ZUSGS

science for a changing world

Prepared in cooperation with the Water Replenishment District of Southern California

Estimating Spatially and Temporally Varying Recharge
and Runoff from Precipitation and Urban Irrigation in the
Los Angeles Basin, California

Input
_________________________ N
1
1
Evapotranspiration v
Urb A
Las irrigation Runoff
L] Rain Inflow -
Angeles Snowmelt —_ Bunofy ‘/ Outflow
y Soil layer (1) v A
T Soil zone Soil layer(2)
I v
Long Root Bedrock Soil layer (3)
Beach
L]
v

'L Bedrock layer (6) \S"" layer (4) Infiltrated
runoff

Soil layer (5) zone thickness

v \ 4 v
Net infiltration

4 ——
Los,
Angeles Output

Long
Beach

Scientific Investigations Report 2016—5068

U.S. Department of the Interior
U.S. Geological Survey



Cover. A, Los Angeles Basin watershed model (LABWM) elevation; B, Schematic showing the grid, water storage components,
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Estimating Spatially and Temporally Varying Recharge
and Runoff from Precipitation and Urban Irrigation in the

Los Angeles Basin, California

By Joseph A. Hevesi and Tyler D. Johnson

Abstract

A daily precipitation-runoff model, referred to as the
Los Angeles Basin watershed model (LABWM), was used
to estimate recharge and runoff for a 5,047 square kilometer
study area that included the greater Los Angeles area and all
surface-water drainages potentially contributing recharge to
a 1,450 square kilometer groundwater-study area underlying
the greater Los Angeles area, referred to as the Los Angeles
groundwater-study area. The recharge estimates for the Los
Angeles groundwater-study area included spatially distributed
recharge in response to the infiltration of precipitation, runoff,
and urban irrigation, as well as mountain-front recharge from

surface-water drainages bordering the groundwater-study area.

The recharge and runoff estimates incorporated a new method
for estimating urban irrigation, consisting of residential and
commercial landscape watering, based on land use and the
percentage of pervious land area.

The LABWM used a 201.17-meter gridded discretization
of the study area to represent spatially distributed climate and
watershed characteristics affecting the surface and shallow
sub-surface hydrology for the Los Angeles groundwater study
area. Climate data from a local network of 201 monitoring
sites and published maps of 30-year-average monthly
precipitation and maximum and minimum air temperature
were used to develop the climate inputs for the LABWM.
Published maps of land use, land cover, soils, vegetation,
and surficial geology were used to represent the physical
characteristics of the LABWM area. The LABWM was
calibrated to available streamflow records at six streamflow-
gaging stations.

Model results for a 100-year target-simulation period,
from water years 1915 through 2014, were used to quantify
and evaluate the spatial and temporal variability of water-
budget components, including evapotranspiration (ET),
recharge, and runoff. The largest outflow of water from
the LABWM was ET,; the 100-year average ET rate of
362 millimeters per year (mm/yr) accounted for 66 percent
of the combined water inflow of 551 mm/yr, including

488 mm/yr from precipitation and 63 mm/yr from urban
irrigation. The simulated ET rate varied from a minimum of

0 mm/yr for impervious areas to high values of more than
1,000 mm/yr for many areas, including the south-facing slopes
of the San Gabriel Mountains, stream channels underlain by
permeable soils and thick root zones, and pervious locations
receiving inflows both from urban irrigation and surface
water. Runoff was the next largest outflow, averaging

145 mm/yr for the 100-year period, or 26 percent of the
combined precipitation and urban-irrigation inflow. Recharge
averaged 45 mm/yr, or about 8 percent of the combined inflow
from precipitation and urban irrigation.

Simulation results indicated that recharge in response
to urban irrigation was an important component of spatially
distributed recharge, contributing an average of 56 percent
of the total recharge to the eight LABWM subdomains
containing the Los Angeles groundwater study area. The
100-year average recharge rate for the eight subdomains
was 41 mm/yr, or 8,473 hectare-meters per year (ha-m/yr),
with urban irrigation included in the simulation compared
to a recharge rate of 18 mml/yr, or 3,741 ha-m/yr, with urban
irrigation excluded. In contrast to recharge, the effect of urban
irrigation on runoff was slight; runoff was 72,667 ha-m/yr
with urban irrigation included compared to 72,618 ha-m/yr
with urban irrigation excluded, an increase of only 48 ha-m/yr
(about 0.1 percent).

Simulation results also indicated that potential recharge
from hilly drainages outside of, but bordering and tributary
to, the lower-lying area of the Los Angeles groundwater study
area, in this study referred to as mountain-front recharge,
could provide an important contribution to the total recharge
for the groundwater basins. The time-averaged recharge
rate was similar to the combined direct and mountain-front
recharge components estimated in a previous study and used
as input for a calibrated groundwater model. The annual
(water year) recharge estimates simulated in this study,
however, indicated much greater year-to-year variability,
which was dependent on year-to-year variability in the
magnitude and distribution of daily precipitation, compared to
the previous estimates.



2 Estimating Spatially and Temporally Varying Recharge and Runoff from Precipitation and Urban Irrigation

Introduction

The Water Replenishment District (WRD) of Southern
California is the groundwater-management agency
responsible for the availability of a safe and reliable supply of
groundwater for a 109,773 hectare (ha) management area in
southern coastal Los Angeles County (Water Replenishment
District of Southern California, 2013; fig. 1). Through the
20th century, historical development of groundwater basins in
the greater Los Angeles area, including the WRD management
area, caused large water-level declines and induced seawater
intrusion (Reichard and others, 2003). To mitigate water-level
declines and seawater intrusion, numerous groundwater-
management activities were implemented in the latter part of
the 20th century, including increased surface-water spreading
for induced recharge, construction of groundwater-injection
barriers, increased delivery of imported water, and increased
use of reclaimed water (Reichard and others, 2003).

In order to improve the scientific basis for the water-
management activities of the WRD, the U.S. Geological
Survey (USGS), in cooperation with the WRD, developed a
groundwater-flow and optimization model for a 167,316-ha
study area in southern Los Angeles County, including most
of the WRD management area (Reichard and others, 2003;
fig. 1A). As part of the development of the groundwater
model, the land area in the groundwater-study area was
partitioned into seven groundwater basins on the basis of
hydrogeologic studies and well data: (1) Central Basin
Pressure, (2) Hollywood, (3) Los Angeles (LA) Forebay,

(4) Montebello Forebay, (5) Santa Monica, (6) West Coast
Basin, and (7) Whittier Area (Reichard and others, 2003).
The boundaries of the seven groundwater basins were
modified during subsequent groundwater studies by the
USGS, done in cooperation with the WRD (Claudia Faunt
and Scott Paulinski, U.S. Geological Survey, written
commun., June 2015). In addition to these modifications an
area referred to as the Orange County groundwater basin
was added to the groundwater study area because the area of
interest for groundwater studies was extended southeastward
into northwestern Orange County (Claudia Faunt and

Scott Paulinski, U.S. Geological Survey, written commun.,
June 2015). The 149,968-ha area defined by these eight
groundwater basins is referred to as the Los Angeles
groundwater study area (LAGSA; fig. 1A).

Recharge is an important component of the hydrologic
system of the LAGSA that needs to be defined as part of the
development of groundwater-flow models and to quantify
the water budget. Recharge to the LAGSA includes natural
and anthropogenic (artificially induced) components. Natural
recharge includes recharge from infiltration of precipitation
(rainfall and snowmelt) and surface-water runoff. Recharge
from infiltration of streamflow in the larger channels is limited
because most of the larger stream channels were lined with
concrete (Reichard and others, 2003). The Los Angeles River
was lined along its entire extent in the LAGSA, except just
upstream from where it enters San Pedro Bay. The San Gabriel

River was lined, except in the upper parts of the Montebello
Forebay and near the Alamitos Gap, and the Rio Hondo was
lined its entire extent in the LAGSA.

For the 100-year period considered in this study, from
water year 1915 through water year 2014, much of the
recharge was anthropogenic. Anthropogenic recharge includes
two types: (1) artificially induced or enhanced recharge
from spreading grounds, retention basins, and injection
wells, and (2) return flows from irrigation and leakage from
water and sewer lines. A major source of anthropogenic,
artificially induced recharge to the LAGSA is the diversion
of storm runoff and imported water from the Rio Hondo and
San Gabriel River stream channels to the spreading ponds
next to the stream channels in the Whittier Narrows area
along the northeastern boundary of the LAGSA, upstream
from the Montebello Forebay (Reichard and others, 2003).

A second important source of anthropogenic, artificially
induced recharge is from injection wells in the western and
southwestern parts of the LAGSA.

The LAGSA is hydraulically linked to three adjacent
basins: the San Fernando Valley to the north, the San Gabriel
Valley to the northeast, and the Orange County Basin to the
southeast. In addition to these three adjacent basins, recharge
from streams with unlined channels in smaller drainages along
the periphery of the LAGSA could contribute to mountain-
front recharge. In this study, mountain-front recharge to a
groundwater basin refers to lateral inflows of groundwater that
originates as recharge in surface-water drainages upstream
from the groundwater basin and peripheral to the boundary
of the groundwater basin. Peripheral drainages potentially
contributing to recharge to the LAGSA are along the northern,
northeastern, and southwestern boundary of the LAGSA
(Reichard and others, 2003). For this study, the total area
contributing recharge to the LAGSA, including the LAGSA
and peripheral drainages bordering the LAGSA, is referred to
as the Los Angeles recharge-study area (fig. 1).

