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Assessing Geomorphic Change along the Trinity River
Downstream from Lewiston Dam, California, 1980 to 2011

By Jennifer A. Curtis, Scott A. Wright, J. Toby Minear, and Lorraine E. Flint

Abstract

The Trinity River Restoration Program, one of the
nation’s largest adaptively managed river restoration
programs, requires periodic assessment to determine the
effectiveness of management actions in restoring channel
dynamics and habitat features. This study documents
riparian and channel changes along an intensively managed
65-kilometer reach of the Trinity River in California,
downstream from Lewiston Dam. The two primary periods
of interest, from 1980 to 2001 and from 2001 to 2011, are
separated by a shift in restoration activities mandated by
the U.S. Department of the Interior December 2000 Record
of Decision. The post-2001 restoration strategy increased
managed-flow releases, gravel augmentation, watershed
restoration, and mechanical channel rehabilitation.

We assessed the nature and extent of geomorphic
change and a series of ecological performance measures
(channel complexity, shoreline length, and channel—
floodplain connectivity) by using a series of maps digitized
from available rectified orthophotography acquired during
low-flow conditions in 1980, 1997, 2001, 2006, 2009, and
2011. Lateral changes in riparian and channel features were
used to quantify alluvial processes, and a review of existing
streamflow, sediment, and restoration records was used to
assess causal mechanisms. During the study period, natural
bank erosion and mechanical rehabilitation of channel margins
converted riparian features to channel features and expanded
the active-channel area. The primary period of bank erosion
and expansion of the active channel was from 1980 to 1997.
Subsequent bar accretion from 1997 to 2001, followed by
slightly greater bar scour from 2001 to 2006, took place
primarily in the central and lower reaches of the study area,
downstream of Indian Creek. In comparison, post-2006
bank and bar changes were spatially limited to reaches that
had sufficient local transport capacity or sediment supply
supported by gravel augmentation, mechanical channel
rehabilitation, and tributary contributions.

The highest rates of change in the areal extents of
channel and riparian features were observed during the
pre-2001 period, which was longer and relatively wetter than
the post-2001 period. A series of tributary floods in 1997,
1998, and 2006 increased channel complexity and floodplain

connectivity. During the post-2006 period, managed-flow
releases, in the absence of tributary flooding, combined with
gravel augmentation and mechanical restoration, caused
localized increases in sediment supply and transport capacity
that led to smaller, but measurable, increases in channel
complexity and floodplain connectivity in the upper river near
Lewiston Dam. Extensive pre-2001 channel widening and the
muted geomorphic response of channel rehabilitation sites to
post-2001 managed flows highlight the need for continued
monitoring and assessment of the magnitude, duration, and
timing of prescriptive flows and associated geomorphic
responses.

Introduction

In 1958, a plan was developed to increase water supplies
and generate power for California’s Central Valley Project,
in part, by transferring water from the Trinity River (fig. 1)
to the Sacramento River. The Trinity River Division (TRD)
included construction of two main-stem dams. The reservoir
behind Trinity Dam began filling in 1960, and Lewiston Dam
was completed in 1963. Following closure of the Trinity
Dam, annual water diversions commenced, and up to 75 to
90 percent of the upper Trinity River’s annual streamflow,
measured as inflow to Trinity Lake, was transferred to the
upper Sacramento River (U.S. Fish and Wildlife Service and
Hoopa Valley Tribe, 1999).

The combination of dam construction, flow diversion, and
land-use practices (dredge mining and upland logging) caused
channel aggradation, riparian encroachment, and simplification
of channel morphology with concurrent reductions in channel
complexity and channel-floodplain connectivity downstream
from Lewiston Dam (Trinity River Taskforce, 1970).
Recognition that riparian and channel changes coincided
with declines in salmon and steelhead populations led to an
Environmental Impact Statement (EIS; U.S. Fish and Wildlife
Service, 1980). The EIS determined the fisheries decline was
primarily caused by streambed sedimentation, insufficient
streamflow, and inadequate regulation of fish harvests. On the
basis of these findings, channel bank rehabilitation and flow
increases were recommended to restore salmon and steelhead
populations (U.S. Fish and Wildlife Service, 1980).
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Although baseflow increases began in 1981, salmon
and steelhead populations continued to decline, which led
to additional environmental and experimental flow studies
summarized in the Trinity River Flow Evaluation (TRFE;
U.S. Fish and Wildlife Service and Hoopa Valley Tribe,
1999). The TRFE presented recommendations that were
formally adopted in December 2000 by the U.S. Department
of the Interior Record of Decision (ROD; U.S. Department
of the Interior, 2000). The ROD explicitly required a
restoration strategy that included managed-flow releases,
gravel augmentation, mechanical channel rehabilitation,
and watershed restoration. The Trinity River Restoration
Program (TRRP), a multi-agency partnership, was tasked
with overseeing implementation of mandated restoration
and adaptive management. The TRRP’s mission is to
promote geomorphic processes responsible for creating and
maintaining habitat sufficient to restore the salmonid fishery
to pre-dam levels. Restoration of a dynamic alluvial channel,
exhibiting all the characteristics of the pre-dam river, but at a
smaller scale, is a primary goal.

Purpose and Scope

The purpose of this report is to provide results from a
geomorphic assessment of the 65-kilometer (km) restoration
reach along the mainstem Trinity River, downstream from
Lewiston Dam, completed by the USGS in cooperation
with the TRRP. The study period began in 1980, prior to
implementation of baseflow increases in 1981, and covered
approximately two decades (1980 to 2001) prior to the ROD
and one decade (2001 to 2011) following. The primary study
objectives were as follows:

1. To develop a system-wide perspective of
geomorphic features.

2. To determine the evolution of geomorphic features and
the trajectories of geomorphic change.

3. To quantify ecologically significant measures
of geomorphic change relevant to Trinity River
fisheries restoration.

4. To evaluate the cumulative effects of natural and
managed drivers of change.

We used six available rectified orthophotographs,
acquired during baseflow conditions, to construct a series
of retrospective geomorphic feature maps that are published
in a companion report and geodatabase (Curtis and
Guerrero, 2015; http://dx.doi.org/10.5066/F7TT4P04). The
orthophotographs bracketed five study periods that included
two pre-ROD periods (May 1980 to October 1997 and
October 1997 to November 2001) and three post-ROD periods
(November 2001 to July 2006, July 2006 to April 2009, and
April 2009 to August 2011). Using the six geomorphic feature
maps, we quantified spatial and temporal changes in riparian
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and channel features and assessed a series of ecological
performance measures (channel complexity, shoreline length,
and channel-floodplain connectivity) identified as primary
metrics for understanding linkages between ecosystem benefits
and restoration actions (Trinity River Restoration Program and
ESSA Technologies Ltd., 2009).

During each of the five study periods, there were
concurrent and sequential alterations in flow, sediment
supply, and channel morphology. We interpreted cumulative
change during each of the five periods in the context of
controlling factors related to natural channel processes, flow
and sediment management, and mechanical alterations of
channel morphology. Results from this study are intended to
help inform the design and implementation of future channel
rehabilitation projects (Hoopa Valley Tribe and others, 2011a)
and adaptive management of the TRRP restoration reach.

Study Area

The Trinity River traverses a region in the Central
Klamath Mountain geologic province (Irwin, 1972, 1981)
underlain by geologic terranes accreted to western North
America during the late Mesozoic Era and early Tertiary
Period (Ingersoll and Schweickert, 1986). A progression
of eastward dipping thrust faults (Irwin, 1994) juxtaposes
younger, Jurassic mixed-volcanic and sedimentary rocks
against older, Devonian sedimentary rocks. During
and subsequent to accretion, these geologic units were
metamorphosed and intruded by igneous plutons, dikes, and
sills. The Weaverville Formation, a Cenozoic gold-bearing
fluvial deposit, was deposited on older stratigraphy (Diller,
1902) in the study area.

Anomalously high topography and surface exposure of
Devonian rocks in the Klamath province indicate a period
of geologically recent tectonic uplift. Inferred rapid uplift
could be related to plate convergence at the nearby Cascadia
subduction zone and Mendocino Triple Junction (Anderson,
2008). Inferred uplift rates also provide a tectonic mechanism
for river incision and development of bedrock channels
draining the central Klamath Mountains.

The Trinity River flows 270 km westward from its
headwaters to its confluence with the Klamath River (fig. 1).
The Trinity is the Klamath River’s largest tributary and
has a total drainage area of 7,670 square kilometers (km?.
Approximately one quarter of the Trinity River watershed
(1,850 km?) is upstream from Lewiston Dam. The watershed
is predominately mountainous and forested. Elevations
range from 90 to 2,700 meters (m) above sea level, and the
highest elevations were glaciated during the Pleistocene.
The channel network is primarily bedrock with intermittent
alluvial reaches. Downstream of Lewiston Dam, the river
flows southwest through a series of antecedent meanders
superimposed across northwest-trending terranes. Near
Douglas City, the river turns and flows northwest through a
structurally controlled landscape.
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The climate in this region is Mediterranean, with
hot, dry summers and cool, wet winters. Beginning in
November, storm systems from the Pacific Ocean bring
winter precipitation. Approximately 80 percent of the
annual precipitation falls between November and March.

The U.S. Forest Service has operated a weather station in
Weaverville since 1905 (Weaverville RS, WVR, http://
www.cdec.water.ca.gov). The Weaverville station is at an
elevation of 625 m, where average annual precipitation is

935 millimeters (mm), and average annual snowfall is 570
mm. The maximum monthly precipitation, 530 mm, fell in
December 2005, and the maximum 24-hour precipitation, 140
mm, fell on January 4, 1982. Elevations between 1,220 and
1,820 m are susceptible to rain-on-snow events (U.S. Fish and
Wildlife Service and Hoopa Valley Tribe, 1999), which can
produce large tributary floods.

The TRRP restoration reach extends from Lewiston Dam
downstream to the confluence with the North Fork Trinity
River (fig. 2). This 65-km river segment along the mainstem
Trinity River was identified as the most severely affected
by flow regulation and diversion and was recommended
for restoration by the initial flow evaluation (U.S. Fish and
Wildlife Service, 1994). The study reach is a partially confined
gravel-bed river that has a nearly constant slope of 0.002
meters per meter (fig. 3). The nearly constant slope indicates
that bedrock functions as a primary control of channel
slope. This assertion is further supported by intermittent
bedrock exposures in the active channel throughout the
study reach. The channel pattern is primarily single-
thread, and the dominant channel type is pool-riffie with
intermittent plane-bed and canyon reaches (Montgomery and
Buffington, 1998).

From the early 1860s to the early 1900s, large-scale
hydraulic mining of the gold-bearing Weaverville Formation
and, to a lesser extent, logging increased sediment supplies
to the study reach. Deposition of large-diameter mining
sediment aggraded the channel and valley bottom by several
feet (Trinity River Taskforce, 1970; Krause and others,
2010). Beginning in the late 1800s and continuing until 1960,
dredge mining of the mainstem channel overturned more than
70 percent of the floodplain area (Stearns, 1969), depositing
large piles of coarse tailings (gravel, cobble, and boulder) up
to 12 m high that confine the modern river in some locations
(Krause, 2012b). Many of these tailings piles were reworked
by the 1955 and 1964 floods (Ritter, 1968), producing an
extensive set of historic terraces and inset floodplains.
Redistribution of stored mining sediment and tributary
confluence aggradation during the 1964 flood led to the first
mechanical restoration effort in 1965 that involved confluence
channelization. Notably, smaller scale hydraulic mining
continued in the study reach until 1970.

