Scientific Investigations Report 2015–5059
AbstractDuring the spring of 2012, the U.S. Geological Survey, in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey, measured water levels in 342 wells completed in the Mississippi River Valley alluvial aquifer in eastern Arkansas. The Arkansas Natural Resources Commission measured water levels in 11 wells, and the U.S. Department of Agriculture-Natural Resources Conservation Service measured water levels in 239 wells completed in the alluvial aquifer and provided these data to the Arkansas Natural Resources Commission. In 2010, estimated water withdrawals from the alluvial aquifer in Arkansas totaled about 7,592 million gallons per day. Withdrawals more than doubled between 1985 and 2010, about a 115-percent increase. The regional direction of groundwater flow is generally to the south and east except where flow is affected by groundwater withdrawals. East of Crowleys Ridge, water flows from north to south along Crowleys Ridge and northeast to southwest along the Mississippi River. West of Crowleys Ridge, water flows from northeast to southwest along Crowleys Ridge from Clay County to Craighead County. From Craighead County to Monroe County, a depression redirects groundwater flow from all directions. A depression in Arkansas, Lonoke, and Prairie Counties alters groundwater flow from all directions. South of the Arkansas River, the flow is towards the southeast, except near depressions in Lincoln and Desha Counties and Desha and Chicot Counties where flow is towards the depression. In 2012, the lowest water-level altitude was 73 feet (ft) in Arkansas County. The highest water-level altitude was 288 ft in northeastern Clay County on the western side of Crowleys Ridge. The 2012 potentiomentric-surface map shows eight depressions, two large depressions and six small depressions. One large depression begins in southeastern Arkansas County, at the Arkansas and Desha County line, extends north into Prairie County, west into Lonoke County, and east into the westernmost part of Monroe County. The area in Lonoke, Prairie, and White Counties in the northwestern half of the depression has a water-level altitude measurement of 90 ft and has expanded into the northern third of Prairie County. The 2012 potentiometric-surface map shows a general north-south depression with the southern end in central Monroe County through western Lee, St. Francis, Cross, Poinsett, and Craighead Counties and eastern Woodruff and Jackson Counties. There are two deeper areas in this depression, one at the Monroe and Lee County line, with a low water-level altitude measurement of 123 ft, and the second in Poinsett County, with a low water-level altitude measurement of 113 ft. The six small depressions are located in northern Ashley County, in southern Desha and northern Chicot Counties, in eastern Lincoln and western Chicot Counties, at the Arkansas and Desha County line, in northern Phillips County, and in southeastern Greene County. A map showing the difference in water levels was constructed using 541 differences in water levels measured during 2008 and 2012. The difference in measured water levels from 2008 to 2012 ranged from -27.4 ft to 18.7 ft, with a mean of -1.0 ft. The largest decline of -27.4 ft occurred in Lonoke County, and the largest rise of 18.7 ft occurred in Prairie County. Four areas were predominated by declines—west of Crowleys Ridge from Greene County south to Lee County, including Lawrence and southern Woodruff Counties; east of Crowleys Ridge from Clay County south to Poinsett County and Mississippi County; Lonoke and Jefferson Counties; and Ashley, Chicot, Desha, and Drew Counties. Three areas are predominated by rises in measured water levels—east of Crowleys Ridge in Crittenden, Cross, Lee, and St. Francis Counties; Jackson and northern Woodruff Counties; and Arkansas, Monroe, Phillips, Prairie, and White Counties. Long-term water-level changes were evaluated using hydrographs from 319 wells in the alluvial aquifer for the period from 1988 to 2012. The annual rise or decline in water level for the entire study area was -0.45 feet per year (ft/yr) with a range from -2.08 to 0.84 ft/yr. Arkansas County had two different rates of annual decline for the two hydrographs shown, about 0.97 ft/yr and about 0.26 ft/yr. In Craighead, Cross, Lee, Poinsett, and St. Francis Counties, water levels are declining at a greater rate in areas west of Crowleys Ridge than in areas east of Crowleys Ridge. Two hydrographs are shown in each of Craighead, Cross, Lee, Poinsett, and St. Francis Counties, one on the west side of Crowleys Ridge and one on the east side of Crowleys Ridge. The hydrographs west of Crowleys Ridge have annual water-level declines from -0.91 to -1.24 ft/yr. The hydrographs east of Crowleys Ridge have annual water-level declines from -0.07 to -0.40 ft/yr. The mean county annual water-level declines for these counties range from -0.55 to -0.87 ft/yr. Water samples were collected in the summer of 2012 from142 wells completed in the alluvial aquifer and measured onsite for specific conductance, temperature, and pH. Samples were collected from 94 wells for dissolved chloride analysis. Specific conductance ranged from 91 microsiemens per centimeter at 25 degrees Celsius (μS/cm at 25 °C) in Drew County to 984 μS/cm at 25 °C in Monroe County. The mean specific conductance was 547 μS/cm at 25 °C. Temperature ranged from 18.1 degrees Celsius (°C) in Crittenden County to 22.4 °C in Prairie County. The mean temperature was 22.1 °C. The pH ranged from 8.3 in Randolph County to 6.2 in Drew County and had a median of 7.3. Dissolved chloride concentrations ranged from 3.34 milligrams per liter (mg/L) in Randolph County to 182 mg/L in Lincoln County. The mean chloride concentration was 27.6 mg/L. |
First posted June 10 , 2015 For additional information, contact: Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here. |
Schrader, T.P., 2015, Water levels and water quality in the Mississippi River Valley alluvial aquifer in eastern Arkansas, 2012: U.S. Geological Survey Scientific Investigations Report 2015–5059, 63 p., 2 pls., http://dx.doi.org/10.3133/sir20155059.
ISSN 2328-031X (print)
ISSN 2328-0328 (online)
Abstract
Introduction
Methods
Aquifer Description
Water Levels
Water-Quality Conditions
Summary
Selected References
Appendixes