Purpose and Scope

The purpose of this report is to document the
development, calibration, and application of the Los Angeles
Basin watershed model (LABWM). The primary purpose
of the LABWM was to estimate spatially and temporally
distributed recharge to the LAGSA in response to precipitation
and runoff, as well as recharge in response to urban irrigation,
by using a distributed-parameter, daily precipitation-runoff
model called the LABWM. The LABWM was also used
to quantify components of the water budget, including
spatially and temporally distributed runoff in response to
daily precipitation and urban irrigation. The LABWM was
developed by using the INFILv3 watershed-modeling code
(U.S. Geological Survey, 2008) with a modification to include
quarterly estimates of urban-area landscape irrigation, added
to the daily precipitation input as a spatially distributed daily
urban irrigation rate. Application of the modified precipitation-
runoff model allowed for the simulation of the natural



Introduction 3

118°40° 118°20° 118° 117°40°
/\,—L«’ T [ I 3 T
o)
) /’ . ‘
£
) |
34°20° |— %
L]
an Gabriel Mountains
‘~San Gabriel Mount ;
!
/ /(f
Santa Monica‘ N & '§\|
Mountains Repetta San Gabri¢l Valley g
pidley Hills <
s (] TMerced &
| RS Cllver, W& = [l 2
M Santa C|ty.° [ HI"sl“‘\ : HI"S’—_-Whjt*li*-e.r P ]
o= MOnica qa ilos:Angeles-—— < arrows
34 @‘9‘ \LosAngeles.—~! Narrowss
: i h Montebello) —
P ML Forebay) f 1
A Angflsweed) Sei ~ Forebay LIzt _Puente Hills,
Ces ] el Fo Shudngs LOSANGELESCO™ o™
ORANGE GO
L~ . A
Santa Monica|Bay
T Bech \‘\
X [ Sl
#Q*Iamltos.;&
ap
San Pedro Bay
Pacific Ocean
33°40" |—
| |
Base modified from U.S. Geological Survey and 0 6 12 MILES
CALIFORNIA other State digital data, various scales I — T - I T - |
Universal Transverse Mercator, zone 11 0 6 12 KILOMETERS
North American Datum 1983
] Redding
EXPLANATION
SD Sacramento Los Angeles groundwater hasins D Los Angeles Basin watershed model area houndary
an
- Central Basin Pressure Water Replenishment District
[ Hollywood ] Los Angeles groundwater study area houndary
- Los Angeles Forebay D Los Angeles recharge study area
I VMontebello Forebay D Study area (Reichard and others, 2003)
Los Angeles g [ orange County @ San Fernando Valley study area (Johnson, 2005)
basin watershed San.Diedo - Water bodies and flood-control areas
model I santa Monica

= Maijor rivers and streams
[ West Coast Basin —— Minor rivers and streams

[ whittier Area — — County line

Figure 1. Los Angeles Basin watershed model (LABWM) area, southern California: A, Los Angeles groundwater basins and related
study areas; B, major surface-water drainages.
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recharge component and the urban return flow component

of anthropogenic recharge resulting from urban irrigation.

A distributed-parameter model was used to improve the
representation of spatial variability in natural recharge and
recharge in response to urban irrigation. The precipitation-
runoff model was applied by using the available climate data
for a 110-year simulation period starting with water year
1905 and ending with water year 2014. The simulation period
included a 10-year model-initialization period (water years
1905-14) and a 100-year target-simulation period (water
years 1915-2014). The 100-year simulation period was used
to evaluate the temporal variability of recharge and runoff

in response to temporal variability in climate and to develop
estimates of the long-term water budget.

This study accounts only for natural recharge in
response to precipitation and runoff and anthropogenic
recharge in response to urban landscape irrigation. Although
induced recharge from retention basins, spreading grounds,
and injection wells are significant sources of recharge for
the LAGSA, these recharge sources are documented and
quantified by the WRD of Southern California, and, therefore,
did not require estimation or simulation as part of the ongoing
groundwater flow modeling studies.

Description of Study Area

The study area for this report is defined by the
boundary of the LABWM area (fig. 1). The LABWM area
is 5,047 square kilometers (km?), which includes most of
southern Los Angeles County, the northwestern part of
Orange County, a small area of westernmost San Bernardino
County, and a small area of easternmost Ventura County. The
LABWM area was defined on the basis of the need to include
all surface-water drainages that have potential to contribute to
natural recharge and runoff in response to climate as well as
urban-irrigation induced recharge and runoff for the LAGSA.
The LABWM area is drained by three main rivers: (1) the
Los Angeles River, with a drainage area of 2,142 km?; (2) the
San Gabriel River, with a drainage area of 1,850 km?; and
(3) Ballona Creek, with a drainage area of 340 km? (fig. 1B).
Additional drainages and hydrographic areas in the LABWM
area include the Dominguez Channel drainage (214 km?),
the Garapito Creek—frontal Santa Monica Bay hydrographic
area (334 km?), the frontal Santa Monica Bay—San Pedro
Bay hydrographic area (301 km?), the Alamitos Bay—San
Pedro Bay hydrographic area (428 km?), and the Bolsa Chica
Channel-Huntington Harbor hydrographic area (330 km?;
fig. 1B). The upper Los Angeles River, which drains the San
Fernando Valley to the north, enters the LAGSA through
the Los Angeles Narrows. The San Gabriel River and Rio
Hondo (a major tributary of the Los Angeles River), which
drain the San Gabriel Mountains and the San Gabriel Valley
to the northeast, both enter the LAGSA through the Whittier
Narrows. The Santa Ana River, the largest drainage in the
southern California region, runs along the southeastern
boundary of the LABWM area. Most of the larger rivers in the
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LABWM area are managed by flow diversions, reservoirs, and
spreading grounds (Reichard and others, 2003). Natural stream
channels exist primarily in the mountainous areas, whereas in
the developed areas, most of the streamflow is routed through
a system of engineered channels and storm drains.

Although the upper parts of the Los Angeles, San Gabriel
River and Rio Hondo watersheds probably do not contribute
much recharge to the LAGSA, these areas were included in
LABWM area for completeness in terms of simulating the
surface-water drainages potentially affecting the LAGSA.

The larger model area allowed for a more comprehensive
representation of the watershed areas potentially contributing
recharge to the LAGSA, including areas outside of the area of
the peripheral drainages included in the Los Angeles recharge-
study area (fig. 1). The inclusion of the complete watersheds
for the Los Angeles River, the San Gabriel River, and the

Rio Hondo, also incorporated the complete drainage areas
upstream from some of the streamflow-gaging stations used
for model calibration.

The LABWM area is bounded by the crest of the San
Gabriel Mountains to the north, the Pacific Ocean to the
west and south, Orange County to the southeast, and San
Bernardino County to the east (fig. 1). The northeastern part
of the LABWM area includes the more rugged terrain of the
San Gabriel Mountains, with elevations ranging from 1,000 to
3,505 meters (m), and land cover consisting mostly of natural
vegetation (fig. 2). The northwestern part of the LABWM area
includes the rugged terrain of the Santa Monica Mountains,
with elevations from 200 to 1,000 m, and also includes land
cover consisting primarily of natural vegetation. In contrast
to the mountainous areas, low-lying areas in the LABWM
area, including the Los Angeles coastal plain in the southern
part (with elevations for most areas varying from sea level
to 100 m), the San Fernando Valley in the northwestern
part (with elevations varying from 200 to 500 m), and the
San Gabriel Valley in the east-central part (with elevations
varying from 70 to 350 m), are generally highly urbanized
areas (figs. 1, 2). Although agricultural land uses composed
a large percentage of the developed-land areas within the
LABWM area in the earlier 1900s, developed-land areas
from the mid-1900s onward consist primarily of medium-to-
high density residential, commercial, and industrial land uses
(Reichard and others, 2003). In more recent times (calendar
year 2001), developed-land areas (including open space and
low-, medium-, and high-density developed areas) covered
3,225 km?in the LABWM area, or about 64 percent of the
total land area (table 1). Compared to the LABWM area in
2001, the Los Angeles recharge-study area and the LAGSA
had much greater percentages of land cover consisting of
developed areas in 2001; developed-land areas covered
90 percent (1,694 km?) of the Los Angeles recharge-study area
and 97 percent (1,453 km?) of the LAGSA (table 1). For all
areas, the developed areas consisted mostly of medium-density
developed land. Forested lands covered 7 percent (344 km?)
of the LABWM area, compared to 1 percent (17 km?) for the
Los Angeles recharge-study area and about O percent (2 km?)
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[km?, square kilometer]
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Land-cover and land-use distributions for the Los Angeles Basin watershed model (LABWM), California.

Los Angeles Basin

Los Angeles recharge Los Angeles groundwater

2001 land cover watershed model area study area study area
and land use Area Total area Area Total area Area Total area
(km?) (percent) (km?) (percent) (km?) (percent)

Open water 20 0 13 1 9 1
Developed, open space 482 10 157 8 79 5
Developed, low intensity 725 14 250 13 187 12
Developed, medium intensity 1,495 30 873 46 793 53
Developed, high intensity 522 10 415 22 393 26
Barren land (rock/sand/clay) 14 0 0 3 0
Deciduous forest 0 0 0 0 0
Evergreen forest 281 6 0 1 0
Mixed forest 63 1 12 1 1 0
Shrub/scrub 1,286 25 109 6 4 0
Grassland/herbaceous 139 3 42 2 20 1
Pasture/hay 2 0 0 0 0 0
Cultivated crops 7 0 6 0 6 0
Woody wetlands 5 0 1 0 1 0
Emergent herbaceous wetlands 5 0 2 0 2 0
Total land cover 5,048 100 1,887 100 1,500 100
Total developed land cover 3,225 64 1,694 90 1,453 97
Total natural vegetation cover 1,780 35 171 29