In-Stream Effects of the Trinity River Diversion

In-stream effects related to Trinity River flow diversions
are documented explicitly in the TRFE (U.S. Fish and Wildlife
Service and Hoopa Valley Tribe, 1999) and numerous project
reports. In this report, we review the evolution of flow and
sediment management strategies to support a thorough
understanding of the study reach history. Note that we use
English units, cubic feet per second (ft*/s) and thousand
acre-feet (TAF), to characterize flow data because they are
commonly used by the Trinity River management community.

The influence of flow regulation and diversion on
streamflow variability is readily apparent in mean daily flows
recorded at the Lewiston gaging station (fig. 4; Trinity River
at Lewiston, USGS station identification number 11525500),
1.5 km downstream from Lewiston Dam (fig. 2). The pre-
dam flow regime included summer base flows, winter-storm
peaks, and spring-snowmelt peaks, which created variable
seasonal flow conditions. Post-dam flow variability decreased
and flow releases from 1964 to 1973 were pursuant to the
1955 Congressional Act, which authorized construction and
operation of the TRD by the Bureau of Reclamation. The
TRD maintained daily flows between 150 and 250 ft*/s at the
Lewiston gage, and the annual flow-release volume was set at
120.5 TAF, with periodic, larger safety-of-dam releases.

Post-dam salmonid habitat deterioration and population
declines (Trinity River Taskforce, 1970) prompted a request
in 1980 by the California Department of Fish and Game to
increase the annual flow release from Lewiston Dam to the
Trinity River to 315 TAF. Subsequent investigations of the
relation between in-stream flows and salmonid habitat by the
U.S. Fish and Wildlife Service (USFWS) were incorporated
into an EIS (U.S. Fish and Wildlife Service, 1980), which
concluded that insufficient streamflow was the most critical
limiting factor for restoring salmonid populations. The EIS
explicitly recommended channel rehabilitation by mechanical
restoration and increases in minimum annual flow volumes to
140 TAF in critically dry water years, 220 TAF in dry water
years, and 340 TAF in normal or wet water years.

In 1981, a Department of the Interior Secretarial Decision
was issued that mandated baseflow increases and completion
of a flow evaluation study to evaluate the potential effects of
implementing prescriptive in-stream flows to mimic variable
climatic conditions and provide suitable flows to restore
dynamic fluvial processes, maintain channel complexity, and
support all stages of the salmonid life cycle. Drier climatic
conditions prevailed from 1986 to 1990, which delayed flow
increases. In the early 1990s, a series of 3,000 to 6,000 ft/s
experimental flows were released, and in-stream effects were
monitored as part of an environmental assessment (EA).


http://www.cdec.water.ca.gov
http://www.cdec.water.ca.gov
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5 KILOMETERS
EXPLANATION

R1 Study reaches
Upper river Central river

T%C U. S. Geological Survey
Lower river streamgaging station—See table 5
- R1 - Lewiston R6 - Vitzhum Gulch

R9 - Dutch Creek for station names
. i . —+ 5 Floodplain kilometer—distance
[ R2- sawmill R7-Reading Creek [0 R10- Oregon Gulch downstream from Lewiston Dam
- R3 - Rush Creek - R8 - Dutton Creek R11 - Canyon Creek
R4 - Stott

R12 - Lime Point

- R13 - Pear Tree

R5 - Poker Bar Canyon

Figure 2. Trinity River restoration reach, in California, from Lewiston Dam downstream to the North Fork Trinity confluence and
13 geomorphic reaches, within 3 river-channel segments, used as the spatial framework for interpretation of mapping results.

5 MILES
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Upper river Central river Lower river
Geomorphic
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Distance downstream from Lewiston Dam, in floodplain kilometers

Figure 3. Elevation profile of the Trinity River restoration reach, California, estimated from 10-meter-resolution digital
elevation data. See table 3 for description of the 13 geomorphic reaches.

The TRFE was completed in 1999, and flow recommendations
were formally adopted in the ROD (U.S. Department of the
Interior, 2000), but litigation delayed full implementation

of the ROD flows until December 2005. Post-ROD flow
management included large increases in annual flow volumes
compared to those initially recommended in the 1980 EIS.

In critically dry water years, the EIS recommendation of

140 TAF was more than doubled to 369 TAF. The EIS
recommendation of 340 TAF was increased to 647 TAF during
normal years and to 701 TAF during wet years (table 1).

An important change in post-ROD flow management
was the implementation of an annual spring-flow release with
specific geomorphic objectives (table 1). The annual peak
release typically begins in early May and can extend into
mid-July depending on the water-year type. Water-year type
and the spring-flow release are determined in April of each
year on the basis of forecasted annual-flow volumes at the
Lewiston stream gage (Krause, 2012a). The peak release can
be described as a “benched” hydrograph, with rapid increases
in the rising limb, and a gradual decrease in the falling limb
that is punctuated by periods of steady flows referred to as
“benches” (U.S. Fish and Wildlife Service and Hoopa Valley
Tribe, 1999). The “benches” are designed to support bed
mobility, scour, and geomorphic objectives listed in table 1.

A post-dam sediment deficit existed downstream of
Lewiston Dam (Gaeuman and Krause, 2011). Sediment deficit
conditions occur when transport capacity exceeds sediment
supply, which often results in scour and evacuation of bed-
material to downstream reaches (Schmidt and Wilcock,

2008; Draut and others, 2011). Excess transport capacity
immediately downstream from dams, typical for reaches that

lack sufficient sediment supply, can lead to coarsening of the
channel bed, decreased bed mobility, and channel incision.
Within the study reach, changes in the substrate grain size
relative to pre-dam conditions are unknown, but gaging
measurements, collected at a cableway 2.5 km downstream
from Lewiston Dam, indicated negligible post-dam channel
incision (Gaeuman, 2008).

Abundant tributary and in-channel sediment sources
exist in downstream study reaches (Graham Matthews and
Associates, 2001), where sediment deficit conditions transition
to equilibrium or surplus conditions (Gaeuman and Krause,
2011). The transition from deficit to surplus conditions often
occurs downstream from the first major tributary confluence
(Schmidt and Wilcock, 2008) or in pre-dam aggradation zones,
where modern bed and bank processes recruit stored sediment
from in-channel or floodplain sources (Draut and others,
2011). Beginning at about 3 km downstream from Lewiston
Dam, large amounts of legacy mine tailings are stored along
channel margins, but flows in this reach are insufficient to
scour and transport this large-diameter material. Prior to
construction of sediment-retention ponds in 1986, Grass
Valley Creek (11.9 floodplain kilometers, or FPkm) was the
first large contributor of sediment downstream from Lewiston
Dam (Graham Matthews and Associates, 2001). At the time
of writing this report, almost all bed-material sized sediment
from Grass Valley Creek is trapped in a series of retention
ponds constructed at the confluence in 1986. After 1986,
Indian Creek (25.6 FPkm) functioned as the first important
contributor of sediment downstream from Lewiston Dam
(Graham Matthews and Associates, 2001).
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Raster hydrograph of daily flow

at USGS 11525500 Trinity R A Lewiston CA Daily streamflow for
2010 2010 years 1911-2011, in
- . B cubic feet per
Post-ROD study period second
——40,000
2000 — — 2000 —
1990 - Pre-ROD study period 1990
— 10,000
1980 — — 1980 —
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1970 — — 1970
1960 — — 1960
— 1,000
1950 — 1950 500
1940 — 1940
1930 — — 1930 — 100
1920 — 1920 —50
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2 USGS WaterWatch

Figure 4. Raster hydrograph (http://waterwatch.usgs.gov/index.php?id=wwchart_rastergraph) showing mean daily flows
measured 1.5 kilometers downstream from Lewiston Dam (fig. 2) along the Trinity River, California. Hydrograph shows monthly and
annual variability of mean daily flows for 1911 to 2011. Pre- and post-ROD study periods are separated by the U.S. Department of
the Interior Record of Decision (U.S. Department of the Interior, 2000). ROD, Record of Decision.


http://waterwatch.usgs.gov/index.php?id=wwchart_rastergraph
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Table 1. Recommended flow releases to the Trinity River, California, from Lewiston Dam and associated management objectives.

[See report by Hoopa Valley Tribe and others (2011b) for additional details; acre-ft, acre-foot; D84, particle diameter that represents 84 percent of the grain-size
distribution of channel bed sediment; days/yr, days per year; ft*/s, cubic feet per second; ROD, record of decision; yr, year]

Frequency of Recom- Recom- Pre-ROD Post-ROD
Recom-
water-year  mended mended mended exceedence exceedence
Water-year type during annual flow peak duration of of recom- of recom- Obiectives
type post-ROD  released to release at mended mended )

peak release

period Trinity River Lewiston (days) peak flow peak flow

(percent) (acre-ft) (ft¥/s) (days/yr) (days/yr)
Critically dry 12 369,000 1,500 36 31 118 Discourage encroachment of riparian
vegetation on low bars.

Dry 28 453,000 4,500 5 10 19 Mobilization of gravels in pool tails and
mid-channel bars.

Normal 20 647,000 6,000 5 5 8 Channel-bed surface mobilization on
bars and riffles. Coarse-sediment
transport equal to sediment supply.
Tributary confluence maintenance.
Channel migration. Managed floodplain
inundation and fine-sediment deposition.
Scour of 01 year old riparian seedlings
on lower bar surfaces. Recharge of
shallow groundwater table. All effects
realized at lower flows.

Wet 28 701,000 8,500 5 0.1 1.7 Scour of bar margins greater than or
equal to D84 depth. Coarse sediment
movement. Scour of 1-2 year old
riparian seedlings and lower bar surfaces.
All effects realized at lower flows.

Extremely 12 815,000 11,000 5 0 0.5 Scour depth of alternate bars greater than
wet two times D84. Managed floodplain
scour. Side-channel maintenance. Scour
of 2-3 year old riparian seedlings and
lower bar surfaces. All effects realized at

lower flows.

Decreases in post-dam flows resulted in aggradation Gravel augmentation in the reach immediately
of tributary confluences (Ritter, 1968) and accumulation downstream from Lewiston Dam began in 1998 with
of undesirable fine bed material primarily downstream in-channel placement of coarse-sized bed material. Note
of Grass Valley Creek (U.S. Fish and Wildlife Service that the TRRP defines coarse bed material as all particles
and Hoopa Valley Tribe, 1999). The TRFE suggested that greater than 8mm in diameter (Gacuman and Krause, 2011).
post-dam decreases in coarse bed material reduced successful ~ Recently, Gacuman (2008) determined an optimal particle-
salmonid spawning and simplified the structure of available size distribution (9.5 to 125 mm) and annual quantity (5,400
physical habitat (U.S. Fish and Wildlife Service and Hoopa cubic meters, or m*) for long-term maintenance of coarse bed
Valley Tribe, 1999). There was concern that the relatively material in the upper river.

large annual flow releases necessary to mobilize and scour

undesirable fine bed material would result in the transport

and removal of existing gravel in the reach immediately

downstream from Lewiston Dam, which, despite effects MethOds

related to flow regulation and diversion, continued to function . .

as a primary spawning reach for regional salmonid production The ijectlves Of this study Were.to develop a

(U.S. Fish and Wildlife Service, 1989). To mitigate transport system—wlde persp ectl.ve of geomorphic feat}lres and to assess

of gravel out of the primary spawning reach, the ROD cumulat.we geomo.rphlc change and controlling fa.ctors during

mandated gravel augmentation in the upper river. five .perl.ods.spa.nnmg 1980 to 291 1. We characterized the
spatial distribution of geomorphic features along the study



reach by using a series of retrospective geomorphic maps and
completed geospatial analysis to assess cumulative change
during each period. Geomorphic changes were interpreted in
the context of controlling factors related to natural processes,
flow and sediment management, and mechanical restoration.

