff between the mean ranking 
and standard deviation of the ranks of the seven metrics of the storage-yield curve for each method 
of prediction in ungaged basins. (See text for a description of the methodology used to predict the 
storage-yield curve.) The horizontal axis shows the mean-average rank, while the vertical axis gives 
the average standard deviation of the ranks. Optimal methods would display minimal spread and a low 
mean-average ranking. The seven most accurate methods have been labeled. Method abbreviations 
are in table 1.
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observed and estimated percentiles were then compared, giving 
a general understanding of how well the flow duration curve is 
reproduced. The median percent error of each quantile for each 
of the seven top PUB methods is shown in figure 11. The right-
hand side of the horizontal axis represents low-flow events. 

PRMS estimates the 10-percent-exceedance flow fairly 
accurately, but the magnitude of the median bias increases 
towards low flow. This result is consistent with the calibration 
procedure, which matched simulated and observed stream-
flows in linear space, putting greater weight on the higher 
flows. At the 90-percent-exceedance level, PRMS produces a 
median error more than 50 percent greater than the observed 
events. This could be because the regional calibration of 
PRMS is limited by the allowable parameter calibration range. 
The calibration procedure, for a particular parameter, consid-
ers the range of initial values across a large spatial region. For 
particular regions or sites, this initial value is allowed to vary 
only within a user-specified window. Due to the constraint of 
considering a large spatial extent, the calibration algorithm 
may have not been able to find the true optimal parameter 
set for any particular gage. Smaller region of calibration may 
improve performance. Alternatively, model parameters could 
be refined individually by methods other than autocalibration. 
Weighting the autocalibration more evenly across all flows 

(perhaps by optimizing model fit in log space) may yield a 
substantial improvement in performance as well.

The statistical, transfer-based methods and the quasi-
process-based methods produce a much smaller level of bias 
than the process-based method. The transfer-based methods 
are most unbiased, with median biases of ±5 percent. NN-
AFINCH produces a positive error (median: ~10 percent) in 
the lower end of the flow regime. Still, the SMS methods begin 
to show a slight negative bias at the 90-percent-exceedance level: 
NN-SMS12R produces a median error of –30 percent; only NN-
DAR and NN-QPPQ, among the statistical-transfer methods, 
did not underestimate the lower flows by more than 5 percent. 
NN-DAR had a consistently low level of error across all 
percentiles. With respect to the 90-percent-exceedance event 
as a measure of low flow, the relatively poor performance of 
the SM and SMS methods is not surprising as the normaliza-
tion does not explicitly address extreme events, especially 
low flows. By similar logic, high flows, which also are not 
explicitly addressed by the standardization, may nonetheless 
be better controlled because the mean, which is used for stan-
dardization, is significantly affected by the right-hand skew of 
streamflow data. (Additional metrics of low-flow performance 
can be found in the appendix C; these include the 10th and 
50th percentile of the 7-day-average annual-minimum flow.)
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Figure 11.  The median at-site percent error of five percentiles along the daily flow duration curve for the 
seven most accurate methods for prediction in ungaged basins. Transfer-based methods are indicated 
in black. The percentiles considered are the 10-percent-, 25-percent-, 50-percent-, 75-percent-, and 
90-percent-exceedance flows. The horizontal axis represents the exceedance probability, while the 
vertical axis represents the median percent error. Method abbreviations are in table 1.
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In addition to the signed percent error, the median absolute 
error for each quantile gives a measure of the frequency and 
magnitude of error, showing the point at which half of the 
sites exhibit an absolute error less than this amount (fig. 12). 
All of the PUB methods produce an absolute error of less than 
10 percent or 15 percent for the 10-percent-exceedance flow. 
This level of error increases to 40 percent for the 90-percent-
exceedance flow. In this case, PRMS departs widely from the 
transfer-based methods, but NN-AFINCH does not. Yet again, 
the SMS12R method also exhibits a relatively poor perfor-
mance at the 90-percent-exceedance level.

Looking at both the signed error and absolute error, 
NN-SM12 appears to be nearly unbiased and to produce the 
lowest median absolute error. NN-AFINCH and the transfer-
based methods produce a similar level of absolute bias, but 
NN-AFINCH displays a positive bias in the middle flows. 
NN-SMS12R performs similar to all other methods, except at 
the 90-percent-exceedance level: the median error rises over 
50 percent at the low end of the FDC.

