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Hydrogeologic Barriers to the Infiltration of Treated
Wastewater at the Joint Base McGuire-Dix-Lakehurst
Land Application Site, Burlington County, New Jersey

By Alex R. Fiore

Abstract

For the final phase of wastewater treatment operations
at Joint Base McGuire-Dix-Lakehurst in Burlington County,
New Jersey, treated effluent is pumped to 12 infiltration
basins on a Land Application Site to recharge the unconfined
Kirkwood-Cohansey aquifer system. Two of the 12 infiltra-
tion basins are operationally ineffective because discharged
effluent fails to percolate and remains ponded on the basin
surfaces. A study conducted by the U.S. Geological Survey, in
cooperation with the U.S. Department of Defense, investigated
the potential hydrogeologic conditions preventing infiltration
in these basins by testing the geophysical, lithological, and
hydraulic characteristics of the aquifer material underlying the
site. Saturated sand, sandy clay, and unsaturated sand were
encountered in succession through the upper 4 feet of sedi-
ment below land surface at the two ineffective basins. Water
levels in auger borings penetrating the clay and underlying
dry sand were measured as deeper than water levels in nested
auger borings in the saturated sand overlying the clay, which
indicates a downward vertical gradient was established after
removal of the clay in the deeper borings created a conduit
for drainage from the surficial saturated sands. Ground-pene-
trating radar surveys and additional water levels measured in
piezometer wells adjacent to the infiltration basins indicated a
lack of connectivity between the ponded basin water and the
regional water table, and demonstrated that perched conditions
were not present in native formation materials outside the
inoperable basins. Therefore, the near-surface low permeabil-
ity clay is likely preventing infiltration from the basin surface
and causes the ineffectiveness of the two basins for wastewa-
ter land application operations.

Introduction

The wastewater treatment system of Joint Base McGuire-
Dix-Lakehurst (JBMDL) in Burlington County, New Jersey,
incorporates a Land Application Site (LAS) as the final phase
of the treatment process. Following disinfection at a treatment

plant, wastewater effluent is pumped to infiltration basins at
the LAS, inducing recharge to groundwater. Twelve infiltra-
tion basins, numbered A1 through A6 and B1 through B6,
were built at the LAS for this purpose (fig. 1). Basins vary in
area from about 3.5 to 5 acres and are enclosed by constructed
soil berms that vary in height from less than 6 to more than

25 feet (ft). Wastewater effluent discharges into the basins
through outfalls, and each basin is paired with another through
spillways carved into the berms. Effluent is discharged until
the basin water level reaches a few feet height, whereupon

an empty basin is chosen at the discretion of the site opera-
tor to receive the effluent (Optech Monette, LLC., written
commun., 2014).

Two of the 12 basins (B5 and B6) quickly became
saturated following construction of the LAS in the mid-1990s
and are considered unsuitable for wastewater infiltration;
the remaining 10 basins exhibited varying rates of drain-
age effectiveness (Optech Monette, LLC., written commun.,
2014). The full permitted capacity of the LAS is 4.6 million
gallons per day (Mgal/d), but currently (2015) about 2 Mgal/d
is recharged to groundwater through the treatment system.
The LAS can adequately handle 2 Mgal/d, but the ineffective
performance of basins B5 and B6 may cause capacity issues
for the treatment system if the wastewater quantity handled by
the treatment plant is increased. The discharge of wastewater
effluent into surface water is prohibited owing to the location
of JBMDL in the Pinelands National Reserve (New Jersey
Pinelands Commission, 2014), so understanding the hydroge-
ology of the LAS is the first step in assessing the current and
prospective capabilities of the LAS for sustained recharge of
treated wastewater into groundwater. Therefore, a study was
conducted by the U.S. Geological Survey (USGS), in coop-
eration with the U.S. Department of Defense, to evaluate the
hydrogeologic conditions leading to the ineffective infiltration
performance of basins B5 and B6.

Purpose and Scope

This report summarizes results of an investigation to doc-
ument the hydrogeologic factors that may inhibit wastewater
infiltration at 2 of the 12 basins at the LAS and cause different
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rates of infiltration in the 10 functioning basins. The investiga-
tion seeks to determine whether the different infiltration rates
can be explained by conditions such as the intersection of the
regional water table with topographically low basins, local
hydrogeologic conditions such as perched water tables associ-
ated with low permeability clays, and (or) construction-related
differences of the basins. Material from this report will inform
an ongoing study to test whether present site conditions can
sustain infiltration at the full 4.6 Mgal/d rate.

Geologic Setting

The JBMDL LAS covers nearly 100 acres within the
New Jersey Coastal Plain Physiographic Province (fig. 2).

The Coastal Plain consists of unconsolidated sands and clays
of Cretaceous to Holocene age that dip toward the southeast
(Owens and Minard, 1964; Zapecza, 1989; Owens and oth-
ers, 1999). The LAS is located where the middle Miocene-
age Cohansey Formation and Pleistocene and Holocene-age
alluvium, colluvium, and lag gravels constitute the surficial
sediments (fig. 2) (Owens and Minard, 1964; Newell and
others, 2000). The Cohansey Formation consists primarily of
sand with discontinuous lenses of clay (Owens and Minard,
1964; Zapecza, 1989; Sugarman and others, 2005). In outcrop,
the Cohansey sands are weathered to an orange-yellow color
distinguishable from the unweathered light beige/gray of the
sands at depth (Owens and Minard, 1964; Newell and others,
2000; Sugarman and others, 2005). The Cohansey Formation
unconformably overlies the lower Miocene-age Kirkwood
Formation, specifically the lower member that consists of mas-
sive bedded gray and dark brown very fine to fine sand and
silt (Minard and Owens, 1963). An auger hole drilled about

1 mile northwest of the LAS during a previous study (Minard
and Owens, 1963) revealed the contact between the forma-
tions at about 35 ft below land surface (BLS), and another
auger hole about 1 mile southeast of the LAS from a different
study (Owens and Minard, 1964) revealed the contact at about
20 ft BLS. The formations (and contact) dip between 8§ and

20 ft per mile southeastward in the study area (Owens and
Minard, 1964; Minard and Owens, 1963).

The Kirkwood-Cohansey aquifer system is an important
unconfined aquifer in the region (Zapecza, 1989; Sugarman
and others, 2005) and is the aquifer to which the LAS waste-
water effluent recharges. A thickness of 50 ft is estimated for
the aquifer in this area (Zapecza, 1989; Watt and others, 2002).
Semi-confined conditions and perched water tables that can
be present locally in the Kirkwood-Cohansey aquifer system
(Zapecza, 1989) have been identified as inhibitors of waste-
water infiltration at other facilities in the Coastal Plain (Reilly
and others, 2010).

Pleistocene and Holocene sediments overlying the
Cohansey Formation accumulate within alluvial valleys or
atop topographic highs (Owens and Minard, 1964; Newell and
others, 2000). Owens and Minard (1964) report thicknesses

Methods of Investigation 3

of 4 and 5 feet for these deposits at two specific locations
within 1 mile of the LAS and consider Miocene formations to
be exposed where younger sediments are less than 3 ft thick.
Throughout the entire New Jersey Coastal Plain, these depos-
its are generally less than 7 ft thick but can be present locally
up to about 26 ft thick (Newell and others, 2000).

Methods of Investigation

Borehole and surface geophysics, slug tests, sediment
analysis, and water-level measurements were used in the
investigation to identify zones of relative low permeability
beneath basins. The methods are described below.

