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Chemical and Biotic Characteristics of Prairie Lakes and 
Large Wetlands in South-Central North Dakota—Effects 
of a Changing Climate

By David M. Mushet, Martin B. Goldhaber, Christopher T. Mills, Kyle I. McLean, Vanessa M. Aparicio, R. 
Blaine McCleskey, JoAnn M. Holloway, and Craig A. Stockwell

Abstract
The climate of the prairie pothole region of North 

America is known for variability that results in significant 
interannual changes in water depths and volumes of prai-
rie lakes and wetlands; however, beginning in July 1993, 
the climate of the region shifted to an extended period of 
increased precipitation that has likely been unequaled in the 
preceding 500 years. Associated changing water volumes also 
affect water chemical characteristics, with potential effects on 
fish and wildlife populations. To explore the effect of chang-
ing climate patterns, in 2012 and 2013, the U.S. Geological 
Survey revisited 167 of 178 prairie lakes and large wetlands 
of south-central North Dakota that were originally sampled 
in the mid-1960s to mid-1970s. During the earlier sampling 
period, these lakes and wetlands displayed a great range of 
chemical characteristics (for example, specific conductance 
ranged from 365 microsiemens per centimeter at 25 degrees 
Celsius to 70,300 microsiemens per centimeter at 25 degrees 
Celsius); however, increased water volumes have resulted in 
greatly reduced variation among lakes and wetlands and a 
more homogeneous set of chemical conditions defined by pH, 
specific conductance, and concentrations of major cations and 
anions. High concentrations of dissolved solids previously 
limited fish occurrence in many of the lakes and wetlands sam-
pled; however, freshening of these lakes and large wetlands 
has allowed fish to populate and flourish where they were pre-
viously absent. Conversely, the freshening of previously saline 
lakes and wetlands has resulted in concurrent shifts away 
from invertebrate species adapted to live in these highly saline 
environments. A shift in the regional climate has changed a 
highly diverse landscape of wetlands (fresh to highly saline) 
to a markedly more homogeneous landscape that has reshaped 
the fish and wildlife communities of this ecologically and 
economically important region.

Introduction
The climate of the prairie pothole region (PPR) is well 

known for its dynamic shifts between periods of drought and 
deluge; however, recent increases in precipitation beginning 
in July 1993 have resulted in corresponding increases in water 
depths and volumes of the region’s abundant lakes and wet-
lands, not likely experienced in the previous 500 years (Winter 
and Rosenberry, 1998). At a large scale, these climate-induced 
water-level increases have, in part, contributed to major flood-
ing issues that have plagued parts of the PPR including the 
closed Devil’s Lake basin of North Dakota (Todhunter and 
Rundquist, 2004; Vecchia, 2008). As with Devil’s Lake, most 
other prairie lakes and wetlands are also within closed basins, 
resulting in similar water-level rises and flooding but on a 
smaller spatial and economic scale (fig. 1).

Proactive resource management will require an under-
standing of how the chemical composition and biotic commu-
nities of prairie lakes and wetlands shift in response to changes 
in climate (Euliss and others, 2004). Additionally, because 
most climate change models predict a greater frequency and 
severity of wet and dry periods (Schneider and others, 2007), 
baseline information gathered during the current (2015) high 
water-level conditions will be invaluable for understanding 
how these systems respond to future changes in climate. 

During the summers of 2012 and 2013, we documented 
abiotic characteristics and biotic communities of 167 prairie 
lakes and large wetlands that were originally studied from 
1966 to 1976 by Swanson and others (1988). Knowledge 
derived from the original sampling provided information on 
linkages between chemical composition of prairie lakes and 
wetlands and their use by wildlife. The resampling of these 
lakes and wetlands provided information equally useful given 
the emerging landscape-level threats that climate change 
poses to aquatic systems. This information will be especially 
important to inform management decisions made by U.S. 
Department of the Interior agencies that oversee a multitude 
of prairie lakes and wetlands (refuges, waterfowl production 
areas, and conservation easements). This information is of 
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Figure 1.  Flooding caused by rising water levels in Lake 156 near Crystal Springs, North Dakota. Photograph by David M. Mushet, 
U.S. Geological Survey, September 28, 2011.

broad importance because public and private wetlands greatly 
affect U.S. Department of the Interior trust species and other 
ecosystem components valued by society. 

The Swanson and others (1988) survey of prairie lakes 
and large wetlands focused primarily on quantifying chemi-
cal characteristics across a gradient from fresh to hypersaline 
waters (less than [<] 800 to greater than [>] 60,000 microsie-
mens per centimeter at 25 degrees Celsius [µS/cm at 25 °C]). 
Salinity nomenclature used in Swanson and others (1988) and 
this report follow the salinity classification in Cowardin and 
others (1979). Although Swanson and others (1988) performed 
only limited surveys of biotic communities, they were able to 
relate their findings to potential effects on fish and wildlife. 
The insights provided by Swanson and others (1988), relative 
to the biota of the lakes and wetlands sampled, are important 
because ecosystem structure is heavily affected by biotic 
interactions that often exceed the impacts of abiotic factors 
(Zimmer and others, 2002; Hanson and others, 2005; Anteau 
and others, 2011). Thus, during this re-sampling we surveyed 
fish, salamander, and aquatic invertebrate communities in 

these lakes and wetlands in addition to abiotic characteristics. 
The inclusion of detailed quantifications of biotic communi-
ties allowed us to better define associations between chemical 
characteristics of prairie lakes and wetlands and their biotic 
inhabitants. Specifically, we interpreted the occurrence of fish, 
amphibians, and a variety of invertebrate taxa in the context 
of pH, specific conductance, and major ion concentrations. We 
explore the effects on other wildlife species using known asso-
ciations among predatory fish and salamanders, invertebrate 
abundance and biomass, and waterfowl.

Study Area

Swanson and others (1988) carried out their study in 
Stutsman County and Kidder County, North Dakota, because 
these two counties uniquely include three dominant physio-
graphic features of the PPR within their borders (fig. 2). We 
resampled this area for the same reason and also to build on 
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Figure 2.  Location of 178 lakes and wetlands in Kidder and Stutsman Counties, North Dakota, originally sampled from 
1966 to 1976 by Swanson and others (1988) and resampled (N=167) in 2012 and 2013.

the data assets from the original sampling effort. The western 
part of Stutsman County includes a glacial stagnation moraine 
known as the Missouri Coteau. The Missouri Coteau is charac-
terized by a hummocky knob-and-kettle landscape formed by 
the melting of ice blocks buried by thick superglacial drift and 
the subsequent collapse of the drift into the resulting voids. 
Innumerable prairie pothole lakes and wetlands exist in the 
basins created within this poorly drained, collapsed, glacial 
topography. The eastern part of Stutsman County is primarily 
drift prairie where glaciers retreated at a fairly even rate leav-
ing behind an undulating plain of low-relief ground moraine. 
Wetlands in the drift plain are less numerous and generally 
more shallow than those in the stagnation moraine of the Mis-
souri Coteau. Kidder County is situated to the west of Stut-
sman County and encompasses a vast area of glacial outwash 
plain where meltwater from receding glaciers sorted substrate 
materials resulting in sandy, moderately drained soils (fig. 3).

A Changing Climate

The PPR is well known for its dynamic continental cli-
mate (Kantrud and others, 1989). Large variations in tempera-
ture and precipitation result from complex interactions among 
air masses originating from polar, Pacific, and Gulf of Mexico 
sources (Borchert, 1950; Bryson and Hare, 1974). Variations 
in temperature and moisture content of these competing air 
masses lead to great seasonal and interannual differences in 
precipitation and evaporation rates. Additionally, long-term 
(10 to 20 year) cycles between periods of drought (Woodhouse 
and Overpeck, 1998) and deluge (Winter and Rosenberry, 
1998) can dominate the climate of the region. These wet/dry 
climate cycles can persist for 10 to 20 years (Duvick and 
Blasing, 1981; Karl and Koscielny, 1982; Karl and Riebsame, 
1984; Diaz, 1983, 1986). 
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Figure 3.  Location of select lakes and wetlands in southeastern North Dakota in relation to areas of sand.
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Currently, lakes and wetlands in Stutsman and Kidder 
Counties, North Dakota, are experiencing the effects of an 
extended wet period. This wet period immediately followed 
a severe drought (1988 to July 1993; Winter and Rosenberry, 
1998). The average annual precipitation for the study area 
(Climate Division 5 of North Dakota) immediately preced-
ing the drought (1958 to 1987) was 44.68 centimeters (cm). 
The average annual precipitation during the drought (1988 
to 1992) was 38.70 cm. The average annual precipitation for 
the 22-year period following the drought (1993 to 2014) was 
50.54 cm, which was 5.86 cm above the 30-year pre-drought 
average, 11.84 cm above the average during the drought years, 
and 4.68 cm above the 45.86 average annual precipitation for 
the entire period of record (1895–2014; fig. 4; National Oce-
anic and Atmospheric Administration, 2015).

Precipitation that falls directly on the water surface repre-
sents the primary water input to wetlands, and loss of water by 
evapotranspiration represents the largest water losses (Shjeflo, 
1968; Eisenlohr and others, 1972; Winter, 1989). Runoff is 
the second-most important input of water, occurring primarily 

as snowmelt runoff, which represents about 15 to 30 percent 
of annual water input and as much as 50 percent in some 
wetlands (Shjeflo, 1968; Eisenlohr and others, 1972). In some 
studies of wetlands, surface runoff has represented as little as 
3 to 4 percent of total water input (Winter, 1989). Groundwa-
ter input and loss of water by flow to groundwater represent 
minor components of the water balance of prairie pothole wet-
lands, particularly those in glacial till (Shjeflo, 1968; Eisenlohr 
and others, 1972; Winter, 1989).

Increases in winter precipitation can be more influen-
tial on water levels of lakes and wetlands in the PPR than 
increases occurring at other times of the year when losses 
to infiltration and transpiration are much greater (Vecchia, 
2008). The 30-year average for winter precipitation (October 
to March) for Climate Division 5 of North Dakota for the 
period immediately preceding the drought (1958 to 1987) was 
9.89 cm. The average winter precipitation during the drought 
(1988 to 1992) was 6.85 cm. The average winter precipitation 
for the 22-year period following the drought (1993 to 2014) 
was 12.01 cm, 1.82 cm above the average winter precipitation 
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for the entire period of record (10.19 cm; 1895–2014; National 
Oceanic and Atmospheric Administration, 2015). Correlation 
of amounts of winter precipitation to the relative importance 
of snowmelt runoff to pond water input the following spring 
can be problematic because snowmelt runoff exceeding direct 
rainfall input and runoff in the following open-water period 
only occurs when snow accumulates in cold winters until 
the spring and melts quickly when the ground is still frozen 
(Shjeflo, 1968). For example, Eisenlohr and others (1972) 
determined that, during their study, the year with the highest 
precipitation from November to April had the lowest basin 
inflow from that precipitation.

Average precipitation amounts for the remainder of the 
year (April through September, hereafter referred to as “grow-
ing season precipitation”) also were greater post drought. 
The 30-year average growing season precipitation for the 
period immediately preceding the drought (1958 to 1987) was 
32.35 cm, whereas the average growing season precipitation 
for the 22-year period following the drought (1993 to 2014) 
was 36.00 cm, 2.6 cm above the average growing season pre-
cipitation for the entire period of record (33.40 cm; 1885–
2014). The average growing season precipitation during the 
drought (1988 to 1992) was 28.19 cm (National Oceanic and 
Atmospheric Administration, 2015). Increased rain during the 
growing season can result in pronounced increases in wetland 
pond water levels such as occurred in 1964 and 1965 (Eisen-
lohr and others, 1972) and in 1993 (Rosenberry and Winter, 
1997; Winter and Rosenberry, 1998). 

Anthropogenic changes to the PPR hydrologic landscape 
through wetland drainage have undoubtedly increased the 
catchment area and thus the amount of water entering many 
of the region’s lakes and larger wetlands, especially those at 
lower elevations (Anteau, 2012); however, climate effects that 
include increases in precipitation following the 1988 to July 
1993 drought (Winter and Rosenberry, 1998) likely have had 
an equal if not greater effect on water levels in the region of 
our study. The dominance of climate effects over drainage 
effects can be demonstrated by examining water-level changes 
in regional lakes and wetlands that have not been affected 
by drainage or similar landscape alterations. For example, a 
hydrograph of water elevations in Lake 112 clearly shows a 
shift to higher water levels following the drought conditions 
(figs. 2 and 5). Lake 112 (also known as wetland P1) is located 
in the Cottonwood Lake study area (fig. 2). The U.S. Fish 
and Wildlife Service purchased this area in 1962 and since 
that time the area has been managed as a Federal Waterfowl 
Production Area (Swanson and others, 2003). Most of the 
Cottonwood Lake study area has never been tilled and none 
of its wetlands have been drained. Additionally, the study area 
includes the local topographic high within its boundaries; 
therefore, there are no higher elevation wetlands outside of 
the study area with potential to affect water levels of lakes and 
wetlands within the study site. Given the undisturbed nature 
of the site’s hydrology, it was selected as a long-term wetland-
monitoring site by U.S. Fish and Wildlife Service and USGS 
researchers in 1978 (Winter, 2003). In addition to wetland P1, 
other lakes and large wetlands within the Cottonwood Lake 
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Figure 5.  Water elevations for Cottonwood Lake study area wetland P1, North Dakota (Lake 112; fig. 2), 1978–2013.

study area displayed similar increases in water depths follow-
ing the period of drought (1988 to 1992).

Similarly, Lake 87 (Chase Lake) is embedded within one 
of the largest tracts of native prairie in North Dakota. Chase 
Lake is fully encompassed within the 1,776-hectare (ha) Chase 
Lake National Wildlife Refuge (fig. 2), 1,683 ha of which 
was designated as a wilderness area in 1975. An additional 
1,148 ha adjacent to the Chase Lake National Wildlife Refuge 
is owned and managed as a Wildlife Management Area by 
the North Dakota Game and Fish Department. Thus, anthro-
pogenic impacts to surface waters around Chase Lake have 
been minimal. However, water levels in Chase Lake have risen 
markedly in the years of increased precipitation beginning 
in 1993. Chase Lake is home to one of the largest breed-
ing colonies of Pelecanus erythrorhynchos (American white 
pelicans) in North America. These birds nest on several small 
islands within the lake. Rising water levels during the past 
20 years have flooded these islands forcing the birds to nest on 
peninsulas and new islands that have formed as rising levels 
cut off peninsulas from their land connections and formed new 
islands. Another indicator of the rising waters in Chase Lake 
has been a marked freshening of its water to the point that this 
lake, formerly known for its lack of any aquatic vertebrate life, 
now supports populations of tiger salamanders Ambystoma 
mavortium (barred tiger salamanders) and Pimephales prome-
las (fathead minnows; Mushet and others, 2013). 

Increasing water levels in areas with little drainage 
and other anthropogenic effects highlight the importance of 

increased precipitation; however, even in areas with greater 
anthropogenic disturbances, water levels increased in response 
to increased precipitation in the post-drought period. These 
increases can be seen in a hydrograph of Devils Lake water 
levels, the region’s largest closed-basin lake (fig. 6). The 
Devil’s Lake basin is dominated by agriculture with substan-
tial wetland drainage and other hydrologic modifications. 
Although wetland drainage and land-use changes within the 
Devils Lake basin have undoubtedly affected water-level rises 
and resultant flooding issues to some degree, the recent (1993 
to 2014) water-level increases can be attributed primarily to 
increased precipitation in the region (Vecchia, 2008). Tod-
hunter and Rodenquist (2004) determined a similar increase 
in water discharge from the Sheyenne River just south of the 
Devils Lake basin that started in 1993 primarily as a result of 
greater runoff from precipitation increases rather than land-use 
change or wetland drainage effects (note the linear relationship 
but with a change in slope starting in 1993; fig. 7). Similarly, 
Landsat satellite imagery acquired before and after the 1988 
to 1992 drought (fig. 8) show an increased abundance of water 
across the region’s landscape following the drought years 
(also see Liu and Schwartz, 2012) that cannot be accounted 
for by simple drainage effects that concentrate water from 
multiple smaller wetlands into larger wetlands and lakes at 
lower topographical positions (that is, consolidation drainage 
as discussed by Anteau [2012]).
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Methods
In 2012 and 2013 we revisited the lakes and wetlands 

studied by Swanson and others (1988) in 1966 to 1976. During 
our visit to each lake and wetland, we collected water samples, 
measured in-situ parameters including pH, water temperature, 
water depth, and water clarity. We also sampled aquatic verte-
brate and macroinvertebrate communities.

Water Chemistry

We collected water samples for chemical analyses from 
167 of the 178 lakes and wetlands sampled by Swanson and 
others (1988). Lakes for which landowners were unreachable 
or for which access was denied were not sampled. To ensure 
comparability of data, procedures for water sample collection 
and chemical analyses (appendix 1) closely matched previous 
methods (appendix 2). Samples were collected from the lake/
wetland center or outside (that is, towards the center of the 
lake/wetland) of the deep-marsh zone as defined by Stewart 
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and Kantrud (1971) at the 1.5-meter (m) depth contour, which-
ever was shallower. The order in which lakes and wetlands 
were sampled was adjusted to approximate the seasonal order 
in which the lakes and wetlands were originally sampled by 
Swanson and others (1988) and sample locations were selected 
to avoid effects of groundwater seepage. We sampled about 
one-half of the lakes and wetlands in 2012 (N=79) and the 
remainder (N=88) in 2013. 

