Scientific Investigations Report 2015–5005
AbstractThis report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values. The habitat model used for this study evaluates the suitability of ecological habitat, represented by fish, and recreational habitat, represented by canoeing, based on depth, velocity, and substrate conditions, which are weighted for the physical habitat types (riffles, runs, or pools) present within a stretch of river. Weighted usable-habitat area in the Lockes Mill reach was maximized for adult smallmouth bass and sub-adult smallmouth bass (Micropterus dolomieu) and river chub (Nocomis micropogon) when streamflows were equal to median flow (900 cubic feet per second) for summer months. Ecological maximum weighted usable-habitat areas for smaller fish, such as spotfin or satinfin shiner (Cyprinella spp.), margined madtom (Noturus insignis), and juvenile redbreast sunfish (Lepomis auritus) occurred with 10th percentile flows (482 cubic feet per second) and lower. Recreational weighted usable-habitat areas for canoeing were maximized when streamflows were above the 75th percentile (1,410 cubic feet per second). During historic droughts, streamflows were less than the 10th percentile, and adult smallmouth bass and sub-adult smallmouth bass habitat was below normal for the majority of days during at least 2 months of the summer. When streamflows were less than the lowest 7-day average in a 10-year period, or 7Q10 flow (357 cubic feet per second), margined madtom, river chub, and sub-adult redbreast sunfish habitat areas were below normal as well. Streamflows that limit most fish species habit availability range from 300 to 500 cubic feet per second. For the drought years simulated, flows that were equal to or less than the 10th percentile for summer months did not provide adequate depth for canoe passage through riffle habitats. A modeling limitation for higher flows than those studied during development of the habitat-suitability criteria is that modeled habitat availability will decrease as flows increase. Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecological fish habitat and recreational canoeing habitat, the antecedent conditions (habitat within normal range of habitat or below normal) appear to govern whether additional water withdrawals will affect habitat availability. As human populations and water demands increase, many of the ecological or recreational stresses may be lessened by managing the timing of water withdrawals from the system. |
First posted January 30, 2015 For additional information, contact: Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here. |
Krstolic, J.L., 2015, Data collection and simulation of ecological habitat and recreational habitat in the Shenandoah River, Virginia: U.S. Geological Survey Scientific Investigations Report 2015–5005, 30 p., http://dx.doi.org/10.3133/sir20155005.
ISSN 2328–031X (print)
ISSN 2328–0328 (online)
Abstract
Introduction
Analysis of Historic Streamflow
Water Withdrawals and Projections From the Water Supply Planning Initiative
Hydraulic Data Collection Update
Fish-Community Data and Dominant Substrate
Using RHABSIM Modeling to Determine Fish Habitat Availability and Recreation Conditions
Habitat Time-Series Scenario Analysis for Low-Flow Periods
Summary and Conclusions
Acknowledgments
References Cited
Appendix. RHABSIM model calibration data