Fundamental Daily Streamflow Statistics

In addition to the flow duration curve, recent research 
demonstrates that the distribution of daily streamflow can be 
characterized by seven fundamental daily streamflow statistics 
(Archfield and others, 2013). These statistics sufficiently 
describe the distribution and behavior of daily streamflow 
events and can be used to group different basins into homo-
geneous clusters (Archfield and others, 2013). These seven 
statistics are the mean, coefficient of variation (L-CV), 
skewness (L-skew), kurtosis (L-kurtosis) and autoregressive 
lag-one autocorrelation coefficient of daily streamflow, and 
the amplitude and the phase of the sinusoidal seasonal signal 
(Archfield and others, 2013). Because of the importance of 
these fundamental daily streamflow statistics (FDSS), an opti-
mal PUB method should produce reliable estimates of each of 
the seven statistics. For each PUB method, the seven statistics 
were calculated following the methodology of Archfield and 
others (2013).
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Figure 12.  The median at-site absolute percent error of five percentiles along the daily flow 
duration curve for the seven most competitive methods for prediction in ungaged basins. Transfer-
based methods are indicated in black. The percentiles considered are the 10-percent-, 25-percent-, 
50-percent-, 75-percent-, and 90-percent-exceedance flows. The horizontal axis represents the 
exceedance probability, while the vertical axis represents the median absolute percent error. Method 
abbreviations are in table 1.
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Figure 13 shows the median percent error in each of the 
seven metrics for the top-performing PUB methods. Almost all 
of the methods are relatively unbiased (median: ±10 percent) 
for the mean streamflow and the parameters related to seasonality. 
In terms of the error in the mean, which can also be thought 
of as the percent bias of the method, PRMS exhibits at slight 
positive error (median: 5.2 percent), while NN-AFINCH and 
NN-QPPQ display an even slighter downward error (median: 
~-2.5 percent). There is more error in the seasonality coef-
ficients: NN-AFINCH overestimates the amplitude of the sea-
sonal variation by a median of 19 percent. The transfer-based 
methods are relatively unbiased for all FDSS and nearly indis-
tinguishable from each other. PRMS underestimates the L-CV, 
L-skew, and L-kurtosis with a median of more than 20 percent. 
While exhibiting less bias than PRMS, NN-AFINCH 

significantly underestimates L-CV, L-skew, and L-kurtosis as 
well. NN-AFINCH is unbiased in the lag-one autocorrelation, 
but PRMS shows the greatest average error in the lag-one 
correlation (near -32 percent). The significant underestimation 
of the L-moments and overestimation of the low-flow quan-
tiles shown by PRMS demonstrates reduced extremes in the 
predicted record. This may demonstrate a general weakness 
of calibrated hydrologic simulation models (Thomas, 1982, 
1987). The absolute errors in figure 14 demonstrate similar 
conclusions: the transfer-based methods exhibit significantly 
less bias than the more process-based methods; NN-AFINCH 
is more similar to the transfer-based methods than to PRMS. 
The transfer-based methods, therefore, represent the distribu-
tion of streamflow more accurately than the more process-
based methods.
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Figure 13.  The median at-site percent error of the seven fundamental daily streamflow statistics (FDSS) 
for the seven most accurate methods for prediction in ungaged basins. Transfer-based methods are 
indicated in black. In order, the FDSS are the mean, L-CV, L-skew, L-kurtosis, lag-1 autocorrelation, and 
the amplitude and phase of the sinusoidal seasonal trend. The horizontal axis indicates each statistic, 
while the vertical axis represents the median percent error. Method abbreviations are in table 1.
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Robust Rank-Based Evaluation of Streamflow 
Statistics

