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Regression Equations for Monthly and Annual Mean and
Selected Monthly Percentile Streamflows for Ungaged

Rivers in Maine

By Robert W. Dudley

Abstract

In an effort to delineate hydrologic conditions in Maine,
the U.S. Geological Survey, in cooperation with the Maine
Department of Transportation, used streamflow data to
develop dependent variables for 130 regression equations for
estimating monthly and annual mean and 1, 5, 10, 25, 50, 75,
90, 95, and 99 percentile streamflows for ungaged, unregu-
lated rivers in Maine. Daily streamflow data from 24 rural
unregulated basins with drainage areas between 14.9 and
1,419 square miles in Maine and northern New Hampshire
were used in the derivation of the equations. Streamflow data
collected from October 1, 1982, through September 30, 2012,
were used to derive the dependent variables for this study to
represent current [2015] hydrologic conditions in Maine and
northern New Hampshire. Weighted least squares regression
techniques were used to derive the final coefficients and mea-
sures of uncertainty for the regression equations. Eight basin
characteristics serve as the explanatory variables: drainage
area, distance from the coast, mean and maximum basin eleva-
tion, mean basin slope, mean basin percentage of hydrologic
soil group A, fraction of sand and gravel aquifers, and percent-
age of open water.

The largest average errors of prediction are associated
with regression equations for the lowest streamflows derived
for months during which the lowest streamflows of the year
occur (such as the 5 and 1 monthly percentiles for August
and September). The regression equations have been derived
on the basis of streamflow and basin characteristics data for
unregulated, rural drainage basins without substantial stream-
flow or drainage modifications (for example, diversions and
(or) regulation by dams or reservoirs, tile drainage, irrigation,
channelization, and impervious paved surfaces), therefore
using the equations for regulated or urbanized basins with sub-
stantial streamflow or drainage modifications will yield results
of unknown error. Input basin characteristics derived using
techniques or datasets other than those documented in this
report or using values outside the ranges used to develop these
regression equations also will yield results of unknown error.

Introduction

Water- and natural-resources professionals routinely need
to be able to estimate various streamflow statistics to manage
resources, plan projects, and permit regulated uses of surface
waters. For example, quantifying streamflows at a given loca-
tion on a stream may be necessary for determining adequate
dilution of waste load to a stream during low-flow condi-
tions (typical of dry conditions during summer), evaluating a
hydraulic structure’s conveyance during high-flow conditions
(typical of wet conditions during spring snowmelt or dur-
ing large rain events), and evaluating or planning hydraulic
connectivity and fish passage efficacy over a range of sea-
sonal flows ranging from low to high. Although estimation
of streamflow statistics at or near locations where streamflow
data are routinely collected is straightforward, only a small
fraction of all the streams in Maine are gaged.

Regression equations offer a statistical method for esti-
mating streamflows at ungaged locations. The U.S. Geological
Survey (USGS) has derived a variety of statewide and regional
regression equations for estimating a range of streamflow
statistics for ungaged streams in Maine. Hodgkins (1999)
documents statewide regression equations for estimating peak
flows with probabilities of annual exceedances of 0.2, 1, 2,

4, 10, 20, and 50 percent. Dudley (2004) derived statewide
equations for estimating monthly and annual mean and median
streamflows as well as the 7-day low flow with a 10 percent
annual exceedance probability, superseding similar equations
derived by Parker (1977). A few regional studies within Maine
have produced regression equations for specific months: June
and August median streamflows in southern Maine (Lombard,
2010), August median streamflows in eastern coastal Maine
(Lombard, 2004), and August median streamflows in eastern
Aroostook County (Lombard and others, 2003). In 2012,

the USGS began a cooperative investigation with the Maine
Department of Transportation (MDOT) to derive statewide
regression equations that can be used to estimate monthly and
annual mean and 1, 5, 10, 25, 50, 75, 90, 95, and 99 percentile
streamflows for ungaged rivers in Maine.



2 Regression Equations for Ungaged Rivers in Maine

Purpose and Scope

This report documents regression equations developed
for estimating monthly and annual mean and 1, 5, 10, 25, 50,
75,90, 95, and 99 percentile streamflows for ungaged, unregu-
lated rivers in Maine and northern New Hampshire along with
the data and methods used to derive them. Statistics derived
from streamflow data from 24 USGS streamgages on unregu-
lated, rural rivers in Maine and northern New Hampshire
were used as the dependent variables in the equations. Data
describing various basin and climate characteristics, such as
geology, land cover, land use, precipitation, and temperature,
derived using geographic information systems (GIS) were
used as explanatory variables in the equations. The regres-
sion equations presented in this report can be used to estimate
streamflows for unregulated, rural basins in Maine and super-
sede those derived by Dudley (2004) because of the updated
streamflow and basin characteristics data used.

Description of the Study Area

The State of Maine (fig. 1), in the northeastern
United States, has a land area of 79,883 square kilome-
ters (km?; 30,843 square miles [mi*]) with a population of
1.33 million people (U.S. Census Bureau, 2012). Maine is
largely rural and forested with rolling topography of moderate
to low relief throughout the State except for the high relief of
the Appalachian Mountain Range in west-central Maine. Land
elevation ranges from sea level (0 meters [m]; O feet [ft]) at
the Atlantic coast (Gulf of Maine) to 1,606 m (5,268 ft) at the
peak of Mount Katahdin (U.S. Geological Survey, 2001). The
physiographic characteristics of west-central Maine extend
into northernmost New Hampshire.

Basin characteristics and streamflow data from
24 streamgages on rural, unregulated basins in Maine and
northern New Hampshire (fig. 1) were used to derive the
regression equations for estimating selected streamflow
statistics. The study basins have no substantial streamflow or
drainage modifications (that is, diversions and (or) regulation
by dams or reservoirs, tile drainage, irrigation, channeliza-
tion, and impervious paved surfaces large enough to affect the
computation of monthly statistics). The study basins range in
size from 38.6 to 3,675 km? (14.9 to 1,419 mi?), with mean
basin elevations ranging from 73 m (240 ft) at the coast in
southern Maine to 646 m (2,120 ft) in mountainous northern
New Hampshire (Gesch and others, 2009; U.S. Geological
Survey, 2014a).

The study basins are mostly forested, with deciduous or
evergreen growth or a mix thereof (including shrub growth),
covering from 67.6 to 99.2 percent (mean of 85.2 percent)
of the study basin areas. Open water and wetlands compose
0.4 to 18.6 percent (mean of 8.3 percent) of the study basin
areas. Land cover in the basins also includes developed land
(residential housing, commercial and industrial development,
and transportation; where impervious surfaces account for 20

to 100 percent of total cover) ranging from 0 to 3.7 percent
(mean of 0.7 percent) and pasture and cultivated crop areas
ranging from 0 to 11.6 percent (mean of 2.4 percent; Fry
and others, 2011). Although the rural character of Maine has
changed little since the beginning of the 20th century, the
greatest changes in land use in Maine has been the replace-
ment of agriculture and pasture lands by forest. The overall
forest cover in the State is estimated to have been at its lowest
around 1900 at about 70 percent. Forest cover increased to
about 90 percent by 1995 (Irland, 1998).

Maine has a temperate climate with mild summers
and cold winters. Climatological averages computed for the
30-year period from 1981 to 2010 indicate a mean annual
air temperature for Maine of 5.8 degrees Celsius (°C;
42.5 degrees Fahrenheit [°F]). Mean annual air temperature
ranged from 2.9 °C (37.3 °F) at Allagash to 8.8 °C (47.8 °F)
at Sanford. For the same period, the statewide mean minimum
air temperature was 0.1 °C (32.1 °F) and the mean maxi-
mum was 11.6 °C (52.9 °F). Precipitation in Maine is fairly
evenly distributed throughout the year with a mean annual
of 1,153 millimeters (mm; 45.4 inches [in.]) for the 30-year
period from 1981 to 2010, ranging from 853 mm (33.6 in.) at
Frenchville to 1,440 mm (56.7 in.) at Acadia National Park
(National Climatic Data Center, 2015).