Borehole and Surface Geophysics

Ground-penetrating radar (GPR) data were collected
along survey lines to obtain radar reflection profiles of the sub-
surface beneath the LAS. GPR equipment consists of a control
unit, a transmitter antenna that emits a radio-frequency elec-
tromagnetic pulse into the subsurface, and a receiver antenna
that collects its reflected signal. The reflections occur as the
emitted radio wave encounters an interface between earth
materials of contrasting electromagnetic properties, includ-
ing electrical conductivity and dielectric permittivity (Beres
and Haeni, 1991). Wave velocity slows and signal attenuation
increases in materials of high electrical conductivity and large
dielectric constant. Increased attenuation lessens the depth
penetration of the emitted pulse. Strong wave reflections occur
at interfaces where the contrast is high, such as from unsatu-
rated to saturated sediment and sand to clay. Data acquired are
recorded on a computer as the GPR unit is towed across the
ground surface.

The GPR unit used in this study was a 100 megahertz
shielded antenna by MALA Geoscience®. Thirty-three lines
were surveyed at the LAS along southwest-northeast or
northwest-southeast orientations (fig. 3). One set of 10 lines
was surveyed along the outer perimeter of the LAS along a
chain-link fence. The antenna was pulled at a constant distance
parallel to the fence so that any interference caused by the
fence would be equally maintained throughout each perim-
eter line. The remaining 23 lines were surveyed within basins
A2, A3, A4, AS, A6, B1, B2, B3, B4, and B5. Basins Al and
B6 had too much standing water at the time of the survey to
safely obtain data without damaging the equipment. Similarly,
some standing water in basins A2, B3, and B4, although less
extensive, allowed for fewer lines surveyed; surveys were
performed along the periphery of those basins where ponding
was relatively minimal. A direct current (DC) removal filter
with 660 start sample for calculation was applied to all GPR
data. Uninterpreted GPR profiles are provided in appendix 1,
with no assumed ground velocity because of a lack of calibra-
tion targets.
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6 Hydrogeologic Barriers to the Infiltration of Treated Wastewater, Joint Base McGuire-Dix-Lakehurst, Burlington County

Natural-gamma logs were collected to identify the
lithology of sediments underlying the LAS. A gamma log is
collected by lowering a probe down a borehole with a winch
that is connected to a logger and laptop at land surface. The
probe records the amount of natural gamma radiation emit-
ted by the sediments immediately surrounding the borehole.
Clays generally contain relatively larger quantities of the
high gamma emitting radioisotope potassium-40 than sands
and gravels. Therefore, higher gamma counts in a log gener-
ally correspond to clays and lower gamma counts to sands or
gravels (Keys, 1990).

The logging system used in this study was a Mount
Sopris® MGXII logger and winch and a 2 PGA-1000 gamma
tool. Logs were collected from the 12 on-site piezometer wells
(PW-A1, PW-A2, PW-A3, PW-A4, PW-AS, PW-A6, PW-BI1,
PW-B2, PW-B3, PW-B4, PW-BS5, and PW-B6), the 13 off-
site monitoring wells (MW-1U, MW-2U, MW-3U, MW-1D,
MW-2D, MW-3D, MW-4D, MW-5D, MW-6D, MW-7D,
MW-8D, MW-9D, and MW-10D), and 3 additional off-site
wells nearby (LTM-02, LTM-30, and PDO-103D) (fig. 1).
Gamma logs from this study are provided in appendix 2.

Sediment Collection and Analysis

Two sediment cores were collected with a Geoprobe®
Macro-Core Soil Sampler to identify finer-grained layers that
may impede infiltration. Core sites were selected on opposite
sides of the LAS (fig. 1) for geographic disparity, and outside
basins and off berms to obtain sediments most closely rep-
resentative of native lithology. Additional sediment samples
were collected with a hand auger through the first 3-5 feet
below the bottoms of basins A2, B2, B3, B4, B5, and B6
(fig. 1) in approximately 1-ft bulk intervals. One auger boring
was installed per basin in A2, B2, B3, and B4; two borings
were installed in B5; and four borings were installed in B6.
These additional borings in BS and B6 were added to test for
possible heterogeneity in the shallow sediments, depending
on location in the basin. Each auger boring was a temporary
fixture refilled with the excavated sediments at the end of the
field day.

A wet sieve analysis was performed to obtain approxi-
mations of percentages of clay/silt and sand. Approximately
50 grams of representative sediment samples were extracted
from each auger interval and core. Large pebbles and organic
matter, such as plant roots, were removed from larger bulk
samples to avoid overestimation of mass if they were included
in a representative sample. Samples were air dried in a vent
hood, then weighed to obtain a dry mass prior to sieving.
Samples were then treated with a 40-gram per liter defloc-
culant solution of sodium hexametaphosphate (ASTM, 2007)
to disperse clays into suspension and break up “clumps” that
may not otherwise have passed through a sieve. Samples were
then wet-sifted through a 74-micron sieve. Sediments pass-
ing through a 74-micron mesh represent silt-and clay-sized

particles; those retained are sand and gravel. Retained sedi-
ments were again air dried in a vent hood and weighed to
obtain post-sieving mass. A combined clay and silt percentage
was calculated by subtracting the mass of the retained sedi-
ment from the total mass before sieving, then dividing by the
total mass and multiplying by 100. The division between clay
and silt texture was not tested.

Verbatim descriptions of drill cuttings logged by the well
drillers and official well-record specified construction infor-
mation (Optech Monette, LLC, written commun., 2014; New
Jersey Department of Environmental Protection, written com-
mun., 2015) are included in appendix 3. The descriptions in
appendix 3 are identical to those provided by drillers to avoid
misinterpretation and assumptions for abbreviations used
by the drillers for lithology. Where not specified outright in
the record, depths of cutting intervals and well features were
estimated from the information provided. Accuracy of well
records and driller-provided information is dubious and was
not verified by the USGS.

Slug Tests

Slug tests were performed in on-site piezometer wells to
evaluate the hydraulic properties of the aquifer surrounding
the wells adjacent to the basins. The slug tests followed stan-
dard USGS methods (Cunningham and Schalk, 2011). Slug
tests consist of two parts, a falling head or “slug-in” test and
a rising head or “slug-out” test. A slug-in test is performed by
instantaneously inserting a solid object (slug) below the water
level in a well, causing the water level to rise, then measuring
the recovery time for return to its initial static position. Then,
a slug-out test is performed by instantaneously removing the
slug from the well, causing the water level to fall, then again
measuring recovery time of the water level to return to its
initial static position. The nature of the water-level recovery
can be used to estimate hydraulic conductivity (K) or trans-
missivity. LAS piezometer wells were tested with a polyvinyl
chloride slug designed for 2 ft of water-level displacement
(measuring about 1.6 inches in diameter by 3.12 ft in length),
and water levels were monitored with an In-Situ® Level Troll
500 pressure transducer recording at 0.5 second intervals
for the duration of each test. Each pre-test water level was
at least 3 ft above the top of the screen, so all 2-ft displace-
ments were entirely within the casing. PW-B2 was dry and
not tested. All tests were repeated at least twice to ensure each
well was properly developed and K estimates were consistent.
Smaller volume slugs were also used to ensure consistency
in K estimates given different displacements. Slug-out test
results are reported rather than slug-in test results because
a slug is removed from a well with less splashing and less
noise in transducer readings compared to slug insertion when
using this method (Fiore, 2014). A correction for the frictional
loss effects from the transducer and cable (Butler, 2002) was
applied to the results after processing.
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Various methods exist to estimate K from slug test data.
The analytical solution method of Bouwer and Rice (1976)
was deemed appropriate for LAS slug tests because it was
designed for unconfined aquifers such as the Kirkwood-
Cohansey aquifer system and allows for the partially penetrat-
ing depths of LAS piezometer wells, assuming an aquifer
thickness of 50—100 ft for the Kirkwood-Cohansey aquifer
system in the study area (fig. 2) (Zapecza, 1989; Watt and oth-
ers, 2002). This method also requires an assumption of finite
well diameters, which was assumed to be met by LAS piezom-
eter wells. The recorded data fit the solution well (appendix 4),
which confirms Bouwer and Rice (1976) as an adequate
choice for analysis. However, because of assumptions and the
neglect of well bore storage and specific yield in the computa-
tion of K by the Bouwer and Rice (1976) method, K values
are reported to one significant figure per USGS recommenda-
tions (Cunningham and Schalk, 2011) and are to be considered
order-of-magnitude estimates.