As with the overall goodness of fit and the daily, no-fail 
storage-yield curve, a robust rank-based evaluation (RRBE) 
was conducted to determine the method that provided the best 
and most consistent performance across all of the observed 
flow statistics. In addition to the metrics of the flow dura-
tion curve and the fundamental daily streamflow statistics, 
the RRBE also considered the coefficient of variation of 
annual flows, the coefficient of variation of daily flows, the 
90th percentile of annual-maximum flow, and the 10th and 
50th percentile of the 7-day-average annual-minimum flow. 
(The latter three statistics are representative of the 10-year 
annual maximum and the 10-year and 2-year 7-day-average 
annual-minimum flow, respectively. Whereas these more 
traditional statistics require the fitting of a log-Pearson distri-
bution, the statistics presented here were calculated with an 
empirical distribution.) Individual analyses of the additional 

flow statistics can be found in appendix C. The PUB methods 
were ranked in terms of their absolute error in each statistic; 
the averages and standard deviations of the ranks are included 
in tables 5 and 6. The average ranking and average standard 
deviation of the ranks across flow statistics were used to create 
the RRBE cloud in figure 15.

The RRBE cloud for the tradeoff between the average 
ranking and average standard deviation of the rankings across 
the 17 observed flow statistics shows the continued superiority 
of NN-SM12 and NN-QPPQ (fig. 15). The optimal edge of the 
cloud is defined by NN-SM12 and NN-QPPQ. The tradeoff 
between these methods is not steep; the increase in aver-
age ranking offered by NN-SM12 comes with only a slight 
increase in the variability of ranks. NN-SMS12L is also near 
the frontier, but set back slightly. NN-DAR, NN-AFINCH, 
and NN-SMS12R are set back still further, forming an inferior 
cluster. PRMS, as in other tradeoffs, is much further from the 
frontier. Just behind the frontier, MC-QPPQ and MC-SMS12L 
are near their NN counterparts.
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Figure 14.  The median at-site absolute percent error of the seven fundamental daily streamflow 
statistics (FDSS) for the seven most accurate methods for prediction in ungaged basins. Transfer-
based methods are indicated in black. In order, the FDSS are the mean, L-CV, L-skew, L-kurtosis, lag-1 
autocorrelation, and the amplitude and phase of the sinusoidal seasonal trend. The horizontal axis 
indicates each statistics, while the vertical axis represents the median absolute percent error. Method 
abbreviations are in table 1.
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The ability of the PUB methods to reproduce the distri-
bution of streamflow and key streamflow statistics (fig. 15) 
further strengthens the distinction between transfer- and more 
process-based PUB methods, like NN-AFINCH and PRMS. 
The NN-DAR, NN-QPPQ, NN-SMS12L, and NN-SM12 
remain extremely strong, in comparison to PRMS and 
AFINCH. It is difficult to distinguish between these methods 
based on this series of metrics alone. Additionally, as mea-
sured by several different flow statistics, there is a discern-
ible tradeoff in the average performance and the variability 
of performance. Of the strongest methods, two are very 
simplistic (NN-DAR and NN-SM12) and suggest the value of 
parameter parsimony.

Full Cross-Metric Comparison

The 19 different PUB methods considered here have been 
assessed in terms of accurately predicting the daily streamflow 
hydrograph, the ability to reproduce daily, no-fail storage-
yield curves, and the ability to reproduce flow distribution and 
other streamflow statistics. Through these individual analyses, 
four methods are most accurate by all standards. The most 

accurate PUB methods are the NN-DAR, NN-QPPQ, NN-
SMS12L, and NN-SM12. As these methods were, in many 
cases, nearly indistinguishable from each other, a strong case 
must be made if more complexity is to be introduced. If no 
distinction can be made between these four methods, then the 
simpler methods (DAR and SM12) may be the most valuable. 
The next analyses consider the average performance across all 
metrics and ask how sensitive or robust these methods are to 
an alternative method of index-gage selection. It is here that 
the relative deficiency of the two parsimonious methods is 
made apparent.