Natural forest cover 344 7 17 2 0

for the LAGSA. For the LABWM area and the Los Angeles
recharge-study area, shrubland was the dominant natural
vegetation cover in 2001, whereas grassland was the dominant
natural vegetation for the LAGSA. For all areas, open water
covered 1 percent or less of the land area in 2001.
Variations in the timing, frequency, amount, and spatial
distribution of precipitation are important factors affecting
the natural hydrologic system. Spatial and temporal variations
in air temperature, as well as diurnal variations between
maximum and minimum daily temperature, are also critical
factors because air temperature affects the available energy for
evapotranspiration and the type of precipitation (rain or snow).
Higher elevations are generally colder and wetter compared
to the low-lying coastal plane and interior valleys. Inland
locations are generally hotter during the summer and colder
during the winter compared to locations along the coastline.
Average monthly precipitation for the LABWM area
was estimated for water years 1915-2014 by using a modified
inverse-distance-squared spatial-interpolation method
(Hevesi and Christensen, 2015; Flint and Martin, 2012)
that incorporates the Parameter-elevation Regressions on
Independent Slopes Model (PRISM) 30-year (1971-2000)
normal precipitation map (Daly and others, 2004) and daily
precipitation records from a network of 201 climate stations
distributed throughout the LABWM area (table 2). PRISM

accounts for various factors affecting the spatial distribution
of precipitation, including topography, average storm track,
and distance from moisture sources (Daly and others, 2004).
The PRISM results are commonly used to develop climate
inputs for watershed models (Hevesi and others, 2011; Flint
and Martin, 2012; Woolfenden and Nishikawa, 2014; Hevesi
and Christensen, 2015). The modified inverse-distance-
squared spatial-interpolation method uses the PRISM
estimates, available as 800-meter gridded national maps,

and the 201 daily precipitation records to develop estimates
of spatially distributed daily precipitation for the entire
LABWM area (Hevesi and others, 2011; Woolfenden and
Nishikawa, 2014; Hevesi and Christensen, 2015). The results
indicated that precipitation falls primarily during the cooler
months of October through May (fig. 3A). For most of the
LABWM area, February was the wettest month, averaging
123 millimeters (mm) for the entire LABWM area and varying
from 287 mm for the wettest location, in the San Gabriel
Mountains, to 70 mm for the driest, in the southern coastal
part of the LABWM area. January and March were the second
and third wettest months, respectively, with both months
averaging more than 100 mm precipitation in the LABWM
area. July was the driest month, averaging 0.6 mm for the
entire LABWM area and ranging from 7.6 mm to 0 mm in the
LABWM area.
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Figure 3. Average monthly values estimated for water years 19152014 for the Los Angeles Basin watershed model (LABWM) area,
California, for A, precipitation; and B, maximum and minimum daily air temperature.



Average monthly maximum and minimum air
temperatures in the LABWM area were estimated for water
years 1915-2014 by using the modified inverse-distance-
squared interpolation, the PRISM 30-year (1971-2000)
normal maximum and minimum average daily air temperature
(Daly and others, 2004), and daily maximum and minimum
air temperature records from a network of 90 climate stations
covering the LABWM and having records of daily air
temperature (table 2). The results indicate that June through
October are generally the hottest months for most locations,
with average maximum daily air temperature of more than
25 degrees Celsius for all months, and average minimum
daily air temperature of more than 11 degrees Celsius for all
months (fig. 3B). Similar to precipitation, average monthly
air temperature showed considerable spatial variability in
the LABWM area. For example, the average maximum-high
temperature for August was 34.9 degrees Celsius, compared to
the average minimum high of 20 degrees Celsius.

The notable spatial variability in precipitation and air
temperature is based on topography and distance from the
coastline. The average annual precipitation for the LABWM,
estimated for water years 1915-2014 by using the modified
inverse-distance-squared spatial-interpolation method, ranged
from 901-1,161 millimeters per year (mm/yr) in the summit
areas of the San Gabriel Mountains to 301-400 mm/yr for
most of the coast and in the LAGSA (fig. 4). Compared to
the interior valley, higher-elevation locations in the foothills
bordering San Fernando and San Gabriel Valleys had
higher precipitation, including areas with more than
501 mm/yr precipitation. In the Los Angeles recharge-study
area, relatively high precipitation of 501 to 700 mm/yr fell
in the Santa Monica Mountains, whereas precipitation was
lower, 284 to 400 mm/yr, in most of the Los Angeles recharge-
study area and the LAGSA. The estimated basin-wide average
precipitation rate for water years 1915-2014 for the LABWM
area was 488 mm/yr, compared to a basin-wide average
precipitation rate of 336 mm/yr for the LAGSA.

Average air temperature in the LABWM area, estimated
for water years 1915-2014 by using the modified inverse-
distance-squared spatial-interpolation method, ranged from
high values of about 18-19 degrees Celsius for many areas
in the San Gabriel and San Fernando Valleys to low values of
about 6-10 degrees Celsius for the highest elevations in the
San Gabriel Mountains (fig. 5). In the Los Angeles recharge-
study area, the warmer average daily air temperatures of
about 18 to 19 degrees Celsius were measured in the higher
elevations of the Santa Monica Mountains and throughout the
northeastern part of the model area. Cooler average daily air
temperatures of about 17 degrees Celsius were measured along
the coast. The mean daily air temperature in the LABWM area
was 16.8 degrees Celsius.
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Influence of Urban Irrigation

Urban irrigation can influence the groundwater
hydrologic cycle by increasing the amount of water available
to infiltration through on-site percolation (Grimmond and
others, 1986) and can influence the surface-water hydrologic
cycle by affecting runoff rates from rainfall (Sample and
Heaney, 2006). The volume of urban irrigation applied to the
landscape can be large, exceeding natural rainfall in certain
areas such as the Los Angeles Basin (California Department
of Water Resources, 1975). Among the urban land uses that
irrigate, residential areas typically use the most water in an
urban environment compared to commercial, industrial, and
agricultural users (Grimmond and Oke, 1986; California
Department of Water Resources, 1994; City of Los Angeles
Department of Water and Power, 2001; San Diego County
Water Authority, 2001). In addition, residential neighborhoods
occupy the largest area of all the land-use classes in the Los
Angeles Basin (Southern California Area Governments, 2005).
Studies have shown that more than 50 percent of the water
used in a typical household is used for irrigation (Grimmond
and Oke, 1986; Mayer and others, 1999). For the residential
areas in the city of Los Angeles, for example, this equates
to approximately 225 million cubic meters (22,500 ha-m) of
water used for irrigation each year, potentially influencing the
urban hydrologic cycle (Johnson and Belitz, 2012). Ideally,
most or all of the applied urban irrigation water would be used
by plants and, thus, lost to evapotranspiration (ET). Over-
watering, because it is difficult to estimate the exact water
demand, is not uncommon, and a portion of the applied water
can contribute to recharge and runoff in addition to ET. An
increase in recharge and runoff can also increase in response
to natural precipitation because of the wet antecedent soil
conditions caused by urban irrigation.

Model Description

The FORTRAN code INFILv3 simulates daily
precipitation-runoff processes on a watershed scale by
using a daily root-zone water balance that accounts for the
infiltration of runoff, which can result in areas of locally high
net infiltration and recharge where surface-water inflows are
concentrated or frequent (U.S. Geological Survey, 2008).
Application of INFILv3 allows for the estimation of spatially
distributed water-budget components on a daily, monthly,
and annual basis. The INFILv3 simulation results are used to
gain a better understanding of mechanisms responsible for net
infiltration, evapotranspiration, runoff, and recharge. Model
results can be mapped and, subsequently, used to evaluate the
integrated effect of spatially distributed climate, terrain, and
watershed characteristics (for example, vegetation, soils, and
geology) on the spatial and temporal distribution of water-
budget components, including runoff and recharge.
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In contrast to empirical precipitation-scaling methods
(Maxey and Eakin, 1949; Crippen, 1965; Reichard and
others, 2003; Farrar and others, 2006), INFILv3 provides
a deterministic, hydrologic process-based method for
estimating spatially varying, transient runoff and recharge.
Conceptually, the use of a watershed model could provide
a better representation, compared to empirical methods, of
variations in runoff and recharge caused by the spatially and
temporally varying physical and climatic characteristics of
the watersheds modeled. The INFILv3 code was intended
to provide an estimate of the temporally and spatially
varying natural-recharge component (recharge in response
to rainfall, snowmelt, and runoff) of the total recharge to the
LAGSA. Because of the large amount of urban irrigation in
the LAGSA, in this study, the INFILv3 code was modified
to include urban irrigation as an addition to the spatially
distributed daily precipitation input to enable simulation of
the urban return-flow component of anthropogenic recharge.
As mentioned previously, this study did not account for
induced recharge from retention basins, spreading grounds,
and injection wells. These volumes of recharge are quantified
by the WRD (Water Replenishment District of Southern
California, 2013).

The INFILv3 code is a grid-based, distributed-parameter,
deterministic water-balance application for simulating daily
precipitation-runoff on the watershed scale. The INFILv3 code
is similar to that of other precipitation-runoff models, such
as the Basin Characterization Model (BCM; Flint and Flint,
2012), the Soil Water Balance Model (SWB; Westenbroek and
others, 2010), and the Precipitation Runoff Modeling System
(PRMS; Markstrom and others, 2008). Unlike the BCM,
however, the INFILv3 code allows for the daily routing of
surface-water and seepage flows from upstream to downstream
grid cells, and unlike BCM, SWB, and PRMS, INFILv3 uses
a multi-layer discretization to simulate the redistribution of
water in the root zone in response to downward percolation
and variable transpiration. The INFILv3 code calculates the
temporal and spatial distribution of daily net infiltration of
water across the lower boundary of the root zone. The bottom
of the root zone is the estimated maximum depth below
ground surface affected by ET. In many field applications, net
infiltration can be assumed to equal recharge to an underlying
water-table aquifer and can be used to define the recharge
boundary condition for groundwater-flow models (Hevesi
and others, 2003; Nishikawa and others, 2005; Rewis and
others, 2006). A more detailed description of INFILv3 model
is provided in Hevesi and others (2003), and documentation of
the model is available at http://water.usgs.gov/nrp/gwsoftware/
Infil/Infil.html (United States Geological Survey, 2008).

The INFILv3 code requires that the watershed
being simulated is discretized into a horizontal grid-
based network of square, equal-area model cells
(fig. 6). The grid-based discretization was used to spatially
distribute daily precipitation and daily maximum and
minimum air-temperature estimates by using a modified

inverse-distance-squared interpolation, daily climate records
from a network of climate stations, and estimates of average
monthly precipitation and maximum and minimum air
temperature (Hevesi and Christensen, 2015; Flint and Martin,
2012). The grid-based discretization is also used to distribute
model parameters representing the physical characteristics of
the watersheds in the model domain. Each grid cell is uniquely
defined in terms of climate inputs and model parameters.