Groundwater-Level Measurements

Discrete groundwater levels measured by USGS person-
nel in 2014 and 2015 using standardized procedures (Cunning-
ham and Schalk, 2011), and monthly measurements recorded
by LAS site operators in piezometer wells from 2000 to 2014
(appendix 5, 6) (Optech Monette, LLC, written commun.,
2015), were evaluated to determine the range of possible water
levels for each piezometer well at the LAS. Maximum, mean,
and minimum water levels for each piezometer well were eval-
uated. The water table often falls below the bottom of the well
screen of PW-B2, making a water-level measurement impos-
sible, so the mean and lowest water levels cannot be calculated
at that location. Water levels in off-site monitoring wells are
not included in the monthly measurements by the site opera-
tor, so those sites were omitted from the analysis as a result of
a lack of data. All USGS-acquired water levels in wells were
measured with an electric tape. Water levels in temporary
auger borings were measured with a steel tape. Water levels
measured by USGS are stored in the USGS National Water
Information System database. Operator-measured water levels
are provided in appendix 5. Hydrographs of these water levels
created for each piezometer well are included in appendix 6.

Altitude Surveying

Previously surveyed altitudes for piezometer wells,
monitoring wells, and basin bottoms used by site operators
are also used in this report for consistency (Optech Monette,
LLC, written commun., 2014). Relative altitudes of the two
core sites and the auger borings in basin B6 were acquired by
differential leveling. Horizontal coordinates of wells, borings,
and core sites were measured with a consumer-grade global
positioning system with £10 ft accuracy.

Assessment of Site Hydrogeology and
Applicability to Wastewater Infiltration
Effectiveness

Results of the investigation and discussions of the poten-
tial effects of LAS hydrogeology on the infiltration of treated
wastewater effluent are discussed in this section.

Site-Scale Hydrolithology

Short high gamma count intervals recorded in numer-
ous logs give the appearance of numerous discontinuous clay
lenses beneath the LAS, but information from well records
conflicts with this interpretation. Well construction records
show that a bentonite seal about 1-3 ft thick was grouted
above the gravel pack in numerous wells. Some gamma
“spikes” occur at depths similar to that of the bentonite grout
(fig. 4-7; appendix 2), which can contain more potassium-40
and produce higher gamma emissions than the surrounding
formation material, creating anomalous high gamma artifacts
associated with well construction rather than native features.
In addition, bentonite was mixed with cement to grout the
annular space above the seal, which may further obscure the
signal of gamma emissions from the natural formation mate-
rial, making proper interpretation of the gamma logs prob-
lematic. Examples of this issue are exemplified in the logs of
wells shown in figures 4-7. MW-1D has a gamma “spike” that
correlates very well to the depth of the bentonite seal (fig. 4).
MW-4D does as well, but the driller log indicated gray silt at a
depth of about 14 ft (fig. 5) that could potentially produce high
gamma counts also. The MW-6D driller log indicates gray
sandy clay at a depth of about 8 ft that does not appear to pro-
duce significantly higher gamma counts despite its description
(fig. 6), and MW-9D has two “spikes” that do not correlate to
the reported bentonite seal depth, which did not appear to pro-
duce high gamma in that log (fig. 7). The differing responses
on the LAS gamma logs indicate high heterogeneities in lithol-
ogy and (or) well completion materials that cannot be differen-
tiated with gamma analysis alone, so these gamma logs are not
appropriate for use in lithologic interpretation for this study.

Gamma counts in the screened intervals of each well are
less influenced by the bentonite in the annular space behind
the casing and are likely more representative of natural for-
mation properties. Casing muting effects on gamma counts
(Keys, 1990) are likely consistent throughout the borehole for
the LAS wells, assuming negligible differences of the effect
from casings versus screens. Therefore, the absence of ben-
tonite in the filter pack behind the screen will allow for greater
gamma penetration in those intervals as the probe moves far-
ther from the casing. An increase of gamma counts with depth
occurs within the screens of wells adjacent to the infiltration
basins. However, slug tests and cores indicate the gamma
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Figure 4. Natural gamma log, well construction diagram, and driller log of MW-1D, Joint Base McGuire-
Dix-Lakehurst Land Application Site, New Jersey.
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Figure 5. Natural gamma log, well construction diagram, and driller log of MW-4D, Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey.
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Figure 6. Natural gamma log, well construction diagram, and driller log of MW-6D, Joint Base McGuire-
Dix-Lakehurst Land Application Site, New Jersey.
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Dix-Lakehurst Land Application Site, New Jersey.
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changes are likely not associated with textural changes. For
example, the slug tests of PW-A1 returned the lowest esti-
mated K of 1 ft/day despite low gamma counts, whereas
PW-B3 returned a K of 60 ft/day despite high gamma counts
(table 1). K estimates at LAS piezometer wells differ across an
order of magnitude, but all K estimates are within the typical
K range for sand-size material (Halford and Kuniansky, 2002).
Therefore, high gamma counts may be associated with miner-
alogy, such as high mica content within the sand. Minard and
Owens (1963) describe the Kirkwood Formation in the study
area as rich in muscovite mica, of which potassium is a major
constituent. The gamma logs may be recording high gamma
emissions from radioactive potassium-40 in muscovite at
those depth intervals, the tops of which may also represent the
unconformity between the Kirkwood Formation and overly-
ing Cohansey Formation with less mica (Minard and Owens,
1963), but this contact likely has negligible hydraulic influ-
ence on the groundwater system beneath the LAS.

Two units of apparent fine-grained material recovered in
the South Core between basins BS and B6 at depth intervals
of 7.5-9.9 ft and 15.75-17.2 ft appear to correlate to intervals
of high gamma counts above the screened intervals of PW-BS
and PW-B6 (fig. 8). No fine sediments were recovered in the
North Core between PW-A1 and PW-A2 where gamma counts
are lower. South Core sediment samples from 7.9 to 8.0 ft
and 15.9 to 16.1 ft in the apparent fine-grained units consist
of about 75 percent (%) and 89% sand post-sieve analysis,
respectively (table 2). These sand percentages are generally
indicative of higher permeability material (Schoeneberger and
others, 2012). Sediment samples were sieved only to bulk sand
and were not divided further within the range of sand sizes,
so the fine-grained appearance of the South Core samples is
likely relative to coarser sands above and below. A notable
difference between the bulk sand-sized fraction of the North
Core and South Core is that the North Core has more ferric
iron-oxide staining (indicated by the yellow-orange color), and
the South Core has more mica (fig. 9). The mica is colorless,
which is a notable trait of potassium-rich muscovite and is fur-
ther evidence for the potentially high gamma-emitting behav-
ior of muscovite at the LAS rather than an effect of clays.

Water-Table Conditions

Changing patterns in basin use are related to spatially
variable water-table responses at the LAS, so representing true
static water-table conditions is problematic because paus-
ing wastewater infiltration activity for a period of time for
the aquifer to equilibrate is not possible. Water levels at the
LAS can vary as much as 19 ft, such as in PW-BI1 (table 1;
appendix 5, 6). Seasonal fluctuations of the water table in this
area of New Jersey are typically as much as 8 ft (Watt and
others, 2002), so higher variations in LAS water levels are
likely an effect of the infiltrating wastewater at the site. The
regional unconfined flow gradient through the site is toward
the southeast (Watt and others, 2002) (fig. 10), except where

groundwater discharges to streams that flank the LAS. Two
possible explanations regarding water-table related barriers to
wastewater infiltration in B5 and B6 were considered—(1) the
intersection of the regional water table with topographically
low basin surfaces and (2) a perched water table.

