ZUSGS

science for a changing world

Prepared in cooperation with the Federal Emergency Management Agency

Tropical Storm Irene Flood of August 2011
In Northwestern Massachusetts

Scientific Investigations Report 2016—5027

U.S. Department of the Interior
U.S. Geological Survey



Front cover. Upper left: Geostationary Operational Environmental Satellite (GOES) East image of Hurricane Irene making landfall

near New York City on August 28, 2011. Image is courtesy of the National Oceanic and Atmospheric Administration, 2011. Lower right:
Deerfield River at the Bridge Street bridge (left) and the Bridge of Flowers (right) at Shelburne Falls, Massachusetts, taken on August 28,
2011, during flood flows from tropical storm Irene. Photograph by John E. Robison, Amherst, Massachusetts.

Back cover. Maxam Road bridge on the West Branch North River in Colrain, Massachusetts, with the bridge structure at the right edge
of the water (looking downstream) washed out on August 28, 2011, by tropical storm Irene. Photograph by Andrew Waite, USGS, taken
on September 22, 2011.



Tropical Storm Irene Flood of August 2011
in Northwestern Massachusetts

By Gardner C. Bent, Scott A. Olson, and Andrew J. Massey

Prepared in cooperation with the Federal Emergency Management Agency

Scientific Investigations Report 20165027

U.S. Department of the Interior
U.S. Geological Survey



U.S. Department of the Interior
SALLY JEWELL, Secretary

U.S. Geological Survey
Suzette M. Kimball, Director

U.S. Geological Survey, Reston, Virginia: 2016

For more information on the USGS—the Federal source for science about the Earth, its natural and living
resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1-888—ASK-USGS.

For an overview of USGS information products, including maps, imagery, and publications,
visit http://www.usgs.gov/pubprod/.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials
as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Bent, G.C., Olson, S.A., and Massey, A.J., 2016, Tropical storm Irene flood of August 2011 in northwestern
Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5027, 28 p., http://dx.doi.org/10.3133/
sir20165027.

ISSN 2328-0328 (online)


http://www.usgs.gov
http://www.usgs.gov/pubprod

Contents
ADSTIACT ..ttt bbb A Rt b b s At s b s ae bt nas 1
oo VT3 T 3OS 1
PUIPOSE @NA SCOPE ..ottt bbb bbb bbb nna 4
Study Area...........
Tropical Storm Irene
DeSCription Of FIOOM. ...ttt nnes 6
PRAK FIOWS ...ttt s bbb bbb n s 6
Determination of Peak Flows Through Stage-Discharge Rating Curves. ........ccccceccuveuene. 6
Determination of Peak Flows Through Indirect Computation Methods..........cccccveueunence. 6
Exceedance Probabilities of Peak FIOWS.........cccuueececeeecece e 9
Comparison 0f 2011 FIOOA DALA .....ccuvicveeceeeeeteeceee ettt bbb 10
PrevioUS FIOOUS ...ttt 10
Published FIood INSUTrANCE STUAIES ......cueecececteeceeteceeeee ettt sttt saen 12
HYATOIOGY ettt ettt bbb bbb bt 12
Water-Surface EIBVAtIONS ........ccccuiueieceercteceece ettt 16
SUMMArY and CONCIUSIONS ...ttt st 23
LTy o T aT TN 41 (- OO 24
Figures

1. Map showing distribution of rainfall and path of tropical storm Irene across
western Massachusetts on August 28-29, 2017 ... 2

2. Map showing location of the study area and the estimated annual exceedance
probability of the August 28, 2011, tropical storm Irene peak flows at U.S. Geological
Survey streamgages in the Deerfield and Hoosic River Basins in northwestern
MASSACHUSEIES......cveeceececec ettt bbb 3

3. Hydrographs showing a rapid rise in gage height because of runoff from tropical
storm Irene, August 28, 2011, for U.S. Geological Survey streamgages A, Hoosic
River near Williamstown, Massachusetts, and B, Deerfield River near West

DEEITIEI, IMASS. ...ceeeieeeee ettt 5
4. Graph showing stage-discharge rating curve number 35 for U.S. Geological Survey
Deerfield River at Charlemont, Massachusetts, Streamgage. .......ccooveveereeeeneeneeneeseeeennns 9

5. Graphs showing annual peak flows through water year 2013 for streamgages
A, Deerfield River at Charlemont, Massachusetts; B, Hoosic River at Adams, Mass.;
and C, North Branch Hoosic River at North Adams, Mass........ccccoeuveecueeecvecseesreseennns 10

Tables

1. Peak flows and gage heights for the August 28, 2011, flood compared with
historical peaks for U.S. Geological Survey streamgages in the Deerfield and
Hoosic River Basins, northwestern MassachUSEttS .......cccvcveeeeeeeceeeeseeeee s i
2. Peak gage heights, flows, flow calculation method, and corresponding annual
exceedance probabilities with confidence limits for the August 28, 2011, flood at
streamgages in northwestern MassachUSEtES........cccvvcrevcesecseccssce e 8



Comparison of peak flows for selected annual exceedance probabilities computed
with those published in the effective Federal Emergency Management Agency flood
insurance studies for U.S. Geological Survey streamgages in the Deerfield and

Hoosic River Basins, northwestern Massachusetts .........occeeveeceeiceveeieseceeeceeeee s 13

Comparison of the simulated water-surface elevations for the Deerfield River for

the 1-percent annual exceedance probability discharge determined by Lombard

and Bent (2015b) with those published in the effective Federal Emergency Manage-
ment Agency flood INSUraNCE STUAIES. ..o enees 17
Comparison of the water-surface elevations for the Green River for the 1-percent
annual exceedance probability discharge determined by Flynn and others (2016)

with those published in the effective Federal Emergency Management Agency

flood INSUFANCE STUAY .....cveececececcce ettt 19

Comparison of the water-surface elevations for the North River for the 1-percent
annual exceedance probability discharge determined by Bent and others (2015)

with those published in the effective Federal Emergency Management Agency

floOd INSUFANCE STUAY ...ttt 21

Comparison of the water-surface elevations for the Hoosic River for the 1-percent
annual exceedance probability discharge determined by Lombard and Bent (2015a)
with those published in the effective Federal Emergency Management Agency

flood INSUFANCE SEUAIBS .....eveeeeeceeeeec ettt 22

Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain

Length
inch (in.) 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area
square mile (mi?) 2.590 square kilometer (km?)

Flow rate

cubic foot per second (ft/s) 0.02832 cubic meter per second (m?/s)
mile per hour (mi/hr) 1.609 kilometer per hour (km/hr)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8x°C) + 32.



Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.

Abbreviations

AEP annual exceedance probability

EMA expected moments algorithm

FEMA Federal Emergency Management Agency
FHWA Federal Highway Administration

FIS flood insurance study

HEC-RAS Hydrologic Engineering Center—River Analysis System

HWM high-water mark

MassDOT Massachusetts Department of Transportation
NOAA National Oceanic and Atmospheric Administration
USACE U.S. Army Corps of Engineers

USGS U.S. Geological Survey






Tropical Storm Irene Flood of August 2011 in Northwestern

Massachusetts

By Gardner C. Bent, Scott A. Olson, and Andrew J. Massey

Abstract

A Presidential disaster was declared in northwestern
Massachusetts, following flooding from tropical storm
Irene on August 28, 2011. During the storm, 3 to 10 inches
of rain fell on soils that were susceptible to flash flooding
because of wet antecedent conditions. The gage height at
one U.S. Geological Survey streamgage rose nearly 20 feet
in less than 4 hours because of the combination of saturated
soils and intense rainfall. On August 28, 2011, in the Deerfield
and Hoosic River Basins in northwestern Massachusetts,
new peaks of record were set at six of eight U.S. Geological
Survey long-term streamgages with 46 to 100 years of
record. Additionally, high-water marks were surveyed and
indirect measurements of peak discharge were calculated at
two discontinued streamgages in the Deerfield and Hoosic
River Basins with 24 and 61 years of record, respectively.
This data resulted in new historic peaks of record at the two
discontinued streamgages from tropical storm Irene.

Peak flows that resulted from tropical storm Irene
(August 28, 2011) were determined at the U.S. Geological
Survey streamgages by using stage-discharge rating curves
and indirect computation methods. For six streamgages,
indirect computation methods were used to compute the
peak flows. Peak flows from tropical storm Irene had annual
exceedance probabilities (AEPs) that ranged from 5.4 percent
to less than 0.2 percent at 10 streamgages in northwestern
Massachusetts.

Discharges calculated for select AEPs as a part of this
study were compared with discharges published for the
same AEPs in the effective Federal Emergency Management
Agency flood insurance studies (FISs) for communities in
the study area. Discharges estimated for the 10-, 2-, 1-, and
0.2-percent AEPs at two streamgages on the main stem of
the Deerfield River ranged from about 3 percent lower to
14 percent higher than discharges in the FISs. AEP discharges
calculated for two streamgages on tributaries to the Deerfield
River were 27 to 89 percent higher than the FISs. For the
four streamgages in the Hoosic River Basin, the 10-, 2-, 1-,
and 0.2-percent AEP discharges calculated ranged from about
33 percent lower to 5 percent higher than the FISs.