Estimating Geomorphic Change

Geomorphic maps published in a companion report
and geodatabase (Curtis and Guerrero, 2015; http://dx.doi.
org/10.5066/F7TT4P04) were used to classify upland,
riparian, and channel features. The map dates bracket relevant
geomorphic events and include three dates that span the pre-
ROD period (May 16, 1980; October 20, 1997; November 7,
2001) and three dates that span the post-ROD period (July 25,
2006; April 16, 2009; August 16, 2011). The orthophotographs
used as base maps were acquired during baseflow conditions,
about 300 ft¥/s, when channel features were well exposed.

A map boundary was defined on the basis of the area
inundated by a 500-year recurrence interval flood. This
boundary, constructed by a one-dimensional flow model
(California Department of Water Resources, 2007), roughly
defined the valley bottom. The boundary was extended by
30 m to include all features of interest. Geomorphic features
larger than 30 m? within the map boundary were digitized at
a scale of 1:1,000. Mapping was limited to exposed features
because subaqueous features, although evident in some years,
could not be consistently digitized.

The hierarchy of the mapping protocol included upland,
riparian, and channel features similar to recent studies on
the Colorado River and its main tributary, the Green River
(Schmidt and others, 1999; Grams and Schmidt, 2002). The
protocol was designed to assess spatial and temporal changes
in geomorphic features and ecologically important measures
of geomorphic change relevant to restoration of Trinity
River fisheries. Previous studies determined that the linkage
between habitat and channel geomorphology was represented
best by channel complexity, channel-floodplain connectivity,
and shoreline length, which represent fundamental variables
governing the quality and quantity of available salmonid
habitat (U.S. Fish and Wildlife Service and Hoopa Valley
Tribe, 1999; Trinity River Restoration Program and ESSA
Technologies Ltd., 2009). The mapping protocol, geomorphic
feature definition, and the ArcGIS (v. 10.0) geodatabase
structure are explained in table 2.

Geomorphic features were delineated by orthophoto
interpretation, and specific observational criteria are
described in table 2. The mapping was further constrained
by a contour map derived from a 2009 digital terrain model
(DTM, Woolpert, 2010) and a series of water-surface extents
constructed by a one-dimensional flow model. The mapping
was field checked in the summer of 2012. Observational
criteria used to classify geomorphic features included the
age, density, and type of vegetation; spatial transitions
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among vegetation types; evidence of scour or deposition;
and presence of stagnant or flowing water. Although features
were primarily delineated on the basis of these criteria, the
2009 contour map helped delineate relatively static features,
and modeled water surfaces were used to assess riparian
inundation extents and to interpret channel-floodplain
connectivity. Water-surface extents were constructed on the
basis of flow releases from Lewiston Dam, which ranged
from 2,000 to 11,000 ft*/s with tributary flows incorporated
downstream. Lower elevation channel features were
topographically inset relative to riparian and upland features.
This nested topographic relation is illustrated in figure 5.
Generally, higher elevation features are older and inundated
less frequently by larger flows.

The boundary between the upland and riparian
environments is delineated by the pre-dam floodplain, which
is a relict depositional landform that is partially inundated at
6,000 ft*/s and fully inundated at about 11,000 ft*/s. Under the
regulated-flow regime in use at the time of writing, the upland
environment is inundated only during extreme flows that have
large tributary contributions.

Three floodplain types were defined: a relatively
continuous, higher elevation pre-dam floodplain; a series
of intermittent constructed floodplains; and lower elevation
topographic benches created by the post-ROD flow regime.
Isolated constructed floodplains were created by mechanical
rehabilitation (vegetation removal, re-contouring, and
surface lowering) as part of the USFWS bank-rehabilitation
program in the early 1990s and by the TRRP after 2005. The
larger scale TRRP projects included constructed floodplains
designed to be inundated by the post-ROD mean annual
peak-flow release (about 6,000 ft*/s). The lowest elevation
riparian features are post-dam topographic benches composed
of coalesced bars. The post-dam benches are composed of
previously active bars that were stabilized by 1975 as a result
of declines in transport capacity due to flow regulation and
concurrent vegetation encroachment. By 1980, these stable
bars had coalesced into relatively continuous low-elevation
floodplain features. Under the flow regime in use at the time
of writing, these benches are inundated by flows ranging
between about 2,000 and 4,500 ft3/s. Portions of these features
are elevated as a result of vegetation encroachment, which
facilitated sediment deposition and development of riparian
berms. The extent and frequency of inundation is influenced
by the presence of these berms, which act as natural levees.

The active-channel environment (table 2) includes
the baseflow-wetted channel and morphologically active-
channel margins characterized by bedload transport. Similar
to previous studies (Grant and Swanson, 1995; Church,

2002; Zilliani and Surian, 2012), we delineated a dynamic
active-channel boundary that included wetted-channel features
and unvegetated or sparsely vegetated bars. The mapping
protocol accommodated the transitional boundary between the
channel and riparian environments that expands and contracts
through time.


http://dx.doi.org/10.5066/F7TT4P04
http://dx.doi.org/10.5066/F7TT4P04

10 Assessing Geomorphic Change along the Trinity River Downstream from Lewiston Dam, California, 1980 to 2011

Table 2. Mapping protocol structure and geomorphic feature descriptions.

[See companion report by Curtis and Guerrero (2015) for additional details. Abbreviations: FPkm, floodplain kilometer; ft¥/s, cubic foot per second; km,
kilometer; km?, square kilometer; m, meters; ROD, record of decision; TRRP, Trinity River Restoration Program; USFWS, U.S. Fish and Wildlife Service;

%, percent]

Geomorphic setting

Feature description

Terrestrial environment

Uplands

Uplands include areas underlain by soil, colluvium, alluvium, bedrock, or legacy mine tailings. Unless
altered by mechanical restoration, the areal extent of upland features typically persists throughout the
historic imagery.

Riparian environment

Islands

Floodplains

Pre-dam floodplain

Constructed floodplains

Post-dam topographic

bench

Riparian wetlands

Other

Alluvial features bounded on all sides by water and distinguished from medial bars by denser mature
vegetation, greater areal extents, and higher elevations. Although islands existed prior to 1980, most
were created by side-channel construction.

Floodplain features typically exhibit a vegetation gradient with the highest density of vegetation along the
active-channel margin; density decreases with increasing distance from the channel margin.

This broad, relict depositional feature was created and inundated annually by the unregulated pre-dam flow
regime, but is inundated periodically under the post-dam flow regime by flows between about 6,000 and
11,000 ft/s.

Discontinuous restoration features created by mechanical vegetation removal, re-contouring, and surface
lowering as part of the USFWS bank-rehabilitation program in the early 1990s and since 2005 as part of
the TRRP bank-rehabilitation program.

Depositional features composed of coalesced bars stabilized prior to 1975 because of declines in scouring
flows and the associated encroachment of vegetation. Portions of these features are elevated because of
vegetation-facilitated sediment deposition and development of a riparian berm along the channel margin.

These disconnected aquatic features are outside the modern active-channel boundary. Only areas containing
water in the base imagery were mapped, even when it was apparent that additional areas would be
inundated seasonally.

Unique constructed features, such as borrow pits and gravel-recruitment piles.

Active-channel environment

Baseflow wetted channel

Secondary water features

Alcove

Wetland

Side-channel

Split-flow channel

Bar

Lateral

Medial

The primary channel delivers the majority of flow and, where the channel splits, it is identified as the
widest channel. Wetted-channel area is delineated by the wetted perimeter, as seen in the base imagery.

Wetted-channel features that do not deliver the majority of channel flow. Only areas containing water in
the base imagery were mapped, even when it was apparent that additional areas were inundated at higher
flows.

Secondary water feature connected at one end to any wetted channel, including mainstem, tributary, side-
channel, or split-flow channel.

Secondary water feature completely disconnected from any other wetted-channel feature.

Secondary channels connected to the primary channel at the upstream and downstream ends and
distinguished from split-flow channels by conveyance of less than 20% of total summer baseflow and
generally less than 10%. The percentage of flow conveyance was estimated from channel widths.

Secondary channels created by flow separation that results in a change in the river morphology. Split-flow
channels convey between 20 and 50% of baseflow. The percentage of flow conveyance was estimated
from channel widths.

Dynamic features created by bedload transport typically oriented parallel to the primary flow direction. The
boundary between bars and adjacent riparian or upland features was delineated by using observational
criteria that included morphology, vegetation type and density, and physical evidence of scour or
deposition.

Depositional channel feature created and maintained by active bedload transport and attached to the
channel margin.

Depositional channel feature created and maintained by active bedload transport and surrounded by water
on all sides.
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Table 2. Mapping protocol structure and geomorphic feature descriptions.—Continued

[See companion report by Curtis and Guerrero (2015) for additional details. Abbreviations: FPkm, floodplain kilometer; ft¥/s, cubic foot per second; km,
kilometer; km?, square kilometer; m, meters; ROD, record of decision; TRRP, Trinity River Restoration Program; USFWS, U.S. Fish and Wildlife Service;
%, percent]

1"

Geomorphic setting Feature description

Active-channel environment—Continued

Bedrock outcrops Static, non-alluvial features persistent in most or all years of base imagery. Can be buried by sediment in
some years and exposed in others. Bedrock outcrops are typically darker than alluvial features and have
a rough tone, jagged boundary, and lineations indicative of bedrock texture.

Other Unique constructed features, such as hydraulic grade controls, bank stabilization features, and historic
bridge pilings.

Additional mapping attributes

Vegetation density

Bare to sparse Vegetation covers less than 10%.
Moderate Vegetation covers 10 to 40%.
Dense Vegetation covers greater than 40%.

Restoration features

Constructed Features created by in-channel gravel placement or channel and bank rehabilitation.
Bar stability
Stable No physical evidence of scour, mobilization, or deposition in the current imagery when compared to the
previous imagery. The channel margin can have bare to dense vegetation, but must have a stable areal
extent.
Active Obvious physical evidence of scour, mobilization, or incipient deposition when compared to previous

imagery. The baseflow-channel margin and the bar-surface area must be bare to sparsely vegetated in the
current imagery.

Post-dam
topographic
bench

Uplands

Terrace

Constructed floodplain

Figure 5. Example of the topographic relations among depositional and constructed features for the Trinity River downstream
from Lewiston Dam, California (photograph by J.A. Curtis). Photo shows left bank downstream of Canyon Creek (51 floodplain
kilometers, or FPkm).
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Channel features were assigned either to mainstem or
tributary environments, and a simple bar classification (medial
and lateral) was used (table 2). The presence of flowing or
stagnant water delineated the wetted perimeter of baseflow
channels and secondary water features (split-flow channels,
side channels, alcoves, and aquatic wetlands). For the
baseflow channels and secondary water features, only areas
containing water were digitized, even when it was apparent
that additional areas were inundated at higher flows. Three
additional feature attributes were included in the geodatabase:
restoration, vegetation density, and bar stability. Constructed
features were labeled, which enabled assessment of features
created or altered mechanically by in-channel gravel
placement, side-channel construction, or bank rehabilitation.
Vegetation density was estimated for all bar features, and
bar stability was defined by vegetation density estimates,
evidence of scour or deposition, and the presence or absence
of vegetation along the baseflow-channel margin. Active
bars typically have bare-to-sparse vegetation and a dynamic
perimeter along the channel margin. In comparison, stable
bars can have bare-to-dense vegetation, but more typically are
characterized by moderate-to-dense vegetation and generally
have a stable areal extent in consecutive orthophotographs.

Interpretation of Geomorphic Mapping

A spatial framework for interpreting results was
developed on the basis of longitudinal changes in transport
capacity and sediment-supply conditions. The framework
was inferred from valley and channel confinement, location
of tributary confluences, and the presence of in-channel
legacy mine tailings and was used to delineate study reaches.
The mainstem was initially divided into upper, central,
and lower channel segments and then was subdivided into
13 geomorphic reaches (table 3). Lateral changes in channel
and riparian features caused by bar and bank processes were
investigated at a 1-km sub-reach scale.