Before collecting a sample, we measured water pH, 
specific conductance, temperature, turbidity, and maximum 
depth (up to a depth of 3 m) of the lake or wetland. For lakes 
>3 m deep, maximum depth was recorded as >3 m. Specific 
conductance and temperature were measured using a WTW 
Model 315i meter with a TetraCon® 325 standard conductiv-
ity measuring cell, pH was measured with a Beckman Coul-
ter model 250 pH meter equipped with a combination pH 
electrode, and turbidity was measured using a 20-cm diameter 
freshwater Secci disk. We then used a tube type water sampler 
(Swanson, 1978) to collect water samples so that the water 
collected was depth integrated (that is, representative of the 
overall water column rather than just a single depth interval). 
A single sample consisted of 3 liters of water stored in two 
1.5-liter bottles. We rinsed sample bottles three times with 
lake/wetland water before filling with the sample water. Sam-
ples were stored on ice for transport to the USGS laboratory at 
the Northern Prairie Wildlife Research Center in Jamestown, 
N. Dak. Duplicate samples were collected from 8 percent of 
the lakes and wetlands as a quality-control measure. 

All water samples were processed at the USGS labora-
tory in Jamestown on the same day as collected. Samples 
were filtered through a 0.45-millimeter (mm) pore size Supor® 
membrane (Pall Life Sciences part #66553) using a 142-
mm diameter polycarbonate plate filter holder (Geotech part 
#83150009) and a GeopumpTM equipped with silicone tubing 
(Geotech part #8705000). The first approximately 200 mil-
liliter (mL) of filtered sample was discarded. A subsample 
for anion and alkalinity analyses was collected in a 250-mL 
polypropylene bottle and a subsample for cations was col-
lected in a nitric-acid-washed 30-mL polypropylene bottle and 
preserved with 0.10 mL trace metal grade concentrated nitric 
acid. The plate filter assembly and tubing was rinsed thor-
oughly with deionized water between samples. All subsamples 
were shipped to the USGS National Research Program labora-
tory in Boulder, Colorado, for subsequent analysis. Anion and 
alkalinity subsamples were shipped and stored at 5 degrees 
Celsius (oC). 

Anions (sulfate [SO4-], chloride [Cl-]) were determined 
by ion chromatography with suppressed electrical conductivity 
detection. A Dionex DX 600 ion chromatograph equipped with 
an IonPac® AS18 analytical column, an IonPac® AG18 guard 
column, and an anion self-regenerating suppressor (ASRS 
Ultra II) was used to analyze SO4- and Cl-. Detection limits 
for all anionic species were 0.1 milligrams per liter (mg/L). 
Cations (calcium [Ca2+], potassium [K+], magnesium [Mg2+], 
sodium [Na+]) were analyzed by inductively coupled plasma-
optical emission spectroscopy. A Perkin Elmer 7300 DV 

inductively coupled plasma-optical emission spectroscopy 
was used with a cesium chloride ionization buffer added in-
line prior to sample nebulization to suppress the ionization of 
lithium and potassium.

Despite thorough rinsing of filtration equipment between 
samples, the very high salinities of some samples created the 
potential for sample carryover. A total of 10 filtration blanks 
of ultrapure water were filtered periodically throughout the 
2-year sampling period as described above to assess the poten-
tial for sample carryover. Maximum concentrations of species 
determined in the blanks were as follows, Ca2+=0.25 mg/L, 
Mg2+=0.14 mg/L, Na+ is less than or equal to (≤) 0.4 mg/L, 
K+≤0.04 mg/L, Cl-=0.3 mg/L, SO4

2-=3.0 mg/L, and alkalinity 
as bicarbonate (HCO3

-)=4.0 mg/L. The concentrations of all 
major cations, anions, and alkalinity in most samples were at 
least 20 times larger than the respective maximum concentra-
tions detected in the blanks. The exceptions were one sample 
that had a Cl- concentration 10 times larger than the maximum 
detected in blanks and eight samples that had SO4

2- concen-
trations between 3 and 20 times larger than the maximum 
detected in blanks. 

Duplicate samples were collected and analyzed from 
14 lakes and wetlands. The concentrations of major ions and 
alkalinity for duplicate samples were all within 6 percent 
except for Cl- in Lake 28, which was within 10 percent, and 
Na+ in lake 75, which was within 8 percent. The majority of 
concentrations were within 2 percent. Charge imbalance cal-
culations were carried out in WATEQ4F (Ball and Nordstrom, 
1991). Seventy percent of samples had charge imbalance less 
than 5 percent, 97 percent of samples had charge imbalance 
less than 10 percent and all samples had charge balance less 
than or equal to 15 percent. 

Aquatic Vertebrates

We sampled fish and salamander communities within 
lakes and wetlands concurrent with our sample collections 
for water chemistry analyses. Within each sampled lake and 
wetland, we placed seven aquatic vertebrate funnel traps 
(Mushet and others, 1997) at evenly spaced (30 m) intervals 
parallel to the shoreline along the 1-m depth contour or at the 
open water edge of any emergent vegetation, whichever was 
deeper (fig. 9). The tops of each trap extended beyond the 
water surface allowing captured individuals access to surface 
air thereby increasing survivorship (Mushet and others, 1997). 
We oriented the 2-m driftnet and elongate opening of each trap 
parallel to the shoreline. The location of each trap array in a 
particular lake or wetland was largely determined by ease of 
access and ability to obtain needed landowner permissions. 
All traps were in place for 24 hours before retrieval. Upon trap 
retrieval, we enumerate all captured fish, salamanders, and 
other vertebrates by species. Following identification and enu-
meration, we immediately released captured individuals back 
into the lake/wetland. We supplemented information on the 
presence or absence of game fish using stocking data obtained 
from the North Dakota Game and Fish Department.
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Figure 9.  Aquatic vertebrate (fish, salamanders) and macroinvertebrate sampling locations in a typical lake or wetland with 
emergent vegetation.

Macroinvertebrates

Concurrent with fish and salamander sampling, we 
sampled aquatic macroinvertebrate communities using a 
500-micron-mesh, D-shaped, aquatic dip-net. We collected 
dip-net samples at each of 12 locations evenly spaced among 
and along the same depth contour (1 m) as the 7 salamander/
fish traps. The placement of salamander/fish traps and the 
relative location of macroinvertebrate sampling in a typical 
lake or wetland with an emergent vegetative zone are shown 
in figure 9. At each of the 12 sampling locations, we collected 
1 vertical sample of the water column and 1 horizontal sample 
along the lake/wetland bottom. We collected the vertical 
sample by lowering the dip-net to the wetland bottom with 
the net opening and handle oriented vertical to the wetland 
bottom. We then tilted the handle so the net was in a horizontal 
position and quickly pulled it up through the water column to 
the wetland surface. We collected bottom samples in a similar 
manner except, instead of reorienting the direction of the net 
after lowering it to the lake/wetland bottom, we swept the 
vertically oriented net for a distance of 1 m along the bottom 
before pulling it to the surface. The net opening remained 
vertical to the wetland bottom during the pull to the surface to 
minimize the capture of invertebrates from the water column 
as the net was brought to the water surface. 

Once a sample was collected, we concentrated inver-
tebrates by rinsing the net contents through a 500-micron 
screened plankton cup and then transferring the screened 
contents from the plankton cup into a polypropylene sample 
storage jar. Ethyl alcohol was added to each jar until a con-
centration of 80 percent was reached to preserve the sample. 
We stored all samples in this 80 percent ethyl alcohol solution 
until processed in the lab. Processing consisted of pouring the 
contents of each sample jar through a 500-micron plankton 
cup, rinsing the sample with water to remove any excess ethyl 
alcohol, and separating macroinvertebrates from debris over 
a light table. We identified macroinvertebrates to the lowest 
taxonomic resolution possible and enumerated them by taxon. 

Macroinvertebrates were statistically summarized by 
abundance and species metrics. For each lake and wetland 
sampled, we computed species richness (S), log sum of 
abundance, and Shannon-Weiner diversity index (H’). Lakes 
and wetlands were then categorized by salinity types (that 
is, fresh [0 to 800 µS/cm at 25 °C], oligosaline low [801 to 
4,000 µS/cm at 25 °C], oligosaline high [4,001 to 8,000 µS/cm 
at 25 °C], mesosaline [8,001 to 30,000 µS/cm at 25 °C], and 
polysaline [30,001 to 45,000 µS/cm at 25 °C], based on the 
Cowardin and others [1979] salinity classification) and com-
munity metrics were compared by salinity type using an analy-
sis of variance (ANOVA) followed by a Tukey’s Honestly 
Significant Difference (HSD) test for pairwise significance. 
The polysaline lake was not included in the ANOVA because 
only one lake fell into that category.

Chemical and Biotic Characteristics of 
Prairie Lakes and Large Wetlands

Water Chemistry

As expected from increased water volumes, water in 
the lakes and wetlands studied generally freshened since the 
original measurements by Swanson and others (1988) (fig. 10; 
appendix 3). Salinity, as measured by specific conductance, 
decreased from a median of 3,200 µS/cm at 25 °C from the 
1966 to 1976 sampling to 1,794 µS/cm at 25 °C in 2012 and 
2013 (table 1). When sampled by Swanson and others (1988), 
only 57 percent of the lakes and wetlands had specific con-
ductance values <4,000 µS/cm at 25 °C. During our 2012 and 
2013 sampling, lakes and wetlands had freshened such that 
80 percent of those sampled had specific conductance values 
<4,000 µS/cm at 25 °C (fig. 11). All major ions, except Ca2+, 
showed temporal reductions in concentration measures (that 
is, median, mean, minimum, maximum) (table 1). Alkalinity 
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Figure 10.  Comparison of specific 
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centimeter at 25 degrees Celsius) of 167 
prairie lakes and wetlands sampled from 
1966 to 1976 (Swanson and others, 1988) 
and resampled in 2012 and 2013.

Table 1.  Chemical characteristics of prairie lakes and wetlands sampled from 1966 to 1976 by Swanson and 
others (1988) and resampled in 2012 and 2013.

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter]

Chemical  
characteristic

1966 to 1976 2012 and 2013

Median Mean Minimum Maximum Median Mean Minimum Maximum

pH 9.0 18.6 7.4 10.2 8.9 18.8 8.1 9.9

Specific conductance 3,200 8,376 365 70,300 1,794 2,897 449 40,350

Alkalinity (as HCO3-) 600 928.9 150 10,800 562 613.5 223 2,290

Calcium (mg/L) 30 42.7 1 196 40 44.7 5.8 164

Magnesium (mg/L) 140 403.4 1 11,600 103 161.5 31.8 1,050

Sodium (mg/L) 475 2,011.0 3 21,800 255 574.0 9.0 13,000

Potassium (mg/L) 78 190.5 4 3,600 38 58.8 5.5 484

Sulfate (mg/L) 725 3,977 16 87,500 689 1,360 10.4 27,000

Chloride (mg/L) 105 613.5 5 13,470 44 153.5 2.9 2,520
1Determined from the mean hydrogen ion concentration.
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as HCO3-, K
+, Mg2+, Na+, and Cl- displayed great changes 

between the two sampling periods (fig. 12B, D, E, F, H). Sul-
fate also had lower median and mean concentrations in 2012 
and 2013 (table 1) but the decreasing trend (fig. 12G) was not 
as apparent as for other major ions. Calcium concentrations 
varied for individual wetlands between the two periods but 
without a distinct trend (fig. 12C). All lakes and wetlands were 
saturated or supersaturated with calcite during both original 
sampling and resampling so that Ca2+ concentrations are likely 
buffered by precipitation/dissolution of carbonate minerals. 
Likewise, little temporal variation in pH was observed due to 
buffering by high concentrations of HCO3- (table 1; fig. 12A).

Swanson and others (1988) identified seven different 
water types in the study lakes and wetlands as determined 
from dominance of major cations and anions: calcium bicar-
bonate (N=2), magnesium bicarbonate (N=39), magnesium 
sulfate (N=30), sodium bicarbonate (N=18), sodium sulfate 
(N=81), sodium chloride (N=7), and magnesium chloride 
(N=1); however, in our 2012 to 2013 sampling of the same 
lakes and wetlands water of only four different chemical types 
occurred: magnesium bicarbonate (N=46), magnesium sulfate 
(N=38), sodium bicarbonate (N=14), and sodium sulfate 
(N=69). Plotting lakes and wetlands along the ion-defined axes 
of a Piper diagram (fig. 13) provides a visualization of the 
shifts towards more homogeneous water types that occurred 
between the two sample periods. All chemical characteristic 
changes were consistent with changes expected because of 
increased precipitation inputs and resultant dilution effects. 

Of the 167 lakes and wetlands sampled in both the 1966 to 
1976 and 2012 to 2013 periods, only 30 did not display a 
marked decrease in overall ion concentrations as measured by 
specific conductance (fig. 10). 

Swanson and others (1988) also reported significantly 
larger concentrations of most major ions being associated with 
lakes and wetlands in outwash compared to ion concentrations 
of lakes and wetlands situated on glacial till. One exception 
was calcium, which occurred in higher concentrations in 
lakes and wetlands on till. We determined that the trend of 
lakes and wetlands on outwash having higher concentrations 
of major ions, excluding calcium, persisted in our 2012 to 
2013 sampling (table 2). Additionally, we determined that the 
change in ion concentrations between the two sample periods 
was significant for all non-calcium, chemical characteristic 
comparisons (table 2).

To further explore the linkage between rising water levels 
and water chemical characteristics, we used Geochemists 
Workbench 10® modeling code (Bethke and Yeakel, 2015) to 
model major ion concentrations in Lake 87 (Chase Lake) with 
the dissolution of high magnesium calcite (Ca0.9Mg0.1CO3) 
across a gradient of increasing water volumes. We used May 
1973 starting concentrations as measured in the lake by Swan-
son and others (1988) and performed dilutions from 0 to a 3 
fold increase in water volume. When ion concentrations from 
our June 22, 2012, sampling are plotted on the modeled con-
centrations (fig. 14), a 2.6 fold volume increase is suggested. 
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Figure 12.  Comparison of chemical and other environmental characteristics of 167 prairie lakes and wetlands sampled 
from 1966 to 1976 (Swanson and others, 1988) and resampled in 2012 and 2013. A, pH; B, alkalinity as bicarbonate; C, calcium; 
D, potassium; E, magnesium; F, sodium; G, sulfate; H, chloride.
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Figure 13.  Piper diagram of water from prairie lakes and wetlands. A, 1966 to 1976 (N=178) and B, 2012 and 2013 
(N=167).

Aquatic Vertebrates

Due to access and timing limitations, we only sampled 
aquatic vertebrates in 162 of the 167 lakes and wetlands sam-
pled for water chemistry. In the lakes and wetlands sampled 
in 2012 and 2013, 10 fish and 2 amphibian species occurred 
(table 3; appendix 4). Fathead minnow was by far the most 
prevalent aquatic vertebrate species, occurring in 81.5 percent 
of the lakes and wetlands sampled. Fathead minnow was 
also the most abundant with an average of 2,186 individuals 
captured per site. Culaea inconstans (brook stickleback), tiger 
salamander, and Perca flavescens (yellow perch) were the next 
most commonly occurring species, captured in 38.3, 36.4, and 
33.3 percent of sample sites, respectively. Etheostoma exile 

(Iowa darter) and Lithobates pipiens (northern leopard frog) 
occurred in 11.1 percent and 10.5 percent of sites sampled, 
respectively. All other aquatic vertebrate species, primar-
ily game fish, occurred in less than 10 percent of the lakes 
and wetlands sampled. Chemical characteristics of lakes and 
wetlands in which specific taxa occurred are provided in 
tables 4–6. 