The model cells are connected into a drainage network, and
runoff generated by a cell is routed across the grid using a
convergent-flow, cascade-routing process (Hevesi and others,
2003).

The INFILv3 code provides an estimate of recharge
based on simulated daily net infiltration, where net infiltration
is defined as the percolation of water from rain, snowmelt,
and runoff below the maximum depth of the root zone or the
zone of ET (Hevesi and others, 2003). Daily net infiltration
and ET are simulated by INFILv3 by using a multi-layered
representation of the root-zone, and simulated daily runoff is
allowed to infiltrate into the root-zone during the process of
surface-water flow routing, thereby accounting for the effects
of streamflow on recharge (fig. 6A).

The INFILv3 code has been applied to studies of
groundwater recharge in the southern California region,
including studies of the Death Valley regional flow system
(Hevesi and others, 2003), the Joshua Tree Basin (Nishikawa
and others, 2005), and the San Gorgonio Pass area (Rewis and
others, 2006). In these studies, simulated net infiltration was
used as an estimate of recharge. The more recent applications
of INFILv3 for the Big Bear Valley and San Gorgonio Pass
study areas in southern California used a modified version of
the code that incorporated an additional layer underneath the
root zone, referred to as a shallow perched zone, to improve
estimation of recharge by accounting for the effects of lateral
groundwater flow and seepage (Flint and Martin, 2012;
Hevesi and Christensen, 2015). The modified INFILv3 code
version that includes a shallow perched zone was used in the
LABWM.

Root-Zone Water Balance

The INFILv3 code uses up to six layers to simulate the
root-zone water balance, including net infiltration through
the root zone. The modified INFILv3 code includes a seventh
layer underlying the root zone, referred to as the shallow
perched zone, to simulate lateral groundwater flow in the
upper unsaturated zone (fig. 6B). The root zone is modeled
by using a maximum of five upper layers to represent the
soil component of the root zone and a lower sixth layer to
represent the geologic unit (either bedrock or unconsolidated
deposits) underlying the soil zone (fig. 6A). All root-zone
layers can have uniform or variable thicknesses and are
parameterized by using maps of geology (Jennings, 1997),
soils (U.S. Department of Agriculture, 1994), and vegetation
(California Department of Forestry and Fire Protection, 2002).


http://water.usgs.gov/nrp/gwsoftware/Infil/Infil.html
http://water.usgs.gov/nrp/gwsoftware/Infil/Infil.html
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Figure 6. Grid, water storage components, and flow processes used by the INFILv3 code to simulate the spatial distribution of flows by
the Los Angeles Basin watershed model (LABWM), California: A, the multi-layered root zone; B, the perched zone.
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The bottom of the root zone is the estimated maximum depth
below ground surface affected by ET.

The INFILv3 code does not directly account for
interception storage and surface-retention storage; however,
the model can indirectly account for these components by
increasing the estimated soil thickness, which has the effect
of increasing ET by increasing the storage capacity of the
root zone. The water-balance calculations are based on water
volumes, rather than water mass, because it is assumed that
temperature effects on water density are negligible. The
calculations use water-equivalent depths to represent volumes
because all grid cells have equivalent areas.

The INFILv3 code uses a daily time step for simulating
the water balance of the root zone and an hourly time step for
simulating solar radiation and potential evapotranspiration
(PET). The simulated daily water balance of the root
zone includes precipitation (as either rain or snow), snow
accumulation, sublimation, snowmelt, infiltration to the root
zone, ET, percolation through the root zone, water-content
changes for each root-zone layer, surface-water runoff, and
net infiltration from the root zone (defined as drainage from
the bottom root-zone layer; fig. 6A). Daily PET is simulated
by using an hourly time step and an energy-balance model to
improve representation of the shading effects of rugged terrain
relative to changes in solar position during the year (Flint and
Childs, 1987). Daily ET is simulated as a combined function
of daily PET; the vertical distribution of available water in the
root-zone layers; and the root-zone density, where the root-
zone density represents the characteristics of vegetation.

Shallow Perched-Zone Fluxes

The modified INFILv3 code includes a perched-
groundwater zone (layer 7) beneath the bedrock layer (layer 6)
to simulate lateral groundwater flow back to the root zone
(seepage) and downward flux (recharge) beneath the root zone
(Flint and Martin, 2012; fig. 6B). The perched-groundwater
zone is used to simulate the seepage of shallow groundwater
back into the active root zone, a process that was considered
potentially significant in rugged mountainous areas with
steep slopes (Rewis and others, 2006; Flint and Martin, 2012;
Hevesi and Christensen, 2015). Seepage flow allows for a
portion of simulated net infiltration to flow laterally to the
active root zone of the downstream cell. In general, the net
effect of seepage flow is to reduce recharge for the upstream
model cell, while increasing ET and runoff for downstream
cells. The additional inflow from seepage can also potentially
increase recharge for downstream cells. Basin-wide effect of
seepage flow, however, tends to be a reduction in recharge and
a corresponding increase in ET.

The shallow perched zone (layer 7) is assigned an upper
hydraulic conductivity that defines the rate at which water
infiltrates the top of the perched zone and a lower hydraulic
conductivity that defines the maximum rate at which water
percolates vertically down through the perched zone to
become recharge. The upper hydraulic conductivity also
is used to define the maximum lateral-seepage rate from
upstream cells to downstream cells. The lateral-seepage rate
is a function of a calculated hydraulic gradient between the
upstream and downstream cells, the relative water content
of the upstream cell, and the upper hydraulic conductivity of
the upstream cell. A multiplier is included to allow scaling of
the upper hydraulic conductivity as a means of representing
anisotropy or preferential lateral flow in the perched aquifer
(this commonly is done to model preferential flow in
watershed models). The hydraulic gradient is calculated by
using the elevation difference and horizontal distance between
adjacent upstream and downstream cell centroids. The relative
water content is calculated as the ratio of water stored in a
grid cell at each time step to an assumed perched-zone storage
capacity. If the perched-zone storage capacity is exceeded for
a given daily time step, the excess water is added back to the
root zone; if the root zone is fully saturated, the excess water
is added to the surface-water runoff.

Urban Irrigation

In this study, the INFILv3 code was modified to include
estimated urban irrigation as an inflow to the hydrologic
system (fig. 6A). As stated previously, urban irrigation is
a significant component of the LABWM water balance,
potentially resulting in increased recharge and runoff in
addition to increased ET. Average daily irrigation rates were
estimated on a quarterly basis (January—March, April-June,
July—September, and October—December) and incorporated
in the model as a boundary condition consisting of a specified
daily irrigation rate for each irrigated cell (uniform for each
quarter, but varying from quarter to quarter). The location
of irrigated cells was defined by using land-use maps. The
daily irrigation rates were scaled for each cell by using the
percentage of pervious area defined for each cell, as described
in greater detail in this section.

Actual water-delivery records that could be used for
estimating landscape irrigation in urban and suburban areas
were difficult to obtain for most of the LABWM area;
however, as part of previous research (Johnson, 2005; Johnson
and Belitz, 2012), water records from 1996 to 1999 were
acquired from nearly 1,795 single-family residential homes
and townhomes in 65 randomized and spatially distributed
neighborhoods in the San Fernando Valley. The neighborhoods



analyzed in the study consisted of 8 to 55 homes, with an
average home count of 28. The average neighborhood size was
2.48 ha. These water-delivery records were used to estimate
the amount of irrigation applied to single-family residential
areas and, subsequently, to other land use classes.

The San Fernando Valley study area was initially chosen
for a number of reasons: (1) the valley is administered by one
city, which allows for consistency of water-delivery records;
(2) land use in the valley is representative of other areas of
the Southwestern U.S., offering a mixture of residential,
commercial, and industrial land uses for constructing and
calibrating methodologies; (3) the valley has a wide range
of social-economic variables, including income, household
size, lot size and water use, allowing a diversity of water-
use patterns; and (4) the valley is surrounded by mountains,
isolated from oceanic influences, and relatively flat, which
help to minimize the climatic variability across the valley.

Water-delivery data were obtained from the Los Angeles
County Department of Power and Water (LACDPW) for
October 1996 through April 1999. The data were provided
in 2-month billing cycles and were subsequently aggregated
and normalized into a monthly water-delivery value for
each neighborhood. Neighborhood water-meter readings
that contained less than three homes were considered partial
readings and not included in the averaging. The water-delivery
data were normalized by dividing by the total area of each
neighborhood. Figure 7 shows the aggregate water usage for
the period sampled.

The minimum-month method was used to estimate
irrigation by subtracting the minimum month of water use
from all other months (Johnson, 2005). The minimum month
is assumed to be composed mostly of indoor water use and
represents the baseline water usage; therefore, subtracting the
minimum month results in an estimation of irrigation. For the
sampling period, the minimum month was March 1998, one
of the wettest months during the study period, with a rate of
28.8544 mm (fig. 7). lrrigation, therefore, was computed as
follows:

L iooa(D=WD, . (1)—28.8544 (1)
where
I (9] is the irrigation rate (mm) for the average
neighborhood per month, and
WD, .. is the water-delivery rate (mm) for the

average neighborhood per month.

By using equation 1, table 3 was constructed to aggregate
irrigation on a quarterly basis. A warmer month with a higher
ET rate requires greater amounts of irrigation to keep plants
healthy. Averaging the 2 years can produce a general estimate
of irrigation applied in the entire neighborhood (table 3).
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The estimated irrigation was applied as an average quarterly
rate for the entire 110-year simulation period. The average
precipitation for the period analyzed (December 1996—
February 1999) was representative of the long-term average
precipitation.

In order to apply an irrigation rate to other land-
use classes, the irrigation computed for the residential
neighborhoods must be scaled up to a fully landscaped and
irrigated parcel by multiplying it by the amount of irrigated
landscaping in the neighborhood. This was necessary because
the average neighborhood both consisted of an impervious
portion (house, driveway, and so on) and a pervious portion
(grass, landscaping, and so on). It was assumed that irrigation
was applied only to the pervious areas.