Data Used For This Study

Streamflow

Daily streamflow data collected at USGS streamgages
(Rantz and others, 1982) on 24 rural, unregulated river basins
in Maine and northern New Hampshire (fig. 1) were used to
compute the statistics to serve as dependent variables for the
regression equations developed. Candidate streamgages for
this study needed to be located in Maine or in New Hamp-
shire within 25 mi of the Maine border, in predominantly
rural basins, and have more than 10 years of streamflow data
substantially unaffected by diversions and (or) regulation
by dams or reservoirs (table 1). The data were daily values
derived and published from continuously collected data (typi-
cally in 15-minute intervals). Daily streamflow data were
retrieved from the National Water Information System (NWIS;
U.S. Geological Survey, 2014c) for the streamgages meeting
the study criteria. Only a 6-day period of irregular low-flow
regulation during September 20-25, 1985, for the Narragua-
gus River at Cherryfield, Maine (01022500) streamgage was
censored from use in this study.

Recent studies of climate variability and its effect on
hydrology in Maine and New England have documented
various trends over time. Many changes have been observed
in the winter and spring seasons, during which high snow-
melt-related streamflows have trended to earlier dates dur-
ing the course of the 20th century (Dudley and Hodgkins,
2002; Hodgkins and others, 2003; Hodgkins and Dudley,
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4 Regression Equations for Ungaged Rivers in Maine

Table 1.

Selected U.S. Geological Survey streamgages in Maine and northern New Hampshire.

[mi?, square mile; WY, water year which begins October 1 and ends September 30 and is designated by the calendar year in which it ends]

U.S. Geological Survey streamgage

Period of record used in

Drainaqe area this study Number of
Number Name (mi?) (WY) complete WY
01013500  Fish River near Fort Kent, Maine 866 1983-2012 30
01021480  Old Stream near Wesley, Maine 29.8 1998-2012 14
01022500  Narraguagus River at Cherryfield, Maine 228 1983-2012 29
01027200  North Branch Penobscot River near Pittston Farm, Maine 223 2001-2012 11
01029200  Seboeis River near Shin Pond, Maine 173 1998-2012 14
01030500  Mattawamkeag River near Mattawamkeag, Maine 1,419 1983-2012 30
01031300  Piscataquis River at Blanchard, Maine 117 1997-2012 16
01031450  Kingsbury Stream at Abbot Village, Maine 95.1 1997-2012 15
01031500  Piscataquis River near Dover-Foxcroft, Maine 297 1983-2012 30
01037380  Ducktrap River near Lincolnville, Maine 149 1998-2012 14
01038000  Sheepscot River at North Whitefield, Maine 145 1983-2012 30
01044550  Spencer Stream near Grand Falls, Maine 194 1999-2012 13
01047000  Carrabassett River near North Anson, Maine 352 1983-2012 30
01048000  Sandy River near Mercer, Maine 516 1987-2012 25
01052500  Diamond River near Wentworth Location, New Hampshire 153 1983-2012 30
01054200  Wild River at Gilead, Maine 69.9 1983-2012 30
01054300  Ellis River at South Andover, Maine 130 2001-2012 11
01055000  Swift River near Roxbury, Maine 96.8 1983-2012 30
01055500  Nezinscot River at Turner Center, Maine 168 1983-1996, 2001-2012 25
01057000  Little Androscoggin River near South Paris, Maine 73.9 1983-2012 30
01060000  Royal River at Yarmouth, Maine 141 1983-2004 21
01064500  Saco River near Conway, New Hampshire 385 1983-2012 30
01064801  Bearcamp River at South Tamworth, New Hampshire 67.0 1993-2012 19
01130000  Upper Ammonoosuc River near Groveton, New Hampshire 231 1983-2004, 2009-2012 25

2006b). These winter and spring streamflow trends have been
accompanied by earlier lake ice-out dates (Hodgkins, 2013),
decreases in late-winter snowpack depth or increases in snow-
pack density (Hodgkins and Dudley, 2006a), and a decreased
ratio of snowfall to total precipitation at sites in northern

New England (Huntington and others, 2004).

Precipitation in New England has increased across all
seasons (Karl and Knight, 1998; Douglas and Fairbank, 2011;
Hodgkins and Dudley, 2011). Annual low streamflows at sev-
eral streamgages in northern New England have increased dur-
ing the 20th century (Hodgkins and Dudley, 2005) and annual
peak flows have increased during the past 50 to 100 years
at several streamgages across New England (Hodgkins and
Dudley, 2005; Collins, 2009; Hodgkins, 2010; Armstrong and
others, 2012).

The regression equations by Dudley (2004) integrated
all historical streamflow and precipitation data available at
the time. However, given the evidence of hydrologic trends,

future investigations of this kind might benefit from being
done at regular intervals using a moving temporal window of
contemporary data or considering methods for incorporating
these large-scale hydrologic trends into the statistical models.
Therefore, to best represent contemporary hydrologic condi-
tions in Maine, streamflow data collected during the 30-year
period from October 1, 1982, through September 30, 2012
(water years' 1983-2012), are used to derive the dependent
variables for the study in this report (table 1).

Monthly and annual streamflow.—Mean annual streamflow
was computed as the mean of all available daily mean stream-
flow data for the period of record during water years 1983 to
2012 for each station (appendix 1). Mean monthly stream-
flows were computed as the mean of all daily mean stream-
flow values parsed by month. The 1, 5, 10, 25, 50, 75, 90,

95, and 99 monthly and annual percentile streamflows were

'The water year begins October 1 and ends September 30 and is designated
by the calendar year in which it ends.



computed in the manner defined by Helsel and Hirsh (2002);
for example, they define the 75th percentile, as “a value which
exceeds no more than 75 percent of the data and is exceeded
by no more than 25 percent of the data.” The computations
were done using the quantile function (type=2) in the
R programming language. Annual percentiles were computed
on the basis of all available daily mean streamflow data for
the period of record during water years 1983 to 2012 for each
station (appendix 1), and monthly percentiles were computed
on the basis of the same daily mean streamflow values parsed
by month.

Basin and Climatic Characteristics

For the study detailed in this report, 68 GIS-derived basin
characteristics were tested to serve as explanatory variables
for the dependent variables of monthly and annual mean and
1, 5, 10, 25, 50, 75, 90, 95, and 99 percentile streamflows.
Most of the basin characteristics were retrieved from the
Geospatial Attributes of Gages for Evaluating Streamflow
version I (GAGES II) dataset (Falcone, 2011)—an updated
version of the original Geospatial Attributes of Gages for
Evaluating Streamflow dataset published in 2010 (Falcone and
others, 2010). The GAGES 1I dataset includes several hundred
watershed characteristics derived from national data sources,
including environmental features and anthropogenic influences
for more than 9,000 streamgages maintained by the USGS.
The dataset also includes comments pertaining to hydrologic
modifications published in USGS annual data reports (U.S.
Geological Survey, 2014b).

The 68 basin characteristics comprise the following
parameters (and variations thereof): drainage area; latitude and
longitude; land surface elevation, shape, aspect, and slope;
precipitation; air temperature; days of first and last freeze;
snow percent of total precipitation; ratio of base flow to total
streamflow; various land-cover classifications from the 2006
National Land Cover Dataset (NLCD; Fry and others, 2011);
population density; hydrologic soil group types; area of sand
and gravel aquifers; and distance from the coast. These candi-
date explanatory variables included the five explanatory vari-
ables derived by Dudley (2004) for estimating mean monthly,
mean annual, and 7-day, 10-year low-flow frequency (7Q10)
streamflows: drainage area, area of sand and gravel aquifers,
distance from the coast, mean annual precipitation, and mean
winter precipitation. Distance from the coast and area of sand
and gravel aquifers are not available in the GAGES II dataset
and were computed by using GIS; details describing the com-
putation of these basin characteristics is provided in the “Final
Explanatory Variables” section.

Regression Analyses

Ordinary least squares (OLS) regression techniques (Hel-
sel and Hirsch, 2002) of all possible subsets of 68 explanatory

Regression Analyses 5

variables for each of 130 dependent variables were used to
select the explanatory variables that would appear in the
final regression equations. For the exploratory OLS regres-
sion analyses, all subset regressions were evaluated on the
basis of adjusted coefficient of determination (R?) values and
significance of explanatory variables. In general, explanatory
variables needed to have statistically significant explanatory
power (p-values less than 0.01) for several percentile regres-
sions in order to be retained in any model set. In most cases,
explanatory variables rarely exhibited statistical significance
over the entire range of percentiles, from low to high stream-
flows, for any given monthly or annual equation set with the
exception of drainage area. Explanatory variables other than
drainage area often had high statistical significance at either
mid-to-high streamflows or mid-to-low streamflows and
decreased in significance for the other equations; such vari-
ables were nevertheless retained in model sets in the interest
of coherence. In the instance of three-variable models, the two
explanatory variables other than drainage area often provided
complementary statistical significance but were not always
both significant for any given percentile model.