Macroinvertebrates

In the lakes and wetlands sampled for aquatic macro-
invertebrates (N=163), we captured specimens representing 
117 unique taxa (appendix 5). Occurrence of macroinverte-
brate taxa across the range of lakes and wetlands sampled 
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Figure 13.  Piper diagram of water from prairie lakes and wetlands. A, 1966 to 1976 (N=178) and B, 2012 and 2013 
(N=167)—Continued.

varied greatly, ranging from 10 taxa that occurred at >100 
of the 163 lakes and wetlands sampled to 28 taxa that only 
occurred in a single lake or wetland. Daphnia (water flea), 
Calanoida (calinoid copepod), Hyllela (amphipod), Gamma-
rus (lake amphipod), and Corixidae (water boatmen) were the 
most abundant taxa captured (range of total captures =39,315 
[Gammarus] to 742,947 [Daphnia]). Water boatmen, Hydra-
carina (water mites), Chironominae (chironomid midges), 
amphipods, Orthocladiinae (orthoclad midges), Cyclopoida 
(cyclopoid copepods), Trichocorixa (a water boatman genus), 
calanoid copepods, water fleas and lake amphipods were the 
most prevalent taxa, occurring at 155, 151, 148, 148, 122, 
120, 116, 110, 110, and 109 sites, respectively. Invertebrate 
species richness, total macroinvertebrate abundance, and 

Shannon-Wiener diversity index all differed significantly 
among salinity types (fig. 15). Oligosaline lakes and wetlands 
with specific conductance between 4,000 and 8,000 µS/cm 
at 25 °C had the highest species richness, whereas polysaline 
(30,001 to 45,000 µS/cm at 25 °C) and mesosaline (8,001 to 
30,000 µS/cm at 25 °C) lakes and wetlands had the lowest 
species richness. In terms of macroinvertebrate abundance, 
mesosaline lakes and wetlands had the highest total abun-
dance, whereas fresh sites (0 to 800 µS/cm at 25 °C) had the 
lowest total abundances of macroinvertebrates captured. The 
Shannon-Wiener diversity index indicated that fresh and oligo-
saline lakes and wetlands had similar invertebrate diversity 
and the lowest diversity occurred in mesosaline sites.
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Table 2.  Comparison of changes in mean values for concentrations of major ions (milligrams per liter), 
specific conductance (microsiemens per centimeter at 25 degrees Celsius), and pH between prairie lakes 
and wetlands in till and those in outwash, Stutsman County and Kidder County, North Dakota.

[N, number of sites; mg/L, milligrams per liter; %, percent; t, t-statistic; HCO3-, hydrogen carbonate]

Chemical  
characteristic

Geologic 
setting

N
Mean concentration (mg/L)

Change
Change  

(%)
t p-value

1966 to 1976 2012 to 2013

Calcium (mg/L) Till 50 56 59 3.5 6.3 -0.9588 0.3424

Outwash 117 35 38 1.1 3.1 -0.3670 0.7167

Magnesium (mg/L) Till 50 221 131 -90 -40.7 1.9660 0.0549

Outwash 117 497 174 -322 -64.8 2.9968 0.0033

Sodium (mg/L) Till 50 916 271 -645 -70.4 2.7500 0.0083

Outwash 117 2,463 704 -1,759 -71.4 5.4173 0.0000

Potassium (mg/L) Till 50 91 41 -49 -53.8 3.3740 0.0014

Outwash 117 238 66 -171 -71.8 4.7911 0.0000

Chloride (mg/L) Till 50 213 62 -151 -70.9 2.7300 0.0088

Outwash 117 796 192 -603 -75.8 4.2761 0.0000

Sulfate (mg/L) Till 50 1,546 810 -736 -47.6 1.8047 0.0776

Outwash 117 5,444 1,595 -3,850 -70.7 4.0159 0.0001

Alkalinity (as HCO3-) Till 50 586 516 -69 -11.8 1.4670 0.1480

Outwash 117 1,085 655 -431 -39.7 3.9288 0.0001

Specific conductance Till 50 4,284 2,116 -2,168 -50.6 3.0293 0.0039

Outwash 117 10,159 3,750 -6,410 -63.1 5.9500 0.0000

pH Till 50 18.30 18.75 0.44 5.1 -2.8724 0.0060

Outwash 117 18.85 18.82 -0.02 -0.3 0.5865 0.5587
1Determined from mean hydrogen ion concentrations.
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Table 3.  Species occurrence and mean number of captures in 162 
prairie lakes and wetlands sampled for aquatic vertebrates in 2012 and 
2013.

Species
Frequency  

of occurrence, 
in percent 

Mean  
captures

Fathead minnow (Pimephales promelas) 81.5 2,185.9

Brook stickleback (Culaea inconstans) 38.3 13.1

Tiger salamander (Ambystoma mavortium) 36.4 19.3

Yellow perch (Perca flavescens) 33.3 27.9

Iowa darter (Etheostoma exile) 11.1 1.8

Northern leopard frog (Lithobates pipiens) 10.5 8.5

Walleye (Sander vitreus) 7.4 0.2

Northern pike (Esox lucius) 3.1 0.4

Common carp (Cyprinus carpio) 1.8 0.6

Black bullhead (Ameiurus melas) 1.8 0.4

Smallmouth bass (Micropterus dolomieu) 0.6 0.7

Bluegill (Lepomis macrochirus) 0.6 0.3
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Figure 14.  Major ion concentrations in Chase Lake, North Dakota (Lake 87), modeled using 
Geochemists Workbench modeling code and the dissolution of high magnesium calcite across 
a gradient of increasing water volumes. Starting concentrations are from the May 1973 sampling 
by Swanson and others (1988). Concentrations measured on June 22, 2012, are also indicated.
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Table 4.  Specific conductance, pH, and turbidity (Secchi depth) characteristics of prairie lakes and wetlands containing aquatic 
vertebrates and fishless lakes and wetlands from 2012 and 2013 sampling of lakes and wetlands in Stutsman County and Kidder County, 
North Dakota.

[N, number of sites; µS/cm at 25 ºC; microsiemens per centimer at 25 degrees Celsius; m, meter]

Species N

Specific conductance  
(μS/cm at 25 °C)

pH Turbidity by Secchi depth (m)

Minimum Maximum Mean Minimum Maximum Mean1 Minimum Maximum Mean

Fathead minnow  
(Pimephales promelas) 132 449 15,430 2,508.8 8.1 9.9 8.83 0.2 3.0 0.78

Brook stickleback  
(Culaea inconstans) 62 500 15,430 2,534.8 8.2 9.9 8.80 0.2 2.6 0.74

Tiger salamander  
(Ambystoma mavortium) 59 461.8 12,000 3,560.7 8.4 9.9 8.85 0.2 3.0 0.87

Yellow perch  
(Perca flavescens) 54 449 6,900 2,112.1 8.3 9.3 8.84 0.2 3.0 0.83

Iowa darter  
(Etheostoma exile) 18 672 2,361 1,656.6 8.1 9.8 8.74 0.2 3.0 0.91

Northern leopard frog  
(Lithobates pipiens) 17 707 3,838 1,679.7 8.2 9.7 8.74 0.3 3.0 0.79

Walleye  
(Sander vitreus) 12 651 3,128  1,833.2 8.1 9.1 8.70 0.2 3.0 1.17

Northern pike  
(Esox lucius) 5 246 670    443.6 8.6 8.9 8.73 0.3 1.1 0.71

Common carp  
(Cyprinus carpio) 3 867 1,434  1,239.3 8.7 8.8 8.74 0.6 1.67 1.10

Black bullhead  
(Ameiurus melas) 3 651 1,845  1,385.7 8.7 8.9 8.76 0.2 0.5 0.40

Smallmouth bass  
(Micropterus dolomieu) 1 644 644      644 9.0 9.0 9.00 1.0 1.0 1.00

Bluegill  
(Lepomis macrochirus) 1 672 672      672 8.9 8.9 8.90 0.64 0.64 0.64

1Determined from mean hydrogen ion concentration.
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Table 5.  Major cation characteristics of prairie lakes and wetlands containing aquatic vertebrates and fishless lakes and wetlands 
from 2012 and 2013 sampling of lakes and wetlands in Stutsman County and Kidder County, North Dakota.

[N, number of sites; mg/L, milligrams per liter]

Species N
Calcium (mg/L) Magnesium (mg/L) Sodium (mg/L)

Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean

Fathead minnow  
(Pimephales promelas) 132 8.6 164.0 42.8 31.8 970.0 141.9 9.2 3,460 444.1

Brook stickleback  
(Culaea inconstans) 62 8.6 164.0 50.0 35.2 615.0 146.2 9.5 3,460 423.0

Tiger salamander  
(Ambystoma mavortium) 59 5.8 121.1 44.6 35.3 970.0 195.9 31.5 2,650 706.5

Yellow perch  
(Perca flavescens) 54 11.0 82.0 41.3 31.8 414.0 134.2 9.2 1,460 349.0

Iowa darter  
(Etheostoma exile) 18 10.0 82.9 55.5 64.6 154.0 109.1 21.4 287 161.6

Northern leopard frog  
(Lithobates pipiens) 17 12.7 86.2 44.8 52.8 414.0 115.2 21.3 1,227 252.2

Walleye  
(Sander vitreus) 12 23.1 82.9 43.2 45.1 217.0 101.8 30.1 512 223.7

Northern pike  
(Esox lucius) 5 15.6 64.7 36.5 35.2   98.5   74.9  9.5 200 66.7

Common carp  
(Cyprinus carpio) 3 31.3 82.9 59.4 66 112.0   88.3 66.0 109 86.9

Black bullhead  
(Ameiurus melas) 3 651 1,845 53.7 45.1 112.0   87.7 36.1 166 119.4

Smallmouth bass  
(Micropterus dolomieu) 1 15.1 15.1 15.1 72.8   72.8   72.8 27.3 27.3 27.3

Bluegill  
(Lepomis macrochirus) 1 31.1 31.1 31.1 64.6   64.6   64.6 21.4 21.4 21.4
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Table 6.  Major anion characteristics of prairie lakes and wetlands containing aquatic vertebrates and fishless lakes and wetlands 
from 2012 and 2013 sampling of lakes and wetlands in Stutsman County and Kidder County, North Dakota.

[N, number of sites; mg/L, milligrams per liter]

Species N
Sulfate (mg/L) Chloride (mg/L) Carbonate/bicarbonate (mg/L)

Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean

Fathead minnow  
(Pimephales promelas) 132 33.8 8,560.0 1,054.7 6.0 984.0 125.1 223 1,272 595.3

Brook stickleback  
(Culaea inconstans) 62 59.4 8,560.0 1,061.7 6.8 984.0 128.8 229 1,236 560.8

Tiger salamander  
(Ambystoma mavortium) 59 10.4 7,314.0 1,706.3 7.5 759.0 177.6 262 2590 725.0

Yellow perch  
(Perca flavescens) 54 18.5 2917.0 843.4 2.9 616.0 114.1 223 6,900 2,112.1

Iowa darter  
(Etheostoma exile) 18 112.0 924.0 566.4 6.8 66.2 32.5 305 644 433.4

Northern leopard frog  
(Lithobates pipiens) 17 47.5 2,917.0 632.0 9.8 615.0 82.9 229 712 494.5

Walleye  
(Sander vitreus) 12 59.5 1,140.0 581.8 13.2 163.0 48.3 254 707 501.6

Northern pike  
(Esox lucius) 5 33.8 304.0 151.5 6.9 26.6 15.1 246 670 443.6

Common carp  
(Cyprinus carpio) 3 137.0 515.0 381.0 16.9 23.2 20.5 330 421 377.7

Black bullhead  
(Ameiurus melas) 3 121.0 619.0 449.3 13.3 57.4 40.9 254 353 298.3

Smallmouth bass  
(Micropterus dolomieu) 1 66.9 66.9 66.9 7.5 7.5 7.5 390 390 390

Bluegill  
(Lepomis macrochirus) 1 112.0 112.0 112.0 6.8 6.8 6.8 342 342 342
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Figure 15.  Boxplot showing macroinvertebrate 
population metrics of prairie lakes and wetlands 
within five salinity classes based on specific 
conductance of their water. A, Species Richness; 
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Wiener Diversity Index. Lake and wetland types 
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each other at p-value =0.05.
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Discussion
Increased precipitation since July 1993 has resulted in 

increased depths and volumes in prairie lakes and wetlands, 
the dilution of most major ion concentrations, the expansion 
of fish throughout the region, and shifts in macroinvertebrate 
communities towards those favoring fresh waters. The fresh-
ing of the region’s aquatic habitats has likely affected other 
taxa not specifically evaluated in this effort, for example, 
waterfowl.

Water Chemistry

The freshening of saline lakes and wetlands resulted 
in the complete absence of eusaline and hypersaline habitat 
types and only a single polysaline lake during the 2012 and 
2013 sample period. The freshening of lakes and wetlands that 
occurred following the 1988 to July 1993 drought also resulted 
in a decrease in the number of water types into just four of 
the seven determined by Swanson and others (1988). The 
absence of sodium chloride and magnesium chloride water 
types in our 2012 and 2013 sampling is undoubtedly related 
to the reduction in chloride concentrations between the two 
sample periods (1966 to 1976 range =5 to 13,470 mg/L; 2012 
to 2013 range =2.9 to 2,520 mg/L). Only 1 saline lake had a 
specific conductance value >20,000 µS/cm at 25 °C during 
the 2012 and 2013 sampling, and only 11 lakes and wetlands 
had a specific conductance >10,000 µS/cm at 25 °C. This lack 
of saline lakes and wetlands is in stark contrast to the 1966 to 
1976 sampling when 22 lakes and wetlands had specific con-
ductance values >20,000 µS/cm at 25 °C and 38 had values 
>10,000 µS/cm at 25 °C. 

The freshening of Lake 153 provides an example of the 
great shifts in chemical characteristics of lakes and wetlands 
that occurred between the two sampling periods (fig. 16). In 
the 1966 to 1976 sampling, this hypersaline lake was the most 
saline lake or wetland sampled with a specific conductance of 
70,300 µS/cm at 25 °C (appendix 3). By 2013, it had become 
an oligosaline lake with a specific conductance of 8,000 µS/
cm at 25 °C. Sulfate concentrations in Lake 153 dropped from 
87,500 mg/L in 1972 to 1,424 mg/L in 2013, chloride con-
centrations decreased from 1,738 to 229 mg/L, magnesium 
concentrations decreased from 11,600 to 239 mg/L, sodium 
concentrations decreased from 20,600 to 430 mg/L, and potas-
sium concentrations dropped from 3,600 to 85.5 mg/L during 
this same period.

Although the salinity of most lakes and wetlands was 
lowered by wetter conditions occurring after 1992, some 
remained relatively unchanged and the salinity of others 
increased. In the majority of cases in which an increase in 
salinity occurred, the change was the result of rising water 
levels causing a lake or wetland with lower dissolved ion 
concentrations to merge with another water body containing 
higher dissolved ion concentrations. As an example, Swanson 
and others (1988) highlighted a lake complex in the Crystal 

Springs, N. Dak. area. Of particular interest were four lakes 
(Lake 150, Lake 151, Lake 156 [Stink Lake], and Lake 157). 
When sampled by Swanson and others (1988), the specific 
conductance of these four lakes was 7,000; 2,090; 29,500; and 
35,000 µS/cm at 25 °C, respectively (appendix 3). Following 
the 1988–1992 drought, rising water levels caused these four 
lakes to merge into a single water body. Specific conductance 
values, measured in 2012 at the four original lake locations 
sampled by Swanson and others (1988), had changed to 6,810; 
6,740; 6,900; and 6,830 µS/cm at 25 °C, respectively, reflect-
ing the ability of water within these three lakes to freely mix 
once connected into a single water body (fig. 17). Although 
Lakes 156 and 157 showed marked decreases in specific con-
ductance values between the two periods, Lake 150 changed 
very little and Lake 151 increased due to the mixing of waters 
from four lakes with a wide range of ion concentrations into a 
single water body with homogeneous chemical characteristics. 
This merging of lakes and wetlands, and intermixing of water, 
occurred throughout the study region during the post-drought 
years, which contributed to the loss of diversity in chemical 
characteristics that included increases in salinity in some lakes 
and wetlands. 

Of the six lakes and wetlands displaying increases in spe-
cific conductance >1,000 µS/cm at 25 °C between the sample 
periods (Lakes 3, 14, 16, 144, 151, and 175), increases in four 
were the direct result of merging with other water bodies with 
higher concentrations of dissolved solids; however, Lakes 3 
and 144 did not merge with any other water bodies during the 
study period. The reason for the salinity increase in these two 
lakes may be related to groundwater effects with potential to 
overcome dilution effects from increased precipitation and sur-
face runoff into basins. The response of the entire hydrologic 
unit, upland plus wetland plus salts and water in the subsur-
face, can lead to complex changes under unusually wet condi-
tions (Heagle and others, 2013; Nachshon and others, 2014). 
Lake 144 (1973 specific conductance value =36, 000 µS/cm 
at 25 °C; 2013 specific conductance value =40,350 µS/cm at 
25 °C; appendix 3) is of special interest because it was the 
only lake or wetland sampled that was classified as polysa-
line (that is, specific conductance between 30,000 and 45,000 
µS/cm at 25 °C). The next closest lake or wetland in terms 
of 2012 to 2013 salinity was Lake 43, which had a specific 
conductance value of 18,430 µS/cm at 25 °C. An examination 
of aerial imagery of Lake 144 revealed that, although within a 
closed basin and lacking a surface spill point, this lake varied 
little in size between the two sample periods as compared to 
surrounding lakes and wetlands in similar settings (note how 
Lake 144 changes little in size between the two years while 
surrounding wetlands are substantially larger in 1997; fig. 18). 
Also, this lake was located near the intersection of an area of 
low permeability glacial till and an area of high permeability 
outwash. The unique location of this lake at the intersection 
of two areas with greatly different hydrologic conductivities 
may have set the stage for a stronger effect of groundwater on 
the water budget than for other lakes and wetlands sampled; 
however, additional work is needed to verify this hypothesis.
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A

B

National Aerial Photography Program (NAPP) image 
obtained through EarthExplorer (earthexplore.usgs.gov)

Figure 16.  Aerial photographs showing Lake 153, Stutsman County, North Dakota. A, September 24, 
1997, and B, September 25, 2012. 
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Swanson and others, 1988
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Figure 17.  Specific conductance 
of lakes in the Crystal Springs, 
North Dakota, area from sampling 
conducted in A, 1966 to 1976 
(aerial photograph reproduced 
from Swanson and others, 1988) 
and B, 2012 and 2013 (aerial 
photograph from July 2012).
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A B

National Aerial Photography Program (NAPP) imagery
obtained through EarthExplorer (earthexplorer.usgs.gov)

Figure 18.  National Aerial Photography Program (NAPP) photographs of Lake 144 (indicated with a star) from A, July 13, 1990, 
and B, September 25, 1997.