Similar to recent studies by Wallick and others (2010,
2011), floodplain distance, rather than channel distance, was
used to reference study-reach locations because distances
along this line were static during the study period, whereas
channel distances varied with time. Floodplain distance was
defined as the distance downstream from Lewiston Dam along
a centerline digitized within the pre-dam floodplain boundary.
The numbering system begins at Lewiston Dam and ends
upstream from the North Fork Trinity River confluence.

Channel lengths were estimated by using channel
centerlines, digitized within the baseflow channel boundary for
each of the six orthophotographs. Reach-averaged estimates
of active-channel widths were calculated by dividing the
active-channel area by channel length. The active-channel
area included the primary wetted channel; secondary water
features; in-channel features, such as bedrock outcrops; and
active bars.

Two channel attributes that characterize the quality
and quantity of available habitat are channel complexity
and shoreline length (Trinity River Restoration Program
and ESSA Technologies Ltd., 2009). Channel complexity
was estimated by summing the areal extents of active bar
and secondary water features. The perimeter of the wetted
channel edge, including the primary baseflow channel and all
connected secondary water features, was used to estimate the
shoreline length.

We created five change maps, which preserved individual
map attributes and bracketed the period of interest, by
intersecting consecutive maps. Change polygons, which
represent the nature and extent of bar and bank processes,
were created and summarized for each of the 1-km subreaches
by using a series of conditional statements. Bar-accretion
polygons were identified by the conversion of a water feature
to a bar feature, and bar-scour polygons were identified by the
conversion of a bar to water feature. Bank-erosion polygons
were identified by the conversion of an upland or riparian
feature to a channel feature, and bank-accretion polygons were
identified by the conversion of a channel feature to a riparian
feature. We also investigated bar-vegetation dynamics by
using conditional statements to quantify the area converted
from a sparsely vegetated to a densely vegetated bar,
indicative of stabilization by vegetation encroachment, and the
area converted from a densely vegetated to sparsely vegetated
bar, indicative of scour and mobilization.

Uncertainty and Error Analysis

Uncertainty and error result when real world data are
transferred to digital formats (Mount and Louis, 2005; Hughes
and others, 2006). Errors associated with digitized data
include operational errors, discharge differences during photo
acquisition, and digitizing errors due to features obscured by
vegetation or shadows (table 4). Curtis and Guerrero (2015)
determined that operational and variable discharge errors
were negligible, and digitizing errors based on the accuracy
and precision of the digitizing process were conservatively
inferred to be about 10 percent.

In this report, we present an additional error analysis
associated with interpreting lateral channel changes. Although
the root mean square error (RMSE) is generally regarded as
a poor indicator of overall horizontal accuracy (Hughes and
others, 2000), it is typically the only metric available to define
uncertainty associated with lateral channel changes quantified
by using repeat rectified photography (O’Connor and others,
2003; Micheli and others, 2004; Draut and others, 2008;
Wallick and others, 2010; Wallick and others, 2011).

The greatest RMSE among the orthophotos was used to
determine a threshold polygon area to address the horizontal
uncertainty due to poor alignment. Change polygons smaller
than the threshold area likely represent rectification errors
and were removed from the lateral change analyses. The 1980
imagery had the greatest estimated RMSE (9.8 m; table 4).
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Table 4. Uncertainty analysis for six geomorphic maps of the Trinity River, California, downstream from Lewiston Dam.

[Note see Curtis and Guerrero (2015) for additional details. Abbreviations: ft/s, cubic feet per second; m, meters; mm/dd/yyyy, month/day/year; RMSE, root

mean squared error]

Rectified orthophoto Stream discharge Difference in Inferred
Date . RMSE! . ) N s
Year (mm/dd/yyyy) resolution (m) at Lewiston gage water depth digitizing error
(m) (ft/s) (m) (percent)
1980 05/16/1980 0.6 9.8 288.0 0.0 10
1997 10/20/1997 0.2 1.5 285.0 0.0 10
2001 11/07/2001 0.2 1.5 298.0 0.0 10
2006 07/25/2006 0.2 1.5 405.0 0.1 10
2009 04/16/2009 0.2 0.4 291.0 0.0 10
2011 08/16/2011 0.2 0.2 446.0 0.1 10

'Represents horizontal uncertainty for each ortho-rectified image.

“Error associated with variable discharge during photo acquisition estimated from gaging records.

3Digitizing error based on accuracy and precision of digitizing.

This value was inferred from pixel resolution and national
accuracy standards (Curtis and Guerrero, 2015). We checked
the alignment between the 1980 and1997 photography and
concluded that 9.8 m represented an overly conservative
estimate and determined that 5 m was a more representative
estimate of RMSE. By using the less conservative RMSE of
5 m, we estimated a threshold size of 25 m? and rounded this
up to 30 m?, which also represented the minimum polygon
size for features included in the geodatabase. All change
polygons smaller than 30 m? were eliminated from the
lateral-change analysis.

We did not explicitly quantify uncertainty associated
with our geomorphic-change analyses because uncertainty
is scale-and location dependent, but here we present some
calculations that indicate the error associated with large well-
exposed features was about 3 percent compared to about 10
percent for small, obscured features. Curtis and Guerrero
(2015) determined digitized-line precision ranged from about
0.85 to 2.0 m. This precision equated to a 7 to 13 percent
error, or an average error of plus or minus 10 percent, for
a representative 30-m channel width. The mean perimeter
of active bars in 2011 was 130 m, and active bars were
typically well exposed, so application of the lowest linework
precision (plus or minus 0.85 m) was appropriate. For an
equi-dimensional feature, with a perimeter of 130 m and area
of 1,056 m* the estimated uncertainty was within 3 percent.

Assessing Natural and Managed Drivers of
Geomorphic Change

In fluvial systems, geomorphic change is driven by a
complex set of interrelated causal mechanisms including
numerous climatic, lithologic, topologic, biologic, and
anthropogenic factors that often exist concurrently and
sequentially, making it difficult to disentangle their relative
importance. We specifically investigated the cumulative
influence of streamflow, sediment supply, sediment
management, and mechanical channel rehabilitation during
the five study periods.

Streamflow and Sediment Supply

Flow analysis was limited by a lack of gaging records.
We analyzed available records from the five mainstem gaging
stations (fig. 2) and focused our analysis on the Lewiston
gage, which has the longest period of record that spans the
study period (table 5). We inferred ungaged tributary-flows
by comparing mainstem-flows at stations upstream and
downstream of tributary confluences. Our goal was to
characterize the relative differences between mainstem flows
during the five study periods. With this in mind, we assessed
the magnitude, frequency, timing, and duration of flows and
investigated the characteristics of geomorphically important
flow events that took place in 1997, 1998, 2006, and 2011.

Previous investigations characterized the study
reach as sediment-rich with abundant tributary sediment
supplies (Pitlick and Wilcock, 2001). The exception to this
generalization was in the upper river immediately downstream
from Lewiston Dam, where post-dam sediment-deficit
conditions existed (Gaeuman and Krause, 2010). The primary
post-dam sediment sources, listed in order of importance,
included tributary contributions, localized scour of in-channel
sources, and gravel augmentation (Ritter, 1968; Knott, 1974;
Trinity River Taskforce, 1979; Trinity Restoration Associates,
Inc., 1993; Graham Matthews and Associates, 2001; Pitlick and
Wilcock, 2001; Gaecuman and Krause, 2010).

Although there has been extensive monitoring of
mainstem sediment transport in the upper river since 2005
(Graham Matthews and Associates, 2012), few measured
data were available for the pre-2005 periods. Without direct
measurements, sediment supply could only be evaluated
indirectly. We assumed there was no supply of bed-material-
sized sediment (greater than 0.5 mm) from sources upstream of
Lewiston Dam. We then assumed a positive correlation between
flow and sediment supply and inferred an increase in sediment
supply with increasing mainstem flow.
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Sediment Management and Mechanical
Channel Rehabilitation

We compiled, analyzed, and summarized information
related to sediment management and mechanical rehabilitation
from available reports (Kondolf and Minear, 2004; Gaeuman,
2008; Gaeuman and Krause, 2011; Hoopa Valley Tribe and
others, 2011b; Graham Matthews and Associates, 2012;
Krause, 2012b) and from communication with TRRP staff.

A lack of “as built” surveys, which reflect any changes
made during construction, required that we use the original
design specifications to identify the location and extent of
constructed features. The digitized extent of constructed
features do not always represent the actual “as built” extents
because geomorphic changes could have occurred between
construction and photo acquisition. Although these data
required little analysis, they were critical for interpreting
management actions that altered river morphology.

Results

Our results focus on spatial and temporal trends in
the areal distribution of geomorphic features. The mapping
data represent channel conditions at discrete points in time,
whereas estimates of geomorphic change represent the
cumulative response to numerous controlling factors during
each study period. We present estimates of cumulative
geomorphic change, describe controlling factors, and assess
the primary causal mechanisms that created geomorphic
change during each of the five study periods. The areal extent
of individual geomorphic features, summarized for each of the
thirteen geomorphic reaches, is presented in appendix A.

Spatial and Temporal Analysis of
Geomorphic Change

When the areal extent of the riparian and channel
environments were compared at the system-scale geomorphic
change was not apparent because large riparian features
dominated the landscape (fig.64). In particular, the riparian
environment was dominated by the pre-dam floodplain. The
active-channel margin represents the boundary between
riparian and channel features. In figures 6B to 6F; the change
in active-channel area is shown for the five periods of interest.
An increase in the active-channel area equated to an equal loss
of riparian area, and likewise a decrease in the active-channel
area equated to an equal increase in riparian area.

Excluding the pre-dam floodplain and focusing on
smaller-scale lower-elevation features highlighted spatial
and temporal changes in riparian diversity (fig. 7). In
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1980, post-dam benches composed 94 percent of the lower
elevation riparian environment (fig.74). By 2001, floodplain
construction and bar stabilization increased riparian diversity,
and the proportion of post-dam benches decreased to

86 percent (fig.7C). By the end of the study period in 2011,
the relative proportions of post-dam benches, constructed
floodplains, stable bars, and riparian wetlands were 60, 27,
10 and 3 percent, respectively (fig.7F).

The diversity of channel features was more variable than
riparian features in space and time (fig. 8). In 1980, channel
diversity was greatest in the upper and central river reaches
and channel-complexity features, such as active bars and
secondary water features (split-flow channels, side channels,
alcoves, and aquatic wetlands), composed approximately
12 percent of the active-channel area (fig.84). From 1980 to
2001, the active-channel area increased by 20 percent (fig.6).
By 2001, there were relatively more channel complexity
features in the upper and central river reaches (fig.88) and
these features composed 17 percent of the active-channel area.
From 2001 to 2011, the increase in active-channel area was
about 5 percent. By 2011, channel complexity had increased
in the upper river, but decreased in the lower river. By 2011,
the channel-complexity features occupied 14 percent of the
active-channel area (fig.8F). During the longer (21 years)
and relatively wetter pre-ROD period, increases in active-
channel area and channel complexity were 20 and 70 percent,
respectively. The post-ROD period was shorter (10 years)
and relatively drier, with intensified management. During this
later period, there were smaller, but measurable, increases
in active-channel area of about 5 percent, and channel
complexity decreased by 3 percent.