In order to combine all of the different metrics into a 
single measure of performance, an RRBE was conducted 
across all 32 performance metrics considered here. (A root-
mean-square-normalized error across all seven fundamental 
daily streamflow statistics was included to strengthen the 
importance of these distributional properties.) The average 
ranks of each PUB method for each metric are shown in table 
5; the standard deviations of the ranks are shown in table 6. 
The average rank and average standard deviation of the ranks 
for each PUB method produce the RRBE cloud in figure 16. 
Some of these metrics, like RMSE and NSE, are strongly cor-
related. While the inclusion of correlated metrics may mean 
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Figure 15.  The robust rank-based evaluation cloud showing the tradeoff between the mean ranking 
and standard deviation of the ranks of the 17 flow statistics for each method of prediction in ungaged 
basins. (See text for a description of each flow statistic.) The horizontal axis shows the mean average 
rank, while the vertical axis gives the average standard deviation of the ranks. Optimal methods would 
display minimal spread and a low mean-average ranking. The seven most competitive methods have 
been labeled. Method abbreviations are in table 1.
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that certain aspects of performance are more heavily weighted 
than others, the correlated metrics quantify extremely impor-
tant aspects of model performance, like the day-to-day model 
performance. Along this reasoning, including correlated 
variables did not adversely affect the analysis of PUB methods 
presented here. (As discussed below, different sets of perfor-
mance metrics can be considered to suit the stakeholder need.)

In the full cross-metric RRBE, the three metrics con-
tinue to cluster along the optimal edge of the RRBE cloud: 
NN-QPPQ, NN-SMS12L, and NN- SM12. NN-DAR, while 
initially competitive, falls further from the frontier when all 
metrics are considered. NN-SMS12R and NN-AFINCH are 
also set back from the frontier, but not in the main pack, while 
PRMS is far from the frontier. By considering all 32 metrics, 
the statistical advantages of the three frontier methods are 
made quite clear. As NN-SM12 requires less effort to param-
eterize, requiring only 12 monthly means, it may have a 
significant advantage over NN-SMS12L (24 regressions) and 
NN-QPPQ (27 regressions).

Sensitivity to Index-Selection Algorithm

After considering 32 different metrics of performance, 
it remains extremely difficult to distinguish between the top 
three methods: NN-QPPQ, NN-SMS12L, and NN-SM12. As 
all of these methods were similarly competitive, they might 
all be reasonably accurate for regional implementation or 
explored for national implementation. Furthermore, it might 
be best to use the SM12, as it is the least complex. But, as 
a final analysis, it is useful to consider how sensitive any of 
these methods might be to the information content of the index 
gage. This sensitivity can be assessed by observing how well 
a basic PUB method, like SM12 or SMS12L for example, per-
forms with two different index gages. As the map-correlation 
selection methods were shown to be inferior to the nearest-
neighbor methods, these two implementations of the basic 
PUB method provide an example of how a particular basic 
PUB method might be affected by an index gage with less 
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Figure 16.  The robust rank-based evaluation cloud showing the tradeoff between the mean ranking 
and standard deviation of the ranks of all 32 performance metrics for each method of prediction in 
ungaged basins. (See text for a description of each performance metric.) The horizontal axis shows the 
mean average rank, while the vertical axis gives the average standard deviation of the ranks. Optimal 
methods would display minimal spread and a low mean-average ranking. The seven most competitive 
methods have been labeled. Method abbreviations are in table 1.
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information content. Ideally, the stronger basic PUB methods 
would be less affected by inferior information content. 

Two ways of measuring sensitivity of the basic PUB 
methods to the information available at the index gage were 
considered here. First, the ranks of table 5 and 6 were aver-
aged by prediction method; for example, the average and 
standard deviation of all 32 performance-metric rankings for 
NN-DAR and MC-DAR were used to represent the basic 
method DAR. A more robust method will be less degraded by 
this averaging and would remain along the efficient frontier of 
the cloud in figure 17. The averages and standard deviations 
for all eight transfer-based methods, along with the process- 
and quasi-process-based methods, are in table 7. (Note that 
PRMS remains unchanged because it did not use the NN or 
MC index-gage selection algorithm in the same manner.) This 
averaging pushes SM12 off of the frontier, leaving QPPQ 
and SMS12L along the optimal edge of the cloud. A similar 
test can be conducted by calculating the Euclidean distance 
between the nearest-neighbor and map-correlation points 
of a particular PUB method in the RRBE cloud of figure 
16. A robust method will have a small difference between 
these points. The Euclidean distance between NN and MC 

realizations is included table 7. Looking at the top-performing 
basic PUB methods, QPPQ and SMS12L produce the smallest 
separation distance (1.57 and 1.53, respectively). Of the two, 
SMS12L has the smaller differential. Notably, SM12 has a 
relatively large differential (2.59), suggesting a high sensitiv-
ity to index gage information content. Overall, NN-SMS12L 
and NN-QPPQ are stable and nearly indistinguishable, but 
NN-SM12 is more sensitive to the information content of the 
index gage.