Aquatic Vertebrates

Fish presence has been historically limited by shal-
low water levels and high salinities that are characteristic of 
prairie lakes and wetlands (McCarraher, 1960; McCarraher 
and Thomas, 1968; Rawson and Moore, 1944). The changes 
that occurred to lakes and wetlands between the two sample 
periods resulted in a landscape much more favorable for fish 
habitation (that is, deeper and fresher lakes and wetlands); 
in fact, fish were caught in 86 percent of the 162 lakes and 
wetlands sampled for fish. The presence of gamefish increased 
from 9 lakes during sampling in the 1960s and 1970s (Swan-
son and others, 1988) to 62 lakes during the 2012–13 sam-
pling. Shallow lakes have generally been defined as lakes with 
a maximum depth of less than 3 m (for example, Minnesota 
Department of Natural Resources, 2012. Of the 167 lakes and 
wetlands we sampled in 2012 and 2013, only 34 would be 
considered shallow following this definition (that is, 133 of the 
lakes and wetlands had maximum water depths greater than or 
equal to 3 m). 

When salamanders are considered in addition to fish, 97 
percent of the lakes and wetlands supported vertebrates (fish, 
salamanders, or both) during 2012 to 2013. Our findings of 
fish and salamander presence along alkalinity and specific 

conductance gradients are consistent with species thresholds 
identified in previous studies. Fathead minnows typically do 
not occur in alkaline waters above 2,000 mg/L (McCarraher 
and Thomas, 1968). The maximum alkalinity for a lake or 
wetland with fathead minnows during our sampling was 1,272 
mg/L. Brook sticklebacks are also limited to alkalinities below 
2,000 mg/L (Scott and Crossman, 1973). The maximum alka-
linity of lakes and wetlands with brook sticklebacks was 1,236 
mg/L. Similarly, brook sticklebacks, yellow perch, and barred 
tiger salamanders are limited to waters with a specific conduc-
tance <25,000 µS/cm at 25 °C (Scott and Crossman, 1973); 
4,500 µS/cm at 25 °C (Koel and Peterka, 1995); and 12,500 
µS/cm at 25 °C (Swanson and others, 1988), respectively. In 
our sampling, we determined these species to be completely 
absent in waters above 15,430 µS/cm at 25 °C (brook stickle-
back); 6,900 µS/cm at 25 °C (yellow perch); and 12,000 µS/
cm at 25 °C (barred tiger salamanders). The occurrence of 
fathead minnows in lakes and wetlands was mostly consistent 
with known thresholds (that is, maximum =12,000 µS/cm at 
25 °C; Burnham and Peterka, 1975); however, we did find 
fathead minnows in one lake with a specific conductance of 
15,530 µS/cm at 25 °C. It should also be noted that although 
tiger salamanders have similar tolerances to salinity as fathead 
minnows (12,500 and 12,000 µS/cm at 25 °C, respectively), 
we found that they were more tolerant of alkalinity and thrived 
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in alkaline waters >1,500 mg/L where fish were absent. In 
addition to the three common fish species already discussed, 
Iowa darters were only captured in lakes and wetlands with 
specific conductance between 672 and 2,361 µS/cm at 25 °C, 
indicating a preference for fresh water. 

Macroinvertebrates

Swanson and others (1988) present several examples of 
invertebrate shifts that occur in response to changes in salt 
concentrations. As an example, they describe how Lymnaea 
stagnalis (swamp lymnaea) was restricted to lakes and wet-
lands with relatively low dissolved salt concentrations (that is, 
specific conductance <5000 µS/cm at 25 °C). Above 5,000 µS/
cm at 25 °C, the swamp lymnaea is replaced by Stagnicola 
spp. as the dominant pond snail; however, Stagnicola is 
restricted to water with salt concentrations <10,000 µS/cm at 
25 °C. Swanson and others (1988) also describe how relatively 
few species can tolerate salt concentrations of highly saline 
lakes and wetlands and that these highly saline sites have 
invertebrate communities dominated by Artemia salina (brine 
shrimp), Ephydra spp. (brine flies) and Corixidae (water boat-
men). Gleason and others (2009) also determined that many 
aquatic invertebrate taxa occur across a relatively broad range 
of salt concentrations; however, the most highly saline waters 
are populated by relatively few taxa, including brine shrimp, 
copepods, and a small number of Coleoptera (beetle) and 
Diptera (fly) species.

 Our 2012 and 2013 sampling of macroinvertebrate com-
munities identified associations of invertebrates to salinity gra-
dients that paralleled those presented by Swanson and others 
(1988) and reviewed by Gleason and others (2009). Lymnaea 
stagnalis occurred in lakes and wetlands with specific con-
ductance values ranging from 721 to 3,587 µS/cm at 25 °C, 
well below the 5,000-µS/cm at 25 °C threshold identified by 
Swanson and others (1988). Stagnicola spp. were present in 
waters ranging from 1,153 to 6,740 µS/cm at 25 °C. Only a 
single lake or wetland sampled in 2012 to 2013 had salt con-
centrations resulting in a specific conductance >35,000 µS/cm 
at 25 °C (Lake 144). Invertebrates in this lake were restricted 
to only 10 taxa: brine shrimp, two copepods (Calanoida and 
Harpactocoida), a water flea, ostracods, water boatmen, one 
beetle (Hygrotus), and three flies (Ephydridae, Stratiomyidae, 
and Eristalis). This polysaline lake was the only lake sampled 
in which brine shrimp, Eristalis (hover flies), and harpacti-
coid copepods (Harpacticoida) occurred. We suspect that, at 
the even higher salt concentrations observed from 1966 to 
1976, additional taxa would fall out of the community until 
only brine shrimp, brine flies, and salt-tolerant copepods 
and water boatmen remained as described by Swanson and 
others (1988); however, the freshening of lakes and wetlands 
throughout our study region has made macroinvertebrate 
communities that are dominated by only the most salt-tolerant 
species a very rare occurrence. Instead, diverse macroinverte-
brate assemblages that include representatives from the wide 

range of less salt-tolerant species are more likely to reside in 
the more homogeneous habitat types resulting from the recent 
freshening of the region’s saline lakes and wetlands. 

The decline of species richness with increasing salinities 
is consistent with findings of Swanson and others (1988) and 
findings from similar closed basin lakes in Wyoming, Canada, 
and Australia (Timms, 1981; Hammer and others, 1990; and 
Wollheim and Lovvorn, 1995). Additionally, lakes and wet-
lands with high salinities had increased invertebrate abun-
dances. Similar studies indicate this increase in invertebrate 
abundance in saline lakes and wetlands with low diversity is 
caused by a shift to small, but highly abundant, suspended 
macroinvertebrates such as copepods and corixids dominat-
ing the more saline lakes (Rawson and Moore, 1944; Timms, 
1981; Galat and Robisnson, 1983; Wollheim and Lovvorn, 
1995). The increased availability of lower salinity habitats 
may likely benefit most waterfowl species that consistently 
prey on macroinvertebrates such as amphipods and snails but 
would not favor shorebirds such as phalaropes, avocets, and 
yellowlegs, species that consistently feed on the diving beetles 
and corixids commonly present at higher salinities (Wollheim 
and Lovvorn, 1995).

Implications for Waterfowl

Waterfowl breeding populations are surveyed annually 
by the U.S. Fish and Wildlife Service, and populations of most 
species are known to favorably respond to the number of early 
season breeding habitats (May ponds) available on the land-
scape (Zimpfer and others, 2014). Wetland modeling efforts in 
the PPR (Johnson and others, 2005, 2010) have predicted that 
under a warming climate, increases in evapotranspiration will 
likely overcome any precipitation increases associated with 
a changing climate and favorable waterfowl habitat condi-
tions will shift from the traditionally more productive areas 
of North Dakota, South Dakota, and Canada, such as the area 
we sampled, to the eastern edges of the region where wetland 
drainage and other alterations affecting wetlands have been 
greatest; however, May pond numbers throughout the PPR of 
the United States were high during much of the 1993 to 2014 
period because of the trend towards increased precipitation. 
The increased water on the landscape of our study region 
generally provided favorable conditions for most waterfowl; in 
fact, six waterfowl species have displayed marked population 
increases since 1993 reflective of the increased availability 
of aquatic habitats (including May ponds) across the region 
(Zimpfer and others, 2014; fig. 19). 

Although many waterfowl species responded favorably 
to increased availability of water on the landscape, some 
species failed to show a positive response (fig. 20), indicat-
ing that other factors were more important population effects 
for these species. One of the waterfowl species that failed to 
increase during the post-drought years of our study was Anas 
americana (American wigeon). Swanson and others (1988) 
highlighted this waterfowl species and suggested that high salt 
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Figure 19.  Breeding population of six waterfowl species that displayed marked increases during the 1993 to 2014 post-
drought period. A, Anas platyrhynchos (mallard); B, Anas strepera (gadwall); C, Anas discors (blue-winged teal); D, Anas 
crecca (green-winged teal); E, Aythya americana (redhead); and F, Anas clypeata (northern shoveler). Data from Zimpher 
and others, (2014).
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Figure 20.  Breeding population of four waterfowl species that did not display marked increases during the 1993 to 2014 
post-drought period. A, American wigeon (Anas americana); B, northern pintail (Anas acuta); C, canvasback (Aythya 
valisineria); and D, lesser scaup (Aythya affinis). Data from Zimpher and others (2014).

concentrations affected this species through the positive asso-
ciation of Ruppia maritima (widgeongrass) with higher water 
salinities. As its name implies, widgeongrass is a plant species 
favored by American wigeon. Widgeongrass is dominant over 
other less salt-tolerant plant species in lakes and wetlands with 
high salt concentrations. Due to its tolerance of high salinity 
water, widgeongrass is commonly present in coastal bays and 
other marine environments but also occurs in brackish and 
saline inland waters (Gleason and others, 2009). Although we 
did not sample plant communities in this study, it is likely that 
the freshening of most lakes and wetlands led to less favorable 
conditions for the growth of widgeongrass, which is outcom-
peted in fresher environments, and concurrently for the Ameri-
can wigeon populations that this plant supports; however, 
another waterfowl species that is known to respond positively 
to widgeongrass, the redhead, showed a marked increase in 
the post-drought years despite less favorable conditions for 
widgeongrass growth. 

Although likely negatively influencing widgeongrass, 
the freshening of lakes and wetlands likely produced condi-
tions more favorable to deep-marsh emergent plants such as 
cattails (Typha spp.) and bulrushes (Schoenoplectus spp.) that 

flourish in waters with lower salt concentrations (Gleason and 
others, 2009). Swanson and others (1988) listed four features 
of prairie lakes and wetlands that largely affect use by water-
fowl: (1) plant and invertebrate communities needed to meet 
waterfowl nutritional requirements, (2) overwater nesting 
cover, (3) a source of suitable (fresh) drinking water, and (4) 
escape cover for flightless birds. Both American wigeon and 
redhead populations would likely have been affected similarly 
by decrease in widgeongrass availability. Also, availability 
of drinking water and escape cover (deep-marsh emergent 
vegetation) would have both been positively affected for these 
species; however, the redhead is an overwater nesting spe-
cies, whereas the American wigeon is an upland nester. Thus, 
the increased availability of overwater nesting habitat in the 
form of increased stands of cattails and bulrushes surrounding 
lakes and wetlands may have affected redhead populations in a 
manner that compensated for negative effects from decreased 
availability of widgeongrass. Likewise, the American wigeon 
could have been affected by both a decrease in nutrient avail-
ability and a decline in nesting habitat if conditions in the 
uplands also were negatively affected by agricultural develop-
ment or other upland land-cover effects. To fully understand 
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the ultimate effect of changing chemical characteristics on 
waterfowl, populations and their unique habitat requirements 
must be considered at the species level. Additionally, other 
factors influencing waterfowl populations (for example, land-
cover in surrounding uplands, wintering habitat conditions, 
conditions along migratory corridors) must also be considered.

Conclusions
Between the original 1966 to 1976 sampling and our 2012 

to 2013 sampling, most prairie lakes and wetlands in Stutsman 
County and Kidder County, North Dakota, have increased 
markedly in size, depth, and water volume. These increases are 
largely related to precipitation increases that started following a 
drought that persisted from 1988 to July 1993. Increased water 
volumes in prairie lakes and wetlands have resulted in lower 
concentrations of most major ions through dilution. The fresh-
ening of these water bodies has resulted in a reduction in the 
diversity of water types that have historically supported diverse 
plant and animal communities in the region. Many lakes and 
wetlands were previously too salty for fish; however, the 
freshening of these wetlands to levels favorable to fish and an 
increase in surface connections facilitating fish movements into 
new areas have resulted in most sampled lakes and wetlands 
now containing fish, primarily fathead minnows and brook 
sticklebacks, but also including several game-fish species. This 
increase in fish prevalence across the prairie pothole landscape 
has resulted in tiger salamander populations being restricted 
primarily to sites where salt concentrations have remained 
high enough to restrict fish populations and to sites that have 
remained isolated in the terms of lacking surface water con-
nections suitable for fish movements. The changed chemical 
characteristics, fish communities, and invertebrate communi-
ties of sampled prairie lakes and wetlands likely also affect 
the suitability and use of these sites by waterfowl and other 
wildlife; however, effects, both positive and negative, will need 
to be assessed on a species specific basis. Whether these high 
water conditions, which have resulted in the fresh, relatively 
homogeneous habitat conditions for a region known for its 
diversity, will continue is unknown; however, the response of 
habitats and dependent wildlife to changing climate conditions 
will likely be far more complicated than has been indicated by 
previous modeling efforts suggesting an overall drying trend 
resulting from increased temperatures.
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Appendix 1.  Analytical laboratory methods used in 2012 and 2013 sampling of prairie lakes and wetlands in south-central North 
Dakota.

[Temp, temperature; mV, millivolts; mg/L, milligrams per liter; nm, nanometer]

Field methods

pH Beckman Coulter 250 pH/Temp/mV meter (part #511201) with Beckman Coulter combination pH electrode 
(part #511053). Two point standardization with 7.00 and 10.01 pH buffers.

Specific conductance WTW Model 315i meter with a TetraCon 325 standard conductivity measuring cell.
Laboratory methods

Total alkalinity Titrimetric: Endpoint titration with sulfuric acid using a Thermo 940-960 autotitrator. 
Sulfate Ion chromatography detection limit 0.1 mg/L.
Chloride Ion chromatography detection limit 0.1 mg/L.
Magnesium Inductively coupled plasma-optical emission spectroscopy; wavelength 285.211 nm.
Calcium Inductively coupled plasma-optical emission spectroscopy; wavelength 317.933 nm.
Sodium Inductively coupled plasma-optical emission spectroscopy; wavelength 589.592 nm.
Potassium Inductively coupled plasma-optical emission spectroscopy; wavelength 766.495 nm.
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Appendix 2.  Analytical laboratory methods used in 1966 to 1976 sampling of 178 prairie lakes and wetlands in south-central North 
Dakota (reproduced from Swanson and others, 1988).

[A 50-milliliter (mL) aliquot was placed in a 100-mL volumetric flask. The pH level was adjusted with hydrochloric acid to about 4, and 5 mL of 10-percent 
lanthanum solution was added. The volume was brought to 100 mL (the resulting solution had a lanthanum content of 1 percent). Calcium, magnesium, sodium, 
and potassium were then determined through atomic absorption spectrometry. ±, plus or minus; °C, degrees Celsius; nm, nanometer; Å, angstrom; mg/L, mil-
ligram per liter]

Field methods

pH Colorimetric: Model 17-N wide range pH comparator (Hach Chemical Co., Loveland, CO). Electrometric: 
Portomatic Model 175 I. L. pH meter with combination electrode (Instrumentation Laboratory, Watertown, 
Mass.).

Specific conductance Electrometric: portable Model Mark IV Lectro mho-meter with unbreakable sprole cell K–1 (Labline Instru-
ments Inc., Melrose, Ill.).

Laboratory methods

pH Electrometric: research Model 7415 L. N. pH-meter with combination electrode (Leeds & Northrup Co., Phila-
delphia, Pa.).

Total alkalinity Titrimetric: sulfuric acid titration with phelolphthalein and brom cresol green-methyl red indicators.
Specific conductance Electrometric: multipurpose Model 4959 resistance/conductance bridge with glass/platinum electrodes (Leeds & 

Northrup Co., Philadelphia, Pa.).
Fixed residue Gravimetric: furnace heating at 550 ± 5 °C.
Total residue Gravimetric: oven heating at 103 ± 2 °C.
Sulfate Turbidimetric: wavelength at 450 nm.
Chloride Titrimetric: mercuric nitrate titration with buffered diphenylcarbazone indicator.
Magnesium Spectrometric: Model 303 P-E spectrometer (Analytical Methods, Perkin-Elmer Corp., Norwalk, Conn.). 