Spatial and temporal changes in geomorphic features
are illustrated in greater detail in this section and are used to
interpret trajectories and rates of geomorphic change during
the five study periods. We present summary data for individual
upland, riparian, or channel features in the context of the
13 geomorphic reaches and the upper, central, and lower river
segments, as defined in table 3. In each figure, panel A shows
the cumulative area of each geomorphic feature summed
in the downstream direction from Lewiston Dam to the
confluence with the North Fork Trinity River; panel B shows
cumulative change in feature area per year, where the slope
of the line represents and annual rate of change; and panel C
shows a time series of feature area scaled by reach length and
illustrates trajectories of change. Note the differences in the
scale of the y-axis in these figures.

Uplands showed little cumulative change during the
study period (fig. 9), particularly when compared to changes
in total riparian area (fig. 10) and individual riparian features
(figs. 11-14). The exception to this generality was Reach 3
(fig. 9B), where uplands were converted to constructed
floodplains by mechanical surface lowering from 2009
to 2011.
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Riparian area generally decreased during the study
period, but the decrease accelerated after 2009 (fig. 10B8). The
post-2009 decrease in riparian area was primarily caused by
conversion of a large portion of pre-dam floodplain (fig. 11B)
into a series of constructed floodplains by mechanical surface
lowering. The area of post-dam benches also decreased during
the study period, with the largest cumalative decreases from
1980 to 1997 (fig. 124) caused by bank erosion and bar
scour. Post-dam benches were also converted into constructed
floodplains by vegetated berm removal and mechanical
surface lowering. Floodplain construction accelerated during
the post-ROD period, especially after 2006 (fig. 13).

Stable bars are transitional units, originally deposited in
the active channel, but are part of the riparian environment
when stabilized by vegetation and revert back to the active
channel when scoured and remobilized. Bar stabilization
accelerated from 1997 to 2001(fig.144), and the area of stable
bars continued to increase until the end of the study period
in 2011 (fig. 14C). The exception to this generalization was
a decrease in stable bar area from 2006 to 2009 in the lower
river caused by the 2006 tributary-flow event.

The active-channel area generally increased during the
study period as upland and riparian features were eroded
or mechanically altered. The largest cumulative increase in
active-channel area occurred from 1980 to 1997 (fig. 154).
When cumulative change is scaled by time (fig. 15B), the
highest rate of change in the upper river was in Reach 3 during
the relatively short period from 2009 to 2011. This period
included the 2011 flow release, the largest since 1974 (Krause,
2012a), and several large scale TRRP bank rehabilitation
projects. The cumulative change in active-channel area across
the study area from 2009 to 2011 was slightly less than the
rate estimated for the much longer and relatively wetter period
from 1980 to 1997.

The largest cumulative increase in active-bar area
occurred between 1997 and 2001, primarily downstream from
Indian Creek (25.6 percent; fig. 164). Post-2001 changes in
active-bar area were variable across the study area. From 2001
to 2006, there was a slight increase in active-bar area in the
upper river (fig.16B). With the start of gravel augmentation by
direct injection in 2008, active-bar area increased notably in
the upper river between 2006 and 2011 (fig. 16C). From 2001
to 2009, active-bar area decreased in the central river, which
was followed by an increase from 2009 to 2011. From 2001 to
20006, active bar area decreased notably in the lower river, then
remained relatively stable from 2006 to 2009, and decreased
slightly from 2009 to 2011 (fig.16C).

We combined the area of secondary water features
(split-flow channels, side channels, alcoves, and aquatic
wetlands) into a single category for analysis because the
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trajectories of change for these small features were highly
variable. There were large increases in the area of secondary
water features from 1980 to 1997 (fig. 174), primarily in the
upper river. The area of secondary water features remained
fairly static after 1997 (fig.174), and there were minor
decreases from 1997 to 2001, primarily in the central and
lower river (fig. 17B8). From 2001 to 2006 and 2006 to 2009,
there were small increases in the area of secondary water
features primarily in the central river, and from 2009 to 2011,
there were larger increases in the area of secondary water
features primarily in the lower river (fig. 17C). Trends in
shoreline length were similar to those for secondary water
features (fig. 184).

From 1980 to 2006, average active-channel widths
increased in all the study reaches (fig. 185). In 1980, the active
channel width was much greater in the upper river, but by
1997, active-channel widths in the upper and lower river were
about equal and remained similar for the remainder of the
study period. Channel widths continued to increase from 1997
to 2006, but remained stable from 2006 to 2009. From 2009 to
2011, channel widths decreased slightly in the upper and lower
river and increased slightly in the central river.

Natural and Managed Drivers of
Geomorphic Change

Sediment retention by upstream dams, flow diversion,
and flow regulation led to diminished sediment supply and
transport capacity, particularly in the reach that extends from
Lewiston Dam downstream to Rush Creek (0-6.5 FPkm).
Further downstream, sediment supply from Grass Valley
Creek (11.85 FPkm) was effectively eliminated by sediment
retention dams constructed in 1986 (Trinity River Taskforce,
1970). These retention ponds are actively maintained by
dredging, under the present sediment-management program
(Krause, 2012b). Although Deadwood Creek (1.65 FPkm)
and Rush Creek (6.5 FPkm) contribute flow and sediment,
transport capacity remains low downstream to Poker Bar
Canyon, where channel confinement and transport capacity
increase as the river flows through a confined bedrock canyon
(16.7-23.4 FPkm).

Contributing drainage area, sediment supply, and
flow increase in the central river as a result of tributary
contributions from Indian Creek (25.6 FPkm), Weaver Creek
(28.0 FPkm), and Reading Creek (29.4 FPkm) and localized
bank erosion of legacy mine tailings. Further downstream, the
central river flows through a second confined bedrock reach
(35.5-39.6 FPkm), where transport capacity increases, but
sediment supply diminishes.
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Figure 11. Area of the pre-dam floodplain along the Trinity River downstream from Lewiston Dam, California, and change
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Pre-dam floodplain

in pre-dam floodplain area from 1980 to 2011: A, cumulative area by study reach; B, cumulative change in area per year by
study reach; C, area by study reach and river segments over time.
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Post-dam topographic benches
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Figure 12. Area of post-dam benches along the Trinity River downstream from Lewiston Dam, California, and change in
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Figure 13. Area of constructed floodplains along the Trinity River downstream from Lewiston Dam, California, and change
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Figure 15. Area of the active channel along the Trinity River downstream from Lewiston Dam, California, and change in
active channel area from 1980 to 2011: A, cumulative area by study reach; B, cumulative change in area per year by study
reach; C, area by study reach and river segments over time.
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Figure 17. Area of secondary water features (split-flow channels, side channels, alcoves, and aquatic wetlands) along
the Trinity River downstream from Lewiston Dam, California, and change in secondary water feature area from 1980 to 2011:
A, cumulative area by study reach; B, cumulative change in area per year by study reach; C, area by study reach and river
segments over time.
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Figure 18. Temporal changes in the active-channel from 1980 to 2011 for the Trinity River downstream from Lewiston
Dam, California: A, baseflow shoreline length; B, active-channel width.

At the upstream end of the lower river segment, the river
flows through a wider reach (39.6-47.9 FPkm), where the
local sediment supply increases as a result of bank erosion.
Continuing downstream (47.9-54.8 FPkm), transport capacity
and sediment supply increase again as a result of contributions
from bank erosion, Canyon Creek (51.0 FPkm), and, to a
lesser extent, Oregon Gulch (48.2 FPkm). Although there
are no large local sediment sources at the bottom of the
study reach (54.8-61.3 FPkm), upstream sources of flow and
sediment maintain dynamic river processes.

Streamflow and Sediment Supply

To assess transport capacity in greater detail, we analyzed
the size, frequency, and duration of flows at five USGS gaging
stations along the mainstem Trinity River (fig. 2; table 5). Our
analyses necessarily focused on the Lewiston gage, which
is approximately 1.5 km downstream from Lewiston Dam.
Flows at the Lewiston gage represented regulated conditions,
but this was the only site with continuous daily flow data
spanning the study period. The four downstream gages had
partial records.

Mean daily flows at the Lewiston gage for the pre- and
post-ROD periods were 700 ft*/s and 890 ft*/s, respectively.
Analysis of local precipitation records indicated the increase in
mean daily flows was caused by increases in post-ROD annual
flow releases rather than increased precipitation. Monthly
precipitation records from the National Weather Service
station near Weaverville, California, indicated the long-term
mean annual precipitation from 1911 to 2011 was 935 mm.
Mean annual precipitation during the pre-ROD period
(979 mm) was slightly greater than the long-term average, but
the post-ROD mean annual precipitation (465 mm) was about
50 percent of the long-term average.

Figure 19 presents mean daily flows, annual peaks,
and annual average flows for the Lewiston gage. During the
relatively wetter pre-ROD period, there were three water years
(1983, 1997, and 1998) classified as “extremely wet,” and one
year (1995) classified as “wet” (table 1). The years 1983 and
1995 bracketed a decade of lower flows from 1985 to 1994.
During the relatively drier post-ROD period, one year (2006)
was classified as “extremely wet,” and two years (2004 and
2011) were classified as “wet.”
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Figure 19. Streamflow measured at the Lewiston gage on the Trinity River, California, 1.5 km downstream from Lewiston
Dam, from 1980 to 2011: A, mean daily and annual peak flows; B, annual average flows. ROD, Record of Decision.



The post-ROD flow regime altered the timing and
variability of annual peak flows released from Lewiston
Dam. Winter peak-flow releases were eliminated, and the
peak release was shifted to the spring to mimic snowmelt
conditions. Analysis of the monthly distribution of mean daily
flows at the Lewiston gage indicated that annual peak-flow
releases during the pre-ROD period were distributed from
December to June, whereas the post-ROD peak-flow releases
were larger in May and June (fig. 20). Notably, post-ROD
flows from February to April were lower compared to pre-
ROD flows.

Post-ROD flows were also evaluated by computing
the number of exceedance days at the Lewiston gage for
the prescriptive ROD-flow thresholds (table 1). Mean daily
flows greater than 1,500 ft*/s occurred about three times
more frequently during the post-ROD period compared to the
pre-ROD-period, whereas the medium-range flow thresholds
0f 4,500 and 6,000 ft*/s were exceeded 90 and 60 percent more
frequently, respectively, during the post-ROD period. Flows
greater than 8,500 ft'/s were exceeded an average of about
1.7 days per year during the post-ROD period compared to
0.1 days per year during the pre-ROD period.

Tributary flows were important drivers of geomorphic
change, particularly during wet periods. Unlike clear-water
releases from Lewiston Dam, the amount of sediment
delivered to the mainstem study reach from ungaged
tributaries is unknown, but likely substantial (Ritter, 1968;
Knox, 1974; Trinity River Taskforce, 1979; U.S. Fish and
Wildlife Service and Hoopa Valley Tribe, 1999; Graham
Matthews and Associates, 2001). The contributing area
upstream from Lewiston Dam (1,850 km?) represents
63 percent of the total contributing area upstream from the
North Fork Trinity River (2,930 km?). Sediment supply from
Grass Valley Creek (11.85 FPkm; fig. 2), which represents
3 percent (94 km?) of the contributing area, is detained by a
series of retention ponds so that only 34 percent (986 km?)
of the Trinity River watershed contributes bedload to the
study reach (fig. 21). The contributing areas for the upper,
central, and lower river reaches were 131, 550, and 305 km?*
representing 13, 56, and 31 percent, respectively. Indian,
Weaver, and Redding Creek all flow into the central river
upstream from the Douglas City gage (29.9 FPkm). A recent
sediment-budget estimate of the study reach upstream from
the Douglas City streamgage determined that the transition
between sediment deficit and surplus conditions under present
conditions is between the Douglas City and Limekiln Gulch
gage (20.4 FPkm; Gaeuman and Krause, 2011), which is
upstream from the central river reach’s boundary (23.4 FPkm).
Based on contributing area, sediment budget estimates, and
active bar area, the transition from a sediment deficit to a
sediment surplus condition is downstream from Indian Creek
(25.6 FPkm).
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Inconsistencies in the timing of tributary-flow events
and mainstem flushing-flow releases influenced sediment
dynamics in the study reach. Precipitation-driven tributary
flows and the associated sediment delivery peaked during the
winter and spring and did not coincide with the peak-flow
releases. Peak-flow releases occurred from May to June, and
from 2008 to 2011, these were accompanied by the direct
injection of gravel. The delay of peak-flow releases results in
interim channel aggradation.