This analysis of 32 metrics of performance shows that 
there are a few PUB methods, of the 19 considered in the 
SEMC study, that produce reliable and competitive estimates 
of streamflow. These methods all perform well and can hardly 
be distinguished from each other. These methods include 
the nearest-neighbor implementations of drainage area ratio, 
QPPQ, standardizing the logarithms of streamflow by monthly 
means, and standard deviations and standardizing stream-
flow by monthly means. Averaging across all 32 metrics 
showed these four PUB methods to fall along an efficient 
frontier of average performance and variability. NN-SM12, 
NN-SMS12L, and NN-QPPQ were all closest to the efficient 
frontier. It is notable that the relatively simplistic method, 
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Figure 17.  The robust rank-based evaluation cloud showing the tradeoff between the mean ranking 
and standard deviation of the ranks of all 32 methods for each method of prediction in ungaged basins, 
average across competing methods for the selection of index gages. (See text for a full description of 
the methodology.) The horizontal axis shows the mean average rank, while the vertical axis gives the 
average standard deviation of the ranks. Optimal methods would display minimal spread and a low 
mean-average ranking. The seven most competitive methods have been labeled. Method abbreviations 
are in table 1.
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NN-SM12, was able to perform so well. This parsimony 
may be more appealing than any marginal improvement 
in performance seen by the more complex methods. When 
considering the robustness of each transfer method to index-
gage information content, NN-QPPQ and NN-SMS12L are 
marginally superior. NN-SM12 was hampered by sensitivity to 
the index-gage selection algorithm, as the variance of perfor-
mance between the NN and MC implementations was shown 
to be much greater. The difference between NN-QPPQ and 
NN-SMS12L is quite small. Based on this sensitivity analysis, 
NN-QPPQ appears to possess a slightly greater average per-
formance with only a minimal degradation in variability.

For almost all performance metrics, NN-QPPQ has been 
shown to be among the top performers. It produces reliable 
predictions of historical daily streamflow in the southeastern 
United States. Not surprisingly, this method is already becom-
ing more and more widely used in hydrology and water-
resources engineering (see Archfield and others, 2010; Shu 
and Ouarda, 2012; Smakhtin and Masse, 2000). The literature 
concerning improvements to QPPQ and improved estimators 
of the ungaged flow duration curve, which is required for the 
application of QPPQ, continues to grow (Booker and Snelder, 
2012; Castellarin and others, 2007, 2004; Ganora and oth-
ers, 2009). The popularity of this method in research suggests 
that further improvements in NN-QPPQ are possible. In some 
of the cases examined here, additional methods performed 
similarly. Continued analysis, especially in varying climatic 
regions, will improve our understanding of PUB performance.

Summary and Conclusions
The Southeast Model-Comparison (SEMC) considered 

19 different techniques for estimating continuous daily records 
of historical streamflow, with the goal of determining the 
best methods for prediction in ungaged basins (PUB). It was 
intended that the best methods could then be considered for 
regional or national implementation as part of the National 
Water Census project. The analysis presented here covered 
32 different metrics of performance and demonstrated a com-
prehensive and flexible framework for comparing any number 
of PUB methods. The results showed the nearest-neighbor 
implementation of nonlinear spatial interpolation with flow 
duration curves (NN-QPPQ) was the best performing method. 
This was followed closely by the nearest-neighbor implemen-
tation of standardizing logarithms of streamflow by monthly 
means and standard deviations (NN-SMS12L).