Primary wavelength at 2,852 Å and burner at 90 °C to optical path for 0.1–60 mg/L; secondary wavelength at 
2,025 Å and burner at 90 °C to optical path for 0.1–600 mg/L.

Calcium Primary wavelength at 4,227 Å and for 0.1–1.5 mg/L; Primary wavelength and burner at 90 °C to optical path 
for 0.1–150 mg/L.

Sodium Primary wavelength at 5,890 Å for 0.1–75 mg/L; secondary wavelength at 3,302 Å for 0.1–700 mg/L.
Potassium Primary wavelength at 7,665 Å for 0.1–20 mg/L; primary wavelength and burner at 90 °C to optical path for 

0.1–100 mg/L; secondary wavelength at 4,044 Å for 0.1–140 mg/L.
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

1 5/1969 9.1 860 4,150 1,185 105 28 8 860 60

1 6/7/2013 9.0 771 2,723 899 49.5 64.9 22.3 573 52.6

2 3/1973 9.1 1,170 4,600 1,250 70 1 3 1,280 48

2 6/5/2013 9.0 861 4,614 1,780 34.6 55.2 22.3 1,000 28.8

3 9/1972 9.3 980 4,400 1,250 30 58 18 975 70

3 8/10/2012 9.1 741 6,350 3,301 49.8 150 44.8 1,395 98.9

4 6/1969 9.6 3,760 19,500 8,750 15 140 4 1,600 704

4 7/1/2013 9.0 748 1,933 448 45.1 88.6 18 296 47.2

5 6/1969 8.9 850 2,150 400 65 143 18 23 43

5 7/1/2013 8.8 421 867 137 16.9 66 31.3 66 14.7

6 9/1972 8.8 460 30,000 30,000 480 2,640 131 4,040 870

6 9/10/2013 8.9 470 5,180 2,970 66.3 348 44 857 92.4

7 3/1973 8.8 570 2,800 700 85 42 14 546 81

7 6/27/2012 8.5 644 1,850 494 41.0 81.3 38.4 273 35.2

8 6/1969 9.1 960 2,300 350 55 109 3 292 45

8 6/27/2012 8.1 605 1,885 522 41.4 72.6 41.3 285 32.9

9 9/1972 9.3 1,540 4,700 1,050 155 124 10 1,055 150

9 8/10/2012 9.3 839 1,934 357 44.4 95.9 8.69 282 46.2

10 9/1972 8.7 950 3,300 875 110 134 25 574 80

10 8/10/2012 9.8 615 1,347 270 30.4 78.8 9.99 186 29.7

11 6/1969 9.2 1,550 4,350 1,200 65 62 8 1,280 72

11 6/10/2013 9.0 804 1,693 306 19 59.2 18.3 344 38

12 6/1969 9.0 1,300 7,850 2,630 350 228 9 1,440 302

12 7/12/2013 8.9 715 2,969 1,020 77.8 96.8 31.5 536 62.7

13 6/1969 9.0 760 3,100 1,000 120 120 15 400 75

13 7/12/2013 8.9 707 2,972 1,030 77 101 31.6 512 65.6

14 7/1972 9.1 480 1,750 350 25 64 31 280 38

14 7/12/2013 8.7 657 2,804 966 70.4 92.9 38.5 450 56.2

15 5/1973 9.3 2,120 23,050 8,000 1,555 666 8 5,760 522

15 6/25/2012 8.9 1,246 11,190 5,902 663 377 27.4 2,650 225

16 7/1972 9.4 760 2,800 525 95 128 10 456 60

16 6/25/2012 8.9 1,228 11,450 5,827 668 367 27.6 2,610 221

17 9/1972 9.0 680 2,800 700 35 60 15 530 46

17 7/16/2013 9.0 482 1,450 413 14.5 60.2 26.3 221 23.9

18 11/1972 9.4 2,590 10,200 2,200 260 59 8 2,780 170

18 7/26/2013 9.2 867 2,925 864 52.3 61.8 16.9 610 51.2



38    Chemical and Biotic Characteristics of Prairie Lakes and Large Wetlands in South-Central North Dakota

Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

19 7/1970 9.6 6,040 42,000 8,000 6,670 1 2 11,500 960

19 7/16/2013 9.4 2,590 10,410 2,940 652 64.6 5.8 2,550 179

20 7/1972 9.1 830 7,050 2,125 300 170 25 1,564 167

20 8/5/2013 9.0 619 1,414 357 32.6 112 22.3 177 30.8

21 7/1970 9.4 5,960 64,000 22,500 13,470 62 2 21,800 660

21 7/18/2012 9.2 1,077 6,640 2,031 474 128 24.5 1,296 122

22 3/1973 9.1 610 25,000 10,250 2,470 910 15 5,920 814

22 6/10/2013 8.6 670 11,700 5,530 656 373 48.1 2,310 295

23 9/1972 8.7 1,410 34,000 13,750 3,485 1,560 24 10,760 1,460

23 7/15/2013 8.8 832 6,950 2,860 457 203 34.9 1,490 168

24 7/1970 9.6 10,800 40,000 13,750 2,775 27 3 12,000 972

24 8/5/2013 9.3 1,050 3,498 1,090 94 60.6 13.8 817 64.7

25 6/1969 9.1 450 960 95 45 75 17 33 70

25 6/27/2012 8.4 354 698 100 8.1 51.4 49.0 37 6.88

26 7/1972 9.0 1,420 31,300 15,500 2,295 2,984 7 8,160 800

26 6/25/2012 8.6 593 12,530 6,964 759 873 68.0 1,880 189

27 7/1969 9.1 380 30,100 18,750 2,480 1,492 83 6,880 348

27 7/15/2013 8.8 538 9,730 5,390 552 572 77.7 1,640 204

28 7/1972 9.0 800 2,140 310 60 192 8 192 80

28 7/11/2012 8.6 560 979 85 19.8 98.5 15.6 54 29.7

29 10/1976 8.2 270 1,020 250 20 62 35 67 15

29 7/9/2012 8.7 254 651 121 13.2 45.1 27.7 36 9.84

30 6/1967 9.3 1,720 14,900 6,875 945 200 100 3,660 245

30 7/31/2013 9.3 1,040 6,440 2,480 388 176 14.6 1,460 103

31 9/1972 9.3 640 3,900 1,000 240 190 11 595 80

31 7/31/2013 9.2 592 1,081 163 32 82.2 18.1 135 22.9

32 9/1973 8.9 700 32,000 14,500 2,405 1,580 56 8,400 652

32 7/22/2013 8.9 619 7,210 3,490 371 405 24.9 1,300 121

33 5/1971 9.1 620 1,280 225 25 174 104 40 26

33 7/2/2013 9.0 477 706 38 12.6 81.2 19.7 29 15.2

34 5/1971 9.1 500 1,380 300 35 174 28 48 30

34 7/2/2013 8.9 374 607 34 11.6 61.4 25.1 20 10.8

35 5/1971 8.9 240 565 49 15 39 52 14 5

35 7/2/2013 8.6 246 500 59 10.5 35.2 47.5 10 5.54

36 5/1971 9.2 670 1,360 200 30 170 18 70 36

36 7/25/2012 9.2 456 721 35 15.5 81.4 18.7 26 12.2
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

37 5/1971 8.9 700 2,350 500 70 204 27 208 78

37 7/25/2012 9.2 676 1,290 216 32.4 108 11.4 156 41.8

38 11/1972 9.0 530 1,140 90 35 59 10 64 76

38 7/5/2012 8.8 404 712 60 17.9 62.0 23.1 30 28.0

39 5/1971 9.5 150 365 40 20 45 17 11 8

39 7/18/2012 8.5 223 449 49 6.0 31.8 32.4 9 8.58

40 5/1971 8.3 400 690 48 15 73 50 22 11

40 7/20/2012 9.1 521 462 104 9.2 95.8 18.1 49 19.9

41 11/1972 9.0 350 770 75 20 52 13 36 15

41 7/24/2012 9.0 390 644 67 7.5 72.8 15.1 27 11.4

42 5/1971 8.7 590 3,500 1,250 140 282 61 264 74

42 8/7/2013 9.2 843 2,580 709 107 105 18.6 480 91.6

43 5/1971 8.9 1,250 47,000 33,750 4,255 3,024 68 11,200 960

43 7/25/2012 9.0 939 18,430 9,556 1,292 657 24.2 4,147 330

44 7/1972 9.4 1,280 10,200 3,125 575 424 8 1,950 280

44 7/25/2012 9.2 926 3,262 962 136 197 8.86 433 69.2

45 7/1972 9.4 1,280 8,150 1,850 410 412 7 1,530 188

45 7/24/2012 9.1 931 3,762 1,188 179 212 11.7 524 72.6

46 7/1971 8.8 560 1,440 125 145 156 27 106 36

46 -- -- -- -- -- -- -- -- -- --

47 5/1971 9.3 930 4,400 1,000 280 192 13 562 184

47 6/10/2013 9.1 719 1,293 139 46.1 98.4 19.6 142 36.9

48 7/1969 9.5 1,510 10,100 1,625 1,720 10 1 1,860 174

48 7/18/2012 9.2 1,236 4,422 843 354 71.6 14.2 857 61.0

49 9/1972 9.3 890 3,700 900 160 110 12 746 55

49 8/7/2013 8.9 670 1,359 275 26.6 90.4 29.7 200 21.1

50 9/1972 8.4 700 2,100 400 35 194 47 240 50

50 8/1/2012 9.1 646 1,089 108 13.4 89.5 12.7 119 20.5

51 9/1972 9.3 1,940 12,000 5,000 45 75 13 3,780 280

51 8/1/2012 8.8 1,220 4,687 1,623 77.1 80.5 19.6 966 88.8

52 9/1972 9.4 1,290 8,500 2,750 160 134 12 2,000 170

52 8/1/2012 8.8 873 3,652 1,338 37.6 91.9 35.7 687 48.6

53 9/1972 9.5 2,630 11,200 4,375 265 101 10 3,910 250

53 7/26/2013 9.0 745 3,651 1,480 27.7 85.9 35.6 797 49

54 5/1973 9.3 840 13,500 7,500 390 103 73 5,000 240

54 6/17/2013 9.0 561 3,392 1,390 22.3 80.4 30.3 659 41.3
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

55 9/1972 8.5 720 2,230 440 35 52 39 418 53

55 -- -- -- -- -- -- -- -- -- --

56 9/1972 10.0 320 1,950 550 15 62 25 280 60

56 7/26/2013 8.9 603 1,449 348 11.6 80.4 21.3 218 34.5

57 9/1972 9.2 980 3,600 1,000 35 122 9 630 80

57 8/3/2012 9.0 609 1,514 352 14.3 86.9 11.0 216 34.4

58 9/1972 9.4 810 3,100 800 70 280 8 375 104

58 8/6/2012 8.8 648 1,109 132 23.0 99.4 24.1 88 41.3

59 9/1972 9.3 920 3,100 700 85 164 10 350 150

59 8/6/2012 9.0 717 1,642 418 38.5 143 23.1 165 87.0

60 9/1972 8.4 390 750 28 15 70 30 25 25

60 8/6/2012 8.8 353 625 76 8.8 57.9 25.1 30 17.8

61 9/1972 9.2 1,040 2,220 220 65 152 11 270 110

61 8/9/2013 8.7 748 958 10 14.6 103 31.6 64 32.1

62 9/1972 8.8 800 2,700 600 50 232 29 250 100

62 8/9/2013 8.8 521 1,160 295 13.5 101 34.9 94 40.2

63 8/1973 9.6 3,430 18,000 6,500 25 500 12 4,840 424

63 8/3/2012 9.1 634 1,768 464 17.5 73.6 26.5 255 32.0

64 8/1973 8.7 920 4,000 230 25 118 29 755 84

64 8/3/2012 8.9 633 1,794 457 17.6 74.4 26.6 259 32.5

65 9/1972 8.8 460 1,200 125 45 86 16 135 22

65 8/7/2013 9.0 460 740 34 35 66.6 22.8 62 11.3

66 10/1972 9.2 1,100 4,800 1,500 150 67 22 1,260 80

66 -- -- -- -- -- -- -- -- -- --

67 9/1972 9.5 1,400 5,900 2,500 350 166 5 1,980 110

67 7/30/2012 9.0 820 3,876 1,347 129 102 11.8 768 46.5

68 9/1972 9.7 4,040 34,000 21,250 3,250 860 1 17,120 430

68 7/30/2012 9.2 1,272 11,200 4,577 513 185 21.5 2,572 129

69 9/1972 9.5 970 2,800 550 60 142 3 424 90

69 7/30/2012 9.0 659 1,487 316 26.4 94.5 13.6 169 39.6

70 9/1972 9.3 1,410 6,800 2,000 295 162 24 2,320 140

70 8/9/2013 8.9 734 2,689 886 72.5 80.9 36.6 551 46.2

71 10/1972 8.9 910 6,200 2,500 175 464 35 1,215 150

71 8/12/2013 8.9 494 2,826 1,220 46 183 56.5 366 48.1

72 9/1972 9.0 320 580 38 5 54 11 35 14

72 7/18/2013 8.3 350 537 19 2.9 38.3 37.6 18 6.56
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

73 9/1972 9.6 1,790 3,600 1,000 210 73 4 1,330 100

73 7/18/2013 9.9 1,230 3,956 1,020 125 58.7 8.6 830 56.8

74 9/1972 9.3 1,330 4,500 855 205 188 6 835 80

74 7/18/2013 9.1 578 1,459 308 43.4 80.6 25 184 21.5

75 9/1972 10.2 390 4,200 1,375 200 164 13 576 80

75 7/22/2013 8.7 608 2,626 996 107 191 26.9 298 54.7

76 9/1972 9.1 490 1,020 75 30 79 12 64 50

76 7/27/2012 9.0 474 990 187 16.9 97.5 17.3 55 40.9

77 9/1972 9.5 900 8,000 4,000 780 396 13 2,300 198

77 8/12/2013 9.2 622 3,587 1,230 181 126 29.5 666 67.7

78 5/1973 9.6 4,840 25,000 6,250 5,240 80 30 17,280 244

78 6/17/2013 -- 1,090 4,290 1,010 374 89.1 15.4 927 53.2

79 5/1973 9.7 920 3,200 500 215 43 7 605 82

79 6/17/2013 9.3 945 2,993 609 234 65.5 17.4 578 55.4

80 9/1972 9.4 570 3,900 1,000 285 192 14 582 80

80 7/29/2013 9.0 630 2,546 877 138 167 36.3 373 53.3

81 9/1972 8.6 670 2,000 450 126 119 19 374 62

81 7/29/2013 8.8 427 1,148 292 44.9 83.5 41 119 22.9

82 6/1967 8.8 480 3,140 1,250 95 200 58 384 80

82 7/16/2012 8.7 446 2,190 851 47.4 154 51.4 213 50.7

83 6/1967 8.3 270 1,075 500 15 72 108 38 17

83 7/6/2012 8.2 229 707 173 19.2 52.8 49.8 21 8.81

84 9/1972 8.7 590 2,900 700 75 256 11 220 62

84 7/6/2012 8.9 364 812 163 9.8 70.9 32.8 41 15.4

85 7/1972 8.7 480 1,920 475 50 150 39 215 42

85 7/6/2012 9.1 487 1,175 223 21.9 97.7 26.7 96 24.5

86 5/1973 8.5 550 1,180 120 20 111 47 40 19

86 6/22/2012 8.6 513 747 48 13.3 80.3 31.6 30 14.0

87 5/1973 9.1 1,700 38,000 25,000 1,925 3,520 22 6,640 726

87 6/22/2012 8.7 992 11,310 7,304 431 970 40.8 1,920 234

88 5/1973 8.8 1,200 8,500 2,300 335 610 16 1,360 224

88 6/27/2012 8.7 587 2,094 781 57.4 148 44.0 243 48.2

89 5/1973 8.7 1,000 9,500 3,900 400 810 28 1,560 264

89 6/29/2012 8.7 565 2,102 740 54.1 144 46.4 233 47.2

90 7/1972 7.9 290 800 100 25 53 59 44 37

90 6/27/2012 8.5 327 1,509 600 18.7 114 74.1 100 20.3



42    Chemical and Biotic Characteristics of Prairie Lakes and Large Wetlands in South-Central North Dakota

Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

91 7/1972 9.0 300 1,020 300 25 65 46 86 36

91 7/16/2012 8.7 330 1,434 515 21.4 112 64.1 86 21.9

92 7/1972 9.5 290 930 260 25 91 34 73 33

92 7/16/2012 9.0 324 1,677 689 28.2 136 49.5 124 19.5

93 6/1972 9.1 270 1,080 240 30 79 50 108 39

93 7/5/2012 8.8 382 1,417 491 23.2 86.8 82.9 109 19.8

94 7/1972 9.4 310 1,080 290 30 61 89 105 31

94 7/5/2012 9.2 305 2,045 825 35.9 118 82.7 189 23.6

95 6/1972 8.5 550 2,250 500 100 140 43 285 58

95 6/25/2013 9.0 490 1,384 358 34.1 104 39.6 120 32.5

96 6/1972 8.8 700 3,900 1,375 165 200 36 542 94

96 6/25/2013 9.0 494 1,355 347 33.3 101 40.7 115 30.8

97 6/1972 8.6 430 1,625 350 50 161 45 153 46

97 6/25/2013 8.8 492 1,365 360 33.5 103 39.7 116 31.8

98 7/1972 9.9 520 1,550 360 70 126 41 196 54

98 8/24/2013 8.8 562 1,527 431 38.5 119 58.7 131 35.7

99 7/1972 9.2 580 1,300 140 20 130 15 89 28

99 7/2/2012 8.6 397 1,366 442 10.7 124 40.0 64 11.0

100 7/1972 9.1 430 1,160 190 20 108 13 60 24

100 7/2/2012 8.8 319 1,184 387 15.4 92.9 58.7 55 12.9

101 6/1972 8.5 360 940 110 20 94 44 60 25

101 6/19/2013 9.0 428 1,166 328 15.9 89.9 56.2 72 24.8

102 6/1972 9.5 600 4,800 650 165 310 32 760 168

102 6/19/2013 8.9 438 1,201 348 17.7 95.3 56.6 81 27.5

103 6/1972 8.1 480 2,530 500 100 134 66 336 82

103 6/19/2013 9.2 562 2,109 757 77.4 123 78.6 246 77.2

104 6/1972 9.0 420 930 90 50 67 51 86 36

104 6/26/2013 8.7 416 1,456 488 28 112 45.3 120 29

105 6/1967 8.5 570 1,700 150 40 100 48 105 67

105 6/14/2012 8.5 743 1,495 667 50.8 129 66.9 242 84.0

106 6/1972 8.5 380 1,380 325 20 162 91 64 42

106 6/18/2012 9.0 465 1,125 315 7.5 110 58.0 48 25.0

107 6/1972 8.4 610 2,500 500 60 154 59 322 65

107 -- -- -- -- -- -- -- -- -- --

108 6/1972 8.7 390 8,100 2,750 435 524 93 1,690 152

108 6/18/2012 8.8 431 3,340 1,719 126 204 86.2 442 64.0
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