The simulated 1-percent AEP discharge water-surface
elevations (nonregulatory) from recent (2015—16) hydraulic

models for river reaches in the study area, which include the
Deerfield, Green, and North Rivers in the Deerfield River
Basin and the Hoosic River in the Hoosic River Basin, were
compared with water-surface profiles in the FISs. The water-
surface elevation comparisons were generally done down-
stream and upstream from bridges, dams, and major tributar-
ies. The simulated 1-percent AEP discharge water-surface
elevations of the recent hydraulic studies averaged 2.2, 2.3,
0.3, and 0.7 ft higher than water-surface elevations in the FISs
for the Deerfield, Green, North, and Hoosic Rivers, respec-
tively. The differences in water-surface elevations between
the recent (2015—-16) hydraulic studies and the FISs likely are
because of (1) improved land elevation data from light detec-
tion and ranging (lidar) data collected in 2012, (2) detailed
surveying of hydraulic structures and cross sections through-
out the river reaches in 2012—13 (reflecting structure and cross
section changes during the last 30-35 years), (3) updated
hydrology analyses (30-35 water years of additional peak flow
data at streamgages), and (4) high-water marks from the 2011
tropical storm Irene flood being used for model calibration.

Introduction

Rainfall of 3 to 10 inches from tropical storm Irene
resulted in record flooding on August 28-29, 2011, in western
Massachusetts (fig. 1). On the basis of preliminary damage
assessments, President Obama declared a major disaster in the
Commonwealth of Massachusetts on September 3, 2011, with
individual and public assistance available for Berkshire and
Franklin Counties (fig. 1; Federal Emergency Management
Agency, 2015). On October 20, 2011, the Presidential disaster
(FEMA—4028-DR) also designated Hampden and Hampshire
Counties in western Massachusetts (fig. 1; plus five other
counties in eastern Massachusetts) as eligible for public
assistance (Federal Emergency Management Agency, 2015).
As of July 2015, Federal financial assistance to Massachusetts
for recovery from tropical storm Irene totaled more than
$5.5 million approved for individual assistance and more
than $29.7 million obligated for public assistance (Federal
Emergency Management Agency, 2015). Kinney (2011a)
reported that tropical storm Irene resulted in more than
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Distribution of rainfall and path of tropical storm Irene across western Massachusetts on August 28-29, 2011.

Information on the rainfall data collection points and the path of tropical storm Irene is from the National Oceanic and
Atmospheric Administration (2011) and National Weather Service (2011).

$90 million in insurance claims in western Massachusetts,
including more than $750,000 in Franklin County.

The Massachusetts Department of Transportation
(MassDOT) reported about $35 million in damage to bridges
and roads as a result of tropical storm Irene in north Berkshire
County and Franklin County in northwestern Massachusetts
(Massachusetts Department of Transportation, 2011b). A
5.8-mile section of State Route 2, the primary east-west
highway in northwestern Massachusetts, was one of the
most visible damages from Irene, which resulted in State
Route 2 being closed for more than 3 months following Irene
(Massachusetts Department of Transportation, 2012a). Several
sections of State Route 2 were eroded and collapsed into the
Cold River, and four landslides crossed the highway (Mabee
and others, 2013). Immediately following tropical storm Irene,
MassDOT received $4.65 million from the Federal Highway
Administration (FHWA) for emergency repairs to roads
and bridges primarily in Berkshire and Franklin Counties
(Massachusetts Department of Transportation, 2011a). In
January 2012, MassDOT received a second grant of nearly
$41 million from FHWA for damages to bridges and roads

because of Irene; a large portion of the grant was for repairs
to State Route 2 (Flynn, 2012; Massachusetts Department of
Transportation, 2012b).

Other damages from tropical storm Irene flood flows in
the Deerfield River Basin (fig. 2) were along the main stem of
the Deerfield River (fig. 2) and along many of the tributaries
to the Deerfield River. Numerous homes, businesses, schools,
municipal infrastructure, and agricultural fields along the
Deerfield River were flooded, specifically in Buckland,
Charlemont, Deerfield, Greenfield, and Shelburne (fig. 2;
Massachusetts Emergency Management Agency, 2011).
During the height of tropical storm Irene and in some cases
for several days following the storm, several bridges over
the Deerfield River and roads in western Massachusetts
were closed, such as the bridges over the Deerfield River on
Route 8A, Route 2A, Stillwater Road, and U.S. Interstate
[-91 (Abel, 2011; Johnson, 2011; Kinney, 2011b; Republican
Newsroom, The, 2011; Schworm and Lutz, 2011). A
building (a quilt store in Buckland) along the Deerfield River
was washed away from its foundation and was deposited
downstream less than 100 feet (ft; Barry, 2011). In the town
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of Deerfield, damages were reported in the village of Old
Deerfield, at the Deerfield Academy, at the Bement School,

to municipal infrastructure, and to farm fields because of
flooding from the Deerfield River (Gilmore and others, 2011).

The town of Greenfield estimated damages of
$11 million, mainly to the infrastructure (Stabile, 2011). The
Greenfield wastewater treatment plant on the Green River,
near the confluence of the Green River with the Deerfield
River, was inundated by flood waters, resulting in a shutdown
and untreated wastewater discharging to the Deerfield River
and Connecticut River (at the mouth of Deerfield River, not
shown on fig. 2; Graham, 2011). Other damaged infrastructure
along the Green River in Greenfield included the washout
of Eunice Williams Road at a historic covered bridge, which
was caused by the upstream failure of a segment of the dam
for the Greenfield Water Supply Pumping Station. The Green
River Swimming and Recreation Area in Greenfield had
extensive damage because of flooding. Several private homes
and businesses along the Green River also were damaged. For
example, a private home was destroyed just upstream from
West Leyden Road on the Colrain and Leyden (fig. 2) town
border, a business on the downstream side of Colrain Road in
Greenfield was flooded, and the first floor of the Museum of
Our Industrial Heritage, on the downstream side of Mill Street/
River Street in Greenfield, was flooded.

The well field of the village of Shelburne Falls within
the town of Shelburne along the North River (fig. 2) in the
midsection of the study reach in Colrain was inundated during
tropical storm Irene (Murphy, 2013). The Barnhardt Manufac-
turing Company building along the North River in Colrain was
flooded, and the Barnhardt dam (not shown), just downstream
from the confluence of the East Branch North River and West
Branch North River (fig. 2), was breached. On the East Branch
North River in the town of Colrain, a streambank slope was
eroded near the salt barn, and the highway garage and base-
ment were flooded (Murphy, 2013). On the West Branch
North River in Colrain, the Maxam Road bridge was partially
washed out.

Damages from tropical storm Irene flood flows in the
Hoosic River Basin primarily were on the North Branch
Hoosic River and downstream from the U.S. Geological Sur-
vey (USGS) Hoosic River near Williamstown, Massachusetts,
streamgage (01332500; fig. 2). The Spruces Mobile Home
Park, 1 mile downstream from the streamgage, was severely
affected by the flooding; two-thirds of the 226 mobile homes
were damaged or destroyed (Andy McKeever, iBerkshire,
written commun., 2011; Tammy Daniels, iBerkshire, written
commun., 2013). The town of Williamstown (fig. 2) received
a $6.13 million Federal Emergency Management Agency
(FEMA) hazard mitigation grant to relocate the remaining
residents of the Spruces Mobile Home Park, and a notice of
discontinuance was signed by the town in February 2014 stat-
ing that the mobile home park will close February 29, 2016
(Edward Damon, Berkshire Eagle, written commun., 2013).

Other roads, bridges, private homes, and businesses
were damaged from flood waters on smaller tributaries

in the Deerfield and Hoosic River Basins in northwestern
Massachusetts. Several of the damages were along Clesson
Brook, Cold River, and South River (fig. 2); several other
damages were reported that are not presented in this study.

In response to the Presidential disaster declaration for
Massachusetts resulting from tropical storm Irene (DR—4028),
a FEMA mission assignment was authorized for the USGS
to identify and flag high-water marks (HWMs) in western
Massachusetts, specifically along river reaches in the Deerfield
and Hoosic River Basins and to survey their elevations.

In April 2012, an interagency agreement between FEMA
Region I (New England) and USGS authorized the following
specific tasks: surveying of HWM elevations to the North
American Vertical Datum of 1988 (NAVD 88) for selected
river reaches, collecting and processing light detection and
ranging (lidar) elevation data, comparing data in the effective
FEMA flood insurance studies (FISs; the effective FEMA
FISs are hereafter referred to as the FISs) from the late 1970s
and early 1980s to data updated through 2011, producing
hydraulic models for selected river reaches, and generating
flood-inundation and recovery maps for selected river reaches
in western Massachusetts as a result of tropical storm Irene.
The HWM elevation data that were collected following the
tropical storm Irene flooding on selected rivers in the study
area were published by Bent and others (2013). The lidar data
collected for this study are available as digital elevation model
(DEM) data through the Massachusetts Office of Geographic
Information System (MassGIS) (2015), and the data accuracy
and other information are available from the National Oceanic
and Atmospheric Administration (2013). The flood-inundation
maps for the Deerfield River, Green River, North River, and
Hoosic River can be viewed on the USGS flood-inundation
mapping Web site at http://wimcloud.usgs.gov/apps/FIM/
FloodInundationMapper.html, and the flood recovery maps are
available as shapefiles with the reports (Lombard and Bent,
2015a; Flynn and others, 2016; Bent and others, 2015; and
Lombard and Bent, 2015b, respectively).

Purpose and Scope

The purpose of this report is to summarize the tropical
storm Irene flooding on August 28, 2011, in northwestern
Massachusetts. The report evaluates the estimated 10-, 2-,

1-, and 0.2-percent annual exceedance probability (AEP)
discharges at USGS streamgages and the simulated 1-percent
AEP discharge water-surface elevation of hydraulic models
for selected river reaches in the Deerfield and Hoosic

River Basins and compares the results to the FISs’ AEP
discharges and water-surface elevations. This report also
presents a summary of the gage heights and peak flows at
USGS streamgages during tropical storm Irene and describes
methods used to estimate the flood flows and the AEPs.