Intersection of Water Table with Basins B5 and
B6

A possible explanation for the persistent ponded water
on the surfaces of basins BS and B6 is the intersection of the
water table with land surface. For this scenario to be met, cer-
tain hydrologic conditions are required. Well PW-B2 is upgra-
dient from PW-B5, and PW-B4 is upgradient from PW-B6,
so the water-table altitudes in upgradient PW-B2 and PW-B4
must be higher than the altitudes of downgradient basin bot-
toms of BS and B6 for the water table to intersect. Because
wastewater effluent is no longer pumped into basins BS and
B6, mounding centered at those basins that could result in
downgradient wells with higher water levels than those upgra-
dient will not occur. Water levels in PW-B4 indicate these
conditions are not met for the ponded water on the surface of
B6 to result from water table intersection. From 2000-15, the
highest water level measured in PW-B4 was 107.12 ft on Feb-
ruary 27, 2004 (appendix 5) (Optech Monette, LLC., written
commun., 2015), an altitude less than the basin B6 altitude of
108 ft (table 1, fig. 11). The measured PW-B6 water level on
this date was 101.66 ft (appendix 5), so the groundwater flow
gradient was from PW-B4 to PW-B6. Regardless of whether
basin B6 had ponded water at the time of measurement, the
water table could not have reached the altitude necessary to
intersect with land surface in B6 on that 1-dimensional line
(fig. 11). During observed hydrologic conditions in April 2015,
ponded water covered the entire surface of B6, except for a
small patch around auger boring nest AB-B6-1, where depth
to water was 0.15 ft below the basin surface (table 1). Concur-
rent measured water levels in PW-B4 and PW-B6 indicate a
hypothetical water table surface about 7-9 ft below the basin
surface, too low for water-table intersection between those
points (fig. 11). The low water level of PW-B6 is particularly
important to this notion because groundwater was pres-
ent at a 3.5-ft depth in auger boring AB-B4 at an altitude of
108.5 ft, which is almost 6 ft higher than in PW-B4 and 0.5 ft
higher than the bottom of basin B6 (table 1). The difference
in water levels between AB-B4 and PW-B4 occurred over a
large enough distance (about 300 ft) (fig. 12) to reasonably
assume a realistic match for water-table altitude conditions,
so flow from basin B4 entering basin B6 and ponding on the
surface is plausible. However, the altitude drop of 10 ft over a
distance of less than 100 ft between the ponding on basin B6
and the water level in PW-B6 (fig. 11) is an unrealistic match
to regional water-table altitude conditions. Therefore, another
factor besides the water table is preventing the basin water
from infiltrating, and the ponded water remaining on basin
B6 following a supposed intersection of the water table is
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Figure 8. Section A-A"showing natural gamma logs of MW-4D, PW-B6, PW-B5, and MW-8D, and depths of fine-grained
material in the South Core, Joint Base McGuire-Dix-Lakehurst Land Application Site, New Jersey. Gamma radiation
increases to the right.
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Figure 9. Ferric oxide stained sediment from North Core (left) and muscovite mica-rich quartz sand from South Core (right),
Joint Base McGuire-Dix-Lakehurst Land Application Site, New Jersey.
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Table 2. Grain size analysis results as estimated by use of the

wet sieve method through 74-micron mesh, Joint Base McGuire-
Dix-Lakehurst Land Application Site, New Jersey.

[ft BLS, feet below land surface]

Percent Percent

Site name Zone sand, clay/silt,

(ftBLS) by mass by mass
AB-A2 0-1 83 17
AB-A2 1-2 89 11
AB-A2 2-3 92 8
AB-A2 3-4 92 8
AB-A2 0-1 95 5
AB-B2 0-1 95 5
AB-B2 1-2 88 12
AB-B2 2-3 83 17
AB-B2 3-4 98 2
AB-B3 0-1 94 6
AB-B3 1-2 95 5
AB-B3 2-3 90 10
AB-B4 0-1 94 6
AB-B4 1-2 89 11
AB-B4 2-3 76 24
AB-B4 3-4 96 4
AB-B5-1 0-1 84 16
AB-B5-1 1-2 74 26
AB-B5-1 2-3 76 24
AB-B5-1 3-4 77 23
AB-B5-2 0-1 77 23
AB-B5-2 1-2 90 10
AB-B5-2 2-3 86 14
AB-B5-2 34 91 9
AB-B6-1 0-1 85 15
AB-B6-1 1-2 83 17
AB-B6-1 2-3 86 14
AB-B6-1 Isolated finer subsample 58 42
South core 7.9-8.0 89 11
South core 15.8-16.1 75 25

restricted by another factor. The possibility of a perched water
table at that location acting as that factor is discussed in the
section “Test for Perched Water Table.”

Numerous water levels in PW-B2 recorded between
2000 and 2015 were at high enough altitudes to potentially
intersect basin B5 (table 1; appendix 5). However, basin B5
had ponded water in April 2015 when PW-B2 was dry. The
water table at PW-B2 must fall below the bottom of the screen
for the well to be dry, and the bottom of PW-B2 is at a lower
altitude than the bottom of basin B3, so a hypothetical water
table would fall at least 8 ft below the basin surface, depend-
ing on how far the water table is below the screen (fig. 13).

A seepage face present on the berm separating BS and B2

(fig. 14) indicates flow occurs through the dividing berm into
BS5 when B2 is holding water, which is evidenced further by
high moisture content observed on the B5 side when B2 was
in use on a later date. The top of the seepage face on the slope
on the BS side correlates approximately with the altitude of
the bottom of basin B2 on the opposite side. When waste-
water effluent is infiltrating, not all flow is downward; there

is a lateral component through the berms allowing water to
flow from one basin to another. Water can flow into B5 from
B2 during this process, but as in B6, the assumed gradient
between B5 ponded water and the water level in PW-B5 would
be very large, and another factor must be present that prevents
infiltration. Flow across berms also may provide a source of
ponded water in B5 and B6. Because effluent is not directly
discharged to B5 and B6, ponded water in those basins must
originate elsewhere. The source is likely some combination
of cross-berm flow, precipitation directly into the basins, and
runoff down berm slopes. Because B2 is frequently in use
(Optech Monette, LLC., written commun., 2014), a portion of
the effluent from B2 will concurrently flow through the berm
into B5. B2 effluent may also surface in B6, if it is passing
through B4.

In general, differences in altitude between basin surfaces
and mean water levels in associated adjacent piezometers
are smaller in the topographically lower basins, especially in
basin B4 and site PW-B4 (table 1). A shallower water table
and shorter unsaturated zone would slow down the infiltra-
tion of wastewater, but that is not enough to explain persistent
ponded water on BS and B6. The relatively poor, but not
completely ineffective wastewater infiltration capabilities of
basins B3 and B4 are more likely caused by a shallow water
table (table 1). As stated previously, the shallow water table
at AB-B4 in April 2015 matches the regional conditions,
and a higher gradient from basin B2 can potentially cause
the water table below B4 to be even shallower (fig. 12). This
also applies to basin B3 because groundwater was reached
at a depth of about 2 ft in auger boring AB-B3 in basin B3 in
April 2015 (table 3). Nearby basins A5, A6, and B1 were in
operation infiltrating wastewater in April 2015 when these
measurements were made. Local groundwater mounding
below AS, A6, and B1 likely raised the water level in boring
AB-B3 to a gradient more than 8 ft higher than in well PW-B3
(table 1), unless a low permeability layer went undetected at
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Figure 14. Seepage face flow structures on the berm between basin B5 and basin B2, Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. Flow structures originate about 10 feet above the bottom of basin B5 at
the approximate altitude of basin B2 on the opposing side.