109 6/1972 7.8 370 980 110 45 65 47 87 40

109 6/18/2012 8.7 464 1,192 375 27.6 86.1 69.4 104 31.2

110 6/1972 8.2 490 3,200 400 110 184 66 530 68

110 8/20/2013 9.1 449 2,308 924 44.6 148 60 260 46.3

111 6/1972 7.9 310 670 50 15 52 50 28 38

111 6/14/2012 8.7 438 743 122 9.2 62.1 62.7 32 21.7

112 10/1972 8.7 440 2,500 1,000 20 290 115 134 58

112 6/27/2013 8.4 387 3,220 1,850 20.8 370 121 196 40.6

113 10/1972 8.4 440 1,750 350 50 118 65 86 54

113 -- -- -- -- -- -- -- -- -- --

114 6/1972 8.2 620 2,350 400 115 109 83 475 104

114 9/9/2013 9.0 712 1,681 359 43.9 76 59.6 240 61.9

115 6/1972 8.4 630 5,000 700 82 216 131 700 65

115 6/21/2013 8.7 568 3,714 1,110 459 207 77 491 47.6

116 6/1972 8.4 560 10,800 1,500 2,135 14 21 2,430 132

116 -- -- -- -- -- -- -- -- -- --

117 5/1972 9.5 530 4,600 350 940 4 18 1,110 33

117 6/13/2013 9.0 505 3,250 820 449 36.3 37.1 695 20.3

118 5/1972 9.0 410 3,330 300 585 4 19 700 30

118 -- -- -- -- -- -- -- -- -- --

119 5/1972 8.5 390 6,300 1,200 200 80 40 1,360 52

119 8/2/2013 8.6 579 3,838 1,220 318 60 43.1 821 35

120 5/1972 9.0 970 6,280 1,000 555 56 22 960 54

120 -- -- -- -- -- -- -- -- -- --

121 5/1972 9.0 750 2,050 190 155 50 26 470 24

121 8/19/2013 9.0 436 1,852 613 51.9 72.1 40.2 293 21.1

122 5/1972 9.0 330 2,400 350 320 19 24 490 32

122 8/19/2013 9.0 592 2,875 760 195 62.9 59.7 507 36.5

123 5/1972 9.0 390 2,750 290 160 160 29 380 46

123 8/19/2013 8.7 288 1,661 619 52 106 62.5 156 21.6

124 5/1972 9.0 530 4,800 1,125 470 196 60 800 72

124 8/19/2013 8.8 353 1,845 608 57.4 112 71 166 24.2

125 5/1972 8.1 370 5,700 2,000 225 430 140 720 95

125 9/10/2013 8.4 379 2,917 1,430 67 226 111 303 49.2

126 5/1972 9.0 660 4,700 800 500 104 24 1,020 45

126 6/20/2012 8.5 498 2,155 760 126 89.0 80.5 336 27.1
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

127 5/1972 9.0 640 9,500 2,000 1,065 294 57 2,030 100

127 8/20/2013 9.0 547 2,697 881 137 105 76.9 407 33.7

128 5/1972 8.5 320 6,500 1,625 485 270 87 1,200 75

128 6/20/2012 8.7 494 2,461 782 124 88.8 81.8 304 27.4

129 5/1972 8.5 300 1,400 300 25 100 78 67 24

129 6/4/2012 8.4 306 1,252 427 25.4 86.5 104 42 16.8

130 5/1972 8.5 330 1,340 300 25 90 92 54 20

130 6/4/2012 8.4 338 1,162 405 24.0 81.1 117 41 15.2

131 5/1972 8.0 310 1,460 350 30 110 78 66 26

131 6/4/2012 8.5 347 1,153 407 24.0 84.6 110 44 16.2

132 5/1972 9.0 650 3,400 700 275 200 62 407 92

132 6/5/2012 8.7 512 2,240 804 157 134 58.9 298 55.4

133 6/1967 9.2 330 490 44 20 25 40 18 25

133 7/8/2013 9.0 262 879 248 13.6 50.7 50.7 62 26.3

134 9/1972 8.9 490 3,500 300 325 216 56 400 118

134 7/8/2013 8.8 505 2,224 690 149 160 66.3 203 44.2

135 9/1972 9.0 1,000 30,000 15,000 1,870 2,200 116 9,800 720

135 7/8/2013 8.9 506 2,687 1,040 78.7 142 52.4 366 42.2

136 9/1972 8.9 370 970 110 30 76 24 75 23

136 7/1/2013 8.7 380 656 68 7.9 53.1 42.2 31 11.6

137 9/1972 9.8 170 7,000 1,500 915 262 60 1,200 150

137 -- -- -- -- -- -- -- -- -- --

138 6/1967 8.6 410 12,500 3,750 1,740 209 268 1,300 190

138 -- -- -- -- -- -- -- -- -- --

139 6/1967 8.8 660 9,400 3,500 1,225 210 45 1,556 175

139 8/22/2013 8.9 514 3,547 1,020 379 190 23.4 514 68.3

140 9/1972 8.5 450 2,060 500 45 118 56 243 50

140 7/9/2013 8.8 447 1,512 487 23.2 103 42.8 137 22.4

141 5/1972 8.9 430 47,000 35,000 3,000 704 131 3,900 380

141 6/6/2013 8.7 717 15,430 8,560 984 615 164 3,460 182

142 5/1972 8.5 380 14,600 4,750 1,990 780 131 2,690 192

142 6/6/2013 8.9 604 4,359 1,670 318 270 39.5 632 80.8

143 9/1972 9.1 750 10,140 5,625 125 728 30 2,730 325

143 7/9/2013 9.0 591 3,181 1,150 153 182 38.5 431 69.6

144 5/1973 9.5 610 36,000 25,000 4,785 1120 77 19,520 428

144 6/6/2013 8.6 580 40,350 27,000 2,520 1050 94.1 13,000 484
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

145 9/1972 8.9 550 2,500 550 50 187 43 320 37

145 8/8/2012 9.7 395 984 283 17.7 84.3 18.2 107 15.2

146 9/1972 8.9 500 21,000 12,750 885 2020 52 5,500 570

146 8/8/2012 8.9 635 6,580 3,684 166 437 82.3 989 109

147 9/1972 9.3 810 22,500 14,750 935 2560 68 5,800 580

147 8/8/2012 8.9 545 5,950 3,307 140 437 81.3 905 114

148 7/1969 9.5 570 15,900 5,000 1,295 816 30 3,200 250

148 7/13/2012 8.9 659 5,850 2,321 429 310 69.4 865 97.4

150 11/1966 8.6 580 7,000 3,500 555 390 116 1,432 180

150 7/9/2012 8.7 677 6,810 2,836 534 345 49.7 977 118

151 5/1969 9.0 530 2,090 500 75 88 31 112 31

151 7/13/2012 8.8 631 6,740 2,760 528 347 62.2 989 116

152 6/1967 8.6 510 9,000 3,625 1,005 200 162 1,420 132

152 7/11/2012 8.5 676 3,306 2,917 615 414 82.0 1,227 110

153 9/1972 8.2 770 70,300 87,500 1,738 11,600 90 20,600 3,600

153 7/11/2012 8.6 598 8,000 1,424 229 239 67.9 430 85.5

154 9/1972 9.4 750 4,200 1,500 235 320 22 580 140

154 7/24/2013 8.8 585 3,128 1,140 163 217 65.3 377 59.9

155 12/1975 9.3 1,550 9,300 1,875 640 825 20 1,435 316

155 8/22/2013 8.8 574 2,939 1,090 153 205 59.3 332 54.4

156 8/1976 10.1 560 29,500 21,250 3,355 841 30 6,400 532

156 7/9/2012 8.9 617 6,900 2,894 544 348 57.4 959 118

157 5/1969 8.4 560 35,000 21,250 3,000 1180 196 6,440 752

157 7/13/2012 8.8 623 6,830 2,900 548 379 58.0 1,048 127

158 5/1969 8.6 480 3,400 950 100 106 82 148 56

158 9/5/2013 8.9 576 3,988 1,760 163 293 77.4 544 67

159 6/1972 8.7 430 1,320 250 45 124 76 104 38

159 6/14/2012 8.6 536 1,297 387 30.4 112 50.5 111 29.0

160 5/1967 8.5 320 1,420 360 20 113 60 90 36

160 6/12/2013 8.8 361 1,165 387 9.3 97.9 66.9 60 16.4

161 5/1967 8.9 640 1,080 85 20 104 21 90 50

161 6/12/2013 9.1 428 844 144 9.6 88.2 32.8 34 19.3

162 10/1973 8.3 460 1,000 70 30 106 83 40 40

162 6/21/2013 8.9 342 672 112 6.8 64.6 31.1 21 10.7

164 9/1973 8.4 390 1,850 345 50 88 62 212 50

164 8/12/2013 9.1 494 2,209 909 39.3 136 80.5 287 37.7
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Appendix 3.  Chemical characteristics of prairie lakes and wetlands (major Ions).—Continued

[HCO3-, hydrogen carbonate; mg/L, milligrams per liter; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; --, no data]

Lake  
number1

Date 
sampled

pH
Alkalinity  
(as HCO3-) 

(mg/L)

Specific  
conductance 

 (µS/cm at 25 ºC)

Sulfate 
(mg/L)

Chloride   
(mg/L)

Magnesium  
(mg/L)

Calcium 
(mg/L)

Sodium 
(mg/L)

Potassium   
(mg/L)

165 9/1973 8.5 1,200 2,600 80 100 84 62 330 96

165 7/20/2012 8.8 530 2,578 964 45.3 141 75.3 285 34.9

166 9/1972 9.0 1,280 8,800 4,750 815 560 11 2,470 220

166 -- -- -- -- -- -- -- -- -- --

167 7/1970 8.6 1,580 19,500 12,000 720 1260 114 3,500 400

167 6/22/2012 8.7 955 11,570 7,314 435 939 38.0 1,850 226

168 9/1973 8.6 720 3,200 400 125 220 26 470 82

168 7/9/2013 8.8 503 2,361 919 66.2 149 54.9 268 43.1

169 6/1967 8.8 870 9,800 4,500 425 200 44 1,688 170

169 7/16/2013 8.9 850 4,252 1,560 177 156 23.4 755 77.8

170 6/1967 9.0 420 9,600 4,000 915 204 171 2,000 235

170 7/24/2013 9.0 545 4,008 1,480 235 263 42.1 534 77.2

171 6/1967 9.3 2,300 15,000 6,000 890 20 13 394 133

171 8/5/2013 9.3 2,370 8,320 2,290 574 35.3 6.7 2,380 104

172 6/1967 8.6 380 880 175 20 76 42 45 24

172 7/2/2012 8.8 368 1,118 304 6.9 89.1 64.7 51 10.3

173 4/1968 8.7 385 840 97 13 60 64 26 20

173 6/12/2012 8.6 556 1,292 540 18.3 148 74.3 98 30.2

174 4/1968 8.2 320 775 115 15 55 46 32 19

174 6/12/2012 8.6 555 1,373 553 18.3 148 73.4 91 30.0

175 4/1968 7.5 160 375 18 13 15 34 3 19

175 6/12/2012 8.6 535 1,390 556 18.2 148 73.5 91 29.9

176 7/1975 7.6 290 990 200 10 70 54 36 19

176 6/27/2013 8.6 666 1,647 448 15.1 159 42.9 118 34.9

177 8/1975 7.4 300 590 32 15 25 59 8 4

177 9/12/2013 9.0 451 1,131 352 15.9 107 50.5 78 24.3

178 6/1967 8.3 530 2,575 1,250 60 182 45 264 68

178 7/15/2013 8.8 608 1,448 377 23.6 118 32.2 118 29.2

180 10/1973 8.0 390 2,900 725 105 168 84 240 68

180 7/20/2012 9.0 408 1,970 726 31.4 145 81.2 153 26.1

181 6/1967 8.7 670 3,050 1,175 125 204 50 360 17

181 8/22/2013 8.7 467 2,582 1,090 58.9 184 60.4 270 63.5
1There are no lakes numbered 149, 163, and 179.
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Appendix 4.  Aquatic vertebrate captures in prairie lakes and wetlands.

[--, not sampled]

Lake  
number1

Fathead  
minnows

Brook  
stickleback

Iowa  
darter

Yellow  
perch

Northern  
pike

Walleye
Smallmouth 

bass
Bluegill

Common  
carp

Black  
bullhead

Barred tiger 
salamander

Northern 
leopard  

frog

1 392 0 0 0 0 0 0 0 0 0 0 0

2 267 0 0 0 0 0 0 0 0 0 0 0

3 4,642 2 0 0 0 0 0 0 0 0 0 0

4 10 0 0 2 0 0 0 0 0 0 0 0

5 1,046 0 18 0 0 0 0 0 2 0 0 0

6 -- -- -- -- -- -- -- -- -- -- -- --

7 11 0 16 0 0 0 0 0 0 0 0 0

8 2 0 1 0 0 3 0 0 0 0 0 0

9 386 0 0 0 0 0 0 0 0 0 1 0

10 56 1 1 0 0 0 0 0 0 0 10 0

11 1,745 0 0 0 0 0 0 0 0 0 0 0

12 2 0 0 15 0 0 0 0 0 0 0 0

13 55 0 0 142 0 1 0 0 0 0 0 0

14 212 0 0 565 0 0 0 0 0 0 0 0

15 2,419 0 0 0 0 0 0 0 0 0 2 0

16 872 0 0 0 0 0 0 0 0 0 17 0

17 6,100 12 0 0 0 0 0 0 0 0 1 179

18 85 47 0 1 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 24 0

20 51 0 0 137 0 0 0 0 0 0 0 0

21 5,888 0 0 0 0 0 0 0 0 0 2 0

22 0 0 0 0 0 0 0 0 0 0 6 0

23 0 0 0 0 0 0 0 0 0 0 426 0

24 998 0 0 124 0 0 0 0 0 0 16 0

25 1,842 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 25 0

27 0 4 0 0 0 0 0 0 0 0 250 0

28 0 0 0 11 1 0 0 0 0 0 0 0

29 3 0 0 54 0 1 0 0 0 4 0 0

30 51 0 0 4 0 0 0 0 0 0 0 0

31 1,167 12 0 0 0 0 0 0 0 0 0 0

32 758 4 0 0 0 0 0 0 0 0 1 0

33 -- -- -- -- -- -- -- -- -- -- -- --

34 256 0 0 15 1 0 0 0 0 0 0 0

35 484 1 0 29 1 0 0 0 0 0 0 0

36 38 0 0 14 0 0 0 0 0 0 0 0

37 1,712 0 0 0 0 0 0 0 0 0 2 0
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Appendix 4.  Aquatic vertebrate captures in prairie lakes and wetlands.—Continued

[--, not sampled]