The August 28, 2011, tropical storm Irene flood flows are
also compared with selected previous historic floods in
northwestern Massachusetts.


http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html
http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html

Study Area

The study area is the Deerfield and Hoosic River Basins
in northwestern Massachusetts (fig. 2). Elevations in the
study area range from Mount Greylock at 3,487 ft to about
120 ft above sea level at the mouth of the Deerfield River.
Northwestern Massachusetts is within the Hudson-Green-
Notre Dame and Taconic Highlands and the Connecticut
and Vermont Valley physiographic provinces (Denny, 1982,
plate 1, fig. 3) and is fairly rural with most of the population
living in the river valleys of the major river basins. The land
use is primarily forested with some agricultural areas generally
in the river valleys. The Deerfield River has a drainage area of
665 square miles (mi?) in Vermont and Massachusetts (347 mi?
in Massachusetts), has multiple hydroelectric facilities, and

A Hoosic River near Williamstown (01332500)
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Figure 3. A rapid rise in gage height (stage) because of runoff
from tropical storm Irene, August 28, 2011, for U.S. Geological
Survey streamgages A, Hoosic River near Williamstown,
Massachusetts (01332500), and B, Deerfield River near West
Deerfield, Mass. (01170000).

Tropical Storm Irene 5

is a popular fishing destination having native and stocked
trout (Deerfield River Watershed Association, 2005). The
Deerfield River flows generally eastward and discharges
into the Connecticut River. The Hoosic River Basin in
Massachusetts is about 240 mi* and sustains native wild trout
(Commonwealth of Massachusetts, 2016). The Hoosic River
(fig. 2) generally flows northward into Vermont and New
York before discharging into the Hudson River (not shown) in
New York.

Climate in the Deerfield and Hoosic River Basins is
fairly uniform. In Greenfield (National Oceanic and Atmo-
spheric Administration] NOAA] station USC00193229), the
annual mean precipitation is 49.50 inches and the annual mean
temperature is 47.0 degrees Fahrenheit (°F), which is based on
data from 1981 to 2010 (National Oceanic and Atmospheric
Administration, National Centers for Environmental Informa-
tion, 2016a). In North Adams (NOAA station USW00054768),
the annual mean precipitation is 46.61 inches and the annual
mean temperature is 46.8 °F, based on data from 1981 to 2010
(National Oceanic and Atmospheric Administration, National
Centers for Environmental Information, 2016a). In Ashfield
(figs. 1, 2; NOAA station USC00190213), the annual mean
precipitation is 51.73 inches and the annual mean temperature
is 44.0 °F, which is based on data from 1981 to 2010 (National
Oceanic and Atmospheric Administration, National Centers
for Environmental Information, 2016a).

Tropical Storm Irene

Irene began as a tropical storm on August 21, 2011,
about 140 miles east of Martinique in the Caribbean (not
shown), and passed over the island of St. Croix (not shown)
that same day (Avila and Cangialosi, 2011, p. 1-3, fig. 1).

As tropical storm Irene moved west-northwest and passed
over eastern Puerto Rico (not shown) on August 22, 2011,

the storm became a hurricane. Hurricane Irene then moved
northwest, and on August 24, 2011, Irene became a category

3 hurricane. As Hurricane Irene moved about 200-300 miles
offshore of Florida (not shown) on August 25, Irene turned
northward up the coastline of the United States. On August 27,
2011, Hurricane Irene made landfall near Cape Lookout,
North Carolina (not shown), as a category 1 hurricane and
then moved back out to sea just southeast of Norfolk, Virginia
(not shown), continuing northward as the hurricane skirted the
Delmarva peninsula (not shown) (Fanelli and Fanelli, 2011,

p. 2, figs. 1, 24, C, and D). On the morning of August 28,
2011, Hurricane Irene made landfall a second time near

Little Egg Inlet, New Jersey (not shown). Hurricane Irene
quickly weakened and was downgraded to a tropical storm
before moving briefly back out to sea near Sandy Hook, N.J.,
(not shown) and then making landfall a final time late in the
morning of August 28 at Coney Island in Brooklyn, New York
(not shown). Tropical storm Irene continued moving north-
northeastward across western Connecticut and Massachusetts
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(fig. 1) and along the New Hampshire-Vermont border and
up into northwestern Maine (not shown; Fanelli and Fanelli,
2011, p. 1, figs. 1 and 20C).

Irene caused damages from rainfall, wind damage, and
storm surge along the east coast of the United States and
in the Caribbean. Along the east coast of the United States
from North Carolina to Maine, rainfall amounts ranged
from less than 3 inches to almost 16 inches (Avila and
Cangialosi, 2011). This area includes the noncoastal States of
Pennsylvania (not shown) and Vermont, which had areas with
at least 5 inches of rainfall. Maximum sustained wind speeds
from South Carolina to Massachusetts ranged from about 40 to
80 miles per hour, with the highest along the North Carolina
coast (Fanelli and Fanelli, 2011, tables 24—C). Storm surge
along the coast from Florida to Maine generally ranged from
about 1 to 7 ft at tidal gages and temporary storm tide sensors
(Fanelli and Fanelli, 2011, tables 34—C; McCallum and
others, 2012).

Rainfall totals in northwestern Massachusetts ranged
from about 3 to 10 inches (fig. 1). The highest observed
rainfall totals from Irene in western Massachusetts were
9.92 inches in Conway and 9.75 inches in Ashfield (National
Weather Service, 2011). The NOAA, National Centers for
Environmental Information (2016b) ranked August 2011 as
the second wettest August in 117 years of precipitation records
for Massachusetts. Rainfall in western Massachusetts during
August 2011 was 11.21 inches, more than three times higher
than the average August rainfall (3.41 inches; Massachusetts
Department of Conservation and Recreation, 2011). During
August 2011, before the arrival of tropical storm Irene,
western Massachusetts had saturated soils from abundant
rainfall, resulting in conditions susceptible to flash flooding
(Lubchenco and Furgione, 2012).

Description of Flood

In the Deerfield and Hoosic River Basins, new record
peak flows were recorded at 8 of 10 long-term (24 or
more years of record) USGS streamgages in northwestern
Massachusetts on August 28, 2011, from tropical storm Irene
(fig. 2, table 1). Of the 10 streamgages, eight had new record
peak gage heights. The Hoosic River near Williamstown,
Mass., streamgage (01332500) had a new peak flow; however,
the gage height was not a new peak of record because the
streamgage was relocated and the gage datum was changed in
1979. The Deerfield River near Rowe, Mass., and the North
Branch Hoosic River at North Adams, Mass., streamgages
(01168151 and 01332000, respectively; fig. 2; table 2) were
discontinued at the time of tropical storm Irene; thus, the gage
heights were estimated from HWMs, and the peak flow was
estimated through indirect computation of discharge.

Most of the USGS streamgages reached peak gage
heights within about 20 hours of the start of the rainfall
(table 1), similarly to the Hoosic River near Williamstown,

Mass., streamgage (01332500; fig. 34). Some streamgages
reached a peak gage height in about 9—18 hours; for example,
the gage height at the Deerfield River near West Deerfield,
Mass., streamgage (0117000) increased from about 5 ft to
nearly 24 ft in less than 4 hours (fig. 3B). This rapid response
resulted from wet antecedent soil conditions (Lubchenco and
Furgione, 2012) and intense rainfall.

Peak Flows

Peak flows for the streamgages in northwestern Massa-
chusetts were determined by either using the stage-discharge
rating curve method or the indirect discharge measurement
method. The peak flows provided herein supersede those
published in Bent and others (2013), Olson and Bent (2013),
Olson (2014), Suro and others (2016), and USGS annual water
data reports (U.S. Geological Survey, 2012a).

Determination of Peak Flows Through Stage-
Discharge Rating Curves

Typically, stage-discharge rating curves (fig. 4, table 2)
are used to compute the peak flows. The rating curves are
developed on the basis of discharge measurements (including
indirect discharge measurements) made during a wide range
in stage. These stage-discharge ratings allow for continuous
determination of discharge from recorded stage values.

Determination of Peak Flows Through Indirect
Computation Methods

For streamgages, peak flows occasionally have to be
computed by using indirect computation methods. Indi-
rect computation methods are commonly done because
the streamgage has been inactive, the flood is extreme, the
estimated peak flow is more than five times than the highest
discharge measurement made, the site is inaccessible under the
peak flow conditions, streamflow measuring equipment cannot
function properly in the extreme flow with debris or ice, or
the flow cannot be safely measured (Benson and Dalrymple,
1967). The common methods of indirect computation of
streamflow are slope area, contracted width opening (bridges),
and flow over dams (weirs). The slope-area computation
method is documented by Dalrymple and Benson (1968),
and a program graphical user interface (GUI) is available for
computation (Bradley, 2012). The contracted-width opening
method is documented by Matthai (1967). The dam method is
documented in Hulsing (1967) and in Horton (1907). All three
methods were used to determine August 2011 peak flows in
northwestern Massachusetts. First, HWMs were determined
for a reach of river, upstream and downstream from a bridge
or from a weir near the streamgage. River cross sections and
the dimensions of the bridges or dams were surveyed and
documented according to techniques outlined in Benson and
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I I
EXPLANATION
Stage-discharge rating curve number 35
®  Streamflow measurements during water years
10 2010-13 and those greater than 5,000 ft3/s
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Figure 4. Stage-discharge rating curve number 35 (active during tropical storm Irene on August
28, 2011) for U.S. Geological Survey Deerfield River at Charlemont, Massachusetts, streamgage
(01168500). A water year is the 12-month period beginning October 1 and ending September 30 and is

designated by the year in which it ends.