For the monthly and annual 1, 5, 10, 25, 50, 75, 90,

95, and 99 percentile streamflows, emphasis was placed on
developing a coherent set of equations in which each monthly
or annual set of regression equations uses the same set of
explanatory variables; only the coefficients vary for each per-
centile equation. This approach of building coherent monthly
and annual regression equation sets reduced the possibility

of discontinuities in the percentile estimates (for example,
equations that yield a 5 percentile streamflow estimate that is
greater than the 10 percentile streamflow estimate).

A variety of regression diagnostics was used to evaluate
the capacity of the explanatory variables to explain the vari-
ability of the dependent variables and the overall robustness
of the derived regression equations. The Cook’s D statistic
(Helsel and Hirsch, 2002) was used to investigate any prob-
lems with leverage influence on the regression equations.
Cook’s D indicated that basins with small drainage areas (of
approximately 26 km? [10 mi?] or less) and (or) mountainous
character exerted high leverage; for this reason, 5 candidate
streamgage study basins (2 in Maine and 3 in New Hampshire)
were culled from an original set of 29 streamgages, reducing
the final number of streamgage study basins to 24. Residual
plots against predicted values, and partial residuals plots, were
used to check for linearity, constant variance, normality, and
the presence of outliers. Residuals were plotted and correlated
against latitude and longitude to check for geographic bias.
All correlation values were less than +£0.60 and no monthly
or annual model sets indicated any systematic geographic
bias. Residuals from 4 of 130 models indicated (strong,
p<0.01) positive correlation with latitude: the May 90, 95
and 99 percentile models and the July 50th percentile model.
Residuals from 2 models indicated (strong, p<0.01) positive
correlation with longitude: the December 50 and 75 percentile
models. Multicollinearity among the explanatory variables
was measured using the variance inflation factor (VIF). The
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final explanatory variables (described in the “Final Explana-
tory Variables” section) had VIF values of 1.87 or lower,
indicating no problems with multicollinearity.

Weighted least squares (WLS) regression techniques
were used to derive the final coefficients and measures of
uncertainty for the regression equations. Where OLS simply
minimizes the squares of the residuals, WLS regression tech-
niques minimize the squares of weighted residuals. The weight
factors are determined such that observations with greater
variance have less of an influence on the derivation of the
regression model. A common application of this is to derive
the weights as a function of record length base on the assump-
tion that longer records will have lower variance (are more
reliable) than for stations with less data (Helsel and Hirsch,
2002). Weights used in the study detailed in this report were
computed as a function of record length, that is, the number
of complete water years of record from water years 1983 to
2012 divided by the mean record length (23 years) for all the
streamgages used in the analysis; the sum of the weights is
therefore equal to the number of streamgages used.

Final explanatory variables.—Eight basin characteristics were
identified from the initial set of the 68 to serve as explana-
tory variables for estimating monthly and annual mean and 1,
5, 10, 25, 50, 75, 90, 95, and 99 percentile streamflows. The
eight basin characteristics are drainage area, distance from the
coast, mean and maximum basin elevation, mean basin slope,
mean basin percentage of hydrologic soil group A, fraction

of sand and gravel aquifers, and percentage of open water
(lakes and ponds; table 2). These basin characteristics were
recomputed in GIS to check the GAGES II values; the newly
derived values were used in the derivation of the final WLS
regression equations.

Drainage Area

The drainage area, in square miles, of each study basin
was computed in GIS by measuring the horizontal planar
area enclosed by the topographic divide (drainage-basin
boundary) inside which surface runoff drains by gravity to a
common outlet point (point of interest). The drainage basin
boundary was delineated using the National Elevation Dataset
(NED) for Maine and northern New Hampshire derived from
a 10-m (% arc-second) resolution digital elevation model
(DEM; Gesch and others, 2009; U.S. Geological Survey,
2014a). The 24 streamgage basin drainage areas range from
14.9 mi? (38.6 km? Ducktrap River near Lincolnville, Maine
[01037380] streamgage) to 1,419 mi* (3,675 km?;, Mat-
tawamkeag River near Mattawamkeag, Maine [01030500]
streamgage), with a mean of 258 mi? (668 km?; fig. 1;
tables 1 and 2).

Distance From the Coast

Distance from the coast is an explanatory variable intro-
duced by Dudley (2004) in regression equations for estimating

January, February, March, and May mean and median
streamflows. Distance from the coast is the distance, in miles,
measured as the shortest distance from the drainage basin
centroid to a line in the Gulf of Maine (GOM line) defined by
end points 71W, 42.75N and 65.5W, 45N, referenced to the
North American Datum of 1983 (NAD 83; Dudley, 2004).
The shortest line of measure between a basin centroid point
and the GOM line is a perpendicular intersector of the GOM
line. For this study, all distance measurements were made in
GIS using NAD 83, Universal Transverse Mercator zone 19
coordinate system (table 3). Distances from the GOM line to
the centroid of streamgage drainage basins used in this study
range from 46.6 miles (mi; 75 kilometers [km]; Narraguagus
River at Cherryfield, Maine [01022500] streamgage) to 193 mi
(310.6 km; Fish River near Fort Kent, Maine [01013500]
streamgage), with a mean of 102 mi (164.2 km; table 2).

Mean Basin Elevation

Mean basin elevation, in thousands of meters, was com-
puted in GIS by arithmetically averaging all 10-m NED grid
point elevations, in meters, within the drainage basin boundar-
ies and dividing the mean by 1,000. The mean basin elevation
was computed in meters because it is the native vertical unit in
the NED. Mean elevations of streamgage drainage basins used
in this study range from 73 m (239.5 ft; Royal River at Yar-
mouth, Maine streamgage [01060000]) to 646 m (2,119.4 ft;
Diamond River near Wentworth Location, NH streamgage
[01052500]), with a mean of 339 m (1,112.2 ft; table 2).

Maximum Basin Elevation

Maximum basin elevation, in thousands of meters, was
computed in GIS by identifying the maximum 10-m NED grid
point elevation, in meters, within the drainage basin bound-
aries (typically at the basin boundary), and dividing it by
1,000. The maximum basin elevation is computed in meters
because it is the native vertical unit in the NED. Maximum
elevations of streamgage drainage basins used in this study
range from 193 m (633.2 ft; Royal River at Yarmouth, Maine
[01060000] streamgage) to 1,916 m (6,286 ft; Saco River near
Conway, NH [01064500] streamgage), with a mean of 860 m
(2,821.5 ft; table 2).

Mean Basin Slope

Mean basin slope, in percent, was computed in GIS by
arithmetically averaging all 10-m slope grid points (steepest
gradient identified between a cell and its neighboring cells
derived from the 10-m NED) within the drainage basin bound-
aries. The slope grid was computed as the change in elevation
between grid points divided by the distance between grid
points and multiplied by 100 to obtain units in percent. Mean
basin slopes of streamgage drainage basins used in this study
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Table 3. Point coordinates defining the Gulf of Maine Line.

[Point coordinates are in meters, referenced to Universal Transverse Merca-
tor zone 19 datum (fig. 1)]

Y coordinate
4734992.89
4988911.83

X coordinate
336321.28
775853.75

Point A
Point B

range from 4.5 percent (Mattawamkeag River near Mattawam-
keag, Maine [01030500] streamgage) to 26.6 percent (Wild
River at Gilead, Maine [01054200] streamgage), with a mean
of 12 percent (table 2).