Lake  
number1

Fathead  
minnows

Brook  
stickleback

Iowa  
darter

Yellow  
perch

Northern  
pike

Walleye
Smallmouth 

bass
Bluegill

Common  
carp

Black  
bullhead

Barred tiger 
salamander

Northern 
leopard  

frog

38 8 0 0 0 0 1 0 0 0 0 0 0

39 42 0 0 52 0 0 0 0 0 0 0 0

40 3,671 0 0 2 0 0 0 0 0 0 1 0

41 0 0 0 0 0 0 5 0 0 0 0 0

42 254 0 0 0 0 0 0 0 0 0 20 0

43 0 0 0 0 0 0 0 0 0 0 0 0

44 1,610 5 0 0 0 0 0 0 0 0 0 0

45 141 17 0 0 0 0 0 0 0 0 0 0

46 -- -- -- -- -- -- -- -- -- -- -- --

47 5,733 6 0 1 0 0 0 0 0 0 0 0

48 113 1 0 0 0 0 0 0 0 0 0 0

49 3 0 0 0 1 0 0 0 0 0 0 0

50 1,349 43 0 0 0 0 0 0 0 0 24 1

51 2,114 1 0 0 0 0 0 0 0 0 19 0

52 2,781 4 0 0 0 0 0 0 0 0 28 0

53 2,018 0 0 0 0 0 0 0 0 0 63 0

54 9,169 1 0 0 0 0 0 0 0 0 0 0

55 -- -- -- -- -- -- -- -- -- -- -- --

56 1 0 0 20 0 0 0 0 0 0 0 0

57 50 0 0 24 0 0 0 0 0 0 0 0

58 580 0 0 0 0 0 0 0 0 0 21 0

59 54 0 0 9 0 0 0 0 0 0 0 0

60 1 0 0 10 0 0 0 0 0 0 0 0

61 0 0 0 0 0 0 0 0 0 0 13 0

62 0 0 0 0 0 0 0 0 0 0 139 0

63 219 0 0 3 0 3 0 0 0 0 0 0

64 8 0 0 3 0 1 0 0 0 0 0 0

65 4 0 0 0 0 0 0 0 0 0 11 0

66 -- -- -- -- -- -- -- -- -- -- -- --

67 543 0 0 0 0 0 0 0 0 0 0 0

68 534 0 0 0 0 0 0 0 0 0 143 0

69 576 1 0 9 0 0 0 0 0 0 12 0

70 0 0 0 0 0 0 0 0 0 0 0 0

71 52 0 0 183 0 0 0 0 0 0 0 0

72 0 0 0 81 0 0 0 0 0 0 0 0

73 1,348 41 0 0 0 0 0 0 0 0 96 0

74 3 0 0 162 0 2 0 0 0 0 0 0



Appendixes 1–5    49

Appendix 4.  Aquatic vertebrate captures in prairie lakes and wetlands.—Continued

[--, not sampled]

Lake  
number1

Fathead  
minnows

Brook  
stickleback

Iowa  
darter

Yellow  
perch

Northern  
pike

Walleye
Smallmouth 

bass
Bluegill

Common  
carp

Black  
bullhead

Barred tiger 
salamander

Northern 
leopard  

frog

75 0 0 0 282 0 0 0 0 0 0 2 0

76 -- -- -- -- -- -- -- -- -- -- -- --

77 0 0 0 773 0 0 0 0 0 0 33 0

78 4 0 0 0 0 0 0 0 0 0 0 0

79 13,809 67 0 0 0 0 0 0 0 0 0 0

80 144 1 0 369 0 0 0 0 0 0 0 0

81 67 0 0 117 0 0 0 0 0 0 0 0

82 7 1 1 17 0 3 0 0 0 0 0 0

83 3,286 14 0 0 0 0 0 0 0 0 0 1

84 1,868 0 0 0 0 0 0 0 0 0 0 14

85 2,129 0 0 0 0 0 0 0 0 0 11 8

86 2,573 0 0 0 0 0 0 0 0 0 0 27

87 15 0 0 0 0 0 0 0 0 0 10 0

88 144 0 0 91 0 0 0 0 0 0 0 0

89 8 1 0 29 0 0 0 0 0 0 0 0

90 8,350 35 0 0 0 0 0 0 0 0 0 0

91 184 1 45 0 0 0 0 0 10 0 0 0

92 921 55 50 0 0 0 0 0 0 0 0 0

93 101 12 4 0 0 1 0 0 1 0 0 0

94 4,122 7 3 0 0 0 0 0 0 0 1 0

95 19,167 4 0 0 0 0 0 0 0 0 0 0

96 7,769 33 0 0 0 0 0 0 0 0 0 0

97 13,756 32 0 0 0 0 0 0 0 0 0 0

98 -- -- -- -- -- -- -- -- -- -- -- --

99 3,370 31 52 0 0 0 0 0 0 0 0 0

100 4,081 69 58 0 0 0 0 0 0 0 0 0

101 739 0 0 1 0 0 0 0 0 0 0 0

102 1,167 0 0 1 0 0 0 0 0 0 0 0

103 74 0 0 1 0 0 0 0 0 0 0 0

104 10,276 19 0 0 0 0 0 0 0 0 0 1

105 19,552 208 0 0 0 0 0 0 0 0 0 0

106 0 0 0 0 0 0 0 0 0 0 2 0

107 -- -- -- -- -- -- -- -- -- -- -- --

108 1,266 0 0 0 0 0 0 0 0 0 2 15

109 2,852 35 1 0 0 0 0 0 0 0 41 19

110 214 1 10 27 0 0 0 0 0 0 0 0

111 3,534 0 0 0 0 0 0 0 0 0 9 0
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Appendix 4.  Aquatic vertebrate captures in prairie lakes and wetlands.—Continued

[--, not sampled]

Lake  
number1

Fathead  
minnows

Brook  
stickleback

Iowa  
darter

Yellow  
perch

Northern  
pike

Walleye
Smallmouth 

bass
Bluegill

Common  
carp

Black  
bullhead

Barred tiger 
salamander

Northern 
leopard  

frog

112 0 0 0 0 0 0 0 0 0 0 54 0

113 -- -- -- -- -- -- -- -- -- -- -- --

114 0 0 0 0 0 0 0 0 0 0 38 20

115 3,053 327 0 0 0 0 0 0 0 0 0 0

116 -- -- -- -- -- -- -- -- -- -- -- --

117 11,324 0 0 0 0 0 0 0 0 0 0 0

118 -- -- -- -- -- -- -- -- -- -- -- --

119 355 2 0 0 0 0 0 0 0 0 39 1

120 -- -- -- -- -- -- -- -- -- -- -- --

121 12,183 24 0 3 0 0 0 0 0 0 0 0

122 963 0 0 129 0 0 0 0 0 0 0 0

123 0 0 0 0 0 1 0 0 0 3 0 0

124 542 0 4 234 0 0 0 0 0 2 0 0

125 -- -- -- -- -- -- -- -- -- -- -- --

126 1,675 0 0 113 0 0 0 0 0 0 1 0

127 1,284 1 0 56 0 0 0 0 0 0 3 0

128 0 51 0 0 0 0 0 0 0 0 3 0

129 9,549 93 0 0 0 0 0 0 0 0 0 0

130 13,517 29 0 0 0 0 0 0 0 0 0 0

131 7,764 331 0 0 0 0 0 0 0 0 0 0

132 0 0 0 0 0 0 0 0 0 0 25 0

133 1,156 128 0 0 0 0 0 0 0 0 1 0

134 6,204 0 0 0 0 0 0 0 0 0 1 0

135 4,784 0 0 0 0 0 0 0 0 0 0 247

136 53 0 0 0 0 0 0 0 0 0 0 0

137 -- -- -- -- -- -- -- -- -- -- -- --

138 -- -- -- -- -- -- -- -- -- -- -- --

139 8,835 0 0 0 0 0 0 0 0 0 0 0

140 13,996 25 0 0 0 0 0 0 0 0 1 46

141 11,060 22 0 0 0 0 0 0 0 0 0 0

142 257 2 0 0 0 0 0 0 0 0 0 0

143 3,471 19 0 0 0 0 0 0 0 0 0 0

144 0 0 0 0 0 0 0 0 0 0 0 0

145 842 87 0 0 0 0 0 0 0 0 0 2

146 0 0 0 0 0 0 0 0 0 0 243 0

147 0 0 0 0 0 0 0 0 0 0 163 0

148 3,962 15 0 0 0 0 0 0 0 0 0 0
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Appendix 4.  Aquatic vertebrate captures in prairie lakes and wetlands.—Continued

[--, not sampled]

Lake  
number1

Fathead  
minnows

Brook  
stickleback

Iowa  
darter

Yellow  
perch

Northern  
pike

Walleye
Smallmouth 

bass
Bluegill

Common  
carp

Black  
bullhead

Barred tiger 
salamander

Northern 
leopard  

frog

150 101 0 0 7 0 0 0 0 0 0 0 0

151 200 67 0 2 0 0 0 0 0 0 0 0

152 857 2 0 77 0 0 0 0 0 0 0 1

153 41 19 0 8 0 0 0 0 0 0 0 0

154 422 0 0 10 0 1 0 0 0 0 0 0

155 14 1 0 231 0 0 0 0 0 0 0 0

156 297 0 0 15 0 0 0 0 0 0 0 0

157 137 0 0 91 0 0 0 0 0 0 0 0

158 -- -- -- -- -- -- -- -- -- -- -- --

159 8,064 0 0 0 0 0 0 0 0 0 0 0

160 9,131 4 0 0 0 0 0 0 0 0 0 0

161 11 0 0 54 0 0 0 0 0 0 0 0

162 10 1 0 12 0 0 0 2 0 0 0 0

164 237 2 8 0 0 0 0 0 0 0 0 0

165 13,339 9 11 0 0 0 0 0 0 0 1 0

166 48 0 0 49 0 0 0 0 0 0 0 0

167 106 0 0 0 0 0 0 0 0 0 48 0

168 31 0 3 0 0 20 0 0 0 0 0 0

169 0 0 0 0 0 0 0 0 0 0 419 0

170 737 2 0 56 0 0 0 0 0 0 1 0

171 0 0 0 0 0 0 0 0 0 0 294 0

172 1 0 0 0 2 0 0 0 0 0 0 0

173 0 0 0 0 0 0 0 0 0 0 3 0

174 0 0 0 0 0 0 0 0 0 0 9 0

175 0 0 0 0 0 0 0 0 0 0 7 0

176 0 0 0 0 0 0 0 0 0 0 285 0

177 568 0 0 0 0 0 0 0 0 0 0 798

178 7,879 0 0 0 0 0 0 0 0 0 0 5

180 4,975 35 6 0 0 0 0 0 0 0 1 0

181 0 0 0 0 0 0 0 0 0 0 5 0
1There are no lakes numbered 149, 163, and 179.
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Appendix 5.  Range of major ion concentrates for prairie lakes and wetlands in which macro-invertebrate taxa occurred.

[N, number of samples; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; mg/L, milligrams per liter; HCO3-, hydrogen carbonate]

Taxon N

Specific  
conductance 

(µS/cm at 25 ºC)
pH

Calcium 
(mg/L)

Magnesium 
(mg/L)

Sodium 
 (mg/L)

Sulfate 
(mg/L)

Chloride 
(mg/L)

Alkalinity as 
HCO3- 
(mg/L)

Minimum/maximum

Corixidae (nymphs) 155 461.8/40,350 8.10/9.89 5.8/164 35.2/1050 9.5/13,000 10.4/27,000 2.9/2,520 229/2,590

Hydracarina 151 448.8/18,430 8.10/9.89 5.8/121 31.8/970 9.22/4,147 10.4/9,556 2.9/1,292 223/2,590

Chironominae 148 448.8/15,430 8.10/9.89 5.8 /164 31.8/970 9.22/3,460 10.4/8,560 2.9/984 223/2,590

Hyalella azteca 148 448.8/18,430 8.10/9.89 8.6/82.9 31.8/970 9.22/4,147 10.4/9,556 2.9/1,292 223/1,272

Orthocladiinae 122 461.8 /15,430 8.10/9.89 6.7/164 35.3/970 17.8/3,460 18.5/8,560 2.9/984 254/2,370

Cyclopoida 120 448.8/15,430 8.10/9.84 6.7/164 31.8/939 9.22/3,460 10.4/8,560 2.9/984 223/2,370

Trichocorixa 116 461.8/12,000 8.10/9.89 8.6/117 36.3/939 21.3/2,650 10.4/7,314 6.9/759 229/1,272

Calanoida 110 448.8/40,350 8.10/9.89 5.8/164 31.8/1050 9.22/13,000 10.4/27,000 6/2,520 223/2,590

Daphnia 110 448.8/40,350 8.10/9.40 5.8/164 31.8/1050 9.22/13,000 10.4/27,000 6/2,520 223/2,590

Gammarus lacustris 109 461.8/7,210 8.10/9.74 8.69/121 35.2/437 9.5/1,395 10.4/3,684 6.8/615 229/1,220

Oligochaeta 99 448.8/ 18,430 8.10/9.84 9.99/121 31.8/970 9.22/4,147 18.5/9,556 2.9/1,292 223/1,246

Haliplus 97 448.8/15,430 8.10/9.89 6.7/164 31.8/939 9.22/3,460 18.5/8,560 2.9/984 223/2,370

Ostracoda 97 537/40,350 8.10 /9.74 5.8/164 35.3/1050 17.8/13,000 18.5/27,000 2.9/2,520 288/2,590

Callibaetis 88 448.8/11,570 8.10/9.89 6.7/121 31.8/939 9.22/2,610 10.4/7,314 2.9/668 223/2,370

Enallagma 81 448.8/18,430 8.10/9.89 6.7/164 31.8/970 9.22/4,147 10.4/9,556 2.9/1,292 223/2,370

Caenis 78 448.8/11,200 8.10/9.84 8.69/117 31.8/437 9.22/2,572 18.5/4,577 2.9/615 223/1,272

Nehalennia 78 448.8/12,000 8.10/9.89 6.7/121 31.8/873 9.22/2,572 34.4/6,964 6/759 223/2,370

Tanypodinae 76 448.8/18,430 8.10/9.74 6.7/121 31.8/970 9.22/4,147 18.5/9,556 2.9/1,292 223/2,370

Mystacides 74 448.8/7,210 8.10/9.84 8.86/104 31.8/405 9.22/1,460 10.4/3,490 2.9/548 223/1,220

Sigara 64 461.8/11,200 8.10/9.89 8.6/121 51.4/437 21.3/2,572 10.4/4,577 6.9/513 229/1,272

Simocephalus 56 448.8/7,210 8.10/9.84 8.69/121 31.8/437 9.22/1,490 18.5/3,684 2.9/615 223/1,236

Collembola 52 500/12,000 8.10/9.20 19.6/121 35.2/939 9.5/2,650 59.4/7,314 7.9/759 229/1,272

Cenocorixa 51 712/18,430 8.10/9.40 5.8/164 35.3/970 30.1/4,147 10.4/9,556 14.6/1,292 327/2,590

Oecetis 51 500/15,430 8.33/9.89 5.8/164 35.2/615 9.5/3,460 18.5/8,560 2.9/984 246/2,590

Notonecta 46 712/11,570 8.50/9.89 6.7/86.2 35.3/939 30.1/2,380 10.4/7,314 13.4/574 262/2,370
Gyraulus circums-

triatus 45 448.8/5,950 8.10/9.84 8.69/121 31.8/437 9.22/905 18.5/3,307 2.9/459 223/867

Physa gyrina 43 537/6,900 8.10/9.74 11/121 38.3/437 17.8/1.227 18.5/3,684 2.9/615 288/734

Diaphanosoma 41 448.8/6,350 8.10/9.29 8.86/82 31.8/414 9.22/1,395 49.3/3,301 6/615 223/1,236

Helobdella 38 537/6,580 8.33/9.22 8.86/121 38.3/437 17.8/989 10.4/3,684 2.9/459 288/926

Phryganea 33 448.8/12,000 8.52/9.74 8.69/82.9 31.8/873 9.22/1,880 49.3/6,964 6/759 223/1,077

Pisidiidae 33 448.8/2,308 8.33/9.74 11.4/104 31.8/148 9.22/344 10.4/924 2.9/44.9 223/804

Chaoborus 32 607/11,200 8.41/9.74 12.7/121 61.4/572 19.8/2,572 10.4/5,390 7.5/615 288/1,272

Laccophilus 29 537/6,640 8.10/9.89 8.6/121 38.3/370 17.8/1,296 18.5/2,031 2.9/474 254/1,230

Triaenodes 29 800/12,000 8.10/9.89 6.7/82.3 35.3/873 135/2,572 163/6,964 32/759 494/2,370

Hydroporus 28 672/15,430 8.51/9.84 6.7/164 35.3/939 21.4/3,460 112/8,560 6.8/984 330/2,370

Physa jennessi 27 537/6,900 8.33/9.18 16.9/110 38.3/379 17.8/1,048 18.5/2,900 2.9/548 288/867

Peltodytes 26 537/9,730 8.10/9.11 15.4/121 38.3/572 17.8/1,640 18.5/5,390 2.9/552 254/1090

Dasycorixa 24 1,125/11,570 8.10/9.33 6.7/86.2 35.3/939 48.1/2,650 275/7,314 7.5/663 431/2,370
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Appendix 5.  Range of major ion concentrates for prairie lakes and wetlands in which macro-invertebrate taxa occurred.—Continued