Dalrymple (1967), Dalrymple and Benson (1968), Matthai
(1967), and Hulsing (1967). Following tropical storm Irene,
seven indirect measurements were done to estimate the peak
flow at six streamgages (table 2). At the Green River near
Colrain, Mass., streamgage (01170100), two indirect measure-
ments were done; a slope-area computation and a contracted-
width opening method. The two methods produced estimates
that were within about 6 percent of each other; thus, the aver-

age of the two methods was used as the discharge for the peak.

At the two discontinued streamgages, the Deerfield River
near Rowe, Mass. (01168151), and the North Branch Hoosic
River at North Adams, Mass. (01332000), the HWMs were
considered very poor; thus, the computation of the indirect
measurements was considered an estimate. At the remaining
four streamgages, the peak flow was computed from the stage-
discharge rating curve that was in effect for each streamgage
on August 28, 2011 (table 2).

Exceedance Probabilities of Peak Flows

Peak flows for selected AEPs were calculated for the
10 streamgages in the Deerfield and Hoosic River Basins by
using annual peak flow data through water year' 2013 avail-
able through the USGS National Water Information System

'A water year is the 12-month period beginning October 1 and ending
September 30 and is designated by the year in which it ends.

Web interface (NWISWeb; U.S. Geological Survey, 2014).
The eight currently (2016) operated streamgages had from
46 to 100 years of annual peak flow data, and the two discon-
tinued streamgages had from 24 to 61 years (table 2). Calcula-
tions were made by using the expected moments algorithm
(EMA; Cohn and others, 1997, 2001; Griffis and others,
2004) in the USGS PeakFQ software (Veilleux and others,
2014). For the seven streamgages with no regulations of peak
flows, the AEP estimate can be improved by combining the
at-site EMA estimate with a regional regression equations
estimate. The two AEP estimates (at-site EMA and regional
regression equation) are weighted by the inverse of the vari-
ance of each of the discharge estimates (Cohn and others,
2012). The regional regression equations used in this process
were those for Vermont (Olson, 2014). The three Deerfield
River streamgages near Rowe, at Charlemont, and near
West Deerfield, Mass. (01168151, 01168500, and 01170000,
respectively), were not weighted with the Vermont regional
regression equations (Olson, 2014) because the peak flows are
likely affected by streamflow regulation (dams on the river).
The AEPs estimated at the three Deerfield River streamgages
are based only on the EMA analyses. The estimated AEPs and
associated lower and upper 66.7-percent confidence limits
for the August 28, 2011, flood are listed in table 2 for the
10 streamgages in the Deerfield and Hoosic River Basins.
Along the main stem of the Deerfield River (fig. 2), the
tropical storm Irene (August 28, 2011) peak flows at the three
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streamgages had fairly similar AEPs that ranged from about

1 to 0.5 percent (table 2). For the three streamgages on the
Green, North, and South Rivers (tributaries to the Deerfield
River; fig. 2), the Irene peak flows had AEPs that ranged from
about 0.5 to less than a 0.2 percent (table 2). The area where
the Green, North, and South River Basins are located is gener-
ally where the higher rainfall amounts from Irene occurred
(figs. 1, 2).

In the Hoosic River Basin, the Irene peak flows had AEPs
that ranged from about 5.4 to 0.4 percent (table 2). The North
Branch Hoosic River at North Adams, Mass., streamgage
(01332000) had the lowest AEP and generally drains the area
of the Hoosic River Basin that had the higher rainfall (figs. 1,
2). The peak flows at the Green River at Williamstown,

Mass., and the Hoosic River at Adams, Mass., streamgages
(01333000 and 01331500, respectively), which flow from the
south to north, had slightly higher AEPs. The higher AEPs
were likely related to lower rainfall in the river basins near
Mount Greylock (figs. 1, 2).

Comparison of 2011 Flood Data

The tropical storm Irene, August 28, 2011, peak flows
were compared with the peak flows of the selected floods that
previously affected northwestern Massachusetts. Although
several floods have affected western Massachusetts, the flood
of November 1927 (Kinnison, 1930), the floods of March 1936
(Massachusetts Geodetic Survey, 1936; Grover, 1937a,b), the

A. Deerfield River at Charlemont (01168500)
60,000 . . . , .

floods of September 1938 (Massachusetts Geodetic Survey,
1939; Paulsen, 1940), the New Year flood of 1949 (U.S.
Geological Survey, 1952), the flood of April 1987 (Fontaine,
1987), and the flood of October 2005 (National Weather Ser-
vice, 2005a, 2005b) are a few of the largest floods that are well
documented for comparison to the 2011 flood. Additionally,
the estimated 10-, 2-, 1-, and 0.2-percent AEP discharges at
the streamgages in northwestern Massachusetts were com-
pared with the AEPs in the FISs. Water-surface elevations of
the 1-percent AEP flood determined from hydraulic models
for recent (2015-16) hydraulic studies (Bent and others, 2015;
Flynn and others, 2016; Lombard and Bent, 2015a,b) were
compared with the water-surface elevations in the FISs.

Previous Floods

The August 28, 2011, tropical storm Irene peak flows
and corresponding AEPs were compared with the follow-
ing documented historic floods at three streamgages in the
Deerfield and Hoosic River Basins: the floods of November
1927, March 1936, September 1938, New Year’s Day 1949,
April 1987, and October 2005. The streamgages that were in
operation during most of these flood events were the Deer-
field River at Charlemont, Mass., the Hoosic River at Adams,
Mass., and the North Branch Hoosic River at North Adams,
Mass.(01168500, 01331500, and 01332000, respectively;
fig. 2). For the period of record through water year 2013, the
annual peak discharges for the three streamgages are shown
in figure 5. The comparisons for the peak discharges for these
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Figure 5. Annual peak flows through water year 2013 for streamgages A, Deerfield River at
Charlemont, Massachusetts (01168500); B, Hoosic River at Adams, Mass. (01331500); and C, North
Branch Hoosic River at North Adams, Mass. (01332000). A water year is the 12-month period
beginning October 1 and ending September 30 and is designated by the year in which it ends.



Comparison of 2011 Flood Data 1"

6000 B. Hoosic River at Adams (01331500)

o
(=3
(=1
o

E
(=]
(=1
o

~N
[=]
(=1
o

Annual peak flow, in cubic feet per second
w
(=)
i)

k=
S
S

: | | | H |||||‘|| ||| ||||

1914 1924 1934 1944 1954 1964 1974 1984 1994 2004
Water year

14,000

C. North Branch Hoosic River at North Adams (01332000)

12,000 |

10,000 |

8,000 |

6,000 |

4,000 [

Annual peak flow, in cubic feet per second

2,000 |

of I ||I|| I|I||| |||

1914 1924 1934 1944 1954 1964 1974 1984 1994 2004
Water year

Figure 5. Annual peak flows through water year 2013 for streamgages A, Deerfield River at
Charlemont, Massachusetts (01168500); B, Hoosic River at Adams, Mass. (01331500); and C, North
Branch Hoosic River at North Adams, Mass. (01332000). A water year is the 12-month period
beginning October 1 and ending September 30 and is designated by the year in which it ends.
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historic floods and the discharges for the 2011 flood are shown
in figure 5. Other floods are noticeable for the period of record
for the three streamgages; however, the floods are not well
documented—such as the flood of April 1976.

The November 1927 flood flows in northwestern Mas-
sachusetts generally were on November 4 and were the result
of torrential rains on November 3—4 from a tropical storm that
followed heavy rains on October 18 and 21 (Kinnison, 1930).
During November 25, 1927, rainfall data in the Deerfield
and Hoosic River Basins ranged from 4 to § inches, most of
which fell on November 3—4. This flood event was only docu-
mented at two of the three streamgages—the Deerfield River
at Charlemont, Mass., and the North Branch Hoosic River at
North Adams, Mass. (01168500 and 01332000, respectively;
figs. 54 and C)—because the Hoosic River at Adams, Mass.,
streamgage (01331500) had not been established yet.

The March 1936 flood flows in northwestern Massachu-
setts generally were on March 18 and were the result of gener-
ally between 6 and 8 inches of rainfall during March 9-22 in
addition to the existing snowpack (Grover, 1937a,b). Before
the flood, on March 9, 1936, the water content of snow on the
ground in this area was generally from 5 to 6 inches. Total
rainfall in this area during March 9—13 was from 2 to 3 inches
of rainfall and during March 16-19 was from 2 to 5 inches.
The combination of existing snowpack water content and the
two rainfall events in March 1936 resulted in the peak flows
on March 18 at the three streamgages in northwestern Massa-
chusetts and across much of New England (Grover, 1937a,b).
The peak flows for the three streamgages for March 18, 1936,
are shown in comparison to the annual peak flows for each
streamgage through water year 2013 (fig. 5).