Table 3. Description of auger boring test holes and depth to water
measurements, Joint Base McGuire-Dix-Lakehurst Land Application
Site, New Jersey, April 2015

[USGS ID, U.S. Geological Survey station number; NJUID, New Jersey unique
identifier; BLS, below land surface; ALS, above land surface]

Depth of Depth to

Site USGS ID NJUID hole, in water, in
feet BLS feet BLS

AB-A2 395909074370201 051973 4 Dry
AB-B2 395852074363901 051972 4 Dry
AB-B3 395851074364601 051971 4 2
AB-B4 395846074364201 051970 4 3.5
AB-B5-1A  395846074363601 051966 3 0.9
AB-B5-1B  395846074363602 051967 2 0.3
AB-B5-1C  395846074363603 051968 1 0.3
AB-B5-2 395846074363301 051969 5 Dry
AB-B6-1A  395844074364101 051963 3 0.8
AB-B6-1B  395844(074364102 051964 2 0.15
AB-B6-1C  395844074364103 051965 1 0.15
AB-B6-2 395844074363801 051962 3 ALS
AB-B6-3 395842074363801 051960 2 ALS
AB-B6-4 395842074364101 051961 5 ALS
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depths between the bottom of AB-B3 and screen of PW-B3.
Therefore, although regional water-table intersection with B5
and B6 is not impossible, it does not appear to be the primary
cause of the persistent ponded water, and the ponded water is
not a surficial expression of the water table intersecting with
land surface.

Test for Perched Water Table

The high percentages of sand and apparent lack of clays
in the South Core and North Core are unlikely to support a
perched water table, but the possible existence of a perched
water table, as demonstrated in the previous section, requires
testing. A temporary nested borehole was hand augered 2 ft
from PW-B6 to test for a perched water table at that location.
The water level in PW-B6 at the time of the test was measured
to be about 8 ft below land surface, and groundwater was
first encountered in the auger hole at 8 ft below land surface.
Basin B6 had ponded water at the time. If a perched water
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table was present, groundwater would have been reached

at depths shallower than 8 ft in the auger boring, but equal
water levels indicate the sediments surrounding the screen of
well PW-B6 and those in the upper 8 ft of the test boring are
hydraulically connected and both unconfined. The GPR profile
traversing PW-B6 provides supplementary evidence that no
perched water table is present (fig. 15). At the time of the GPR
survey, the water level in PW-B6 was measured to be 7.43 ft
below land surface. A large reflection at 25 nanoseconds (ns)
(fig. 15; appendix 1, line 10) can be calibrated to 7.43 ft
assuming a ground velocity of about 594 ft/microsecond,
which is within the expected velocity range for unsaturated
sands (Pierre Lacombe, USGS, oral commun., 2015). This
reflection extends laterally throughout the profile and is likely
caused by the water table, further confirming the absence of
perched water near basin B6. Perched water was not tested

at well PW-BS5 because hand augering is unwieldy consider-
ing the greater depth to water at that location. However, no
obvious water-table reflection is noticeable on the GPR line 10
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Figure 15. Segment of ground-penetrating radar line 10 with interpreted reflections, Joint

Base McGuire-Dix-Lakehurst Land Application Site, New Jersey. A direct current (DC) removal
filter with start sample 660 was applied to all ground-penetrating radar data for calculation of
DC level. Assumed ground velocity 515 feet per microsecond (ft/us) above water table, 200 ft/us

below water table. Well diameter not to scale.
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near well PW-BS5 (appendix 1), which indirectly indicates the
absence of perched water table at that location. Assuming the
same ground velocity at PW-BS5 as calibrated with PW-B6 and
using the same filter settings, the GPR signal extinguishes at
about 19 ft, just before it reaches the water-table depth as mea-
sured in PW-BS5. The signal reaches nearly 100 ns, which is
almost double the travel time of that near PW-B6. The signal
is probably attenuated through time by lithology rather than

a strong reflection, such as the water table in PW-B6, which
indicates a perched water table likely is not present at PW-BS.

Shallow Heterogeneity of Infiltration Basins

Sediments recovered in auger borings through the first
3-5 ft below the bottoms of basins were consistently at least
74% sand (table 2). The sediments of the untested basins Al,
A3, A4, A5, A6, and B1 are likely of similar composition. The
only outlier is a shallow clay layer observed in auger borings
within basins B3, B4, B5, and B6 that may provide the best
explanation for the ineffective infiltration in BS and B6.

Boring AB-B6-1A was augered in a small patch of
relatively dry sediment in B6 when most of the basin had
ponded water on the surface. Sediments in the first 2 ft BLS
were mostly sand of similar texture to that encountered in
auger holes of other basins, except for a thin layer of decaying
plant material and organics at the surface that likely accumu-
lated after the sustained exclusion of B6 from site operations
since the 1990s. Saturation developed a few inches below the
basin surface. Approximately 2 ft BLS was a dense, highly
pliable clay and sand mixture overlying loose dry sand about
2.5 ft BLS. The clay layer at 2 ft BLS was estimated to be
about 42% clay/silt and 58% sand from the sieve analysis and
would be classified as a “sandy clay” or “sandy clay loam”
on the basis of National Resource Conservation Service soil
texture parameters (Schoeneberger and others, 2012). The clay
percentage might be underestimated if any clay was inadver-
tently washed out of the auger bucket during sampling. The
auger hole was terminated at 3 ft BLS because of repeated
collapse. Nested 1-ft (AB-B6-1C) and 2-ft (AB-B6-1B) deep
auger borings were installed with AB-B6-1A above the clay
layer at 2 ft BLS to test the hydraulic nature of the clay layer.
Stabilized water levels in the 1-ft and 2-ft borings were equal,
about 0.15 ft BLS (table 3). The stabilized water level in the
3-ft boring was deeper, about 0.8 ft BLS (table 3). Differential
level surveys of each boring in the nest put the true vertical
elevations within 0.03 ft of each other, so the 0.65-ft lower
water level in the 3-ft boring was not caused by topographic
deviations of land surface. Removal of clay during augering
likely formed a conduit between the saturated and unsaturated
material, and the lower water level in the 3-ft boring repre-
sents the slow leakage of groundwater into the deeper sand
after removal and disturbance of the clay. Therefore, the clay
acts as a low permeability barrier preventing the downward
flow of water from the overlying saturated sand into the under-
lying unsaturated sand.

This low permeability clay was also present near the
southwest corner of basin B5 in auger boring AB-B5-1A at
about 2 ft BLS with saturation above and unsaturation below
around 2.75 ft BLS. A nest of auger borings installed with
AB-B5-1A had stabilized water levels similar to those of
the AB-B6-1 nest. Water levels in 1-ft (AB-B5-1C) and 2-ft
(AB-B5-1B) deep nested borings were both about 0.3 ft BLS,
whereas the water-level depth in the 3-ft deep AB-B5-1A
was 0.9 ft BLS (table 3). Differential level surveys were not
completed in this nest, but based on the results in basin B6,
the water-level decline in the 3-ft auger boring likely resulted
from the removal of low permeability clay rather than topo-
graphic deviation. Auger boring AB-B5-2 was installed farther
away from ponded water than AB-B5-1 and did not contain
any clay or groundwater through 5 ft BLS (table 2) during
these conditions.