Mean Basin Percent Hydrologic Soil Group A

Wolock (1997) aggregated data from the national Natural
Resources Conservation Service’s (NRCS) State Soil Geo-
graphic (STATSGO) database (U.S. Department of Agricul-
ture, 1994) to compute 1-km (0.6-mi) grids of percentages of
each hydrologic soil type (A, B, C, and D; U.S. Department
of Agriculture, 1986). The gridded datasets of hydrologic soil
types have a percentage of each soil type assigned to each
grid. The percentages were computed as averages of multiple
soil components and layers, weighted on the basis of soil layer
thickness and component area quantified in the STATSGO
database. Soils classified as hydrologic group A (HGA; fig. 2)
are well drained with high infiltration rates (minimum infil-
tration rate of 8 to 12 millimeters per hour [mm/h] or 0.3 to
0.5 inches per hour [in/h]) and high rates of water transmis-
sion (greater than 7.6 mm/h or 0.3 in/h; Dunne and Leopold,
1978; U.S. Department of Agriculture, 1986). For use in this
report, mean basin percent HGA was computed in GIS by
arithmetically averaging all 1-km (0.6-mi) HGA grid points
within the drainage basin boundaries. The mean basin percent-
ages of soils classified HGA for streamgage drainage basins
used in this study range from 0 percent (Ducktrap River near
Lincolnville, Maine [01037380] streamgage) to 31.5 percent
(Bearcamp River at South Tamworth, NH [01064801]
streamgage), with a mean of 10 percent (table 2).

Fraction Sand and Gravel Aquifer

The Maine Office of GIS (MEGIS) serves a GIS data-
set comprising the polygonal boundaries of significant
aquifers as delineated by the Maine Geological Survey at a
1:24,000 scale throughout the State of Maine (Maine Office
of GIS, 2015). Significant aquifers are sand and gravel glacial
deposits having the potential to yield 38 liters per minute
(L/min; 10 gallons per minute [gal/min]) or more to a properly
constructed well. The aquifers are differentiated by yield in
the GIS dataset, denoted by the stored value in the attribute
ATYPE. A high-yield aquifer with an estimated yield greater
than 189 L/min (50 gal/min) is denoted ATYPE = 1, and an

aquifer with an estimated yield of 38 to 189 L/min (10 to
50 gal/min) is denoted ATYPE = 2.

The University of New Hampshire’s Geographically
Referenced Analysis and Information Transfer (NH GRANIT)
Web site, a GIS clearinghouse for the State of New Hamp-
shire, serves a GIS dataset comprising the polygonal boundar-
ies of stratified drift aquifers as delineated by the USGS and
the New Hampshire Department of Environmental Services,
Water Resources Division (New Hampshire Geographically
Referenced Analysis and Information Transfer, 2014). For the
purposes of this report, the stratified drift aquifers mapped in
northern New Hampshire are considered to be comparable to
the significant sand and gravel aquifers mapped in Maine.

The fraction of sand and gravel aquifer was computed
as the sum of polygon areas of the mapped sand and gravel
aquifers for Maine (ATYPE = 1 and 2; fig. 3) and (or) the
stratified drift aquifers in northern New Hampshire divided
by the total basin drainage area. Fractions of sand and gravel
aquifer in streamgage drainage basins used in this report
range from 0 (North Branch Penobscot River nr Pittston
Farm, ME [01027200] streamgage) to 0.212 (Old Stream
near Wesley, Maine [01021480] streamgage), with a mean of
0.053 (table 2).

Percent Open Water

The 2006 NLCD (Multi-Resolution Land Characteristics
Consortium, 2014) is a GIS 30-m (98.4-ft) gridded dataset for
the conterminous United States where each grid is assigned
a single value from 16 possible classes of land cover clas-
sification (Fry and others, 2011). Land cover class code 11
is designated open water and is defined as areas of open
water, generally with less than 25 percent cover of vegetation
or soil—such as lakes and ponds. Percent open water was
computed as the sum of the area of all 30-m (98.4-ft) grids
designated with land-classification code 11 divided by the
total basin drainage area and multiplied by 100. Percentages
of NLCD-classified open water in streamgage drainage basins
used in this study (fig. 4) range from 0 percent (Wild River at
Gilead, Maine [01054200] streamgage) to 6.2 percent (Fish
River near Fort Kent, Maine [01013500] streamgage), with a
mean of 1.9 percent (table 2).

Regression Equations

Regression equations for estimating monthly and
annual mean and 1, 5, 10, 25, 50, 75, 90, 95, and 99 percen-
tile streamflows for ungaged rivers in Maine are presented
in tables 4 through 16. Drainage area is a highly significant
explanatory variable (basin characteristic) for all percentile
streamflows and for all monthly and annual mean streamflows;
larger drainage basins contribute greater streamflows.

Mean basin elevation is a significant explanatory variable
for nearly all percentile streamflows for the annual period and
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Hydrologic soil group A
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Base map from Esri Inc. data, 2012 0 25 50 75 100 MILES Soil data mapped by D.M. Wolock, 1997
North American Datum 1983 — SR S S S
Universal Transverse Mercator, zone 19N 0 50 100 KILOMETERS

Figure 2. Distribution of hydrologic soil group A in Maine and New Hampshire.
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North American Datum 1983
Universal Transverse Mercator, zone 19N
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[ | Maine Geological Survey, 1:24,000, 2014
Aquifers in New Hampshire mapped by the

U.S. Geological Survey and the
New Hampshire Department of
Environmental Services, 1:24,000, 2014

Figure 3. Distribution of sand and gravel aquifers in Maine and New Hampshire. Maine aquifers from Maine Office
of GIS (2015) and New Hampshire aquifers from New Hampshire Geographically Referenced Analysis and Information
Transfer (2015).
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Figure 4. Distribution of land cover classified as open water (land cover code 11) in the 2006 National Land Cover Dataset
(NLCD) in Maine and New Hampshire.
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the months of July, August, September, and October. For these
periods, the fraction of sand and gravel aquifer provides addi-
tional explanatory power for the low-streamflow percentiles
(generally median and lower). Discharge from sand and gravel
aquifers (groundwater discharge, also often referred to as base
flow) typically composes a substantial component of the total
streamflow during low-flow periods. The distance from the
coast for the drainage basin provides significant explanatory
power for the variability in flows during February, March,

and April. Heat in the Atlantic Ocean has a warming effect on
winter air temperatures near the coast; milder temperatures in
basins closer to the coast generally result in less accumulated
snowpack over the winter, greater occurrence of rain during
winter, and earlier snowpack melt and runoff in late winter
and early spring. For February, mean basin slope provides
additional, significant explanatory power for median and
lower streamflows with steeper slopes contributing to higher
streamflows. Percent open water is a measure of storage and
provides significant explanatory power for median and higher
streamflows in March and for all percentiles in April.

Percent open water continues to provide significant
explanatory power for percentiles in May and June; the signs
of the coefficients indicate increased amounts of open water
increase low flows and decrease the highest flows. This is
consistent with regression equations for estimating flood
flows of various annual exceedance probabilities by Hodgkins
(1999), whose equations indicate basin storage has an attenu-
ating effect on the magnitude of flood flows. Mean basin slope

provides significant explanatory power for all percentiles in
May and for 25 and lower percentiles (lower flows) in June.
November, December, and January have two-variable
regression equations. Maximum basin elevation adds signifi-
cant explanatory power for all percentiles in November, with
higher elevations corresponding with higher streamflows. The
mean basin percent of HGA (well-drained soils) adds signifi-
cant explanatory power for 25 and lower percentiles (lower
flows) in December and 90 and lower percentiles (lower
flows) in January; in all equations, higher percentages of HGA
correspond with higher streamflows.
Accuracy and limitations of the equations.—The 90 per-
cent prediction interval is a measure of uncertainty for the
regression equations; it was computed by first computing the
average standard error of prediction (ASEP) by taking the
arithmetic mean of the standard errors of prediction for all n
observations (in the case of this study, n = 24) for each regres-
sion equation. ASEP was then converted to a percentage for
the 90 percent confidence interval, thereby representing an
approximately 90 percent probability that the true value of the
flow statistic at a location of interest is between the negative-
and positive percent prediction intervals (tables 4-16). For
example, suppose application of the annual 10 percentile flow
equation (Q10, table 4) for a basin of interest yields 30 ft*/s;
there would be an approximate 90 percent probability that the
true value of the annual 10 percentile streamflow is between
-32.5 and +48.3 percent of 30 ft¥/s (20.2 to 44.5 ft*/s).