The September 1938 flood flows in northwestern
Massachusetts generally were on September 21 and were the
result of about 2 inches of rainfall during September 12—-16
followed by 8 to 10 inches of rainfall during September 17-21
(Paulsen, 1940). This rainfall includes 24-hour rainfall totals
(ending at 6 p.m.) of about 1 to 3, 2 to 3, and 4 inches on
September 19, 20, and 21, respectively. The September 21
rainfall was the result of a hurricane that passed from New
England in the afternoon of that day. The hurricane’s center
went over Hartford, Connecticut (not shown), then along
the Connecticut River in Massachusetts, and then passed
over the intersection of Massachusetts, New Hampshire, and
Vermont before heading northwest towards Lake Champlain
(not shown) (Paulsen, 1940). The peak flows for the three
streamgages for September 21, 1938, are shown in comparison
to the annual peak flows for each streamgage through water
year 2013 (fig. 5).

The New Year flood flows of 1949 generally were on
December 31, 1948, in northwestern Massachusetts (U.S.
Geological Survey, 1952). The flood flows were the result of
between 3 to 10 inches of rainfall, which fell from December
29, 1948, through January 1, 1949, in the Deerfield and Hoosic
River Basins. The peak flows for the three streamgages for
December 31, 1948, are shown in comparison to the annual

peak flows for each streamgage through water year 2013
(fig. 5).

The April 1987 flood flows in northwestern Massa-
chusetts generally were on April 4-5. The flood flows were
the results of about 1 to 3 inches of rainfall on March 30 to
April 2 followed by about 3-9 inches of rainfall on April
4-8 (Fontaine, 1987). Additionally, a mid-March and end-of-
March snow survey in the area reported snow depths from 9 to
11 inches and no snow, respectively. Thus, the combination of
snowmelt and two rain storms during about a 3-week period
resulted in the early April 1987 flood. The peak flows for the
three streamgages for April 4-5, 1987, are shown in com-
parison to the annual peak flows for each streamgage through
water year 2013 (fig. 5).

The October 2005 flood flows in northwestern
Massachusetts generally were on October 8-9. The flood flows
were the result of about 6 to 9 inches of rainfall (National
Weather Service, 2005a) from the remnants of tropical storm
Tammy (National Weather Service, 2005b). The peak flows
for the two streamgages for October 8-9, 2005, are shown
in comparison to the annual peak flows for each streamgage
through water year 2013 (figs. 54 and B). The North Branch
Hoosic River at North Adams, Mass., streamgage (01332000)
could not be compared with the annual peak flows through
water year 2013 because the streamgage was discontinued at
the time of this flood.

Published Flood Insurance Studies

Hydrology

The discharges associated with the 10-, 2-, 1-, and
0.2-percent AEPs at streamgages in the Deerfield and Hoosic
River Basins and based on peak flow data through water year
2013 were compared with discharges in the FISs (table 3).
The FISs for selected river reaches in the Deerfield River
Basin are for the towns of Buckland (Federal Emergency
Management Agency, 1979a), Charlemont (Federal
Emergency Management Agency, 1980a), Colrain (Federal
Emergency Management Agency, 1980b), Conway (Federal
Emergency Management Agency, 1979b), Deerfield (Federal
Emergency Management Agency, 1980c), Greenfield (Federal
Emergency Management Agency, 1980d), and Shelburne
(Federal Emergency Management Agency, 1980¢) and in
the Hoosic River Basin are for the city of North Adams
(Federal Emergency Management Agency, 1981) and the
towns of Adams (Federal Emergency Management Agency,
1983a) and Williamstown (Federal Emergency Management
Agency, 1983b). The discharges computed for the AEPs at
the streamgages for this study had an additional 30-35 years
of peak flow data compared with the discharges in the FISs,
except at the two discontinued streamgages—the Deerfield
River near Rowe, Mass., and the North Branch Hoosic
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River at North Adams, Mass. (01168151 and 01332000,
respectively; fig. 2).

For streamgages in the Deerfield River Basin, the
computed 10-, 2-, 1-, and 0.2-percent AEP discharges
generally were higher than discharges in the FISs (table 3).

At the two streamgages on the main stem of the Deerfield
River, the Deerfield River at Charlemont, Mass., and the
Deerfield River near West Deerfield, Mass. (01168500 and
01170000, respectively; fig. 2), the computed AEP discharges
had differences that ranged from about 3 percent lower to

14 percent higher than discharges in the FISs. The largest
differences between the AEP discharges computed and those
in the FISs in the Deerfield River Basin were at the two
streamgages on tributaries to the Deerfield River, the North
River at Shattuckville, Mass., and the South River near
Conway, Mass. (01169000 and 01169900, respectively; fig. 2).
Estimated AEP discharges at these two streamgages ranged
from about 27 to 89 percent higher than the FISs.

In the Hoosic River Basin (fig. 2), the 10-, 2-, 1-, and
0.2-percent AEP discharges computed for the four streamgages
ranged from about 33 percent lower to 5 percent higher
than discharges in the FISs (table 3). Only the 4-percent
AEP discharge at the North Branch Hoosic River at North
Adams, Mass., streamgage (01332000) indicated an increase
(4.6 percent); all other AEP discharges computed at the four
streamgages decreased compared with discharges in the FISs
(table 3).

The most likely reason for the percent differences
between the 10-, 2-, 1-, and 0.2-percent AEP discharges seen
on the tributaries to the Deerfield River and in the Hoosic
River Basin is the availability of an additional 30-35 years
of annual peak flows for AEP analyses. The large percent dif-
ferences for the North River at Shattuckville, Mass., and the
South River near Conway, Mass., streamgages (01169000 and
01169900, respectively) may be that the annual peak flows for
the streamgages indicated a significant (p-value less than or
equal to 0.05) positive trend over their period of record. The
other streamgages in the study area did not indicate a signifi-
cant positive or negative trend in annual peak flows over their
period of record. The percent differences also could be related
to land-use changes—such as any increases in greater area of
urban land uses because of increased medium- to high-density
areas of residential housing, commercial and industrial devel-
opment, and roads and highways in the river basins.

Water-Surface Elevations

The water-surface elevations of the 1-percent AEP
discharge were simulated from hydraulic models for sections
of the Deerfield River (Lombard and Bent, 2015b), Green
River (Flynn and others, 2016), North River (Bent and others,
2015), and Hoosic River (Lombard and Bent, 2015a). The
hydraulic modeling for these studies was completed using
the U.S. Army Corps of Engineer (USACE) Hydrologic
Engineering Center—River Analysis System (HEC-RAS)
model. The simulated water-surface elevations of the

1-percent AEP discharge from these recent (2015-16) studies
were compared with those published in the FISs at select
locations in the coinciding river reaches. The simulated
water-surface elevations of the 1-percent AEP discharge

from these recent studies is nonregulatory and does not
supersede those in the published FISs. The FIS water-surface
elevations were converted from National Geodetic Vertical
Datum of 1929 (NGVD 29) to NAVD 88 by using the average
conversion from the latitudes and longitudes of a river reach
for about three to five locations depending on how much the
conversion values differed along the river reach. Generally,
the conversion values only differed a few hundreds of a foot
along a river reach. The conversion values were determined by
using the National Geodetic Survey VERTCON (orthometric
height conversion program; http://www.ngs.noaa.gov/cgi-
bin/VERTCON/vert_con.prl; Gilbert, 1999). If the location
distances for the FIS water-surface elevations were in miles,
the distance was converted into feet from the starting location
of the river reach, which was generally the confluence with
another river.

The simulated water-surface elevations of the 1-percent
AEP discharge for the Deerfield River determined from the
HEC-RAS hydraulic model developed by Lombard and Bent
(2015b) were compared with those in the FISs for the (1) town
of Deerfield (1980c¢) from the confluence of the Connecticut
River upstream to the town boundary with Conway, (2) town
of Shelburne (1980e¢) from just downstream from dam
number 3 upstream to State Route 2, and (3) town of Char-
lemont (1980a) from dam number 4 upstream to the railroad
bridge just downstream from the Cold River tributary. The
comparisons of the two water-surface elevations were made
at 25 selected locations generally upstream and downstream
from bridges, dams, and major tributaries (table 4). The simu-
lated water-surface elevations of the 1-percent AEP discharge
(Lombard and Bent, 2015b) averaged 2.2 ft higher (median
1.5 ft higher) than the water-surface elevations from the FISs.
The difference between 1-percent AEP discharge water-surface
elevations in Lombard and Bent (2015b) and the FISs ranged
from 2.0 ft lower to 7.3 ft higher (table 4).

The simulated water-surface elevations of the 1-per-
cent AEP discharge for the Green River determined from the
HEC-RAS hydraulic model developed by Flynn and others
(2016) were compared with those in the FIS for the town of
Greenfield (1980d) from the confluence with the Deerfield
River upstream from the town boundary between Greenfield,
Colrain, and West Leyden. The water-surface elevations
were compared at 23 selected locations, generally upstream
and downstream from bridges, dams, and major tributar-
ies (table 5). The simulated water-surface elevations of the
1-percent AEP discharge (Flynn and others, 2016) averaged
2.3 ft higher (median 2.4 ft higher) than the FIS water-surface
elevations. The difference between 1-percent AEP discharge
water-surface elevations in Flynn and others (2016) and the
FIS ranged from 6.1 ft lower to 6.1 ft higher (table 5).

The simulated water-surface elevations of the 1-percent
AEP discharge for the North River determined from the


http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl
http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl
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Table 4. Comparison of the simulated water-surface elevations for the Deerfield River for the 1-percent annual exceedance probability
discharge determined by Lombard and Bent (2015b) with those published in the effective Federal Emergency Management Agency flood

insurance studies.