Observations from additional auger borings further
indicate lithologic heterogeneity within the basins. Auger bor-
ings AB-B6-2, AB-B6-3, and AB-B6-4, installed in basin B6
(fig. 1) on a later date when the land surface was dry, con-
tained clay at about 2 ft BLS but with varying thicknesses. The
clay encountered in boring AB-B6-2 was at least 1.5 ft thick,
which is the thickest of all locations where it was observed.

In boring AB-B6-3, the clay was at least 1 ft thick. Saturated
sand above the clay in AB-B6-2 and AB-B6-3 kept collapsing
the hole, so the bottom of the clay and potentially dry sand
beneath were never reached as in AB-B5-1A and AB-B6-1A.
The clay encountered in AB-B6-4 was about 0.5 ft thick, and
no groundwater was encountered through 5 ft. The absence of
groundwater in AB-B6-4 may result from the thinner clay that
allowed water to penetrate or a slightly higher sand content
with greater permeability, rather than an absence of groundwa-
ter causing clay shrinkage because of specific mineralogy with
high shrink/swell capabilities.

The absence of clay in AB-B5-2 indicates the clay in
basin B5 pinches out at some location between AB-B5-1
and AB-B5-2, which may be observable on GPR line 33
(fig. 16; appendix 1). At the time line 33 was surveyed, very
wet conditions were present near the surface on the western
side of basin BS where the clay was observed. These wet
conditions extended to a distance of approximately 165 ft on
line 33 and likely caused the obscured and distorted appear-
ance of the underlying reflections across this interval (fig. 16).
The interpreted water-table reflection is better defined when
these conditions subside. PW-B5 and AB-B5-2 are approxi-
mately normal to the 260-ft distance on line 33 where clay
and groundwater were not observed during the spring high
water-level season. Many ground velocities through unsatu-
rated sand can be safely applied to line 33 that would put the
25 ns water-table reflection at more than 5 ft BLS, indicating
the water table at 260 ft distance could potentially be deeper
than the ponded water to the west. The wet conditions to the
west are perched on top of the clay found in nest AB-B5-1,
and the decline of these conditions at 165 ft may correspond to
a pinch-out of the clay at this distance. High signal attenuation
in an area with ponded water in line 31 (about 220-375 ft) and
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Figure 16. Ground-penetrating radar line 33 in basin B5 with interpreted
water table reflection, Joint Base McGuire-Dix-Lakehurst Land Application
Site, New Jersey. A direct current (DC) removal filter with start sample 660
was applied to all ground-penetrating radar data for calculation of DC level.
No assumed ground velocity due to lack of calibration targets. Contrast
between positive and negative peaks reduced for better visual clarity.

line 32 (390-470 ft) indicates clay extent may also reach to the
northeastern corner of B5 (appendix 1).

Thin layers (less than 0.5 ft thick) resembling the clay
below basins BS and B6 were also present in borings AB-B3
and AB-B4 at depths of 2.5 ft and 3.75 ft BLS, respectively,
with saturation of both overlying and underlying sands, which
indicates low shrink/swell capability and infiltration of water
through these thinner zones. Samples of this material from
B3 and B4 were too thin to be isolated for sieve analysis, so
the texture of this unit compared to seemingly similar restric-
tive units observed in BS and B6 could not be quantitatively
evaluated for a potentially higher sand content. The interpreted
water table is a very strong reflection on GPR line 15 that
around 250 ft begins to appear at increasingly later times as
a shallower reflector appears above (fig. 17). Later reflection
times do not necessarily correspond to deeper depths, but
instead longer travel times resulting from attenuated velocities
of the emitted pulse with a change of electromagnetic proper-
ties of subsurface materials above the reflector interface. The
shallower reflection in line 15 may be caused by a bedding

its GPR line.

pinch-out of the AB-B3 “clay.” This bedding reflection occurs
progressively earlier in time as the water-table reflection
occurs progressively later, which may result from the bed
thickening toward the southeast and causing the underlying
water-table reflection to appear increasingly later in time. At
about 450 ft, signal penetration decreases and both reflectors
are obscured (fig. 17) from greater attenuation at the basin
surface. Relatively wetter conditions were present near the
southeast corner of basin B3 at the time line 15 was surveyed,
which likely enhanced the attenuation. Although AB-B3
results do not indicate perching of water, the bed in line 15
may thicken enough to slow infiltration and cause these wetter
conditions near the southeast corner, which is likely given the
heterogeneity present in basins B5 and B6. Line 16 surveyed
in basin B4 is of limited utility because of noise and ghost
reflections, so the nature of the clay in B4 is not evident from

The origin of this clay layer observed in these basins is
unknown, as is whether the clay at each location forms one
feature or multiple independent beds. Sediments underlying
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Figure 17. Ground-penetrating radar line 15 in basin B3 with interpreted reflections, Joint Base
McGuire-Dix-Lakehurst Land Application Site, New Jersey. A direct current (DC) removal filter with start
sample 660 was applied to all ground-penetrating radar data for calculation of DC level. No assumed

ground velocity due to lack of calibration targets.

infiltration basins are likely unrepresentative of native material
(even if originating from native formations) as a result of soil
reworking to an unknown depth during site construction and
maintenance, including possible geochemical alteration by the
differing water quality of infiltrating wastewater compared to
native groundwater. The sampled clay was about 2—4 ft below
each basin where encountered, but this is hardly informative
as to its origins because a native Cohansey Formation clay
lens could have been terraced during construction, or given
that these basins are topographically lowest at the LAS, fines
washed downhill from runoff during basin construction could
have built up before subsequent tillage and other reworking of
shallower sediments. However, the origins of this clay are not
particularly or directly important operationally for the site; the
clay is an obstruction for infiltration regardless of its origin. If
the upper 3—4 ft of sediment in basins B5 and B6 were exca-
vated and replaced with sand to maintain proper depth to the
seasonal high water table below basin bottoms in accordance
with Pinelands Comprehensive Management Plan standards
(New Jersey Pinelands Commission, 2014), basins B5 and B6

could potentially be useful for the infiltration of wastewater
effluent. However, a relatively shallow water table beneath B5
and B6 would lead the basins to perform similarly to slow-
draining basins B3 and B4.

Summary and Conclusions

The Land Application Site (LAS) of Joint Base McGuire-
Dix-Lakehurst, Burlington County, New Jersey, was con-
structed in the 1990s to pump treated wastewater effluent to
infiltration basins for recharge into groundwater in the under-
lying Kirkwood-Cohansey aquifer system. Of the 12 basins
constructed at the LAS designed for infiltration, basins B5
and B6 exhibited ineffective infiltration capabilities soon after
construction and are no longer used in site operations because
of persistent ponded water. The cause of poor infiltration in
basins B5 and B6 was never definitively identified, and an
understanding of the factors directly affecting the infiltration
capacity of the LAS is essential when considering any future
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site plans. The U.S. Geological Survey (USGS) conducted

an investigation, in cooperation with the Department of
Defense, into the possible hydrogeologic conditions at the
LAS that may hinder infiltration at basins B5 and B6. Natural
gamma radiation logging in boreholes, ground-penetrating
radar (GPR), slug tests of piezometer wells, textural analysis
of sediment samples from cores, and water-level data from
piezometer wells and auger borings were used in the investiga-
tion. Various hypotheses were examined that would potentially
cause ineffective infiltration, including the presence of large-
scale or small-scale low permeability clay units, a perched
water table, and the intersection of the regional water table
with the B5 and B6 basin surfaces.

Borehole gamma logs were generally inconclusive
because the signal was obscured by bentonite grout behind the
well casings. High gamma counts from the screened interval
indicate possible zones of relatively lower permeability but
more likely result from high muscovite mica contents because
hydraulic conductivities calculated from slug tests of these
zones are more typical of sand than clay. Clay zones were
not present in the North Core and South Core. The finest-
grained unit in the South Core consisted primarily of very fine
sand situated within medium and coarser sands. Piezometer
well PW-B6 near the South Core had a water level equal to
the shallower nested auger boring adjacently installed. An
interpreted water-table reflection on the GPR image occurs
around the same depth around the well as the measured water
level in the well, which indicates the fine-grained units in the
South Core are not impermeable and do not create a perched
water table.