Table 4. Regression equations for estimating annual streamflows for ungaged, unregulated streams in rural

drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation

derivation; R?, coefficient of determination; 0., the streamflow estimate in cubic feet per second for x percentile, in percent; O

the

‘mean®

mean streamflow estimate in cubic feet per seéond; DA, basin drainage area, in square miles; £4V'G, mean basin elevation, in thousand
meters; SGAQ, fraction of drainage basin area underlain by sand and gravel aquifer]

90-percent
Regression equation predict[i]on interval (F;::rsci/ﬂ;n Adjusted R
(percent)
0, =0.000913DA">41("42647G] 03195640 -65.3 to 188 -57.2to0 134 0.87
0, =10.00828DA"310! 7EAC 03215640 -43.6t0 77.2 -34.7t053.3 0.94
0,,= 0.0288DA"241000F47G] (2265640 -32.5t048.3 -25.0t033.4 0.97
0,, = 0.210DA4" 71 QO436EATG] (1155640 -19.2 t0 23.7 -13.2t0 15.2 0.99
0,, = 0.865D4931("204£47G] (07135640 -17.7to0 21.6 -12.4t0 14.2 0.99
0, = 2.34DA0I QO 108E47G] (03415640 -15.4t0 18.3 -10.9to0 12.2 0.99
0,, = 5.40DA901 Q0 135EAVG] ()0.0465G40 -15.3t0 18.0 -10.1to 11.3 0.99
0,; = 8.61 DA (O 188F47G] (00335640 -16.3t0 19.5 -10.4 to 11.6 0.99
0,, = 23.4DA0FT] (0349EAVG] (100485640 -24.8t032.9 -16.3 t0 19.5 0.97
0, = 2.20DA00] (0217E4G] (02535640 -14.4 10 16.9 -9.90 to 10.9 0.99




The prediction error sum of squares (PRESS) estimator
of error is a measure of validation for the regression equations.
PRESS is computed by summing the squares of the predic-
tion residuals for the full set of n observations. A prediction
residual for the ith observation is computed as the difference
between the observed value of the dependent variable and the
regression estimate of that variable on the basis of a regression
equation derived by leaving out the ith observation (therefore
using n—1 observations to develop the equation). The predic-
tion residuals are computed for each observation, squared and
summed, yielding the PRESS statistic. The ratio PRESS/n
is analogous to the average variance of prediction, and the
square root of PRESS/n (converted to percent in tables 4—16)
is analogous to the average standard error of prediction.

The R? statistic is a measure of a regression model’s
goodness of fit to the observations; its value ranges from 0
through 1, where 1 indicates a perfect match between the
regression model estimates and the observations. An adjusted
R? (tables 4—16) is a coefficient of determination adjusted
for the degrees of freedom in the model, thereby enabling
direct comparison between models with differing numbers of
explanatory variables.

The largest prediction intervals and PRESS percent-
ages are associated with regression equations for the lowest
streamflows derived for months during which the lowest
streamflows of the year occur (such as the 1 and 5 percen-
tiles for August and September). Large prediction intervals
for a regression equation represent large uncertainty in the

Regression Equations 13

regression estimate. Because of the large uncertainty in
regression estimates for these lowest streamflows, there is
the possibility of discontinuities to arise during application
of those equations. An example of a discontinuity would be
a | percentile regression estimate larger in magnitude that
the 5 percentile estimate for the same month; this does not
mean either estimate is wrong, rather, the results are simply
a function of the large uncertainty in the estimates of those
low flows.

The regression equations presented in this report have
been derived on the basis of streamflow and basin charac-
teristics data for unregulated, rural drainage basins without
substantial streamflow or drainage modifications (for example,
diversions and (or) regulation by dams or reservoirs, tile drain-
age, irrigation, channelization, and impervious paved sur-
faces). Using these equations for regulated or urbanized basins
with substantial streamflow or drainage modifications will
yield results of unknown error. For the study detailed in this
report, regulation needed to be completely absent or deemed
small enough so as to have a negligible effect on the computa-
tion of monthly statistics using daily mean streamflows. For
the 24 streamgage study basins, the sum of percentages of
land cover classified by the NLCD as either developed open
space (land-classification code 21) or low- (code 22), medium-
(code 23), or high-intensity development (code 24) ranged
from than 0.1 to 9.3 percent (mean of 2.3 percent). Not includ-
ing developed open space, which commonly includes large-lot

single-family housing units, parks, and golf courses (Fry and

Table 5. Regression equations for estimating January streamflows for ungaged, unregulated streams in

rural drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression
equation derivation; R?, coefficient of determination; O , the streamflow estimate in cubic feet per second for x percentile, in

percent; Q

mean’

basin percentage of hydrologic soil group A]

the mean streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; HGA, mean

90-percent
Regression equation prediclIi]on interval (F;::rscsell:’t);n Adjusted B
(percent)
0, = 0.271DA*711(00068HGA -37.4 t0 59.7 -24.3 t0 32.1 0.92
0, = 0.430DA094100048HGA -30.4 to 43.7 -20.2t025.3 0.95
0,, = 0.555D4°321000053HC4 -28.8t0 40.5 -19.3t023.8 0.95
0, = 0.793 D411 000059HGH -24.4t032.2 -16.3t0 19.5 0.97
0, = 1.06DA*961*0052G4 -28.6 10 40.0 -19.1t023.7 0.96
0, = 1.88DA01(00048HG4 -31.1t045.2 -20.8 t0 26.3 0.94
0,, = 4.01DA*881Q000591G4 -31.9 to 46.8 -21.6 to 27.5 0.94
0, = 9.21DA8241(00049HGA -35.0to0 54.0 -24.2t032.0 0.91
0,, = 27.6DA*7?10%0181G4 -50.4 to 101 -35.1to 54.1 0.78
0., = 2.40DA0 821 000047164 -26.8 t0 36.6 -18.0t021.9 0.96
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Table 6. Regression equations for estimating February streamflows for ungaged, unregulated streams in rural
drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation
derivation; R?, coefficient of determination; 0., the streamflow estimate in cubic feet per second for x percentile, in percent; O the
mean streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; SLOPE, mean basin slope, in percent;
DIST, distance from the coast, in miles, measured as the shortest distance from the drainage basin centroid to a line in the Gulf of

Maine defined by end points 71W, 42.75N and 65.5W, 45N, referenced to North American Datum of 1983]

90-percent

12

Regression equation prediction interval (7:§rscse/l:'t)) Adjusted R
(percent)

0, = 1.16DA"*611Q0012SLOPED[ST 0354 -37.4t059.8 -25.5t0 34.3 0.91

O, = 1.80DA 31 000120SLOPED[ST0489 -29.8t0 42.5 -21.5t027.4 0.95

0,,=3.92DA 0010001 0SLOPED [ST 064 -27.4t037.7 -19.6t0 24.4 0.96

0,; = 7.06DA" 100 00SLOPED[ST0-T1S -23.6t0 30.9 -17.2t020.8 0.97

0,,= 12.8DA 100 00SLOPED ST 0-762 -20.0 to 25.1 -13.9to0 16.1 0.98

0,; = 30.8DA" 5100 0020SLOPED ST 0783 -14.5t0 16.9 -9.90to 11.0 0.99

0,, = 87.1DA 100 00ISLOPED[ST0879 -19.7 to 24.5 -14.1t0 16.4 0.98

= 0.968 -0.0002SLOPE 10.923 _ _

0,, =244DA"*10 DIST 259 t0 34.9 18.5t0 22.7 0.96

0,, = 647D A 80100 0057SLOPED ST 0902 -35.5t055.1 -26.4t0 35.8 0.90

O, oon = 35.9D A 2100 0HISLOPED [ST-0814 -1591t0 18.8 -11.4t0 12.9 0.99

Table 7. Regression equations for estimating March streamflows for ungaged, unregulated streams in rural
drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where n is the number of streamgages used in the regression equation deriva-
tion; R?, coefficient of determination; O, the streamflow estimate in cubic feet per second for x percentile, in percent; Q. the mean
streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; WATER, percent of drainage basin land cover
classified as open water (National Land Cover Data land-classification code 11); DIST, distance from the coast, in miles, measured as
the shortest distance from the drainage basin centroid to a line in the Gulf of Maine defined by end points 71W, 42.75N and 65.5W,
45N, referenced to North American Datum of 1983]