[Cells shaded gray indicate locations that can be affected by backwater from the Connecticut River, but the water-surface elevations presented are not backwater
elevations. Streamgage locations shown on figure 2 and described in table 1. FIS, flood insurance study; FEMA, Federal Emergency Management Agency; ft,
foot; USACE, U.S. Army Corps of Engineers; HEC-RAS, Hydrologic Engineering Centers—River Analysis System; NAVD 88, North American Vertical Datum
of 1988; DS, downstream; US, upstream; Rt., Route; Rd., Road; USGS, U.S. Geological Survey; MA, Massachusetts; St., Street; NGVD 29, National Geodetic

Vertical Datum of 1929]

FIS towns FIS towns
of Deerfield Lombard and of Deerfield Lombard and i i
(FEMA,1980c),  Bent (2015b) b €10 Bent (2015h) Difference in
Shelburne USACE Sholbume . USACE FIS and
(FEMA, 1980e), HEC-RAS (FEMA 19806,  HEC-RAS Lombard and
and Charlemont, hydraulic ! ! hydraulic Bent (2015h)
. . and Charlemont USACE
Description of location Massachusetts model (FEMA, 1980a) model HEC-RAS h
(FEMA, 1980a) ' - y-
. _ draulic model
Location frorp Location frOIEI Water—sElrface Water- water-surface
confluence with confluence with elevation- surface elevation
Connecticut Connecticut converted to elevation- (ft)e
River River NAVD 88 NAVD 88
(ft)° (ft) (ft)" (ft)
Confluence with Connecticut River 407 637 122.4 126.6 4.2
DS from railroad bridge, Deerfield and Greenfield, 2,344 1,618 130.7 130.8 0.1
MA
US from railroad bridge, Deerfield and Greenfield -- 2,240 -- 132.8 --
DS from railroad bridge, Deerfield and Greenfield 5,914 5,111 132.6 135.9 34
US from failroad bridge, Deerfield and Greenfield -- 5,737 -- 138.2 --
DS from State Rt. 5 and 10, Deerfield and Greenfield - 5,737 - 138.2 -
US from State Rt. 5 and 10, Deerfield and Greenfield 6,283 6,494 133.9 140.1 6.3
DS from U.S. Interstate I-91 Northbound, Deerfield 39,700 38,887 154.4 153.5 -0.8
US from U.S. Interstate I-91 Northbound, Deerfield 40,870 40,706 157.7 159.6 2.0
DS from Stillwater Bridge, Upper Rd., Deerfield 42,400 41,800 157.7 161.3 3.7
US from Stillwater Bridge, Upper Rd., Deerfield 43,670 42,686 161.6 168.8 7.3
USGS streamgage Deerfield River near West 50,480 50,623 173.6 178.7 5.1
Deerfield, MA (01170000)
Confluence with South River 52,540 51,628 177.9 181.4 3.5
DS from Dam #3, Buckland and Shelburne, MA - 88,700 - 360.3 -
US from Dam #3, Buckland and Shelburne 89,340 89,313 410.2 411.7 1.5
DS from steel bridge, Bridge St., Buckland and 89,710 89,796 411.1 411.8 0.7
Shelburne
US from Bridge of Flowers, Buckland and 90,290 90,699 414.7 420.6 5.9

Shelburne
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Table 4. Comparison of the simulated water-surface elevations for the Deerfield River for the 1-percent annual exceedance probability
discharge determined by Lombard and Bent (2015b) with those published in the effective Federal Emergency Management Agency flood

insurance studies.—Continued

[Cells shaded gray indicate locations that can be affected by backwater from the Connecticut River, but the water-surface elevations presented are not backwater
elevations. Streamgage locations shown on figure 2 and described in table 1. FIS, flood insurance study; FEMA, Federal Emergency Management Agency; ft,
foot; USACE, U.S. Army Corps of Engineers; HEC-RAS, Hydrologic Engineering Centers—River Analysis System; NAVD 88, North American Vertical Datum
of 1988; DS, downstream; US, upstream; Rt., Route; Rd., Road; USGS, U.S. Geological Survey; MA, Massachusetts; St., Street; NGVD 29, National Geodetic

Vertical Datum of 1929]
FIS towns FIS towns
of Deerfield Lombard and of Deerfield Lombard and i i
(FEMA,1980c),  Bent (2015b) o €10 Bent (2015h) Difference in
Shelburne USACE Shelbume . USACE FIS and
(FEMA,1980¢),  HEC-RAS R0t HEC-RAs  Lombard and
and Charlemont, hydraulic ' ! hydraulic Bent (2015h)
o ) and Charlemont USACE
Desc"p“on of location Massachusetts model (FEMA, 1980a) model HEC—RAS h
(FEMA, 1980a) ' —hAS Y-
- - draulic model
Location frorp Location frm?] Water-sElrlace Water- water-surface
confluence with confluence with elevation— surface elevation
Connecticut Connecticut converted to elevation- (ft)e
River River NAVD 88 NAVD 88
(ft)* (ft) (ft)" (ft)
DS from State Rt. 2 bridge, Buckland and Shelburne 93,390 93,333 4222 422.4 0.2
US from State Rt. 2 bridge, Buckland and Shelburne 93,500 94,300 4229 423.6 0.7
DS from Dam #4, Buckland and Charlemont, MA -- 103,761 -- 446.2 --
US from Dam #4, Buckland and Charlemont 104,020 104,499 480.0 486.0 6.0
DS from State Rt. 2 bridge, Buckland and 104,440 104,684 481.1 486.2 5.1
Charlemont
US from State Rt. 2 bridge, Buckland and 104,740 105,234 481.1 486.1 5.0
Charlemont
USGS streamgage Deerfield River at Charlemont, 135,850 135,620 537.8 536.3 -1.5
MA (01168500)
DS from State Rt. 8A bridge, Charlemont 143,620 143,693 554.0 552.0 -2.0
US from State Rt. 8A bridge, Charlemont 143,830 144,321 554.6 553.1 -1.5
DS from State Rt. 2 Bridge, Charlemont 152,490 152,572 572.5 573.4 0.9
US from State Rt. 2 Bridge, Charlemont 152,920 153,480 573.6 575.0 1.4
DS from railroad bridge, Charlemont 157,660 158,173 593.6 591.8 -1.8
US from railroad bridge, Charlemont 157,870 158,527 597.4 596.7 -0.7
Number of observations 25
Minimum 2.0
Maximum 7.3
Average 2.2
Median 1.5

aThe FIS location in miles from confluence with Connecticut River was converted to feet.

*The average conversion value from NGVD 29 to NAVD 88 for the FIS water-surface elevations was -0.55 ft. The conversion was done using the National
Geodetic Service VERTCON orthometric height conversion program (Gilbert, 1999) at http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl.

‘The difference may not be exact to the tenth of a foot because of rounding of FIS and hydraulic model values.


http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl
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Table 5. Comparison of the water-surface elevations for the Green River for the 1-percent annual exceedance probability discharge
determined by Flynn and others (2016) with those published in the effective Federal Emergency Management Agency flood insurance
study.

[Cells shaded gray indicate locations that can be affected by backwater from the Deerfield and Connecticut Rivers, but the water-surface elevations presented
are not backwater elevations. Streamgage locations shown on figure 2 and described in table 1. FIS, flood insurance study; FEMA, Federal Emergency Manage-
ment Agency; ft, foot; USACE, U.S. Army Corps of Engineers; HEC-RAS, Hydrologic Engineering Centers—River Analysis System; NAVD 88, North Ameri-
can Vertical Datum of 1988; DS, downstream; US, upstream; St., Street; Rt., Route; Rd., Road; NGVD 29, National Geodetic Vertical Datum of 1929]

FIS town of Flynn and others Flynn and others

Greenfield, ~  (2016) USACE F(;fe:’:";’l';l‘:: (2016) UsAcg  Difference in FIS
Massachusetts HEC-RAS Fapgioo HEC-RAS and Flynn and
(FEMA, 1980d)  hydraulic model ' hydraulic model _Others (2016)
Description of location Wat o USACE HEC-RAS
Location from Location from :I:\:;lst?ona—ce Water-surface  hydraulic model
confluence with  confluence with converted to elevation— water-su.rface
Deerfield River  Deerfield River NAVD 88 NAVD 88 elevation
a (ft)°
(f) (f) et (f)
Confluence with Deerfield River - 20 - 122.6 --
DS from footbridge 3,326 3,527 128.4 133.6 5.2
US from footbridge 4,435 4,389 132.1 136.8 4.7
DS from Meridian St. -- 5,864 -- 138.6 --
US from Meridian St. and DS from Wiley- 6,019 5,986 141.8 144.9 3.1
Russell Dam
US from Wiley-Russell Dam 6,230 6,215 143.3 145.7 2.4
DS from Mill St. and dam 7,814 7,807 146.7 148.4 1.8
US from Mill St. and dam 8,026 8,054 152.4 153.9 1.5
DS from railroad bridge 10,138 10,138 155.9 156.4 0.5
US from railroad bridge 10,243 10,326 156.2 158.4 2.2
DS from State Rt. 2A 10,454 10,438 156.4 157.9 1.5
US from State Rt. 2A 10,666 10,666 156.8 159.5 2.7
DS from Colrain St. 12,989 12,990 159.0 162.0 3.1
US from Colrain St. 13,200 13,158 162.0 163.5 1.6
DS from U.S. Interstate [-91 (Northbound) 17,424 17,725 164.6 167.0 2.4
US from U.S. Interstate [-91 (Southbound) 18,163 18,061 167.4 169.8 2.4
DS from Nash Mill Rd. 18,797 19,057 167.6 170.9 34
US from Nash Mill Rd. 19,114 19,219 168.0 171.0 3.0
DS from footbridge and dam 19,536 19,724 168.1 171.0 3.0
US from footbridge and dam 19,642 19,785 168.2 171.1 29
DS from Allen Brook 22,229 21,746 169.2 171.1 1.9