Aggradation of tributary confluences has been a
recurring problem (Ritter, 1968; Trinity River Taskforce,

1979; U.S. Fish and Wildlife Service and Hoopa Valley Tribe,
1999) because it produces upstream slackwater conditions on
the mainstem, where undesirable fine bed material (less than
8mm) accumulates. Wilcock and others (1995) recommended
moderate peak-flow releases (4,500 to 6,000 ft*/s) to mobilize
bed material and remove undesirable fine-grained bed material
and higher peak flows (8,500 to 11,000 ft*/s) to produce deeper
scour and greater transport.

The effects of tributary-flow contributions on mainstem
transport capacity are illustrated in figure 22, which shows
mean annual flows for the five mainstem gages from 1996
to 2011, the period in which multiple mainstem gages were
in operation (table 5). During the relatively wetter 2006 and
2011 water years, mean annual flow at the North Fork gage
was 70 to 80 percent greater than at the Lewiston gage. Again,
we inferred, on the basis of previous investigations, that these
tributary-flow events contributed large, but unknown, amounts
of sediment.

Figure 23 illustrates mean daily flows for mainstem gages
and highlights two pre-ROD water years (1997, 1998) and two
post-ROD years (2006, 2011), which represent the four largest
tributary-flow events during the study period. The influence
of tributaries on mainstem flows was clear in December
1997, when mean daily flows increased from about 6,900 ft*/s
at Lewiston to 10,200 ft*/s at Douglas City and to 27,000
ft*/s at Junction City. In February 1998, mean daily flows
increased from about 5,600 ft*/s at Lewiston to 9,900 ft*/s at
Douglas City and to 25,000 ft*/s at Junction City. Mean daily
flows released in December of 2006 were about 1,500 ft3/s
at Lewiston, but increased to 7,500 ft¥/s at Douglas City, to
12,000 ft¥/s at Junction City, and to nearly 20,000 ft*/s at the
North Fork gage (fig.23D). In comparison, mean daily flows in
May 2011, during the largest flow release since 1974 (Krause,
2012a), lacked tributary contributions because the flow
release did not coincide with tributary runoff. In May 2011,
flow releases at Lewiston peaked at 12,000 ft*/s, compared to
12,500 ft¥/s at Limekiln Gulch, 12,900 ft*/s at Douglas City,
13,700 ft¥/s at Junction City, and 12,900 ft*/s at the North Fork

gage (fig.23F).
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Figure 20. Mean daily flows from 1980 to 2011, grouped by month with minimum in-stream flow, for the Lewiston gage

on the Trinity River, California: A, pre-ROD (Record of Decision) period; B, post-ROD period. The horizontal dashed lines
indicate 300 cubic feet per second, which represents summer-baseflow conditions, and 6,000 cubic feet per second, which
represents the post-ROD mean annual peak flow.
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Sediment Management and Mechanical
Channel Rehabilitation

The history of sediment management and mechanical
channel rehabilitation were reviewed earlier in this report, and
in this section we present pertinent details. Figure 24 provides
a spatial and temporal summary of management actions in
the project reach. Pre-ROD management was focused on
restoring adult-holding and spawning habitat (Trinity River
Taskforce, 1970). Adult salmonids require deep-water holding
pools and spawning riffles free of fine bed material (less
than 8 mm). Pre-ROD dredging of mainstem pools increased
and maintained deep-water adult-holding habitat. Riffle and
grade-control construction created spawning habitat, whereas
upland watershed restoration and sediment-retention basins
at the Grass Valley Creek confluence reduced the delivery of
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undesirable fine-sediment (U.S. Bureau of Land Management,
1995; Graham Matthews and Associates, 2001).

Krause (2012a) provided a detailed history of sediment
extraction and augmentation for the study reach, which
is summarized in figure 25. Following dam closure, flow
diversions, combined with elevated tributary sediment supply
related to land use, caused significant aggradation of the
channel bed with sand-sized bed material that filled pools and
inundated spawning areas (U.S. Fish and Wildlife Service and
Hoopa Valley Tribe, 1999). Sediment extraction, primarily
by pool dredging, and to a lesser degree bar scalping, began
in 1976 and continued until 1990. Extracted volumes of
sediment were composed of approximately 15-25 percent
coarse-grained sediment (greater than 16-mm in diameter) and
about 75-85 percent finer grained material (less than 16 mm).
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Figure 24. Summary of relevant management actions from 1976 to 2011 along the Trinity River downstream from Lewiston

Dam, California.
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Figure 25. Annual and cumulative volumes of sediment extraction and augmentation for Trinity River downstream from

Lewiston Dam, California, from 1980 to 2011 (Krause, 2012b).

A summary of constructed features is presented in
figure 26. An emphasis on salmonid rearing habitat began
in the 1990s (U.S. Fish and Wildlife Service, 1989), and a
series of 18 side channels and 9 bank-rehabilitation projects,
referred to as “feathered edges,” were constructed to create
shallow-water rearing habitat (fig. 24; U.S. Fish and Wildlife
Service, 1994). Side-channel construction increased shoreline
length and low-velocity off-channel rearing habitat and also
created large island features. The “feathered edge” program
targeted overly steep channel margins where vegetation
had encroached. Riparian vegetation and sediment berms
were mechanically removed to create gently sloping,
gravelly channel margins intended to function as mainstem
rearing habitat.

In 1999, the TRFE determined the lack of rearing habitat
continued to be a primary limiting factor for sustainable
salmonid populations and made recommendations for
prescriptive-flow management, channel rehabilitation, and
augmentation of coarse bed-material-sized sediment adopted
by the ROD in 2001. The TRFE identified 44 potential
channel-rehabilitation sites and 3 potential side-channel sites.
Construction of these projects began in 2005 under a phased
approach to allow for monitoring and performance assessment
(Trinity River Restoration Program and ESSA Technologies
Ltd., 2009). From 2005 to 2011, 19 of the proposed
rehabilitation projects were constructed (fig. 24).

The design of post-ROD channel-rehabilitation projects
evolved over time. Early designs, constructed in 2005 and
2006, were relatively simple channel-floodplain connectivity
projects designed to facilitate inundation of channel
margins by vegetation removal, riparian berm recontouring,

and surface lowering of riparian features. These early
projects were in the lower river, where ample in-channel
and tributary sediment sources existed and where TRRP
partners hypothesized the river would “rehabilitate itself.”
A lack of geomorphic response at these early restoration
sites (Hoopa Valley Tribe and others, 2011b) led to broader
hypotheses and the evolution of project designs. More
recent projects, constructed from 2006 to 2011, focused on
enhancing channel-floodplain connectivity and utilized new
design criteria (Hoopa Valley Tribe and others, 2011a) to
mechanically increase the diversity and extent of salmonid
habitat by incorporating channel complexity features into
project designs.

Gravel augmentation to create and maintain spawning
habitat in the upper river began in 1972 and continued into the
post-ROD period. Gravel augmentation approaches evolved
from the pre-ROD strategy of in-channel placement of static
gravel features to provide spawning or rearing habitat to
the post-ROD strategy of direct injection during the spring
peak-flow release (Kondolf and Minear, 2004). In-channel
placement of gravel to increase sediment supply and restore
dynamic fluvial processes began in 1998. Direct injection
during managed high-flow releases, by using front-end
loaders or conveyor belts, began in 2008. Although the TRFE
recommended gravel augmentation up to 51,000 cubic meters
per year (m*/yr), the actual volumes placed each water year
varied (fig. 25). At time of writing, recommendations for
average annual-injection volumes, based on gravel transport
rates and desired bed-surface textures, were about 5,400 m?*/yr
(Gaeuman, 2008).

Cumulative volume, in 1,000 cubic meters per year
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Figure 26. Bar graphs showing a summary of constructed riparian and channel features along the Trinity River downstream
from Lewiston Dam, California, in 1980, 1997, 2001, 2006, 2009, and 2011.
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Summary of Bar and Bank Processes

Lateral changes induced by bar and bank processes were
characterized by summarizing change polygons in 1-km sub-
reaches during the five periods of interest. We used conditional
statements, as described previously, in a geographic
information system (GIS) to estimate scour and accretion by
quantifying changes in bar and bank spatial extents.

The first mapping interval, from 1980 to 1997,
was dominated by channel widening; 24 percent of the
active-channel area showed lateral bank changes compared
to about 8 to 10 percent during subsequent periods (table 6).
About 7 percent of the active channel showed a change in
bar area compared to about 2 to 5 percent during subsequent
periods. The combined effects of scour-inducing tributary
floods, experimental flow releases, and “feathered-edge”
construction resulted in the greatest bank-erosion rates of
the study period (fig. 27). There was a small amount of bar
accretion, primarily in the vicinity of tributary confluences
(fig. 28), and in the lower river, there was scour of bar
vegetation (fig. 29). A post-flood assessment (McBain and
Trush, Inc., 2000) indicated much of the bank erosion during
this period was caused by the 1997 tributary flood (fig. 23),
and from 1980 to 1997, mean daily flows at the Lewiston

gage exceeded 6,000 ft*/s, the flow threshold designed to
mobilize and scour channel features (table 1), for a total of

81 days. Additional management actions that contributed to
bank and bar changes included pool dredging and side-channel
construction (fig. 24).

The period from 1997 to 2001 was dominated by bar
accretion (fig. 28) near Rush Creek (6.5 FPkm), Indian
Creek (25.6 FPkm), and downstream from Oregon Gulch
(50.5 FPkm). Bank erosion continued (fig. 27), although
rates declined slightly (table 6), and bar stabilization by
vegetation encroachment ensued throughout the study
area (fig. 29). Compared to the previous period, a smaller
proportion of the channel underwent bar and bank changes.
About 4 percent of the active channel underwent bar scour or
accretion, whereas about 10 percent underwent bank erosion
or accretion (table 6). The rate of bar accretion was an order
of magnitude higher (8,709 m?/yr) than during the previous
period (772 m*yr), but the bank erosion rate (0.24 m/yr) was
similar to the previous period (0.3 m/yr). Although there was
a large, long duration, tributary-flow event in 1998 (fig. 23),
mean daily flows at the Lewiston gage exceeded 6,000 ft*/s
for only 9 days. Management actions were confined to the
upper river and included dredging of sediment-retention ponds
(fig. 24) and small amounts of gravel augmentation (fig. 25).

Table 6. Summary of bar and bank changes during five study periods for the Trinity River, California, downstream from Lewiston Dam.

[Abbreviations: m/yr, meter per year; m?/m, square meter per meter; m?yr, square meter per year|

Type of change 1980 to 1997 1997 to 2001 2001 to 2006 2006 to 2009 2009 to 2011
Bar change
Net change in active-bar area per unit channel length! (m?m) 0.20 0.54 -0.72 0.15 0.20
Rate of change in active-bar area (m?/yr) 772 8,709 -9,324 3,267 6,505
Active-channel area experiencing bar scour or accretion (percent) 7.4 3.5 5.1 2.4 4.2
Bank change

Net change in active-channel area per unit channel length? (m*m) 5.05 0.95 1.13 0.25 0.53
Rate of change in active-channel width (m/yr) 0.30 0.24 0.23 0.08 0.27
Active-channel area experiencing bank erosion or accretion (percent) 24.4 10.2 10.9 8.4 8.7

"Positive values indicate bar accretion, and negative values indicate bar scour. Data normalized by channel length estimated by using the centerline of

baseflow channel.