90-percent
Regression equation predict'i)on interval (7::22/;?;/2 Adjusted R
(percent)
0, = 5.83DA 210000 ATER [ [ST0676 -36.5t057.4 -27.5t037.9 0.92
O, = 8.42DA" 100 0ATERDIST0.6% -32.3t047.7 -23.8t031.2 0.94
0,,= 13.4DA 0100 0ATERDST0720 -26.3 t0 35.7 -19.2t023.8 0.96
0,, = 36.2DA*?°100NTHATER D[S T 0829 -20.7 to0 26.0 -14.5t0 17.0 0.98
0, = 159DA" 01100 TATERD[ST1.02 -17.7to0 21.5 -11.7t0 13.3 0.98
Q,; = 274D A1 00028 WATER [ ST0.958 -21.5t027.4 -15.5t0 18.4 0.97
0,, = 259DA93010-002TATER D [ST 072! -24.8t0 32.9 -18.6 t0 22.8 0.96
Q,; = 225DA P10 0040MATER ST 058 -30.0 to 42.8 -22.1to0 28.3 0.94
0,, = 109D 48071 Q-00T4WATER D[ ST0-126 -27.6 to 38.1 -20.3t0 25.5 0.94

0, = 103D 4401 Q0092WATER D) [GT-0.706 -18.91023.3 -13.7t015.8 0.98
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Table 8. Regression equations for estimating April streamflows for ungaged, unregulated streams in rural
drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation deriva-

tion; R?, coefficient of determination; 0., the streamflow estimate in cubic feet per second for x percentile, in percent; Q

the mean

mean®

streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; WATER, percent of drainage basin land cover
classified as open water (National Land Cover Data land-classification code 11); DIST, distance from the coast, in miles, measured as
the shortest distance from the drainage basin centroid to a line in the Gulf of Maine defined by end points 71W, 42.75N and 65.5W, 45N,

referenced to North American Datum of 1983]

90-percent
Regression equation predictli)on interval (?::iillﬁ);ﬂ Adjusted R
(percent)
0, =3.92DA" 12100 MSWATER D [ST 0432 -31.0to 44.8 -22.1t028.4 0.96
0, =3.32DA" 100 WBATERD[ST 0313 -30.2t0 43.3 -23.4t0 30.6 0.96
0,,=3.22DA" P10 O MSHATER DS T 0233 -24.0t0 31.5 -18.7t0 23.0 0.98
0,; = 2.13DA 610 0 ATER D[S TN -21.1t0 26.8 -17.1 t0 20.7 0.98
0,,= 1.14DA 21001 SHATER D[S 0292 -19.5t024.2 -14.4t0 16.9 0.99
0,; = 1.59DA*T11Q-0020TATER [ ST0-404 -19.5t024.2 -13.7t0 15.9 0.99
0,, = 3.39DA1 OV PHATERD[STO412 -18.2t0 22.3 -12.4to 14.2 0.99
0,; = 6.51 DA Q0 SIATERDST0370 -16.8t0 20.2 -11.2t0 12.6 0.99
0,, = 39.5DA82] 00 SHATERD[STO-170 -26.6 t0 36.2 -19.0t0 23.4 0.96
0, = 2.33DA0 QO OSIATERD[GTO256 -16.7 t0 20.0 -12.0t0 13.6 0.99

Table 9. Regression equations for estimating May streamflows for ungaged, unregulated streams in rural drainage

basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation deriva-
tion; R?, coefficient of determination; O, the streamflow estimate in cubic feet per second for x percentile, in percent; Q. the mean
streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; WATER, percent of drainage basin land cover clas-

sified as open water (National Land Cover Data land-classification code 11); SLOPE, mean basin slope, in percent]

90-percent

Regression equation prediction interval (F;::rscsell:’t);n Adjusted R
(percent)
0, = 0.0913DA" 20100073 WATER] ()0.0233SLOPE -33.7t0 50.9 -21.9t028.0 0.96
O, = 0.158DA" 171 (0 MH0WATER] (0.02245L0PE -28.4t0 39.7 -20.1t025.2 0.97
0,,=0.216DA4" 131 Q0462 HATER] ()0.0219SLOPE -26.4t035.9 -18.6t0 22.8 0.98
0,; = 0.362DA"131Q00%07HATER] ()0.02085LOPE -22.41028.8 -15.6t0 18.5 0.98
0, = 0.615DA" 131000+ 7HATER] ()0.0190SLOPE -19.6t0 24.4 -12.7to 14.5 0.99
0,; = 1.10DA" 12100 07WATER] (0.01735L0PE -21.4t027.3 -13.8 t0 16.0 0.98
0,, = 2.14DA"101(0 025 WATER] (0.0161SLOPE -25.6t0 34.4 -16.8t0 20.2 0.98
0, = 3.67DA 061 (0 018IWATER] (0.0160SLOPE -26.4t0 35.8 -17.4t021.0 0.97
0,, = 9.39DA1021(-00039WATER] ()0-0139SLOPE -23.4t0 30.6 -16.0 to 19.1 0.98
O, oon = 1.0TDA 1010 03BATER] (00174SLOPE -20.4t025.6 -133t0 15.4 0.99
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Table 10. Regression equations for estimating June streamflows for ungaged, unregulated streams in rural drainage

basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation derivation;

R?, coefficient of determination; O , the streamflow estimate in cubic feet per second for x percentile, in percent; O

mean®

the mean streamflow

estimate in cubic feet per second; DA, basin drainage area, in square miles; WATER, percent of drainage basin land cover classified as open
water (National Land Cover Data land-classification code 11); SLOPE, mean basin slope, in percent]

90-percent
Regression equation predict[i]on interval (F;::rscz:'t);n Adjusted R
(percent)
0, = 0.0689DA" 131 0328IATER] (0.1 T3SLOPE -46.5 to 86.8 -34.0to 51.6 0.91
O, =0.0922DA" 131 (0 HOIHATER] (00197SLOPE -38.9 to 63.7 -28.1t0 39.1 0.94
0,,= 0.109DA4"141Q00BHPATER] ()0.01955LOPE -35.2t0 54.4 -25.0t033.4 0.95
0, = 0.188DA" 131 QOB 12WHATER] ()0.0178SLOPE -28.1t039.2 -19.5t0 24.2 0.97
0, = 0.384D4" 17107038 MATER] ()0.01475LOPE -23.3t0 30.3 -15.9to 18.9 0.98
Q,; = 1.12D A" 01 0016 WATER] (0.0108SLOPE -24.1t0 31.7 -17.5 t0 20.5 0.98
0,, = 3.64DA*I701 (-00026HATER ] ()0.0074SLOPE -27.9 to 38.8 -20.0 to 25.0 0.96
Q,; = 8.95DA09201 (00233 WATER] ()0.00295LOPE -28.3t0 394 -20.4 to 25.6 0.96
0,, = 35.8DAS82] (0 0T8OMATER ()-00017SLOPE -35.8t055.9 -25.4t0 34.0 0.92
O = 1.41 DA 0] Q0 000MATER] (j001045L0PE -18.6 t0 22.9 -13.6t0 15.7 0.98

Table 11. Regression equations for estimating July streamflows for ungaged, unregulated streams in rural
drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where n is the number of streamgages used in the regression equation deriva-
tion; R?, coefficient of determination; O, the streamflow estimate in cubic feet per second for x percentile, in percent; Q. the mean
streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; £4VG, mean basin elevation, in thousands of

meters; SGAQ, fraction of drainage basin area underlain by sand and gravel aquifer]