The 19 PUB methods considered here (table 2) included 
variations of four statistical, transfer-based methods, a 
process-based model, and a quasi-process-based model. The 
transfer-based methods considered were the drainage area 
ratio, QPPQ, standardizing flows by an annual mean and 
standard deviation, standardizing the logarithms of flow by 
an annual mean and standard deviation, standardizing flows 
by monthly means and standard deviations, standardizing the 

logarithms of flow by monthly means and standard deviations, 
standardizing flows by an annual mean, and standardizing 
flows by monthly means. All of the methods relied on an index 
gage that was used to transfer information from a gaged to an 
ungaged site. This index gage was selected by either minimum 
distance or estimated maximum correlation. Regional regres-
sion was used to parameterize methods like the standardization 
with annual means, which requires estimated ungaged means. 
Rainfall-runoff models were represented by the Precipitation 
Runoff Modeling System (PRMS). A transfer-based approach 
was used to disaggregate the monthly Analysis of Flows in 
Networks of Channels (AFINCH) model into daily values 
to examine how a quasi-processed-based monthly model 
might perform.

The framework presented here considered several differ-
ent aspects of model performance for each PUB method. First, 
the overall goodness of fit of each PUB method was assessed 
using the Nash-Sutcliffe efficiency and several other metrics. 
This analysis showed that only seven of the PUB methods 
were reasonably competitive. Additional analysis determined 
how well each of these seven PUB methods reproduced daily, 
no-fail storage-yield curves, reproduced other streamflow sta-
tistics, and performed across all metrics considered. A robust 
rank-based evaluation was used to compare the average rela-
tive rankings of each PUB metrics. This evaluation showed 
that the seven best methods were split into two groups; three 
methods were consistently along or near the efficient frontier 
of all relative rankings. Finally, these three PUB methods were 
tested for sensitivity to the index-gage information content. 
This test showed the superiority of the nearest-neighbor imple-
mentations of QPPQ and standardizing logarithms of stream-
flow by monthly means and standard deviations.

Three important conclusions can be drawn from the 
analyses conducted here. First, for almost every prediction 
of ungaged basin (PUB) method considered as part of the 
Southeast Model Comparison (SEMC), the prediction methods 
using index gages selected with the nearest-neighbor algo-
rithm outperformed those using the map-correlation algorithm. 
Second, considering all 32 metrics, the nonlinear spatial 
interpolation using flow duration curves and the nearest-
neighboring index gage (NN-QPPQ) provided better predic-
tion of daily streamflow, daily, no-fail storage-yield curves, 
flow duration curves, and flow statistics in the southeastern 
United States than any other PUB method considered in the 
SEMC. Finally, regardless of the full-metric comparison, PUB 
method selection should be chosen based on end use. The 
framework provided here can help to determine the strengths 
and weaknesses of PUB methods.

The goal of the SEMC study was to identify particular 
methods for the prediction of historical daily flow records that 
proved promising for regional or national implementation. 
This would enable the publication of a temporally and 
spatially continuous dataset of daily streamflow. Through 
the numerous analyses, two methods emerged as the most 
generally competitive PUB methods: the nearest-neighbor 
implementations of nonlinear spatial interpolation using flow 
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duration curves (NN-QPPQ) and standardizing logarithms 
of streamflow by monthly means and standard deviations 
(NN-SMS12L). It was nearly impossible to distinguish 
between these two methods in terms of performance. Addi-
tionally, neither of these methods requires significantly more 
parameterization in order to apply: NN-SMS12L requires 
24 regional regressions, 12 for monthly means, and 12 for 
monthly standard deviations. NN-QPPQ, in this case, required 
27 regressions of particular quantiles along the flow duration 
curve. In the absence of a clear, far-and-away “winner,” it is 
necessary to make a somewhat qualitative judgment between 
these two methods.

Based on the results presented here, the nonlinear spatial 
interpolation technique using flow duration curves with the 
nearest-neighboring index gages (NN-QPPQ) produces the 
most reliable predictions of continuous records of historical 
daily streamflow in the Southeast region of the United States. 
This method, NN-QPPQ, was shown to be a top performer in 
almost all the metrics considered above. Of course, based on 
this analysis, other methods, like NN-SMS12L, might be more 
appropriate for particular applications; additional research 
should continue to consider new metrics and methods, espe-
cially for specific purposes. Modelled time series from the 
NN-QPPQ method will become available through the USGS 
National Water Census data portal (http://cida.usgs.gov/nwc/) 
under the heading “Streamflow Stats,” which is currently 
provided only in a beta state.