US from Allen Brook 22,334 23,678 169.3 171.4 2.1
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Table 5. Comparison of the water-surface elevations for the Green River for the 1-percent annual exceedance probability discharge
determined by Flynn and others (2016) with those published in the effective Federal Emergency Management Agency flood insurance

study.—Continued

[Cells shaded gray indicate locations that can be affected by backwater from the Deerfield and Connecticut Rivers, but the water-surface elevations presented
are not backwater elevations. Streamgage locations shown on figure 2 and described in table 1. FIS, flood insurance study; FEMA, Federal Emergency Manage-
ment Agency; ft, foot; USACE, U.S. Army Corps of Engineers; HEC-RAS, Hydrologic Engineering Centers—River Analysis System; NAVD 88, North Ameri-
can Vertical Datum of 1988; DS, downstream; US, upstream; St., Street; Rt., Route; Rd., Road; NGVD 29, National Geodetic Vertical Datum of 1929]

Description of location

FIS town of Flynn and others FIS town of Flynn and others Diff in FIS

Greenfield, (2016) USACE Greenfield (2016) USACE ! zr:lnce n i
Massachusetts HEC-RAS (FEMA, 1980d) HEC-RAS and Flynn an
(FEMA, 1980d)  hydraulic model ' hydraulic model _ Others (2016)

Location from

Location from

Water-surface

Water-surface

USACE HEC-RAS
hydraulic model

confluence with  confluence with elevation- elevation- water-surface
Deerfield River  Deerfield River °°,:|‘X“’,’[t)e:8‘° NAVD 88 elevation
(ft) (ft) (f) (ft) (fe)°
DS from Hinsdale Brook 28,882 - 181.5 -- --
US from Hinsdale Brook 28,987 29,291 181.9 182.5 0.6
DS from Eunice Williams Rd. and dam 43,718 43,878 242.1 236.0 -6.1
US from Eunice Williams Rd. and dam 43,930 44258 2448 250.9 6.1
Number of observations 23
Minimum -6.1
Maximum 6.1
Average 23
Median 2.4

aThe FIS location in miles from confluence with Deerfield River was converted to feet.

°The average conversion value from NGVD 29 to NAVD 88 for the FIS water-surface elevations was -0.54 ft. The conversion was done using the National
Geodetic Service VERTCON orthometric height conversion program (Gilbert, 1999) at http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert con.prl.

‘The difference may not be exact to the tenth of a foot because of rounding of FIS and hydraulic model values.

HEC-RAS hydraulic model developed by Bent and others
(2015) were compared with those of the FIS for the town of
Colrain (1980b) from the confluence with the Deerfield River
upstream to the confluence of the East Branch North River
and West Branch North River. The water-surface elevations
were compared at seven selected locations generally at
locations upstream and downstream from bridges and dams
(table 6). The simulated water-surface elevations of the
1-percent AEP discharge (Bent and others, 2015) averaged
0.3 ft higher (median 1.7 ft higher) than the FIS water-surface
elevations. The difference between 1-percent AEP discharge
water-surface elevations in Bent and others (2015) and the
FIS ranged from 7.6 ft lower to 3.7 ft higher. The 7.6 ft lower
water-surface elevation (Bent and others, 2015) was upstream
from Barnhardt dam (just downstream from the confluence of
the East Branch North River and West Branch North River),
which was breached during tropical storm Irene and currently
(2016) has not been repaired. In the model of a recent study
(Bent and others, 2015), the breached dam does not provide
storage and, consequently, indicates that the model has a lower

water-surface elevation at this location compared with the
water-surface elevation in the FIS, which has the dam with
no breach.

The simulated water-surface elevations of the 1-percent
AEP discharge for the Hoosic River determined from the
HEC-RAS hydraulic model developed by Lombard and Bent
(2015a) were compared with those of the FISs for the town
of Williamstown (1983b) and the city of North Adams (1981)
from the Massachusetts-Vermont State border in Williams-
town upstream to the confluence with the North Branch
Hoosic River in the City of North Adams. The water-surface
elevations were compared at 26 selected locations generally
upstream and downstream from bridges, dams, and major
tributaries (table 7). The simulated water-surface elevations
of the 1-percent AEP discharge (Lombard and Bent, 2015a)
averaged 0.7 ft higher (median 0.6 ft higher) than the FISs’
water-surface elevations. The difference between 1-percent
AEP discharge water-surface elevations in Lombard and Bent
(2015a) and the FISs ranged from 2.7 ft lower to 7.2 ft higher
(table 7).


http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl
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Table 6. Comparison of the water-surface elevations for the North River for the 1-percent annual exceedance probability discharge
determined by Bent and others (2015) with those published in the effective Federal Emergency Management Agency flood insurance

study.

[Streamgage locations shown on figure 2 and described in table 1. FIS, flood insurance study; FEMA, Federal Emergency Management Agency; ft, foot;
USACE, U.S. Army Corps of Engineers; HEC-RAS, Hydrologic Engineering Centers—River Analysis System; NAVD 88, North American Vertical Datum
of 1988; USGS, U.S. Geological Survey; MA, Massachusetts; DS, downstream; US, upstream; Rt., Route; Rd., Road; NGVD 29, National Geodetic Vertical

Datum of 1929]

Description of location

FIS, town of
Colrain,
Massachusetts
(FEMA, 1980b)

Bent and others
(2015) USACE
HEC-RAS
hydraulic model

Bent and others
(2015) USACE
HEC-RAS
hydraulic model

FIS, town of
Colrain
(FEMA, 1980b)

Location from

Location from

Water-surface Water-surface

Difference in FIS and
Bent and others (2015)
USACE HEC-RAS
hydraulic model water-

conflu_ence \_lvith conflu_ence \_Nith c::l:a:tt::lnto elevation— surface elevation

Deerfield River  Deerfield River NAVD 88 (ft)
(ft)e (f) NAVD 88 (f)
(ft)
USGS streamgage North River at 6,389 6,524 470.3 473.5 32
Shattuckville, MA (01169000)
DS from State Rt. 112 13,517 13,560 501.5 501.0 -0.5
US from State Rt. 112 13,622 13,628 503.5 502.8 -0.7
DS from Adamsville Rd. 15,682 15,608 507.1 509.8 2.7
US from Adamsville Rd. 15,734 15,675 508.3 512.0 3.7
DS from Adamsville Dam 17,266 17,212 516.0 517.7 1.7
US from Adamsville Dam 17,318 17,282 525.3 517.7¢ -7.6
Number of observations 7

Minimum -7.6
Maximum 3.7
Average 0.3
Median 1.7

aThe FIS location in miles from confluence with Deerfield River was converted to feet.

*The average conversion value from NGVD 29 to NAVD 88 for the FIS water-surface elevations was -0.48 ft. The conversion was done using the National
Geodetic Service VERTCON orthometric height conversion program (Gilbert, 1999) at http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert _con.prl.

Elevation of water-surface may be affected by breached section of dam due to tropical storm Irene August 28, 2011.
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Table 7. Comparison of the water-surface elevations for the Hoosic River for the 1-percent annual exceedance probability discharge
determined by Lombard and Bent (2015a) with those published in the effective Federal Emergency Management Agency flood insurance

studies.

[Streamgage locations shown on figure 2 and described in table 1. FIS, flood insurance study; FEMA, Federal Emergency Management Agency; ft, foot;
USACE, U.S. Army Corps of Engineers; HEC-RAS, Hydrologic Engineering Centers—River Analysis System; NAVD 88, North American Vertical Datum
of 1988; DS, downstream; US, upstream; Rt., Route; Rd., Road; Ave., Avenue; USGS, U.S. Geological Survey; MA, Massachusetts; St., Street; NGVD 29,

National Geodetic Vertical Datum of 1929]

Description of location

FIS, town of
Williamstown
(FEMA, 1983h)

and city of
North Adams,
Massachusetts

(FEMA, 1981)

Lombard and
Bent (2015a)
USACE
HEC-RAS hy-
draulic model

FIS, town of
Williamstown
(FEMA, 1983b)

and city of

North Adams

(FEMA, 1981)

Lombard and
Bent (2015a)
USACE
HEC-RAS
hydraulic
model

Location from

Location from

Water-surface

Water-surface

Difference
between FIS
and Lombard

and Bent (2015a)

USACE HEC-RAS

hydraulic model
water-surface

Massachusetts- Massachusetts- elevation, . .
elevation, elevation
Vermont State Vermont State converted to NAVD 88 (ft)
border border NAVD 88 (f)
(ft) (ft) (ft)°
Massachusetts-Vermont State border 0 490 565.9 571.6 5.7
DS from Broad Brook, Williamstown 2,900 1,983 577.3 574.6 -2.7
US from Broad Brook, Williamstown 3,100 2,448 577.8 576.0 -1.8
DS from Hemlock Brook, Williamstown 7,800 7,255 583.4 583.9 0.5
US from Hemlock Brook, Williamstown 8,000 8,312 583.6 585.0 14
DS from State Rt. 7/Simonds Rd., Williamstown 10,400 10,216 587.0 587.0 0.0
US from State Rt. 7/Simonds Rd., Williamstown 10,600 10,614 589.7 590.6 0.9
DS from Cole Ave., Williamstown 16,900 16,586 598.3 596.5 -1.8
US from Cole Ave., Williamstown 17,050 16,942 600.7 599.1 -1.6
DS from Green River, Williamstown 19,000 18,738 604.9 603.8 -1.1
US from Green River, Williamstown 19,100 18,946 605.0 604.0 -1.0
Williamstown and North Adams town border 24,250 23,828 612.6 611.1 -1.5
DS from Ashton Ave., North Adams 26,450 25,960 617.7 616.9 -0.8
US from Ashton Ave., North Adams 26,550 26,272 617.9 619.2 1.3
DS from Barber Dam, North Adams 29,450 28,976 623.4 622.8 -0.6
US from Barber Dam, North Adams 29,750 29,232 628.9 630.3 1.4
(USGS streamgage Hoosic River at Adams,
MA 01332500)