90-percent

Regression equation prediction interval (F;::rscsell:’t);n Adjusted R
(percent)
0, = 0.0061DA'38181E47G] (3045640 -55.5t0 125 -42.9t0 75.1 0.90
O, =0.0148DA'31100788E4G] (2485640 -49.910 99.6 -36.6t0 57.8 0.91
0,,=0.0207DA"30100-145E4VG] (2075640 -44.31t079.5 -31.5t045.9 0.94
0,; = 0.0382DA'2710066F47G 1315640 -37.0to 58.8 -25.3t033.9 0.96
0,, = 0.105D4'201Q°86E47G] (07815640 -29.9t0 42.7 -20.1t025.2 0.97
0,; = 0.363DA4"1110049F47G] (00015640 -26.3 to 35.7 -18.5to0 22.7 0.98
0,, = 1.08DA 051 (04744761 0-0.0705640 -24.3t0 32.1 -17.8t0 21.7 0.98
0, = 2.11.DA 011 Q0463E4VG (00445640 -27.2t037.3 -19.2t0 23.7 0.97
0,, = 6.35DA09261(0393E47G] (00485640 -42.8 to 74.7 -31.0 to 44.9 0.89
O, oon = 0.432D A1 8] (0 308E4VG] (0-1655G40 -19.8 t0 24.7 -14.4t0 16.8 0.99
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Table 12. Regression equations for estimating August streamflows for ungaged, unregulated streams in rural
drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation deriva-

tion; R?, coefficient of determination; 0., the streamflow estimate in cubic feet per second for x percentile, in percent; Q

the mean

mean®

streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; £E4VG, mean basin elevation, in thousands of

meters; SGAQ, fraction of drainage basin area underlain by sand and gravel aquifer]

90-percent
Regression equation predictli)on interval (F;::rsci/;);lz Adjusted R
(percent)
0, =0.000136DA"771("66E47G] (6365640 -78.8 to 373 -71.4 to 250 0.80
0, =0.000774DA" 0101 36E47] (875640 -67.0 to 203 -58.0 to 138 0.86
0,,=0.00136DA"61("28£47¢] (465640 -62.9 to 170 -53.7to 116 0.88
0, = 0.0108DA'36100926547G] (2805640 -42.4t0 73.6 -31.3t045.5 0.95
0,,=0.0339D4'27100B1F47G o1 $75640 -32.0t0 47.1 -23.0t029.9 0.97
0,; = 0.157DA"171Q°720F47G] (006335640 -28.5t039.9 -19.3 t0 23.8 0.97
0,, = 0.497DA"1210°717EAVG] (00535640 -29.4t0 41.6 -20.4 to 25.6 0.97
0,; = 0.903DA4"10°779F47G] ()0-2335640 -28.5t039.8 -19.5t024.2 0.97
0,, = 4.00DA* 31 (014E47G] (107805640 -42.1t0 72.7 -29.8 t0 42.5 0.91
O =0.206DA"11(0811E4G] (09055640 -28.0 to 38.8 -19.1 0 23.7 0.97

Table 13. Regression equations for estimating September streamflows for ungaged, unregulated streams in rural
drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation deriva-
tion; R?, coefficient of determination; O, the streamflow estimate in cubic feet per second for x percentile, in percent; Q. the mean
streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; £4VG, mean basin elevation, in thousands of

meters; SGAQ, fraction of drainage basin area underlain by sand and gravel aquifer]

90-percent

Regression equation prediction interval (?:‘Eii/ﬂ;ﬂ Adjusted R
(percent)
0, =0.00013DA"7210"$3E47G] (6965640 -78.3 to 360 -70.5 to 238 0.80
0, =0.000199DA" 710" 71EA¢ (285640 -78.7 to 369 -72.6 t0 265 0.80
0,,=0.00217DA"451("2F47¢] (4345640 -57.9to 138 -49.2t097.0 0.90
0,, = 0.00865DA" 310" 18:47¢ (3175640 -44.6 t0 80.6 -35.4t0 54.9 0.94
0,,=0.0380DA"21(00EAVG] (2095640 -29.3t0 41.5 -22.2t0 28.5 0.97
0,; = 0.203DA4" %100 7F47G] (09015640 -22.6t0 29.1 -15.2t0 17.9 0.98
0,, = 0.575DA"041Q071EAVG] (003295640 -30.9 to 44.7 -21.1t026.7 0.96
0, = 1.29DA' 011 (0-396E4VG] ()-0.0675640 -34.2t0 52.1 -23.3t0 30.3 0.95
0,, = 6.84DA0%92] (0322£47G] (02075640 -45.5t0 83.6 -31.2t0454 0.87
O, oon = 0.279D A1 041 (0 729EAVG] (071955G40 -27.3t037.6 -18.5t022.7 0.97
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Table 14. Regression equations for estimating October streamflows for ungaged, unregulated streams in rural
drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation deriva-
tion; R?, coefficient of determination; 0., the streamflow estimate in cubic feet per second for x percentile, in percent; O . the mean
streamflow estimate in cubic feet per second; DA, basin drainage area, in square miles; £4VG, mean basin elevation, in thousands of
meters; SGAQ, fraction of drainage basin area underlain by sand and gravel aquifer]

90-percent
Regression equation predict?on interval ”;:Ersci/ﬂ;ﬂ Adjusted R
(percent)
0, =0.00303DA'#31012E47G] #935G40 -62.8 to 169 -56.0 to 127 0.86
0, =0.00476DA'10!#E47C] 03935640 -59.0 to 144 -52.2 to 109 0.88
0,,=0.0142DA' 2710 18F47G] (2785640 -44.1 t0 79.0 -37.4t059.8 0.94
0,, = 0.0759DA"1310089EAG (1735640 -23.7t031.1 -17.0 to 20.5 0.98
0, = 0.366DA4" 2100 638F47G] ()0-36656G40 -27.2t037.3 -19.2t0 23.8 0.97
0,; = 1.53DA051Q0453E47G] (00025640 -31.1t045.2 -22.7t029.4 0.95
0,, = 4.60DA* 80 QO447EAVG] ()r0-1395640 -35.9 t0 56.0 -24.8 t0 33.0 0.92
0, = 9.43DA0M1 (049F4VG] (00825640 -35.1to 54.0 -23.1 to 30.1 0.92
0,, = 30.8DA0 T8 (O78EAVG] (02185640 -42.9t075.2 -29.2t041.2 0.86
O = 1.91DA0W5] (0 20EVG] (00835640 -28.9 to 40.6 -19.6 to 24.4 0.96

Table 15. Regression equations for estimating November streamflows for ungaged, unregulated streams in
rural drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation
derivation; R, coefficient of determination; Q , the streamflow estimate in cubic feet per second for x percentile, in percent; O

the mean streamflow estimate in cubic feet per second; D4, basin drainage area, in square miles; £MAX, maximum basin eleva-
tion, in thousands of meters]

90-percent

Regression equation prediction interval “:::rsci/;);/z Adjusted R
(percent)
0,=0.0514DA4"1310376FMAX -65.0 to 185 -55.1t0 123 0.80
0, = 0.100DA"101Q034EMAX -542t0 118 -43.2t0 76.1 0.87
0,,=0.290D4" 021 QO-246EMAX -34.7t053.2 -24.8t0 33.0 0.95
0, = 0.977DA#71 0 146FMAX -27.0t0 37.0 -17.3t020.9 0.96
0,,= 1.87DA*9551Q0081EMAX -21.0t0 26.6 -14.4t0 16.9 0.98
0,; = 3.65DA1Q000FMAX -19.0 to 23.4 -12.6 to 14.5 0.98
0,, = 7.74DA*%011 QO04EMAX -22.5t029.0 -14.4t016.8 0.97
0, = 12.3DA*8671 Q0-04EMAX -30.4t0 43.6 -19.7 t0 24.6 0.94
0,, = 33.1DA738] 0182EMAX -41.9 t0 72.0 -28.4t0 39.6 0.86

O, =3.49DA0902] Q00BN -20.2 t0 25.4 -12.9 10 14.8 0.98
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Table 16. Regression equations for estimating December streamflows for ungaged, unregulated streams in
rural drainage basins in Maine and northern New Hampshire.