[N, number of samples; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; mg/L, milligrams per liter; HCO3-, hydrogen carbonate]

Taxon N

Specific  
conductance 

(µS/cm at 25 ºC)
pH

Calcium 
(mg/L)

Magnesium 
(mg/L)

Sodium 
 (mg/L)

Sulfate 
(mg/L)

Chloride 
(mg/L)

Alkalinity as 
HCO3- 
(mg/L)

Minimum/maximum

Molanna 24 448.8/4,422 8.40/9.20 11.4/104 31.8/204 9.22/857 38.1/1,719 6/354 223/1,236

Bezzia 22 625/18,430 8.48/9.20 15.4/82 55.2/939 26.3/4,147 34.4/9,556 6.9/1,292 353/1,090

Ceriodaphnia 22 448.8/8,300 8.10/9.33 6.7/82.3 31.8/437 9.22/2,380 49.3/3,684 6/574 223/2,370

Limnephilus 17 656/6,580 8.43/9.74 12.7/117 53.1/437 31.1/989 68.2/3,684 7.9/166 306/707

Erpobdella 15 698/2,582 8.40/9.2 18.6/110 51.4/184 37.4/480 10.4/1,090 7.5/149 305/843

Pleuroxus 13 800/11,570 8.10/8.96 17.3/82.3 66/939 54.5/1,850 137/7,314 16.9/548 288/955

Oreodytes 12 537/11,700 8.33/9.17 27.6/117 38.3/970 17.8/2,610 18.5/7,314 2.9/668 338/1,228

Cymatia 10 1,661/7,210 8.10/9.89 8.6/121 58.7/437 156/1,300 522/3,684 20.8/371 288/1,230

Stagnicola elodes 10 1,153/6,740 8.48/9.14 26.3/110 60.2/437 44.1/1,227 407/3,684 14.5/615 347/734

Buenoa 9 958/6,950 8.69/9.29 13.8/82.3 60.6/437 64.4/1,490 10.4/3,684 14.6/474 545/1,077

Glossiphonia 8 537/2,209 8.33/9.20 11.4/80.5 38.3/148 17.8/287 18.5/909 2.9/39.3 350/676

Sida 8 537/1,934 8.33/9.84 8.69/37.6 38.3/112 17.8/282 18.5/357 2.9/44.4 350/839

Anax 7 958/5,950 8.74/9.84 9.99/81.3 78.8/437 50.6/905 10.4/3,307 6.9/140 319/748

Enochrus 7 656/2,875 8.43/9.17 31.6/117 53.1/123 30.2/507 47.5/760 7.9/195 319/592

Gyrinus 7 625/2,109 8.50/9.17 25.1 82.7 57.9/123 29.7/293 76/825 8.8/77.4 288/562

Ilybius 7 1,153/11,570 8.41/8.77 38/121 84.6/939 44.1/1,850 375/7,314 15.1/435 347/955

Placobdella 7 984/3,876 8.68/9.74 11.8/82.7 84.3/141 95.5/768 223/1,347 17.7/129 305/820

Eurycercus 6 537/1,514 8.33/9.20 11/41 38.3/112 17.8/218 18.5/357 2.9/44.9 350/619

Gyraulus parvus 6 721/3,587 8.87/9.20 18.7/80.5 81.4/190 26.3/666 34.9/1,230 15.5/379 449/670

Lymnaea stagnalis 6 984/3,340 8.70/9.74 18.2/86.2 84.3/204 107/442 283/1,719 17.7/126 395/587

Sphaeromias 6 672/3,220 8.41/8.88 15.6/121 64.6/370 21.4/366 85.4/1,850 6.8/78.7 342/565

Theromyzon 6 740/2,578 8.68/9.10 22.8/75.3 66.6/141 61.6/285 34.4/964 17.5/45.3 330/670

Planorbella trivolvis 5 537/1,527 8.33/8.85 37.6/110 38.3/119 17.8/131 18.5/515 2.9  38.5 330/562

Stratiomyidae 5 1,153/40,350 8.51/9.29 13.8/110 55.2/1,050 44.1/13,000 407/27,000 24/2,520 347/1,050

Acentria 4 1,456/3,262 8.72/9.22 8.86/80.5 112/197 120/433 431/962 28/136 416/926

Agraylea 4 740/3,262 8.77/9.22 8.86/64.7 66.6/197 50.6/433 34.4/962 6.9/136 368/926

Coptotomus 4 1,192/2,689 8.61/8.94 36.6/74.3 80.9/148 98/551 375/886 18.3/157 464/734

Dytiscus 4 1,192/3,220 8.41/9.17 45.3/121 86.1/370 104/246 375/1,850 20.8/77.4 387/562

Hesperocorixa 4 984/1,347 8.43/9.84 9.99/117 78.8/89.5 41.2/186 108/405 13.4/30.4 338/646

Hygrotus 4 1,162/40,350 8.43/8.70 15.4/164 81.1/1,050 41.2/13,000 405/27,000 24/2,520 338/1,090

Strictotarsus 4 712/11,200 8.68/9.22 8.86/69.4 62/197 30.1/2,572 59.5/4,577 17.9/513 404/1,272

Culicoides 3 6,640/15,430 8.70/9.20 24.5/164 128/615 1,296/3,460 2,031/8,560 474/984 717/1,228

Cyphon 3 656/15,430 8.70/8.82 34.9/164 53.1/615 31.1/3,460 68.2, 8,560 7.9/984 380/717

Graphoderus 3 958/2,109 8.68/9.17 31.6/78.6 86.1/123 64.4/246 10.4/757 14.6/77.4 464/748

Leydigia 3 2,094/3,340 8.70/8.77 44/86.2 144/204 233/442 740/1,719 54.1/126 431/587

Neoplea 3 537/1,162 8.33/8.78 23.1/117 38.3/81.1 17.8/41.2 18.5/405 2.9/24 338/404

Aeshna 2 1,347/1,768 9.10/9.84 9.99/26.5 73.6/78.8 186/255 270/464 17.5/30.4 615/634

Agabus 2 1,384/2,109 9.00/9.17 39.6/78.6 104/123 120/246 358/757 34.1/77.4 490/562
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Appendix 5.  Range of major ion concentrates for prairie lakes and wetlands in which macro-invertebrate taxa occurred.—Continued

[N, number of samples; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; mg/L, milligrams per liter; HCO3-, hydrogen carbonate]

Taxon N

Specific  
conductance 

(µS/cm at 25 ºC)
pH

Calcium 
(mg/L)

Magnesium 
(mg/L)

Sodium 
 (mg/L)

Sulfate 
(mg/L)

Chloride 
(mg/L)

Alkalinity as 
HCO3- 
(mg/L)

Minimum/maximum

Armiger crista 2 537/800 8.33/8.61 37.6/67.9 38.3/239 17.8/430 18.5/1,424 2.9/229 350/598

Branchinecta 2 2,723/4,614 8.98/9.01 22.3/22.3 55.2/64.9 573/1,000 899/1,780 34.6/49.5 771/861

Corisella 2 5,950/6,350 8.91/9.10 44.8/81.3 150/437 905/1,395 3301/3,307 49.8/140 545/741

Crenitis 2 1,162/1,252 8.43/8.45 104/117 81.1/86.5 41.2/41.7 405/427 24/25.4 306/338

Cyrnellus 2 1,118 8.77/ 8.83 58/64.7 89.1/379 50.6/1,048 304/2,900 6.9/548 368/623

Donacia 2 1,160/3,587 8.82/9.15 29.5/34.9 101/126 94.4/666 295/1,230 13.5/181 521/622

Ephydra 2 3,547/40,350 8.63/8.87 23.4/94.1 190/1,050 514/13,000 1,020/27,000 379/2,520 514/580

Hydroptila 2 644/1,933 8.95/9.01 15.1/18 72.8/88.6 27.3/296 66.9/448 7.5/45.1 390/748

Orconectes 2 1,153/1,417 8.51/8.78 82.9/110 84.6/86.8 44.1/109 407/491 23.2/24 347/382

Paracymus 2 1,192/2,804 8.68/8.71 38.5/69.4 86.1/92.9 104/450 375/966 27.6/70.4 464/657

Rhantus 2 2,109/3,220 8.41/9.17 78.6/121 123/370 196/246 757/1,850 20.8/77.4 387/562

Saldula 2 1,355/2,804 8.71/8.97 38.5/40.7 92.9/101 115/450 347/966 33.3/70.4 494/657

Valvata tricarinata 2 448.8/1,845 8.52/8.85 32.4/71 31.8/112 9.22/166 49.3/608 6/57.4 223/353

Agrypnia 1 1,434 8.68 64.1 112 85.9 515 21.4 330

Alboglossiphonia 1 1,160 8.82 34.9 101 94.4 295 13.5 521

Amnicola limosus 1 651 8.71 27.7 45.1 36.1 121 13.2 254

Anabolia 1 1,292 8.61 74.3 148 98 540 18.3 556

Artemia 1 40,350 8.63 94.1 1050 13000 27000 2520 580

Berosus 1 3,306 8.48 82 414 1227 2917 615 676

Cercyon 1 12,000 8.6 68 873 1880 6964 759 593

Cernotina 1 625 8.8 25.1 57.9 29.7 76 8.8 353

Chydorus 1 1,850 8.5 38.4 81.3 273 494 41 644

Dubiraphia 1 3,838 8.58 43.1 60 821 1220 318 579

Empididae 1 1,414 9.02 22.3 112 177 357 32.6 619

Eristalis 1 40,350 8.63 94.1 1050 13000 27000 2520 580

Harpacticoida 1 40,350 8.63 94.1 1050 13000 27000 2520 580

Hebrus 1 2,993 9.26 17.4 65.5 578 609 234 945

Hydrellia 1 1,509 8.5 74.1 114 100 600 18.7 327

Hydrobius 1 500 8.56 47.5 35.2 9.5 59.4 10.5 246

Ilyocryptus 1 1,292 8.61 74.3 148 98 540 18.3 556

Laccobius 1 2,102 8.7 46.4 144 233 740 54.1 565

Libellula 1 8,320 9.33 6.7 35.3 2380 2290 574 2370

Merragata 1 3,714 8.69 77 207 491 1110 459 568

Moina 1 2,723 8.98 22.3 64.9 573 899 49.5 771

Palmacorixa 1 1,661 8.73 62.5 106 156 619 52 288

Pericoma 1 656 8.72 42.2 53.1 31.1 68.2 7.9 380

Polycentropus 1 1,677 8.95 49.5 136 124 689 28.2 324

Prionocera 1 1,153 8.51 110 84.6 44.1 407 24 347
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Appendix 5.  Range of major ion concentrates for prairie lakes and wetlands in which macro-invertebrate taxa occurred.—Continued

[N, number of samples; µS/cm at 25 ºC, microsiemens per centimer at 25 degrees Celsius; mg/L, milligrams per liter; HCO3-, hydrogen carbonate]

Taxon N

Specific  
conductance 

(µS/cm at 25 ºC)
pH

Calcium 
(mg/L)

Magnesium 
(mg/L)

Sodium 
 (mg/L)

Sulfate 
(mg/L)

Chloride 
(mg/L)

Alkalinity as 
HCO3- 
(mg/L)

Minimum/maximum

Probezzia 1 4,614 9.01 22.3 55.2 1000 1780 34.6 861
Promenetus exacu-

ous 1 537 8.33 37.6 38.3 17.8 18.5 2.9 350

Scapholeberis 1 979 8.62 15.6 98.5 53.6 85.4 19.8 560







Publishing support provided by: 
	 Rolla Publishing Service Center 

For more information concerning this publication, contact:
	 Director, USGS Northern Prairie Wildlife Research Center
	 8711 37th Street Southeast
	 Jamestown, North Dakota 58401
	 (701) 253–5553

Or visit the Northern Prairie Wildlife Research Center Web site at:
	 http://www.npwrc.usgs.gov/

http://www.npwrc.usgs.gov/




M
ushet and others—

Chem
ical and B

iotic Characteristics of Prairie Lakes and Large W
etlands in South-Central N

orth D
akota—

SIR 2015–5126

ISSN 2328-031X (print)
ISSN 2328-0328 (online)
http://dx.doi.org/10.3133/sir20155126


	Contents
	Abstract
	Introduction
	Study Area
	A Changing Climate
	Methods
	Water Chemistry
	Aquatic Vertebrates
	Macroinvertebrates

	Chemical and Biotic Characteristics of Prairie Lakes and Large Wetlands
	Water Chemistry
	Aquatic Vertebrates
	Macroinvertebrates

	Discussion
	Water Chemistry
	Aquatic Vertebrates
	Macroinvertebrates
	Implications for Waterfowl

	Conclusions
	Acknowledgments
	References Cited
	Appendixes 1–5

	Figure 1. Photograph showing flooding caused by rising water levels in Lake 156 near Crystal Springs, North Dakota
	Figure 2. Map showing location of 178 lakes and wetlands in Kidder and Stutsman Counties, North Dakota, originally sampled from 1966 to 1976 by Swanson and others (1988) and resampled in 2012 and 2013.
	Figure 3. Map showing location of select lakes and wetlands in southeastern North Dakota in relation to areas of sand.
	Figure 4. Graph showing average annual precipitation for North Dakota Climate Division 5, 1895 to 2014 
	Figure 5. Graph showing water elevations for Cottonwood Lake study area wetland P1, North Dakota, 1978–2013. 
	Figure 6. Graph showing water elevations of Devils Lake, North Dakota, 1930 to 2014, U.S. Geological Survey streamgage 05056500.
	Figure 7. Graph showing cumulative annual precipitation and cumulative mean annual discharge of the Sheyenne River near Cooperstown, North Dakota, from double mass curve analysis
	Figure 8. Satelite imagery of Stutsman County, North Dakota
	Figure 9. Graph showing aquatic vertebrate and macroinvertebrate sampling locations in a typical lake or wetland with emergent vegetation
	Figure 10. Graph showing comparison of specific conductance of 167 prairie lakes and wetlands sampled from 1966 to 1976 and resampled in 2012 and 2013. 
	Figure 11. Histogram showing distribution of prairie lakes and wetlands among seven salinity classes based on specific conductance of their water. 
	Figure 12. Graphs showing comparison of chemical and other environmental characteristics of 167 prairie lakes and wetlands sampled from 1966 to 1976 and resampled in 2012 and 2013
	Figure 13. Piper diagram of water from prairie lakes and wetlands
	Figure 14. Graph showing major ion concentrations in Chase Lake, North Dakota , modeled using Geochemists Workbench modeling code and the dissolution of high magnesium calcite across a gradient of increasing water volumes
	Figure 15. Boxplot showing macroinvertebrate population metrics of prairie lakes and wetlands within five salinity classes based on specific conductance of their water
	Figure 16. Aerial photographs showing Lake 153, Stutsman County, North Dakota
	Figure 17. Specific conductance of lakes in the Crystal Springs, North Dakota, area from sampling conducted in 1966 to 1976 and 2012 and 2013
	Figure 18. National Aerial Photography Program (NAPP) photographs of Lake 144 from July 13, 1990, and September 25, 1997. 
	Figure 19. Graphs showing breeding population of six waterfowl species that displayed marked increases during the 1993 to 2014 post-drought period
	Figure 20. Graphs showing breeding population of four waterfowl species that did not display marked increases during the 1993 to 2014 post-drought period
	Table 1. Chemical characteristics of prairie lakes and wetlands sampled from 1966 to 1976 by Swanson and others (1988) and resampled in 2012 and 2013.
	Table 2. Comparison of changes in mean values for concentrations of major ions, specific conductance, and pH between prairie lakes and wetlands in till and those in outwash, Stutsman County and Kidder County, North Dakota.
	Table 3. Species occurrence and mean number of captures in 162 prairie lakes and wetlands sampled for aquatic vertebrates in 2012 and 2013.
	Table 4. Specific conductance, pH, and turbidity characteristics of prairie lakes and wetlands containing aquatic vertebrates and fishless lakes and wetlands from 2012 and 2013 sampling of lakes and wetlands in Stutsman County and Kidder County, North Dak
	Table 5. Major cation characteristics of prairie lakes and wetlands containing aquatic vertebrates and fishless lakes and wetlands from 2012 and 2013 sampling of lakes and wetlands in Stutsman County and Kidder County, North Dakota.
	Table 6. Major anion characteristics of prairie lakes and wetlands containing aquatic vertebrates and fishless lakes and wetlands from 2012 and 2013 sampling of lakes and wetlands in Stutsman County and Kidder County, North Dakota.
	Appendix 1. Analytical laboratory methods used in 2012 and 2013 sampling of prairie lakes and wetlands in south-central North Dakota.
	Appendix 2. Analytical laboratory methods used in 1966 to 1976 sampling of 178 prairie lakes and wetlands in south-central North Dakota
	Appendix 3. Chemical characteristics of prairie lakes and wetlands
	Appendix 4. Aquatic vertebrate captures in prairie lakes and wetlands.
	Appendix 5. Range of major ion concentrates for prairie lakes and wetlands in which macro-invertebrate taxa occurred.