The methods of analysis presented here reflect a possible 
framework for continued analysis and comprehensive multiple 
comparisons of PUB methods. The approach presented here 
considers overall goodness of fit along with the ability to 
reproduce particular streamflow signatures and statistics. 
Using a tool like RRBE, it was possible to balance average 
performance against variability of average performance across 
many metrics. Additional metrics of comparison can easily 
be incorporated into this type of analysis. By considering 
such a multifaceted approach, the top-performing models in 
any region can easily be identified and considered for further 
research. The top-performing models can then provide a basis 
for future applications and explorations by scientists, engineers, 
managers, and practitioners to suit their own needs.

Even with the analysis presented here, the optimal PUB 
method relies on the intended application. Some methods are 
stronger overall, while some methods may be better at predict-
ing particular statistics. The optimal PUB method for the fish 
biologist might be starkly different than the best PUB method 
for the manager at a large hydropower facility; the optimal-
ity is a function of purpose and perspective. The SEMC study 
sought to find the best method and demonstrated a framework 
for determining the best method on average. The many facets 
of this framework allow others with a more targeted applica-
tion to make a more-informed choice of PUB method. For this 
work, every effort was made to provide an across-the-board 
assessment of average performance and not make any weight-
ing of metrics that might limit the application of the identified 
PUB method.

Limitations and Further Research

The rigorous examination of prediction in ungaged basins 
(PUB) is an extremely active field of research. The work 
presented here offers only a glimpse at possible advances in 
the application of PUB methods. Despite presenting a com-
prehensive overview of many performance metrics and PUB 
methods, this report is limited in that new metrics and methods 
are frequently being developed and introduced. It is therefore 
necessary that the findings of this report be frequently reas-
sessed and updated. The findings shown here are far from 
exhaustive and may shift in the light of new PUB methods 
or in different regions or climates. Additional research will 
always be needed.

As with all studies, this work is subject to some impor-
tant limitations. Firstly, this report focuses only on average 
performance. The intention was not to make any judgment on 
the relative importance of performance metrics; different stake-
holders may value different metrics, and thus this analysis 
could be tailored to more specific valuations of performance. 
Second, despite the outperformance of the Precipitation-
Runoff Modeling System (PRMS) by some of the statistically 
based models, PRMS may be more advantageous when it is 
of interest to understand water availability under future or 
nonstationary conditions, such as water use, urbanization, 
or climate change. Recall that PRMS, like many process-
based models, can be integrated with other process-based and 
systemic models and can be edited to incorporate changes in 
hydrologic processes. The other models tested in this study, 
with a strict reliance on contemporaneous index records, 
are only able to provide historical estimates of streamflow 
time series. Thirdly, regression-based methods should not be 
applied to basins with characteristics outside of the range of 
characteristics found at the gaged locations used to develop 
the regression equations. Finally, as these results have only 
been applied in the southeastern United States, it is unclear 
whether the relative model performances would change if 
the models were applied to another study area with differing 
climate and physiographic conditions or in areas of sparser 
streamgage density. 

Even with these limitations, there may be some synergy 
between the process-based and transfer-based approaches. 
It is possible to envision an approach designed to calibrate 
the PRMS model in an ungaged mode with the use of esti-
mated streamflow records provided by the statistically based 
methods. Leveraging the advantages of both techniques, this 
could lead to a robust methodology to both estimate historical 
streamflow and forecast future records at ungaged locations. 
Ongoing research at the USGS and elsewhere has already 
begun to explore using transfer-based models to calibrate 
process-based models like the PRMS.

Another avenue of future research might be to consider 
a more thorough tradeoff analysis, treating the entire PUB 
puzzle as a multi-objective problem. Here, only the most basic 
tradeoffs were considered. Additional study could explore the 
tradeoffs between particular sets of performance metrics. For 

http://cida.usgs.gov/nwc/
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example, one might be concerned with the tradeoff between 
how well the low flows are estimated and how well the high 
flows are estimated. Additionally, performance metrics could 
be classified by interest groups or stakeholders: the fish 
biologist and the hydropower operator, for example. Multi-
objective and interdisciplinary techniques are becoming quite 
popular in the field of hydrology; the PUB problem is an ideal 
application for interdisciplinary tools.
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