[(PRESS/n)"?, prediction error sum of squares, in percent, where 7 is the number of streamgages used in the regression equation
derivation; R?, coefficient of determination; 0., the streamflow estimate in cubic feet per second for x percentile, in percent; O

the mean streamflow estimate in cubic feet pér second; DA, basin drainage area, in square miles; HGA, mean basin percentage of
hydrologic soil group A]

90-percent
Regression equation predi(ct'i)on int)erval (I:::ii/;);ﬂ Adjusted R
percent
0, =0.0516DA'281 0013264 -58.6 to 142 -48.7 t0 95.0 0.85
0, =0.222DA" 11100083064 -27.6 to 38.2 -19.9 t0 24.9 0.97
0,,= 0.573DA°9%61000047HCA -22.7t029.4 -15.8 to 18.7 0.98
0, = 1.12DA*9%1 (%0366 -23.2t030.2 -15.8 to 18.7 0.97
0, = 1.92DA0%¢1 00021164 -28.9 t0 40.6 -19.5t0 24.2 0.96
0,; =2.90DA*9531(00032G4 -31.6 to 46.1 -21.9t0 28.1 0.95
0,, = 5.46DA*91 000386 -31.6 to 46.2 -21.6 t0 27.5 0.94
0, = 10.8DA*581(00037G4 -30.4 to 43.8 -20.8 t0 26.3 0.94
0,, = 27.6DA*8531(00059HG4 -43.0to 75.5 -29.3t041.3 0.86

0, = 3.16D40s21] gPovisiics -24.91033.1 -16.6 10 20.0 0.97
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Figure 5. Two-dimensional ranges of explanatory variables used in regression equations for estimating annual and July, August,
September, and October mean and selected percentile streamflows for ungaged, unregulated streams in rural drainage basins in Maine
and northern New Hampshire.
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northern New Hampshire.

700



Basin centroid distance from the coast, in miles Mean basin slope, in percent

Basin open water, in percent

30.0

25.0

20.0

15.0

10.0

5.0

0.0

250

200

150

100

50

70

6.0

5.0

4.0

3.0

2.0

0.0

°
°
o0 i
o o ®
° ° o 1
) (]
® o® ® 1
® )
) ( 1) ° i
10 100 1,000 10,000
Drainage area, in square miles
T T T
o 4
°
&
... .- o
° L ]
& o °
o © LIPS 7
10 100 1,000 10,000
Drainage area, in square miles
. -
. -
o °
. .
o o °
o o0 4
] ..
® : L] T
. ;. L] d .
10 100 1,000 10,000

Drainage area, in square miles

Regression Equations
30.0 D T T T T
& 250} 3 ,
I )
=4
= 200 - ~ . E
g 15.0 ¢ ¢ :
o . - 4
» © [ { ]
£ ) [ J
w
= 10.0 | o ® ° e
= °
©
@ 50} r. ([ i
= [ J
00 1 1 1 1
0 50 100 150 200 250
Basin centroid distance from the coast, in miles
E
30.0 T T T T T T
£ 250
(4]
= 200 o0 -
£ .
@ M) °
(=N
15.0 - E
2 o ° °
= O
& 100} .
= ¢ S o
o ®e
S s0f * o 1
00 1 1 1 1 1 1
0.0 1.0 20 3.0 4.0 5.0 6.0 7.0
Basin open water, in percent
F
7.0 T T T T
2 60} g _
S
& s0f ¢ ]
£
=40 ) -
[]
© °
2 30} ° .
& () °
S 20| ° o0 |
=
@ e® _o
S 1ot 3 s - -
®9 ® o
00 1 :I S 1 1
0 50 100 150 200 250

Basin centroid distance from the coast, in miles

Figure 7. Two-dimensional ranges of explanatory variables used in regression equations for estimating February, March, April, May,
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others, 2011), maximum developed land cover is 3.7 percent
(mean of 0.7 percent for all 24 basins). Drainage alterations

are assumed to accompany development and are considered

negligible for all study basins in this report.

When using the regression equations, the basin character-
istics needed for the equations (explanatory variables) should
be derived using the same or comparable methods with the
same sets of data as those documented in this report. Basin
characteristics derived using other techniques or datasets
or using values outside the ranges (and combined ranges of
multiple explanatory variables in a single equation (fig. 5-8)
used to develop these regression equations (table 2) will yield
results of unknown error.

Summary

Regression equations offer a statistical method for
estimating streamflows at ungaged locations, which is useful
for water management, project planning, and other activities
related to monitoring and regulating surface waters. The U.S.
Geological Survey and the Maine Department of Transporta-
tion used streamflow data to develop dependent variables
for 130 regression equations for estimating monthly and
annual mean and 1, 5, 10, 25, 50, 75, 90, 95, and 99 percen-
tile streamflows for ungaged, unregulated rivers in Maine
and northern New Hampshire along with the data and meth-
ods used to derive them in an effort to delineate hydrologic
conditions. The regression equations presented in this report
supersede previously published regression equations because
of the updated streamflow and basin characteristics data used
in this report.

Daily streamflow data from 24 streamgages in Maine and
northern New Hampshire were used to derive the regression
equations. Streamflow in these 24 rural, unregulated basins
was deemed to be substantially unaffected by diversions and
(or) regulation by dams or reservoirs. The land cover in the
study basins was mostly forested; open water and wetlands
composed a mean of 8.3 percent of the study basin areas, and
developed land of any kind composed less than 10 percent of
any study basin area. Given recent studies documenting cli-
matic trends and their effects on hydrology in Maine and New
England, streamflow data collected during the 30-year period
from October 1, 1982, through September 30, 2012, were used
to derive the dependent variables for this report, thereby rep-
resenting contemporary hydrologic conditions in Maine and
northern New Hampshire.

Sixty-eight explanatory variables comprising charac-
teristics such as geology, land cover, land use, precipitation,
and temperature were derived using a geographic infor-
mation system and tested for use as potential explanatory
variables for the dependent streamflow variables. Ordinary
least squares regression of all possible subsets of 68 explana-
tory variables for each of 130 dependent streamflow

variables were used to select the explanatory variables that
would appear in the final regression equations. Emphasis
was placed on developing a coherent set of equations in

an effort to reduce the possibility of discontinuities in the
percentile estimates. Weighted least squares (WLS) regres-
sion techniques were used to derive the final coefficients and
measures of uncertainty for the regression equations. WLS
weights were computed as a function of the number of com-
plete water years of record from water years 1983 to 2012
divided by the mean record length for all of the stations used
in the analysis.

Eight basin characteristics serve as the final explana-
tory variables for estimating monthly and annual mean and
1, 5,10, 25, 50, 75, 90, 95, and 99 percentile streamflows:
drainage area, distance from the coast, mean and maximum
basin elevation, mean basin slope, mean basin percentage of
hydrologic soil group A (HGA), fraction of sand and gravel
aquifers, and percent open water. Drainage area is a highly
significant explanatory variable for all percentile streamflows
and for all monthly and annual mean streamflows; larger
drainage basins contribute greater streamflows. Mean basin
elevation and fraction of sand and gravel aquifer are both
significant explanatory variables for the annual period and
low flow months. Distance from the coast provides explana-
tory power for the variability in February, March, and April
flows. Percent open water, which is a measure of storage,
provides explanatory power during spring months, with
greater amounts of open water corresponding with lower
flows in March and April and higher flows in May and June,
in general. Mean basin slope provides explanatory power for
streamflows in February, May, and June, with steeper slopes
contributing to higher streamflows, in general. Maximum
basin elevation provides explanatory power for November,
with higher elevations corresponding with higher stream-
flows. Mean basin percent of HGA (well-drained soils)
provides explanatory power for streamflows in December
and January, with higher percentages of HGA corresponding
with higher streamflows.

The largest uncertainties are associated with regres-
sion equations for the lowest streamflows derived for months
during which the lowest streamflows of the year occur (such
as the 1 and 5 percentiles for August and September). The
regression equations have been derived from streamflow
and basin characteristics data for unregulated, rural drainage
basins without substantial drainage alterations (for example,
diversions and (or) regulation by dams or reservoirs, tile
drainage, irrigation, channelization, and impervious paved
surfaces); therefore, using them for regulated or urbanized
basins with substantial drainage alterations will yield results of
unknown error. Basin characteristics derived using techniques
or datasets other than those documented in this report or using
values outside the ranges (and combined ranges of multiple
explanatory variables in a single equation) used to develop
these regression equations will yield streamflow estimates of
unknown error.
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Appendix1. Monthly and Annual Mean and Selected
Percentile Streamflows for Selected U.S. Geological Survey
Streamgages in Maine and Northern New Hampshire

Tables 1-1—1-10. Computed monthly and annual streamflow statistics for selected
U.S. Geological Survey streamgages in Maine and northern New Hampshire

1. Mean
2. 1 percentile
3. 5 percentile
4. 10 percentile
5. 25 percentile
6. 50 percentile
7. 75 percentile
8. 90 percentile
9

0

95 percentile

1-10. 99 percentile
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