HO=oos ON(FIFT00) (2)

where
1(t) is the irrigation rate for a fully irrigated and
landscaped parcel, computed quarterly;
is the irrigation rate (mm) for the average
neighborhood per month; and
is the fraction of irrigated landscaping in the
average neighborhood.

I nhood (t)

Fi rr-nhhod

An estimate of perviousness was based on a land-use
map acquired from the Los Angeles County Department of
Power and Water (2006). This map consisted of digitized
polygons that grouped land-use classes together and identified
the amount of imperviousness in each class. Milesi and others
(2005) have shown that impervious surface area is inversely
correlated to turfgrass in urban areas. The percentage of
pervious area for each land-use class, therefore, was calculated
by subtracting the reported imperviousness value from 100
percent. All 65 neighborhoods were in the “high-density
single-family residential” class, which has a perviousness
value of 58 percent (table 4). This value of Firr  was used
in equation 2 to calculate the quarterly irrigation rate for a
parcel.

The distribution of urban irrigation was estimated by
applying the irrigation rate to selected urban land-use classes
and their reported percentage perviousness areas (table 4).

1, (=1OFirr, 3)

where
1,@® is the irrigation rate (mm) for a particular
land-use class, computed quarterly;
1(t) is the irrigation rate for a fully irrigated and
landscaped parcel, computed quarterly; and
is the fraction of irrigated landscaping
(perviousness) for a particular land-use

class.

Firr,
u
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Figure 7. Average water delivery to 1,795 single-family residential homes in the San Fernando Valley, Los Angeles Basin watershed
model (LABWM), California (1 millimeter is equal to 1 liter per square meter).

Table 3. Average irrigation rates, in millimeters, estimated for
1,795 high-density single-family residential homes by using the
minimum-month method, Los Angeles Basin watershed model

(LABWM), California.

[The last column shows the scaled-irrigation rate for a parcel that is fully land-
scaped and irrigated. The average neighborhood was 58 percent landscaped,
based on Los Angels County Department of Public Works (LACDPW), 2005.]

Estimated Estimated average
average quarterly irrigation
Quarter 1997 1998 quarterly  adjusted to 100 percent
irrigation pervious land area
(millimeters) (millimeters)

1 24 2 17 30
2 99 44 71 123
3 109 107 108 187
4 45 50 46 80

Year total 277 204 244 420
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Table 4. Top 10 land-use classes (by area) of the San Fernando Valley, Los Angeles Basin watershed model (LABWM), California.

[Source: Southern California Area Governments, 2005. Abbreviations: LACDPW, Los Angeles County Department of Public Works; —, not applicable]

LACDPW

LACDPW

Contains

land-use land-use Area Percentage Description irrigated Perce_ntagIe
(hectares)  of total . pervious
code class landscaping

1111 Residential 25,148 48.7 High-density single family residential Yes 58

3100 Vacant 6,669 12.9 Vacant undifferentiated No —

1123 Residential 2,864 5.6 Low-rise apartments, condominiums, and Yes 14
townhouses

1311 Industrial 2,072 4 Manufacturing, assembly, and industrial No —
services

1223/1224 Commercial 1,853 3.6 Modern/older strip development Yes 3.5

1112 Residential 1,444 2.8 Low-density single family residential Yes 79

1413 Transportation 1,088 2.1 Freeways and major roads Yes 9

1437 Transportation 855 1.7 Improved flood waterways and structures No —

1810 Open space and recreation 743 14 Golf courses Yes 97

1821 Open space and recreation 670 13 Developed local parks and recreation Yes 90

! Percentage pervious from Los Angeles County Department of Public Works.

Model Development

Development of the LABWM consisted of (1) defining
the simulation period, including the model initiation and
target-simulation periods; (2) defining the spatial (horizontal
and vertical) discretization; (3) developing the spatially
distributed model parameters representing the physical
characteristics of the watershed; (4) developing the temporally
and spatially distributed climate inputs; (5) specifying
atmospheric parameters for simulating PET; (6) specifying
model coefficients used in empirical functions and controls for
input and output options; (7) defining boundary conditions;
and (8) defining initial conditions. The simulation period used
in the INFILv3 code is dependent on the availability of climate
data for developing a continuous time series of spatially
interpolated daily climate input. Model discretization primarily
consisted of developing a gridded representation of the
LABWM area, with the grid defining the INFILv3 hydrologic
response units as equal-area, square cells. Development of
model parameters and climate inputs included compiling
and processing available Geographic Information System
(GIS) data and daily climate records. Model coefficients
included empirical parameters used to model snowmelt and
sublimation, to define stream-channel characteristics, and to
define precipitation intensity by using specified winter and
summer storm durations. Boundary conditions were the daily
surface-water inflows from model units upstream from the
unit being modeled. Initial conditions were the starting water
contents of the root-zone layers, the perched zone, and the
snowpack.

Simulation Period

The LABWM was developed for a 110 year simulation
period that started January 1, 1905, and ended October 31,
2014. Continuous daily simulations for multi-year periods
prior to January 1, 1905, were problematic because of a
sparsity of continuous daily climate records. The simulation
period included a 117 month (9.75 year) model-initialization
period from January 1, 1905, through September 30, 1914,
followed by a 100-year target-simulation period from October
1, 1914, through September 30, 2014 (water years 1915—
2014). The initialization period is used to mitigate the effects
of the initial conditions, which, in this study, were estimated
on the basis of values used in previous INFILv3 applications
(Hevesi and others, 2003; Rewis and others, 2006; Flint
and Martin, 2012; Hevesi and Christensen, 2015). Initial
conditions for precipitation-runoff models, including INFILv3,
are generally not known and require at least some initialization
period to help minimize uncertainties associated with the
assumed or estimated initial conditions (Markstrom and
others, 2008; Flint and Martin, 2012; Hevesi and Christensen,
2015).

Spatial and Temporal Discretization

Horizontal Discretization

Development of the LABWM required the discretization
of the model area in a horizontal two-dimensional grid of
equal-area (square) cells, which were linked to create a
surface-water routing network. The gridded discretization
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was similar to the approach used other models, such as
PRMS (Jeton and Maurer, 2011), Topmodel (Beven and
Kirkby, 1979), BCM (Flint and Flint, 2007), and GSFLOW
(Markstrom and others, 2008; Woolfenden and Nishikawa,
2014), in which discretization was used to represent
heterogeneities in the characteristics of the model domain. For
this study, the grid-cell geometry was defined by a uniform
grid spacing of 201.17 m in the north-south and east-west
directions, and the grid axis was aligned according to the
Universal Transverse Mercator, zone 11 projection, using the
North American horizontal datum of 1983. The resulting grid
covering the 503,877 ha (5,039 km?) area of the LABWM
contained a total of 124,722 square grid cells, each cell
covering an area of 4.04 ha.

The cascading flow-routing network, used to route runoff
and seepage flow, was defined by using the average elevation
of each grid cell and the standard eight-directional (D-8),
convergent flow-routing method. The 10-m resolution USGS
National Elevation Data (NED; www.seamless.gov) was used
to define the average elevation of each cell. The grid-cell
elevations for the LABWM area ranged from a minimum of
0 m, along the coast, to a maximum of 3,033 m, in the San
Gabriel Mountains (fig. 1). The elevations for grid cells in the
LAGSA ranged from 0 to 500 m. Higher elevations of 201 to
600 m were outside of and next to the LAGSA in the Santa
Monica Mountains, next to the northern boundary, and in the
Palo Verde Hills, along the southwestern boundary (fig. 1).

In general, most of the northern and northeastern LAGSA is
bounded by higher elevations, creating a peripheral zone of
land areas that drain into the LAGSA and likely contribute
recharge, as groundwater underflow, to the LAGSA.

In the D-8 method, the flow direction for a given cell is
determined by the minimum elevation of the eight adjacent
cells. The flow-direction grid defines the connections between
upstream and downstream cells as well as the total number of
upstream cells for each cell (fig. 8). In the D-8 method, water
is allowed to flow diagonally across grid corners to the four
cells that are diagonally adjacent to a given cell and therefore
do not share a side. For each cell, runoff and seepage is routed
to only one downstream cell; however, a given cell can receive
inflows from multiple upstream cells (this is also referred to as
many-to-one routing). Model cells located on drainage divides
do not receive inflows. In the case of cells in flat areas or
depressions that are not actual closed basins, the flow direction
is determined by known hydrographic features, such as stream
lines and watershed divides. For the LABWM, the high-
resolution 1:24,000 scale National Hydrography Data (NHD)
for streams and the Los Angeles County storm-drain map were
used in addition to the 10-m NED to define the flow directions
to generate the D-8 grid-cell routing network (fig. 8A).

The grid-cell routing network was used to delineate
the LABWM into 12 separate INFILv3 model domains
(referred to as subdomains) on the basis of drainage divides
and the primary drainages affecting the LAGSA (fig. 9).

Eight subdomains were used to define the drainage areas
most directly affecting the LAGSA (fig. 9): (1) Ballona Creek

(BALC), (2) Dominguez Channel (DOMC), (3) Long Beach
(LONG), (4) lower Los Angeles River (LARV), (5) lower
San Gabriel River (SGRV), (6) lower Santa Monica Basin
(LSMB), (7) Seal Beach (SEAL), and (8) upper Santa
Monica Basin (USMB). Either all or large sections of these
subdomains were included in the LAGSA and the Los
Angeles recharge-study area. Three subdomains were defined
by drainages upstream from the LAGSA that either were
completely outside the LAGSA or only a small fraction of
the total area in the LAGSA: (1) the upper drainage of the
Los Angeles River (ULAR), (2) the upper drainage of the
San Gabriel River (USGR), and (3) the Rio Hondo drainage
(RIOH). A twelfth subdomain, Toponga Creek (TOPC), is
outside of the surface-water drainages affecting the LAGSA,
but was included for calibration purposes.