“Positive values indicate channel widening and bank erosion, and negative values indicate channel narrowing and bank accretion and riparian vegetation
encroachment. Data normalized by channel length estimated by using the centerline of baseflow channel.
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The period from 2001 to 2006 was dominated by bar
scour (fig. 28), and bar stabilization from encroachment of
riparian vegetation continued in the upper and lower river
(fig. 29). Bar accretion occurred in the upper river downstream
of Rush Creek (6.5 FPkm), but bar scour dominated
downstream of Indian Creek (25.6 FPkm). System wide, about
5 percent of the active channel showed bar scour or accretion,
whereas about 11 percent showed bank change (table 6).
Rates of bar scour (9,324 m?/yr) were slightly greater than bar
accretion during the previous period, but the bank erosion rate
(0.23 m/yr) was similar to the previous period (table 6). There
was a significant tributary flood followed by a secondary
spring flow release in 2006 (fig. 23), and there were 33 days
with flows greater than 6,000 ft*/s measured at the Lewiston
gage. Management activities included small amounts of gravel
augmentation in the upper river (fig. 25) and construction
of the first large-scale channel-rehabilitation project in the
lower river that involved surface lowering and floodplain
construction (fig. 24).

From a system-wide perspective, bar and bank changes
from 2006 to 2009 were relatively small compared to previous
periods (table 6), but stabilization of active bars as a result
of vegetation encroachment continued throughout the study
area (fig. 29). There was bank erosion in upper river (fig. 27),
and the largest amount of bar accretion was near the Sawmill
gravel-augmentation site (1.7 FPkm). In the lower river, the
Lime Point reach (54.8 FPkm) was the only reach that had
notable bar and bank changes. System wide, about 2 percent
of the active channel showed bar scour or accretion, whereas
about 8 percent of the active channel showed bank changes
(table 6). There was net bar accretion (3,267 m*yr), but bank-
erosion rates decreased (0.08 m/yr) relative to the previous
period (0.23 m/yr). Tributary flows were relatively low, and
there were only 7 days with flows greater than 6,000 ft*/s
at the Lewiston gage; however, larger volumes of gravel
augmentation by direct injection began in 2008 (fig. 25),
causing bar accretion in the upper river (fig. 28). Additional
management actions included construction of 14 large-scale
channel-rehabilitation projects in the study reach (fig. 24).
Mechanical restoration included surface lowering to increase
channel-floodplain connectivity and construction of channel
complexity features.

Bar and bank changes increased from 2009 to 2011. In
the upper river, bar accretion and bank erosion occurred near
the Lowden Ranch gravel-augmentation site (11.5 FPkm).
There was also net bar accretion near Indian Creek
(25.6 FPkm) and downstream of Oregon Gulch (48.2 FPkm).
The largest amount of bank erosion (fig. 27) was near Grass
Valley Creek (11.9 FPkm) and Lime Point (58 FPkm), and
stabilization of active bars by vegetation encroachment
continued throughout the study area (fig. 29). System wide,
about 4 percent of the active channel underwent bar scour
or accretion, whereas about 9 percent of the active channel
underwent bank erosion or accretion (table 6). The rate of
bar accretion doubled (6,505 m?/yr) compared to the previous
period (3,267 m*y), and the bank erosion rate (0.27 m/yr)

increased and was comparable to estimates from 1980 to
2006 (table 6). A moderate tributary-flow event in 2011 was
followed by the largest flow release since 1974 in May of
2011 (Krause, 2012a). At the Lewiston gage, there were

12 days with flows greater than 6,000 ft*/s and 3 days with
flows greater than 11,000 ft¥/s. Gravel augmentation by
direct injection during the flow release increased active-bar
area in the upper river (fig. 28), and four large-scale
channel-rehabilitation projects were constructed (fig. 24).
Mechanical rehabilitation included surface lowering to
increase channel-floodplain connectivity and construction of
channel-complexity features.

Discussion

Our assessment of the cumulative changes in active bar
and active channel areas are summarized in figure 30, which
shows pre-ROD increases in the active-channel area were
well distributed downstream, whereas pre-ROD increases
in the active-bar area were primarily downstream of Indian
Creek (25.6 FPkm). Post-ROD increases in the area of the
active-channel and active-bars were primarily in the upper
river upstream of Indian Creek. These interpretations are
consistent with our contributing area analysis (fig. 21) and a
recent sediment budget estimate (Gaeuman and Krause, 2011),
which indicated a transition to a sediment surplus condition
downstream of Indian Creek (25.6FPkm). In the remainder of
this report, we discuss pertinent controlling factors responsible
for the documented geomorphic changes.

Channel Change Potential

The study reach is in an active zone of uplift that
provided a tectonic mechanism over geologic time for river
incision and development of a bedrock-channel network
(Anderson, 2008). Active uplift zones tend to be drained by
channels with high transport capacities and low volumes
of stored sediment because of the confined setting (Gilbert,
1914; Montgomery and others, 1996; Brierley and others,
2002; Wallick and others, 2010). It follows that sediment
storage is often transient and concentrated near point sources
or in reaches with erodible channel margins; however,
watershed disturbances can result in episodic aggradation
and degradation, and such is the case for the Trinity River
downstream from Lewiston Dam.

The combined effects caused by the influx of large-
diameter mining tailings, dam construction, flow diversion,
vegetation encroachment, and flood-induced confluence
aggradation effectively trapped the modern channel, often
against resistant bedrock valley margins, creating conditions
that sustain static channel form and stable alluvial features.
An unknown amount of historic channel aggradation between
1848 and 1970, as a result of gold-extraction activities,
increased the sediment supply by several orders of magnitude
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(Krause and others, 2010; Krause, 2012b). Flow regulation
and diversions that began in 1960 effectively decreased the
river’s transport capacity (U.S. Fish and Wildlife Service

and Hoopa Valley Tribe, 1999) and enabled vegetation
encroachment and stabilization of channel margins. In 1964, a
massive regional flood initiated a new episode of aggradation
at all major tributary confluences in the study reach (Ritter,
1968). The combined effects of these disturbances produced a
narrower, partially confined, aggraded river. Although riparian
encroachment continues to be an issue, the tendency toward a
static channel form and stable alluvial features was disrupted
by pre-ROD tributary floods and continues to be moderated by
post-ROD tributary floods, increases in the size and duration
of peak-flow releases, and upper-river gravel augmentation.

The upper river generally has a lower potential for
dynamic geomorphic change because it lacks tributary
contributions to flow and sediment supply. To resolve the lack
of capacity for creating dynamic change, post-ROD channel
rehabilitation, gravel augmentation, and alterations in flow
management were implemented to increase and maintain
active-channel areas and channel complexity. The post-

2006 increases in gravel augmentation provided additional
sediment supply, and regulated flows were increased to
support transport capacity. Beginning in 2008, a new phase of
channel-rehabilitation began to include channel complexity
features, such as bars and secondary water features (split-flow
channels, side channels, alcoves, and aquatic wetlands).
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The potential of flow events to create channel change
depends on antecedent channel conditions, transport capacity,
and sediment supply. In terms of creating system-wide
responses, the geomorphic effectiveness of ROD-flows is
relatively low compared to tributary flows, which produce
larger, longer duration flows with greater sediment delivery.
Because the upper river lacked sufficient transport capacity
and sediment supply, intensive post-ROD management
was required to achieve the TRRP goal of promoting active
alluvial processes that create and maintain the quantity and
quality of available salmonid habitat. Our analyses indicated
that geomorphic change induced by managed-flow releases,
with concurrent gravel augmentation, tended to be spatially
limited. Although the majority of the pre-2001 active bars
were remobilized and scoured by the 2006 tributary flood,
subsequent increases in bar vegetation indicated post-ROD
flows were not sufficient to scour emergent bar vegetation and
to maintain active-bar areas in reaches downstream of Indian
Creek (25.6 FPkm). However, post-ROD gravel augmentation
and flow management did successfully increase and maintain
active-bar area in the upper river.

Trajectories of Geomorphic Response and
Primary Controls

The general trajectory of change during the study period
was the conversion of riparian features into channel features
and an expansion of the active-channel system. During the
pre-ROD period, channel widening dominated from 1980
to 1997, followed by bar accretion from 1997 to 2001.
Although channel widening continued through the post-ROD
period, 2001 to 2006 was characterized by bar scour, and
there were relatively small geomorphic changes from 2006
to 2011 related to the implementation of ROD-mandated
gravel augmentation, prescriptive flow releases, and
channel rehabilitation.

The largest and longest duration tributary floods during
the study period occurred in 1997 and 1998. The relatively
wet period in the early 1980s likely initiated some of the
channel changes between 1980 and 1997, but these effects
were undocumented. Effects of the 1997 tributary flood were
assessed (McBain and Trush, Inc., 2000), and results from the
post-flood survey indicated the 1997 flow event effectively
scoured channel margins downstream of the Rush Creek
confluence (6.5 FPkm).

The 1980 to 1997 period was dominated by bank
erosion and channel widening, and we inferred, on the basis
of the post-flood reconnaissance, that much of the expansion
of the active-channel area was induced by the 1997 flood.
The greatest cumulative downstream increase in exposed

active-bar area during the study period was from 1997 to 2001
(fig. 30), primarily downstream of the Indian Creek confluence
(25.6 FPkm).

The rapid rate of accretion (8,709 m?/yr; table 6) during
the relatively short period from 1997 to 2001 was facilitated
by decreased transport capacity and increased sediment
supply. Channel widening from 1980 to 1997 altered the
river’s hydraulic geometry and effectively decreased available
transport capacity. Local sediment supply likely increased
after 1997 because of scour of riparian vegetation and bank
destabilization. We also inferred that tributary sediment
supplies increased during the relatively wetter 1998 water
year, when there were two large tributary floods. Gravel
augmentation accounted for a relatively small portion of the
increase in sediment supply during this period. A total of
3,200 m? of coarse gravel (fig. 25), or about 800 m*/yr, was
added to the upper river at two locations (1.4 and 4.6 FPkm).

During the period from 2001 to 2006, the study area
was dominated by bar scour, again, primarily downstream of
the Indian Creek confluence (25.6 FPkm; fig. 30). Bar scour
was most likely induced during a relatively wetter period
that culminated in the 2006 tributary flood and a 10,400 ft*/s
peak-flow release (fig. 23). Bar scour during this period was
slightly greater (9,324 m?/yr) than bar accretion during the
previous period (8,709 m?/yr; table 6).

Beginning in 2005, large-scale channel rehabilitation
began (fig. 24), and there were concurrent increases in the
frequency of flows inundating floodplains (fig.19) and gravel
augmentation (fig.25). Intensified mechanical rehabilitation
increased the connectivity of low-elevation riparian features
(post-dam benches and constructed floodplains), and
implementation of the post-ROD flow regime increased the
frequency of floodplain inundation. Implementation of larger
scale channel rehabilitation also increased channel complexity
(fig. 8) in the form of exposed active-bar areas (fig. 16) and
secondary water features (split-channels, side channels,
alcoves, and aquatic wetlands; fig. 17) in the upper and
central river.

During the remainder of the post-ROD period, 2006 to
2011, the active-channel area continued to increase (fig. 30),
and bar changes were primarily confined to the upper
river reaches that had gravel augmentation (1.4 FPkm and
11.5 FPkm) and downstream of the Canyon Creek confluence
(51.0 FPkm). The cumulative results of intensive management
in the upper river were increased channel complexity
and floodplain connectivity that was maintained with
managed-flow releases. Gravel augmentation was the primary
factor leading to upper river increases in active-bar area, and
the 2006 tributary flood was the primary factor that increased
lower river active-bar area.