A hypothetical water table assumed from water-level
measurements indicates the water table is shallower in the
southern basins of the LAS where infiltration is less effec-
tive than the northern basins. Conditions exist whereby the
water table height is sufficient for intersection with basin B6.
However, given the lack of water perching at PW-B6, the low
water levels measured in PW-B6 indicate that any water on the
surface of B6 derived from water-table intersection remains
ponded owing to a different cause than water table intersec-
tion. Samples of sediment from basins BS and B6 contained
a thin layer of clay that would inhibit infiltration. Sand above
this clay was saturated, whereas the sand below the clay was
unsaturated. Removal of this clay in auger borings in B5 and
B6 formed a conduit that caused the water level in the shallow
saturated sands to drop in nested borings. Therefore, this clay
is likely preventing water from entering the underlying sand.
This phenomenon was not encountered in the basins with
effective infiltration, so the presence of this clay is the prob-
able cause of ponded water on the surface of BS and B6 that
fails to infiltrate.
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Appendix 1

Ground-penetrating radar (GPR) profile images from the Joint Base McGuire-Dix-Lakehurst Land
Application Site, New Jersey. No assumption was made with respect to ground velocity. A direct
current (DC) removal filter with start sample 660 was applied to all GPR data for calculation of
DC level.
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Figure 1-1. Ground-penetrating radar (GPR) profile, line 1, from the Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey. No assumption was made with respect to ground velocity. A direct
current (DC) removal filter with start sample 660 was applied to all GPR data for calculation of DC level.
Vertical scale is time, in nanoseconds. Horizontal scale is distance, in feet.

Figure 1-2. Ground-penetrating radar (GPR) profile, line 2,
from the Joint Base McGuire-Dix-Lakehurst Land Application
Site, New Jersey. No assumption was made with respect to
ground velocity. A direct current (DC) removal filter with start
sample 660 was applied to all GPR data for calculation of DC
level. Vertical scale is time, in nanoseconds. Horizontal scale
is distance, in feet.
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Figure 1-3. Ground-penetrating radar (GPR) profile, line 3, from the Joint Base McGuire-Dix-Lakehurst Land Application Site, New
Jersey. No assumption was made with respect to ground velocity. A direct current (DC) removal filter with start sample 660 was applied
to all GPR data for calculation of DC level. Vertical scale is time, in nanoseconds. Horizontal scale is distance, in feet.
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Figure 1-4. Ground-penetrating radar (GPR) profile, line 4, from
the Joint Base McGuire-Dix-Lakehurst Land Application Site, New
Jersey. No assumption was made with respect to ground velocity. A
direct current (DC) removal filter with start sample 660 was applied
to all GPR data for calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.

Figure 1-5. Ground-penetrating radar (GPR)
profile, line 5, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No
assumption was made with respect to ground
velocity. A direct current (DC) removal filter with
start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.

Figure 1-6. Ground-penetrating radar (GPR) profile,

line 6, from the Joint Base McGuire-Dix-Lakehurst Land
Application Site, New Jersey. No assumption was made
with respect to ground velocity. A direct current (DC)
removal filter with start sample 660 was applied to all GPR
data for calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.
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Figure 1-7. Ground-penetrating radar (GPR) profile, line 7, from the Joint Base McGuire-Dix-Lakehurst Land
Application Site, New Jersey. No assumption was made with respect to ground velocity. A direct current (DC)
removal filter with start sample 660 was applied to all GPR data for calculation of DC level. Vertical scale is
time, in nanoseconds. Horizontal scale is distance, in feet.

Figure 1-8. Ground-penetrating radar (GPR)
profile, line 8, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No
assumption was made with respect to ground
velocity. A direct current (DC) removal filter with
start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.
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Figure 1-9. Ground-penetrating radar (GPR) profile, line 9, from the Joint Base McGuire-Dix-Lakehurst Land Application Site, New
Jersey. No assumption was made with respect to ground velocity. A direct current (DC) removal filter with start sample 660 was applied
to all GPR data for calculation of DC level. Vertical scale is time, in nanoseconds. Horizontal scale is distance, in feet.
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Figure 1-10. Ground-penetrating radar (GPR) profile, line 10, from the Joint Base McGuire-Dix-Lakehurst Land Application Site, New
Jersey. No assumption was made with respect to ground velocity. A direct current (DC) removal filter with start sample 660 was applied
to all GPR data for calculation of DC level. Vertical scale is time, in nanoseconds. Horizontal scale is distance, in feet.

Figure 1-11.  Ground-penetrating
radar (GPR) profile, line 11, from the
Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey.
No assumption was made with
respect to ground velocity. A direct
current (DC) removal filter with start
sample 660 was applied to all GPR
data for calculation of DC level.

Vertical scale is time, in nanoseconds.

Horizontal scale is distance, in feet.

Figure 1-12. Ground-penetrating
radar (GPR) profile, line 12, from the
Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey. No
assumption was made with respect
to ground velocity. A direct current
(DC) removal filter with start sample
660 was applied to all GPR data for
calculation of DC level. Vertical scale
is time, in nanoseconds. Horizontal
scale is distance, in feet.

Figure 1-13. Ground-penetrating radar
(GPR) profile, line 13, from the Joint Base
McGuire-Dix-Lakehurst Land Application
Site, New Jersey. No assumption was
made with respect to ground velocity.

A direct current (DC) removal filter with
start sample 660 was applied to all GPR
data for calculation of DC level. Vertical
scale is time, in nanoseconds. Horizontal
scale is distance, in feet.



36 Hydrogeologic Barriers to the Infiltration of Treated Wastewater, Joint Base McGuire-Dix-Lakehurst, Burlington County

Figure 1-14. Ground-penetrating radar (GPR) profile, line 14, from the Joint Base
McGuire-Dix-Lakehurst Land Application Site, New Jersey. No assumption was made
with respect to ground velocity. A direct current (DC) removal filter with start sample
660 was applied to all GPR data for calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.

Figure 1-15. Ground-penetrating radar (GPR) profile, line 15, Figure 1-16. Ground-penetrating radar
from the Joint Base McGuire-Dix-Lakehurst Land Application (GPR) profile, line 16, from the Joint Base
Site, New Jersey. No assumption was made with respect to McGuire-Dix-Lakehurst Land Application
ground velocity. A direct current (DC) removal filter with start Site, New Jersey. No assumption was
sample 660 was applied to all GPR data for calculation of DC made with respect to ground velocity.
level. Vertical scale is time, in nanoseconds. Horizontal scale is A direct current (DC) removal filter with
distance, in feet. start sample 660 was applied to all GPR

data for calculation of DC level. Vertical
scale is time, in nanoseconds. Horizontal
scale is distance, in feet.



Figure 1-17. Ground-penetrating radar
(GPR) profile, line 17, from the Joint Base
McGuire-Dix-Lakehurst Land Application
Site, New Jersey. No assumption was
made with respect to ground velocity. A
direct current (DC) removal filter with start
sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is
time, in nanoseconds. Horizontal scale is
distance, in feet.

Figure 1-20. Ground-penetrating
radar (GPR) profile, line 20, from the
Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey. No
assumption was made with respect to
ground velocity. A direct current (DC)
removal filter with start sample 660 was
applied to all GPR data for calculation
of DC level. Vertical scale is time,

in nanoseconds. Horizontal scale is
distance, in feet.