Vertical Discretization

The LABWM was discretized vertically to seven
layers, with layers 1 through 6 representing the root zone
and an underlying seventh layer, the shallow perched
zone, representing a zone of lateral groundwater flow. The
discretization of the root zone into six vertical layers was done
to account for differences in root density and root-zone water
content with depth, as well as differences in the hydraulic
conductivity between soil and bedrock. As with previous
studies using INFILv3 (Hevesi and others, 2003; Rewis and
others, 2006; Flint and Martin, 2012), the thickness of layers
for each grid cell in the LABWM was defined on the basis of
a combination of the estimated total root-zone thickness and
the estimated soil thickness. The top five layers were used to
represent the root zone in soil. The sixth model layer was used
to represent the root zone in consolidated bedrock where there
were thin soils and to designate the hydraulic conductivity of
unconsolidated geologic units underlying the soil component
for areas of thick soils. Following a previous INFILv3
application to estimate recharge in Big Bear Valley, California
(Flint and Martin, 2012), the LABWM used a modified
version of INFILv3 that includes a seventh layer representing
a shallow perched zone beneath the root zone (fig. 6B).

A primary factor used to determine vertical discretization
for layers 1 through 5 was soil thickness, which was estimated
on the basis of maps of soils (U.S. Department of Agriculture,
1994) and surficial geology (Jennings, 1977). Areas with thick
soils were defined by using the areal extent of alluvial and
unconsolidated rock types. The maximum thickness of the
root zone was set to 4 m for these locations. For thinner soils
underlain by partially consolidated or consolidated bedrock,
both the thickness of the soil layers and the underlying
bedrock layer (layer 6) were based on the combination of the
estimated soil thickness and the vegetation type assigned to
each cell (see Rewis and others, 2006, for a more detailed
description). Where soils were estimated to be thin, fewer soil
layers with a thickness greater than zero were defined, and
a greater thickness was assigned to layer 6 to represent the
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extension of the root zone into bedrock (roots extending into
fractures and weathered zones).

Where the thickness of layer 6 was zero, there was no
transpiration from layer 6. The net-infiltration rate through
the soil zone (layers 1-5), however, is limited by the upper
hydraulic conductivity assigned to layer 6. Where the
thickness of layer 6 was greater than 0, the consolidated-rock
layer represented by layer 6 was included in the root zone, and
transpiration from layer 6 was simulated.

The thickness of the perched zone (layer 7) was
dependent on the rock type and was defined by dividing the
estimated storage capacity of the perched zone (0.6096 m)
by the effective porosity estimated for layer 6 (layers 6
and 7 were assumed to be the same rock type underlying
the root zone). The storage capacities of the six root-zone
layers and the perched-zone layer were calculated by using
layer thickness and the estimated layer porosity. The storage
capacities were expressed as a uniform depth and defined the
maximum amount of water stored in each layer and available
for ET. Layer thicknesses and storage capacities are discussed
in more detail in the “Model Inputs” section.

Spatially Distributed Model Parameters

Spatially distributed watershed parameters represent
the physical characteristics of the drainages being modeled,
including the land surface, the root zone, and the shallow
perched zone. Spatially distributed parameters included
(1) topographic parameters, (2) land-cover parameters,

(3) vegetation and root-zone parameters, (4) soil parameters,
and (5) geohydrologic parameters.

Topographic Parameters

In addition to the grid-cell elevations and flow-routing
parameters discussed previously, the topographic parameters
included a set of parameters required for the simulation of
PET. The topographic parameters included land-surface
slope, aspect, a set of 36 blocking ridge angles, and a skyview
parameter. Elevation, slope, aspect, and shading parameters
were used to simulate incoming solar radiation and the net-
radiation energy balance on an hourly basis, which was then
used to simulate PET (Flint and Childs, 1987). Cell elevation
was also used to simulate seepage flow. The 36 blocking ridge
angles were calculated at each 10 degree azimuth direction
for each cell and were used to model the effects of shading
from surrounding terrain, which can greatly reduce PET in
rugged areas (Flint and Childs, 1987). The blocking ridge
angles defined the sunrise and sunset times for the 1-hour time
step used in the PET simulation. The blocking ridge angles
were used to calculate the skyview parameter, which defined

the reduction in refracted clear-sky solar radiation caused by
the surrounding terrain. In general, simulated PET was much
less for higher elevation, north-facing slopes compared to
lower elevation, south-facing slopes, and PET was greater for
summit areas compared to valleys surrounded by high ridges.

The 10-meter resolution USGS NED data (http://www.
seamless.gov) used to develop the flow-routing network were
also used to define the topographic parameters for each grid
cell. Land-surface slope and aspect were calculated by using
GIS as the average slope and aspect of all 10-meter NED
cells in the area of each 201-m LABWM cell (figs. 10, 11).
The calculated slope ranged from a minimum of 0 degrees,
for many cells in the Los Angeles Basin, to a maximum slope
of 41.3 degrees, in the San Gabriel Mountains (fig. 10). The
average slope for the LABWM area was 6.3 degrees. Almost
half of all cells either had an aspect in the range of 157.51 to
202.5 degrees (south), calculated for 25 percent of all cells, or
in the range of 202.51 to 247.5 degrees (southwest), calculated
for 22 percent of all cells in the LABWM area (fig. 11).

Land Cover Parameters

Input for the LABWM included two parameters
representing land-cover characteristics: (1) percentage of
imperviousness and (2) percentage of plant-canopy cover
(vegetation density). The imperviousness percentage is defined
as the percentage of the cell area that was covered by an
artificial impervious surface (for example, a roadway, rooftop,
or parking lot). The average imperviousness was estimated
by using the 2001 National Land Cover Data (NLCD), which
has a grid resolution of 30 m (U.S. Geological Survey, 2005).
The average imperviousness for the LABWM domain was
33.7 percent (fig. 12). Maximum imperviousness values of
99 percent were obtained for the highly developed areas, such
as downtown Los Angeles. Minimum values of 0 percent
imperviousness were obtained for the mountainous headwater
regions in the San Gabriel and Santa Monica Mountains.

Estimates of the percentage of plant-canopy cover
were calculated by using the 2001 NLCD 30-meter forest-
canopy map (U.S. Geological Survey, 2001). The percentage
of canopy cover is defined as the percentage of land area
covered by natural forest canopy. Forest canopy does not
represent urban or agricultural landscapes. A maximum
forest canopy cover of 73 percent was obtained for the San
Gabriel Mountains, and an average value of 9.7 percent was
obtained for the LABWM area (fig. 13). Forest-canopy values
of 0 percent were obtained for most of the developed and
urbanized lowland areas of the Los Angeles Basin and the
San Fernando Valley, including much of the area in the Los
Angeles recharge-study area (area contributing recharge to the
LAGSA).
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Vegetation and Root-Zone Parameters

Vegetation and land-use type were used to help define the
thickness of root-zone layer 6 and root density for all layers of
the root zone. In general, a thicker root zone and greater root
densities are assigned to denser vegetation types (for example,
forested areas and residential urban areas). Vegetation and
land-use types were defined by using the California Land
Cover Mapping and Monitoring Program (CLCMMP) whrtyp
vegetation data (http://frap.cdf.ca.gov/projects/land_cover/
index.html). The whrtyp attribute used by the CLCMMP is
based on the California Wildlife Habitat Relationships System
(CWHR) classification of existing vegetation types important
to wildlife (http://www.dfg.ca.gov/biogeodata/). This system
was developed to recognize and logically categorize major
plant communities at a scale sufficient to predict wildlife-
habitat relationships (California Department of Fish and
Wildlife, 2014). A total of 31 different vegetation and land-
use types were identified for the LABWM domain (fig. 14;
table 5). The most common vegetation and land-use types
were urban (map number 8), assigned to 73,864 cells, and
mixed chaparral (map number 1), assigned to 22,103 cells.
The least common vegetation type was wet meadow (map
number 19), assigned to one cell.

Soil Parameters

Soil parameters were estimated for each model cell by
using the State Soil Geographic Database (STATSGO) digital
map and associated attribute tables compiled by the U.S.
Department of Agriculture (1994). A total of 18 different
soil types, or soil map units, were defined by the STATSGO
data (fig. 15; table 6). The soil parameters included several
physical and hydraulic properties based on the STATSGO
data (Hevesi and others, 2003): soil porosity, wilting-point
(residual) water content, soil depth, a drainage-function
coefficient, and vertical saturated hydraulic conductivity. Soil
depth, porosity, and the wilting point defined the root-zone
storage capacities that were used to simulate transpiration
from the five soil layers. The relative saturation of each root-
zone layer—calculated by using the simulated water content
and the maximum storage capacity of each layer—along with
the vertical saturated hydraulic conductivity and the drainage-
function coefficient for each layer were used to simulate
drainage and ET for each layer.

The soil parameters used in the LABWM were the
weighted average values of the soil components and layers
associated with each STATSGO map-unit identifier (MUID).
The MUID assigned to each LABWM cell was the MUID
with the maximum area within each cell. For the LABWM
domain, the maximum soil porosity was 0.43, and minimum
porosity was 0.35 (table 6). The porosities of 0.4 and greater
were in the area of the Palos Verdes Hills and in the higher

Model Development |

elevations of the San Gabriel and Santa Ana Mountains. These
higher porosities were likely due to more organic matter

in these soils, which were generally in the more heavily
vegetated areas. The lowest porosities, 0.348 to 0.35, were
along the coastal region of the Los Angeles Basin and were
likely associated with soils that had a high percentage of sand.
The maximum and minimum wilting-point values were 0.18
and 0.01, respecitvely (table 6). The upper vertical saturated
hydraulic conductivity values varied from a maximum

of 5,747 millimeters per day (mm/day) to a minimum of

202 mm/day, and the lower vertical saturated hydraulic
conductivity varied from a maximum of 1,280 mm/day to

a minimum of 70 mm/day (table 6). The soils with higher
hydraulic conductivities were in the coastal areas (where the
soils are likely sandier) and in the higher elevations of the San
Gabriel Mountains.