During the post-ROD period, large channel changes
were spatially limited to reaches that had mechanical
restoration or gravel augmentation and to reaches downstream
of tributary confluences, where localized excess sediment
supplies or transport capacity exist. This observation was
supported by earlier studies (Ritter, 1968; Trinity Restoration
Associates, Inc., 1993; Hoopa Valley Tribe and others, 2011b).
The exception to this generalization was the Lime Point reach
(54.8 to 58.2 FPkm). The Lime Point reach was one of the
most dynamic reaches during the study period. Although
there was a series of rehabilitation projects constructed in
this reach in 2006 and 2010, dynamic channel changes were
primarily in un-rehabilitated reaches. The greatest bar and
bank changes were in the lowermost section of the Lime Point
reach (58 FPkm), which is in an incised meander bend that has
a relatively small radius of curvature, which produces large
bed-shear stresses and high transport capacity.

We constructed a series of figures to show the cumulative
pre- and post-ROD changes in representative reaches.

Figure 31 shows a portion of the primary spawning reach and
the Sven Olbertson rehabilitation site (1.0 FPkm) in the upper
river downstream from Lewiston Dam. Intensive management
of this reach during pre- and post-ROD periods included
gravel augmentation, mechanical restoration, and peak-flow
releases that increased the active-channel area, channel
complexity, and floodplain connectivity.

Figures 32, 33, and 34 show a series of reaches in
the lower river where there was dynamic channel change.
Figure 32 illustrates bank erosion and bar accretion near
Junction City, Calif. (50.1 FPkm), upstream from the Canyon
Creek confluence. Pre-ROD erosion of the left bank and
deposition of lateral bars resulted in about 25 m of channel
migration between 1980 and 2001. Post-ROD bank erosion
continued to expand the active-channel area, and there was
concurrent bar accretion, bar scour, and stabilization of a
downstream lateral bar. Channel complexity also increased
with the number of bars and secondary water features.

Figure 33 shows the upstream portion of the Conner Creek
rehabilitation site (53.8 FPkm), where the deposition of
large pre-ROD bars increased channel complexity and
sinuosity. During the post-ROD period, there was bar

scour, bar stabilization, and bank erosion that expanded the
active-channel area, and rehabilitation of the channel margin
increased riparian diversity with floodplain construction.
Figure 34 illustrates Lime Point (58.1 FPkm), where a
pre-ROD channel avulsion was accompanied by bar scour
and bar deposition, which increased channel complexity

and the active-channel area. During the post-ROD period, a
large medial bar was stabilized by vegetation encroachment,
and the active channel area decreased, but the 1980-era
channel continued to function as a side channel, and new bar
features formed.
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Geomorphology and Habitat Linkages

To support the TRRP adaptive management program, we
evaluated the relative effectiveness of natural and managed
controlling factors and the associated cumulative geomorphic
response during the five study periods. We also assessed a
set of performance measures (channel complexity, shoreline
length, and channel-floodplain connectivity) identified by
the TRRP as primary metrics for characterizing linkages
between geomorphic structure and available salmonid habitat
(Trinity River Restoration Program and ESSA Technologies
Ltd., 2009).

Measures of channel complexity included exposed
active-bar area (fig. 16) and secondary water features (fig. 17).
There were greater increases in channel complexity during
the pre-ROD period than during the post-ROD period.
System-wide channel complexity increased markedly from
1980 to 1997 and then decreased slightly from 1997 to 2001.
During the post-ROD period system-wide channel complexity
decreased slightly, but there were smaller, yet measurable,
increases in channel complexity in the upper river.

An integrated habitat assessment (U.S. Fish and Wildlife
Service and others, 2011) of channel-rehabilitation projects
constructed from 2005 to 2009 concluded that the only metric
well correlated to fish use was the length of the wetted-
channel edge, or shoreline length. During the study period,
the largest increase in shoreline length (fig. 184) was during
the pre-ROD period, primarily in the upper river, as a result of
extensive side-channel construction and bar accretion. There
were smaller, but measurable, increases in shoreline length
during the post-ROD period, primarily after 2006, related to
channel rehabilitation.

Increases in channel-floodplain connectivity were
inferred from the areal extent of constructed floodplains and
by increases in the size and frequency of post-ROD flow
releases. During the pre-ROD period in the early 1990s,
small-scale riparian berm removal and feathered-edge
construction increased floodplain connectivity (fig. 24).
Extensive scour of riparian vegetation during the 1997
tributary flood resulted in additional increases in floodplain
connectivity, primarily downstream from Indian Creek
(25.6 FPkm; fig. 29). During the post-ROD period, riparian
vegetation was scoured near tributary confluences from 2001
to 2006 (fig. 29), and there was a relatively large increase
in constructed floodplain area from 2005 to 2011 (fig. 25).
Post-ROD increases in the areal extent of lower-elevation
floodplains, inundated by flows greater than about 4,500 ft*/s,
and concurrent increases in the frequency of exceedance
(table 1) indicated a larger proportion of riparian features were
inundated annually during the post-ROD period.
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Conclusions

This report documents a geomorphic assessment of
a 65-km study reach along the Trinity River, California,
downstream of Lewiston Dam. A series of geomorphic maps
were used to characterize trajectories of geomorphic change
and to investigate the evolution of geomorphic features and
alluvial processes for one of the nation’s largest adaptively
managed river restoration programs. The maps illustrate a
system-wide perspective of evolving geomorphic features
governed by natural processes and management actions from
1980 to 2011. The 1980 to 1997 period was dominated by
channel widening, primarily induced by the 1997 tributary
flood, and accompanied by smaller increases in active-bar
area. This period of channel widening was followed by
extensive bar accretion, primarily downstream of Indian
Creek, from 1997 to 2001. Bar and channel margins,
scoured by large tributary floods in 1997 and 1998, were
recolonized by vegetation as early as 2001. The beginning of
the post-ROD period, from 2001 to 2006, was characterized
by bar scour slightly greater than bar accretion during the
previous period, again, primarily downstream from Indian
Creek. From 2006 to 2011, there were smaller, but measurable
geomorphic changes, but these were generally limited to
gravel-augmentation sites in the upper river, mechanical
channel-rehabilitation sites, tributary confluences, and
lower river reaches that had sufficient transport capacity and
sediment supply.

The general trajectory of change from 1980 to 2011
was a system-wide increase in riparian diversity and
conversion of riparian features to channel features, such that
the active-channel area and channel complexity increased.
During the longer (21 years) and relatively wetter pre-ROD
period, increases in active-channel area and channel
complexity were 20 and 70 percent, respectively. In 1980, the
pre-dam floodplain and post-dam benches were the primary
riparian features. Pre-ROD changes in riparian diversity
included an increase in constructed floodplain and stable bar
areas. The post-ROD period was shorter (10 years), relatively
drier, had intensified management, and there were small,
but measurable, increases in active-channel area (5 percent)
and decreases in channel complexity (3 percent). Post-ROD
changes in riparian diversity included large increases in
constructed floodplain area and smaller increases in stable
bar area.

Parsing out responses to individual causal mechanisms
is exceedingly complex with numerous and concurrent
natural and managed controlling factors operating at the
watershed to reach scale. We determined the primary drivers
of change during the wetter pre-ROD period were sequential
tributary floods in 1997 and 1998 that produced channel
widening (1997) following by bar accretion (1998). During
the relatively drier post-ROD period, there were measurable
increases in channel complexity, shoreline length, riparian

diversity, and channel-floodplain connectivity, which can be
attributed to the 2006 tributary flood, mechanical restoration,
gravel augmentation, and managed flow increases. Since
20006, restoration efforts successfully increased exposed
active-bar areas by using gravel augmentation in the upper
river, and these active-bars were maintained with managed-
flow releases. System-wide riparian diversity and floodplain
connectivity peaked in 2011, and constructed floodplains were
inundated for the first time by the 2011 peak-flow release.
Channel complexity peaked in the central and lower river

in 2001 and subsequently decreased as a result of natural
scour and bar stabilization by vegetation encroachment.

In the upper river, channel complexity peaked in 2011

as a result of gravel augmentation and construction of
channel-complexity features.

Our analysis of tributary floods and managed peak-flow
releases indicated tributary floods have the potential to initiate
larger and more extensive geomorphic change than managed
peak-flow releases. During the study period, tributary-flows in
1997, 1998, and 2006 delivered an unknown, yet presumably
large, amount of flow and sediment to the mainstem study
reach. We inferred that increases in transport capacity and
sediment supply during these tributary floods resulted in the
greatest channel changes during the study period.

The regulated-flow strategy in use at the time of writing
largely decouples mainstem flows from tributary flows in
terms of timing. The annual peak flow releases from Lewiston
Dam begin in May, whereas tributary contributions are
distributed through the winter and spring. An alternative
strategy for inducing system-wide dynamic bar and bank
processes would be to coordinate managed-flow releases
from Lewiston Dam to coincide with tributary flooding.
Also, the muted and spatially limited physical response to
flow releases during the post-ROD period highlights the need
for continued monitoring and assessment of the magnitude,
duration, and timing of prescriptive flows and associated
geomorphic response.

Channel widening from 1980 to 1997 represented a
threshold disturbance resulting in a system-wide decrease
in transport capacity, which was likely a primary factor
governing active-bar deposition from 1997 to 2001.
Bed-mobility studies in the mid-1990s determined that
80 percent of the low-flow channel margin was mobilized at
6,000 ft*/s (Trinity Restoration Associates, Inc., 1993; Wilcock
and others, 1995; McBain and Trush, Inc., 1997). After 1997,
studies showed that 6,000 ft*/s did not produce the expected
scour, mobility, or channel maintenance targets (Hoopa
Valley Tribe and others, 2011b). These observations indicate
that pre-ROD channel widening could have altered channel
hydraulics, such that flows required to produce targeted
geomorphic objectives need to be increased. Achieving the
TRRP goal of a downscaled dynamic river could come with
the unexpected consequence of a larger active-channel area
that requires periodic higher maintenance flows.



Expansion of the geomorphic feature database (Curtis
and Guerrero, 2015; http://dx.doi.org/10.5066/F7TT4P04)
to include additional study periods and additional physical
attributes would support disturbance—response analyses,
interpretation of the linkages between geomorphology and
physical habitat, and could be used to refine conceptual
models and test hypotheses highlighted as a fundamental
component of adaptive management (Trinity River
Restoration Program and ESSA Technologies Ltd, 2009).
Rectified orthophotography from 1944, 1960, and 1975
exists. Expanding the retrospective mapping to include the
pre-1980 orthophotography would enable assessment of
legacy influences related to hydraulic and dredge mining and
the 1955, 1964, and 1974 floods. More detailed mapping
of the type and density of riparian vegetation within the
framework of the existing geomorphic feature maps would
enable refinement of the active-channel boundary and
bar-stability classification. This study used a relatively simple
bar classification that included lateral and medial bars. For
the more recent periods, the bar classification could be
expanded to include additional morphologic and topographic
attributes and to include additional field reconnaissance and
mapping of hydraulic controls to support the assessment of
bar-forcing mechanisms.

Geomorphic change was strongly influenced by the
relation between transport capacity and sediment supply,
which varied in space and time. The lack of spatially
distributed estimates of transport capacity and sediment supply
severely hindered the controlling factor analysis. A series of
physical models that link tributaries and the mainstem study
reach, and characterize flow and sediment flux, would be
useful for interpreting the spatial distribution of transport
capacity and sediment supply and for developing testable
hypotheses regarding potential geomorphic changes under
present and future conditions. Spatially distributed estimates
of transport capacity and sediment supply would also
support a more detailed disturbance-response analysis and
assessment of the effectiveness of channel-maintenance flows,
gravel-augmentation prescriptions, and channel-rehabilitation
design criteria.
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