Figure 1-18. Ground-penetrating radar
(GPR) profile, line 18, from the Joint Base
McGuire-Dix-Lakehurst Land Application
Site, New Jersey. No assumption was
made with respect to ground velocity.

A direct current (DC) removal filter with
start sample 660 was applied to all GPR
data for calculation of DC level. Vertical
scale is time, in nanoseconds. Horizontal
scale is distance, in feet.

Figure 1-21. Ground-penetrating
radar (GPR) profile, line 21, from the
Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey.
No assumption was made with
respect to ground velocity. A
direct current (DC) removal filter
with start sample 660 was applied
to all GPR data for calculation of
DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is
distance, in feet.
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Figure 1-19. Ground-penetrating radar
(GPR) profile, line 19, from the Joint Base
McGuire-Dix-Lakehurst Land Application
Site, New Jersey. No assumption was
made with respect to ground velocity.

A direct current (DC) removal filter with
start sample 660 was applied to all GPR
data for calculation of DC level. Vertical
scale is time, in nanoseconds. Horizontal
scale is distance, in feet.

Figure 1-22. Ground-penetrating
radar (GPR) profile, line 22, from the
Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey. No
assumption was made with respect
to ground velocity. A direct current
(DC) removal filter with start sample
660 was applied to all GPR data for
calculation of DC level. Vertical scale
is time, in nanoseconds. Horizontal
scale is distance, in feet.
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Figure 1-23. Ground-penetrating radar (GPR) profile, line 23, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No assumption was made with respect to ground
velocity. A direct current (DC) removal filter with start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time, in nanoseconds. Horizontal scale is distance, in feet.

Figure 1-24. Ground-penetrating radar (GPR) Figure 1-25. Ground-penetrating radar
profile, line 24, from the Joint Base McGuire-Dix- (GPR) profile, line 25, from the Joint Base
Lakehurst Land Application Site, New Jersey. No McGuire-Dix-Lakehurst Land Application Site,
assumption was made with respect to ground New Jersey. No assumption was made with
velocity. A direct current (DC) removal filter with respect to ground velocity. A direct current
start sample 660 was applied to all GPR data for (DC) removal filter with start sample 660 was
calculation of DC level. Vertical scale is time, in applied to all GPR data for calculation of DC
nanoseconds. Horizontal scale is distance, in feet. level. Vertical scale is time, in nanoseconds.

Horizontal scale is distance, in feet.



Figure 1-26. Ground-penetrating
radar (GPR) profile, line 26, from the
Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey.
No assumption was made with
respect to ground velocity. A
direct current (DC) removal filter
with start sample 660 was applied
to all GPR data for calculation of
DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is
distance, in feet.

Figure 1-28. Ground-penetrating radar (GPR)
profile, line 28, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No
assumption was made with respect to ground
velocity. A direct current (DC) removal filter with
start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.
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Figure 1-27. Ground-penetrating radar (GPR)
profile, line 27, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No
assumption was made with respect to ground
velocity. A direct current (DC) removal filter with
start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.

Figure 1-29. Ground-penetrating radar (GPR)
profile, line 29, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No
assumption was made with respect to ground
velocity. A direct current (DC) removal filter with
start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time, in
nanoseconds. Horizontal scale is distance, in feet.
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Figure 1-30. Ground-penetrating radar
(GPR) profile, line 30, from the Joint Base
McGuire-Dix-Lakehurst Land Application Site,
New Jersey. No assumption was made with
respect to ground velocity. A direct current
(DC) removal filter with start sample 660 was
applied to all GPR data for calculation of DC
level. Vertical scale is time, in nanoseconds.
Horizontal scale is distance, in feet.

Figure 1-32. Ground-penetrating radar (GPR)
profile, line 32, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No
assumption was made with respect to ground
velocity. A direct current (DC) removal filter with
start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time, in

nanoseconds. Horizontal scale is distance, in feet.
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Figure 1-31.  Ground-penetrating radar (GPR)
profile, line 31, from the Joint Base McGuire-Dix-
Lakehurst Land Application Site, New Jersey. No
assumption was made with respect to ground
velocity. A direct current (DC) removal filter with
start sample 660 was applied to all GPR data for
calculation of DC level. Vertical scale is time,

in nanoseconds. Horizontal scale is distance,

in feet.

Figure 1-33. Ground-penetrating radar
(GPR) profile, line 33, from the Joint Base
McGuire-Dix-Lakehurst Land Application Site,
New Jersey. No assumption was made with
respect to ground velocity. A direct current
(DC) removal filter with start sample 660 was
applied to all GPR data for calculation of DC
level. Vertical scale is time, in nanoseconds.
Horizontal scale is distance, in feet.
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Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.
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Natural gamma radiation, in counts per second Natural gamma radiation, in counts per second
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Natural gamma radiation, in counts per second Natural gamma radiation, in counts per second
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Natural gamma radiation, in counts per second Natural gamma radiation, in counts per second
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Natural gamma radiation, in counts per second Natural gamma radiation, in counts per second
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Figure 2-1. Natural gamma logs of wells at the Joint Base McGuire-Dix-Lakehurst Land Application Site
and vicinity, New Jersey.—Continued
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Appendix 3

Table of well construction and driller log descriptions from wells at the Joint Base McGuire-Dix-
Lakehurst Land Application Site and vicinity, New Jersey.
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Appendix 4

Normalized water-level displacement as a function of time during slug tests of piezometer wells
at the Joint Base McGuire-Dix-Lakehurst Land Application Site, New Jersey, using Bouwer and
Rice (1976) solution.
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Normalized water-level displacement as a function of time during slug tests of piezometer wells at the Joint Base McGuire-
Dix-Lakehurst Land Application Site, New Jersey, using Bouwer and Rice (1976) solution.
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Normalized water-level displacement as a function of time during slug tests of piezometer wells at the Joint Base McGuire-
Dix-Lakehurst Land Application Site, New Jersey, using Bouwer and Rice (1976) solution.—Continued
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Figure 4-1. Normalized water-level displacement as a function of time during slug tests of piezometer wells at the Joint Base McGuire-
Dix-Lakehurst Land Application Site, New Jersey, using Bouwer and Rice (1976) solution.—Continued



Appendix 5

Table of discrete water-level altitudes in piezometer wells at the Joint Base McGuire-
Dix-Lakehurst Land Application Site, New Jersey, as measured by site operators from
January 2000—December 2014.
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Appendix 6

Discrete water levels in piezometer wells at the Joint Base McGuire-Dix-Lakehurst
Land Application Site, New Jersey, as measured by site operators from January 2000—
December 2014,
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Figure 4-1. Discrete water levels in piezometer wells at the Joint Base McGuire-Dix-Lakehurst Land Application

Site, New Jersey, as measured by site operators from January 2000-December 2014.
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Figure 4-1. Discrete water levels in piezometer wells at the Joint Base McGuire-Dix-Lakehurst Land Application

Site, New Jersey, as measured by site operators from January 2000-December 2014.—Continued
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Figure 4-1. Discrete water levels in piezometer wells at the Joint Base McGuire-Dix-Lakehurst Land Application
Site, New Jersey, as measured by site operators from January 2000-December 2014.—Continued
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Figure 4-1. Discrete water levels in piezometer wells at the Joint Base McGuire-Dix-Lakehurst Land Application

Site, New Jersey, as measured by site operators from January 2000-December 2014.—Continued
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Figure 4-1. Discrete water levels in piezometer wells at the Joint Base McGuire-Dix-Lakehurst Land Application
Site, New Jersey, as measured by site operators from January 2000-December 2014.—Continued
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Figure 4-1. Discrete water levels in piezometer wells at the Joint Base McGuire-Dix-Lakehurst Land Application

Site, New Jersey, as measured by site operators from January 2000-December 2014.—Continued
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