DS from Protection Ave., North Adams 32,050 31,483 632.5 633.1 0.6
US from Protection Ave., North Adams 32,250 31,809 633.6 634.3 0.7
DS from State Rt. 2, North Adams 33,000 32,324 634.6 634.7 0.1
US from State Rt. 2, North Adams 33,100 32,659 634.6 635.2 0.6
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Comparison of the water-surface elevations for the Hoosic River for the 1-percent annual exceedance probability discharge

determined by Lombard and Bent (2015a) with those published in the effective Federal Emergency Management Agency flood insurance

studies.—Continued

[Streamgage locations shown on figure 2 and described in table 1. FIS, flood insurance study; FEMA, Federal Emergency Management Agency; ft, foot;
USACE, U.S. Army Corps of Engineers; HEC-RAS, Hydrologic Engineering Centers—River Analysis System; NAVD 88, North American Vertical Datum
of 1988; DS, downstream; US, upstream; Rt., Route; Rd., Road; Ave., Avenue; USGS, U.S. Geological Survey; MA, Massachusetts; St., Street; NGVD 29,

National Geodetic Vertical Datum of 1929]

FIS, town of
Williamstown
(FEMA, 1983b)

and city of
North Adams,
Massachusetts

Description of location (FEMA, 1981)

Lombard and
Bent (2015a)
USACE
HEC-RAS hy-
draulic model

FIS, town of
Williamstown
(FEMA, 1983b)

and city of
North Adams

(FEMA, 1981)

Lombard and
Bent (2015a)
USACE
HEC-RAS
hydraulic
model

Location from

Location from

Water-surface

Water-surface

Difference
between FIS
and Lombard

and Bent (2015a)
USACE HEC-RAS
hydraulic model

water-surface

Massachusetts- Massachusetts- elevation, elevation elevation
Vermont State Vermont State converted to NAVD 88’ (ft)
border border NAVD 88 (ft)
(ft) (ft) (ft)

DS from State Rt. 2, North Adams 37,450 37,108 643.9 651.1 7.2
US from State Rt. 2, North Adams 37,700 37,550 651.0 651.9 0.9
DS from railroad bridge, North Adams 38,700 38,212 658.2 658.6 0.4
US from railroad bridge, North Adams 38,800 38,624 659.5 662.0 2.5
US from Brown St., North Adams 43,400 42,461 679.2 681.3 2.1
DS from Brown St., North Adams 43,500 42,774 679.6 683.0 34

Number of observations 26
Minimum -2.7
Maximum 7.2
Average 0.7
Median 0.6

“The average conversion value from NGVD 29 to NAVD 88 for the FIS water-surface elevations was -0.52 ft. The conversion was done using the National
Geodetic Service VERTCON orthometric height conversion program (Gilbert, 1999) at http://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl.

The differences in water-surface elevations between
the recent (2015-16) hydraulic studies and the FISs likely
are because of (1) improved land elevation data from lidar
data collected in 2012, (2) detailed surveying of hydraulic
structures and cross sections throughout the river reaches in
2012-13 (reflecting structure and cross section changes during
the past 30 to 35 years), (3) updated hydrology analyses (30—
35 water years of additional peak flow data at streamgages),
and (4) high-water marks from the 2011 tropical storm Irene
flood being used for model calibration. These updated com-
ponents used in the recent hydraulic models improved the
simulated water-surface elevations for these river reaches.
Additionally, the differences observed between the 1-per-
cent AEP water-surface elevations for the recent studies and
those in the FISs could be related to land-use changes—such
as any increases in greater area of urban land uses because
of increased medium- to high-density areas of residential

housing, commercial and industrial development, and roads
and highways in the river basins.

Summary and Conclusions

On August 28, 2011, intense rainfall of 3 to 10 inches
that resulted from tropical storm Irene caused widespread
flooding in western Massachusetts. August rainfall in
western Massachusetts before tropical storm Irene had
already saturated the ground, resulting in conditions prone to
flooding. During a 9 to 18 hour period on August 28, 2011,
the gage heights at all eight active U.S. Geological Survey
streamgages in the Deerfield and Hoosic River Basins rose
rapidly in response to the combination of saturated soils and
intense rainfall. At Deerfield River near West Deerfield, Mass.,
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streamgage (01170000), stage rose nearly 20 feet (ft) in less
than 4 hours. On August 28, 2011, in the Deerfield and Hoosic
River Basins in northwestern Massachusetts, new peaks of
record were set at six of eight U.S. Geological Survey long-
term streamgages with 46 to 100 years of record. Additionally,
high-water marks were surveyed and indirect measurements
of peak discharge were calculated at two discontinued
streamgages in the Deerfield and Hoosic River Basins with 24
and 61 years of record, respectively. This data resulted in new
historic peaks of record at the two discontinued streamgages
from tropical storm Irene. In response to the tropical storm
Irene flooding in western Massachusetts, a Presidential disaster
declaration for Massachusetts was signed in September 2011.
An interagency agreement between the Federal Emergency
Management Agency and the U.S. Geological Survey was
signed in April 2012 to update the hydrology and hydraulics
of selected river reaches in the Deerfield and Hoosic River
Basins in northwestern Massachusetts.

Peak flows that resulted from tropical storm Irene
(August 28, 2011) were determined at the U.S. Geological
Survey streamgages in the Deerfield and Hoosic River
Basins by using stage-discharge rating curves and indirect
computation methods. At the six streamgages in the Deerfield
River Basin, peak flows from tropical storm Irene ranged from
1- to less than 0.2-percent annual exceedance probabilities
(AEPs). At the four streamgages in the Hoosic River Basin,
peak flows from Irene ranged from 5.4- to 0.4-percent AEPs.
Generally, the AEPs were lowest at streamgages with river
basins in the areas that had the higher rainfall amounts in
northwestern Massachusetts.

The AEP discharges computed at streamgages for this
study were compared with AEP discharges in the effective
Federal Emergency Management Agency flood insurance stud-
ies (FISs) for communities in the study area, which were pub-
lished in the late 1970s and early 1980s. Computed discharges
for the 10-, 2-, 1-, and 0.2-percent AEPs at four streamgages
(two on the main stem and two on tributaries to the Deerfield
River) in the Deerfield River Basin, with 30 to 35 years of
additional annual peak flow data, were generally higher than
discharges in the FISs. The AEP discharges calculated for this
study at two streamgages on the main stem of the Deerfield
River ranged from about 3 percent lower to 14 percent higher
than in the FISs. For the two streamgages on tributaries to the
Deerfield River, estimated AEP discharges were considerably
higher (from 27 to 89 percent) than in the FISs. For the four
streamgages in the Hoosic River Basin, the 10-, 2-, 1-, and
0.2-percent AEP discharges estimated generally ranged from
33 percent lower to 5 percent higher than in the FISs.

The 1-percent AEP discharge water-surface elevations
(nonregulatory) simulated from the hydraulic models for the
Deerfield, Green, and North Rivers in the Deerfield River
Basin and the Hoosic River in the Hoosic River Basin were
compared with those in the FISs. The differences in the
1-percent AEP discharge water-surface elevations for this
study to those in the FISs varied throughout the river reaches;
however, the average water-surface elevations for this study

were higher than those in the FISs. At the selected locations on
the Deerfield River, the 1-percent AEP discharge water-surface
elevations ranged from 2.0 ft lower to 7.3 ft higher than
water-surface elevations in the FISs, with average and median
differences in water-surface elevations of 2.2 and 1.5 ft higher,
respectively. At the selected locations on the Green River, the
1-percent AEP discharge water-surface elevations ranged from
6.1 ft lower to 6.1 ft higher than in the FIS, with average and
median differences in water-surface elevations of 2.3 and 2.4 ft
higher, respectively. At the selected locations on the North
River, the 1-percent AEP discharge water-surface elevations
ranged from 7.6 ft lower to 3.7 ft higher than in the FIS, with
average and median differences in water-surface elevations of
0.3 and 1.7 ft higher, respectively. At the selected locations on
the Hoosic River, the 1-percent AEP discharge water-surface
elevations ranged from 2.7 ft lower to 7.2 ft higher than in

the FISs, with average and median differences in water-
surface elevations of 0.7 and 0.6 ft higher, respectively. The
differences in water-surface elevations between the recent
(2015-16) hydraulic studies and the FISs likely are because
of (1) improved land elevation data from light detection and
ranging (lidar) data collected in 2012, (2) detailed surveying
of hydraulic structures and cross sections throughout the river
reaches in 2012—13 (reflecting structure and cross section
changes during the last 30-35 years), (3) updated hydrology
analyses (3035 water years of additional peak flow data

at streamgages), and (4) high-water marks from the 2011
tropical storm Irene flood being used for model calibration.
Additionally, the water-surface elevation differences could

be related to land-use changes—such as any increases in area
of urban land uses because of increased medium- to high-
density areas of residential housing, commercial and industrial
development, and roads and highways in the river basins.
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