Geohydrologic Parameters

Parameters representing the geohydrologic properties
of geologic materials (consolidated and unconsolidated rock
types) underlying the soil zone were estimated for each of the
24 different geologic map units defined by Jennings (1977)
that are in the LABWM area (fig. 16; table 7). The parameters
included layer-6 effective porosity, layer-6 upper and lower
saturated hydraulic conductivity, and layer-7 hydraulic
conductivity and thickness (table 7). Estimates of effective
porosity and upper and lower saturated hydraulic conductivity
were based on a general knowledge of the characteristics of
the different geologic units. For example, unconsolidated
deposits were assumed to have a greater effective porosity and
saturated hydraulic conductivity compared to consolidated
rocks, and sedimentary rocks were assumed to have greater
saturated hydraulic conductivity relative to igneous and
metamorphic rocks (Hevesi and others, 2003; Flint and
Martin, 2012). The thickness of the shallow, perched-
groundwater zone (layer 7) was defined by assuming a storage
capacity of 0.6096 m and then using the estimated effective
porosity to calculate a thickness for layer 7.

The combined thickness of root-zone layers 1 through
5 was defined by the estimated soil thickness. Soil thickness
first was estimated by using the map of surficial geology
(indicating consolidated-rock types and unconsolidated
sediments) to locate unconsolidated sediments (mostly
alluvium), which were associated with thick soils. The
root-zone soil thickness was set to 4 m for thick soils. The
STATSGO soil-type map then was used to define the soil
thickness for all areas mapped as a consolidated-rock type.
The resulting soil-thickness map varied from minimum values
of less than 0.3 m in rugged, upland areas to maximum values
of 1.5-4 m in the low-lying areas mapped as having thick
alluvium (fig. 17).
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Table 5. Table of vegetation parameters (layers 1-6), Los Angeles Basin watershed model (LABWM), California.

Root densities

Layer 6 maximum

Vegetation_a_nd I_and use (percent) thickness
classification
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 (meters)
MIXED CHAPARRAL 50 50 50 50 40 40 4
CHAMISE-REDSHANK CHAPARRAL 50 50 50 50 40 30 2
COASTAL OAK WOODLAND 70 70 70 60 50 50 4
ANNUAL GRASS 70 70 50 40 20 10 3
COASTAL SCRUB 50 50 40 40 30 20 4
BARREN 10 10 10 5 2 1 2
VALLEY OAK WOODLAND 80 80 80 60 60 50 2
URBAN 90 90 90 90 90 90 2
MONTANE RIPARIAN 90 90 90 80 70 50 2
WATER 0 0 0 0 0 2
AGRICULTURE-CROPS 90 90 50 30 20 2
UNKOWN 50 50 50 50 50 50 2
SALINE EMERGENT WETLAND 50 50 50 50 50 50 2
DESERT WASH 50 50 50 50 50 50 2
VALLEY FOOTHIL RIPARIAN 50 50 50 50 50 50 2
EUCALYPTUS 80 80 80 80 70 60 2
PERENNIAL GRASS 90 80 50 40 20 B 2
MONTANE HARDWOOD 80 80 80 80 70 70 2
WET MEADOW 90 90 90 90 90 90 2
DESERT SCRUB 50 50 50 50 30 30 2
EASTSIDE PINE 70 70 70 60 50 40 2
JEFFREY PINE 70 70 70 60 60 50 2
MONTANE HARDWOODS CONIFER 80 80 80 70 60 50 2
MONTANE CHAPARRAL 60 60 50 50 40 30 2
SIERRAN MIXED CONIFER 70 70 70 60 50 50 2
SAGEBRUSH 50 50 50 50 40 40 2
PONDEROSA PINE 70 70 70 70 60 50 2
SUBALPINE CONIFER 60 60 60 60 50 50 2
FRESHWATER EMERGENT WETLAN 90 90 90 90 80 70 2
CLOSED CONE PINE-CYPRESS 60 60 60 60 50 50 2
ALKALI SCRUB 40 40 40 40 40 40 2
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Figure 15. Soil type, Los Angeles Basin watershed model (LABWM), California.
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Table 6. Table of soil parameters, model layers 1-5, Los Angeles Basin watershed model (LABWM), California.

[mm/day, millimeter per day]

STI:\'I'_SGO_ ) Porosity Wilting point Drainage_ fl_mction Upper hyd_ra_ulic Lower hyd_ra_ulic
map unit identifier (volume-fraction) (volume-fraction) coef_flclent conductivity conductivity
(MUID) (unitless) (mm/day) (mm/day)
CA520 0.387 0.134 8.48 319 97
CA523 0.376 0.072 7.93 562 115
CA990 1.000 0.111 1.20 3,390 1,000
CAB55 0.382 0.106 8.36 660 102
CA671 0.426 0.014 3.54 4,780 977
CA665 0.378 0.026 3.88 5,225 908
CAB45 0.371 0.084 6.35 839 273
CAB4T 0.377 0.133 8.40 571 105
CA638 0.386 0.096 6.40 1,755 282
CA639 0.356 0.026 3.71 5,026 919
CAB40 0.348 0.018 3.05 5,747 1,280
CAB42 0.416 0.135 8.30 398 114
CA641 0.434 0.177 9.83 202 70
CAB72 0.398 0.093 6.79 908 187
CAB77 0.370 0.034 4.12 2,906 761
CAb522 0.378 0.082 6.57 832 251
CA676 0.417 0.028 4.64 2,977 562

CAG622 0.381 0.092 6.24 809 320
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Figure 16. Rock types used as input for the Los Angeles Basin watershed model (LABWM), California.
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Table 7. Geologic parameters (layers 6-7), Los Angeles Basin watershed model (LABWM), California.
[Data source: Jennings, C.W., 1977, Geologic map of California, California Division of Mines and Geology, Geologic Data Map no. 2, scale 1:750,000
Abbreviations: HRU, hydrologic response unit; mm/day, millimeter per day; —, not applicable]
Layer 6
Geologic
Rock descriptions maP'“g:‘it Porosity hyl(lil::ﬁlric h\:-:::\’lflric Hydraulic . ness
Code (f‘::(l:ltl:l;:) conductivity conductivity c?;::';;:‘";y (meters)
(mm/day) (mm/day) y
Unconsolidated-rock types (alluvium)
Undefined deposits — 0.35 2,000 100 500 0.86
Quaternary sedimentary deposits Q 0.35 2,000 500 200 0.86
Quaternary continential sedimentary deposits QPc 0.35 2,000 500 200 0.86
Quaternary continential sedimentary deposits Qls 0.35 2,000 500 200 0.86
Consolidated-rock types (bedrock)
Late Tertiary marine sedimentary rock M 0.25 50 10 25 24
Late Tertiary marine sedimentary rock P 0.25 50 10 25 2.4
Early Tertiary marine sedimentary rock Ep 0.25 50 10 25 24
Early Tertiary marine sedimentary rock E 0.25 50 10 25 24
Tertiary continential sedimentary rock Oc 0.25 100 10 50 24
Tertiary volcanic rock Tv 0.25 200 20 100 24
Tertiary volcanic rock Ti 0.25 200 20 100 24
Cretaceous marine sedimentary rock Ku 0.1 20 5 50 6
Cretaceous marine sedimentary rock K 0.1 20 5 50 6
Jurassic—Cretaceous marine sedimentary rock KIf 0.1 20 5 50 6
Triassic—Jurassic marine sedimentary rock J 0.1 20 2 20 6
Late Tertiary marine sedimentary rock m 0.1 20 2 20 6
Paleozoic—mesozoic mixed rock gr-m 0.1 10 2 20 6
Precambrian marine sedimentary rock pC 0.1 10 2 20 6
Precambrian mixed rock pCc 0.1 10 1 20 6
Paleozoic - mesozoic metasedimentary rock sch 0.1 10 1 20 6
Mesozoic plutonic rock grMz 0.1 5 0.5 10 6
Mesozoic plutonic rock gr 0.1 5 0.5 10 6
Precambrian—Paleozoic plutonic rock grPz 0.1 2 0.1 10 6
Precambrian—Paleozoic plutonic rock grpC 0.1 2 0.1 10 6
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The total root-zone thickness is defined by the estimated
thickness of the soil zone (layers 1-5) plus the estimated
thickness for layer 6. Layer-6 thickness was estimated
by using a combination of the soil-thickness map and the
vegetation-type map. Layer-6 thickness varied from minimum
values of zero in areas of thick soils overlying unconsolidated-
rock types to a maximum thickness of 4 m on the lower slope
of the San Gabriel Mountains (fig. 18). For upland areas
with thin soils underlain by consolidated rock types, layer-6
thickness varied from 0.001 m to 4 m, depending on soil
thickness and vegetation type.

The root-zone storage capacity was calculated by using
the total thickness of the root zone (soil layers and layer 6
combined), the porosity and wilting point of the soil layers,
and the effective porosity of layer 6. The root-zone storage
capacity is the maximum amount of water that can be stored
in the root zone and available for evapotranspiration. For the
LABWM area, the estimated root-zone storage capacity varied
from a minimum of 200 mm to a maximum of 3,555 mm
(fig. 19). For most lowland areas with thick soils, the root-
zone storage capacity varied from 1,000 to 1,200 m. For most
upland areas with thinner soils underlain by consolidated
rock types, the root-zone storage capacity varied from 200 to
600 mm.

Climate Inputs

As part of the daily water-balance simulation, the
LABWM calculates a unique time series of daily precipitation
and maximum and minimum air temperature for each model.
The inputs required for the spatial interpolation are daily
climate records for a network of climate stations and estimates
of average monthly precipitation and maximum and minimum
air temperature for each climate station and for all model cells
(Hevesi and others, 2003; Flint and Martin, 2012; Hevesi
and Christensen, 2015). The daily climate inputs consisted of
precipitation and maximum and minimum air temperature and
were used with the average monthly estimates for precipitation
and maximum and minimum air temperature to spatially
interpolate the daily inputs for the LABWM domain by using
a modified inverse-distance-squared interpolation method
(Hevesi and others, 2003; Flint and Martin, 2012).

Daily climate data consisting of precipitation and
maximum and minimum daily air temperature were available
from a network of 201 climate stations in southern California
centered in the LABWM domain (figs. 20, 21; table 2).
Records from these stations are collected and stored by two
different agencies: the National Climatic Data Center (NCDC)
for 181 stations and the National Interagency Fire Center’s
Remote Automated Weather Stations (RAWS) for 20 stations.
These data were used to develop the daily climate inputs for
the LABWM.
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Following the methods used in Flint and Martin (2012),
the average monthly PRISM data (Daly and others, 1994,
2004) were used as input to the modified inverse-distance-
squared interpolation. The monthly PRISM data consist of
average monthly precipitation and average monthly maximum
and minimum air-temperature maps available for the Nation
on an approximate 800-m grid spacing for the 30-year period
1971-2000 (Daly and others, 1994, 2004). The monthly
PRISM estimates incorporate multiple variables to account
for complex orographic effects on precipitation, such as rain
shadows and adiabatic cooling. by using inverse-distance-
squared interpolation, the PRISM data were downscaled to the
201-m LABWM grid to define average monthly precipitation
and maximum and minimum air-temperature estimates for all
grid cells.

In addition to inputs developed for the model cells,
PRISM was also used to define average monthly precipitation
and average monthly maximum and minimum daily air-
temperature estimates for the 201 climate stations (table 2).
The average monthly precipitation and average monthly
maximum and minimum daily air-temperature estimates were
needed for the modified inverse-distance squared interpolation
method (Flint and Martin, 2012).The nearest neighbor method
was used to define the PRISM average monthly precipitation
and maximum and minimum air-temperature estimates for the
201 climate stations. Figure 20 shows the average 1971-2000
January precipitation used to define estimates of January
precipitation for the climate stations. Figure 21 shows the
average 1971-2000 January minimum air temperature used
to define January minimum air temperature for the climate
stations.

In general, the LABWM interpolated average annual
precipitation was similar to the PRISM estimate, but was not
identical because the LABWM honored the daily climate
records from the 201 climate stations, and the results were
generated over a longer period (100 years) compared to the
PRISM results (30 years). As with the distribution of average
annual precipitation, the interpolated distribution of average
air temperature was similar to the result obtained by using
PRISM, but the LABWM results honored the daily air-
temperature data from the climate stations.

The LABWM uses the combination of spatially
distributed precipitation and average air temperature for
each model cell to calculate the location and amount
of precipitation falling as snow at each cell. Snowfall
of 20.1 mm/yr and greater was generally limited to the
higher elevations of the San Gabriel Mountains (fig. 22).
Snowfall of 321 mm/yr and greater was interpolated for
the highest elevations of the San Gabriel Mountains, which
had a maximum snowfall of 850 mm/yr. In the Los Angeles
recharge-study area (which contributes recharge to the
LAGSA), snow did not fall, exception for the rare snowfall
(less than 1 mm/yr) along the easternmost boundary. Average
snowfall in the LABWM area was 8.3 mm/yr.
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Figure 18. Estimated thickness of bedrock-layer 6, Los Angeles Basin watershed model (LABWM), California.
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Figure 22. Average snowfall estimated for water years 1915-2014 by using the Los Angeles Basin watershed model (LABWM),

California.



Atmospheric Parameters

Monthly atmospheric parameters are used by the
LABWM to simulate solar radiation on an hourly basis.
The simulated solar radiation is then used to simulate daily
PET on the basis of an energy-balance calculation that also
incorporates the daily air-temperature inputs. The atmospheric
parameters used for the LABWM were based on the values
used in the previous INFILV3 applications in the southern
California region (Nishikawa and others, 2004; Rewis
and others, 2006; Flint and Martin, 2012). The monthly
atmospheric parameters are shown in table 8 and included
(1) ozone-layer thickness (ozone), (2) precipitable water in the
atmosphere (WP), (3) mean atmospheric turbidity (beta), and
(4) circumsolar radiation (CSR). Monthly ozone varied from
0.27 to 0.33, WP varied from 1.0 to 2.44, beta varied from
0.075 to 0.09, and CSR varies from 0.57 to 0.9 (table 8).

Model Coefficients

Model coefficients are used in the INFILv3 code for
empirical functions and controls that are applied on a basin-
wide scale (rather than on a grid-cell basis). The empirical
functions include (1) storm durations for winter and summer
storms, (2) sublimation and snowmelt, and (3) effective
hydraulic conductivities for stream channels (Hevesi and
others, 2003; U.S. Geological Survey, 2008). For the
LABWM area, the duration of winter storms (September 1
to May 31) was estimated to be 12 hours, and the duration
of summer storms (June 1 to August 31) was estimated to
be 2 hours. These estimated storm durations were used in
previous INFILv3 applications for nearby study areas: the
San Gorgonio Pass area east of the LABWM area (Rewis
and others, 2006),the Big Bear Valley study area (Flint and
Martin, 2012), and the San Gorgonio Pass region (Hevesi and
Christensen, 2015).

Values for model coefficients used for simulating
snowmelt and sublimation were also the same as those used
in previous INFILv3 applications in the southern California
region (Hevesi and others, 2003; Nishikawa and others, 2004;
Rewis and others, 2006; Flint and Martin, 2012; Hevesi and
Christensen, 2015). Precipitation was assumed to be in the
form of snow when the average daily air temperature was
equal to or less than 32°F. Daily snowfall was added to the
snowpack-storage term in the daily water balance. When
the average daily air temperature was less than or equal to
freezing, snowmelt was assumed to be zero, but the snowpack-
storage term was still reduced a fraction by using an assumed
sublimation model that calculated sublimation as a percentage
of PET and the available water in the snowpack. When the
daily maximum air temperature was greater than freezing,
an empirical temperature-index model was applied by using
parameters calibrated for the Sierra Nevada (Maidment,
1993) to calculate the daily snowmelt, and the snowpack was
reduced by this amount.
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Model coefficients used for simulating the effective
hydraulic conductivities for stream channels were dependent
on the number of upstream cells and were adjusted during
the model-calibration process. Model coefficients used to
represent stream-channel characteristics included (1) the
minimum number of upstream cells used to define the main
stream channels and (2) the saturated hydraulic-conductivity
multiplier for soils in the main stream channels. For the
LABWM, the minimum number of upstream cells was set
to 100, and the saturated hydraulic-conductivity multiplier
was set 10. This configuration assumed coarser soils in larger
channels and a tenfold increase in the saturated hydraulic
conductivity of the channel bed relative to the surrounding
inter-channel areas.

Boundary Conditions

Boundary conditions for the LABWM included
the simulated daily surface-water discharge from model
subdomains that were tributaries to downstream subdomains
(fig. 9). To establish the boundary conditions, the upstream
model subdomains were simulated first. The simulated
surface-water discharges from an upstream model subdomain
were input to the downstream model subdomain as daily
inflows to the grid cell directly downstream from the outflow
cell in the upstream subdomain. In the LABWM layout, the
Rio Hondo (RIOH) and upper Los Angeles River (ULAR)
subdomains were upstream from the lower Los Angeles
River (LARV) subdomain, and the upper San Gabriel River
(USGR) subdomain was upstream from the lower San Gabriel
River (SGRV) subdomain. To define the surface-water inflow
boundary conditions for the lower Los Angeles River (LARV)
and SGRV subdomains, the Rio Hondo (RIOH), upper Los
Angeles River (ULAR), and upper San Gabriel River (USGR)
subdomains were simulated first.

Boundary conditions also included estimates of average
quarterly urban irrigation for the general area of the Los
Angeles recharge-study area. The average quarterly rates
were applied uniformly to each quarterly period in the
simulation period. The quarterly urban-irrigation estimates
were specified for all irrigated cells as a constant daily inflow
boundary condition for each quarter. Annual irrigation was
calculated from the quarterly urban irrigation estimates. The
annual irrigation result indicated the spatial distribution of the
quarterly irrigation estimates included in the model (fig. 23).
Although the amount of urban irrigation was different for
each quarter, the spatial distribution of urban irrigation was
constant. The high annual irrigation rates of 321 to
412 mm/yr were estimated for residential areas that had a
relatively large percentage of pervious area. Annual irrigation
rates of 241 to 280 mm/yr were more widespread and were
estimated for the higher density residential areas that had a
smaller percentage of pervious area. Relatively low irrigation
rates of 40 to 160 mm/yr were estimated for the more densely
developed commercialized zones and transportation corridors.
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Table 8. Atmospheric parameters, Los Angeles basin watershed
model, California.

[Beta, average monthly mean atmospheric turbidity; cm, centimeter;
CSR, average monthly circumsolar radiation; Ozone, average monthly ozone
layer thickness; WP, average monthly precipitable water in the atmosphere]

Monthly atmospheric parameter values'

Month Ozone WP Beta CSR
(cm) (cm) (unitless) (unitless)

January 0.29 1.00 0.075 0.85
February 0.31 1.00 0.075 0.85
March 0.32 1.05 0.075 0.85
April 0.33 1.10 0.085 0.85
May 0.33 1.50 0.085 0.74
June 0.32 1.80 0.090 0.74
July 0.30 2.20 0.090 0.57
August 0.29 2.44 0.084 0.57
September 0.28 2.00 0.077 0.66
October 0.27 1.40 0.075 0.74
November 0.27 1.05 0.075 0.90
December 0.28 0.95 0.075 0.90

! parameter values from U.S. Geological Survey, 2008.

The lowest irrigation rates, less than 40 mm, were estimated
for the high-density developed zones, such as major highways
and city centers. Irrigation rates of zero were estimated for
industrialized areas.

Average quarterly (January—March, April-June,
July—September, October—December) urban irrigation,
calculated as the basin-wide average irrigation depth for the
11 subdomains with urban irrigation, indicated variability
in the estimated irrigation among quarters and subdomains
(fig. 24). The Topanga Creek (TOPC) subdomain did not have
any cells with urban irrigation and, therefore, was omitted.
The January—March quarter had the smallest estimated
irrigation amounts, with basin-wide average irrigation of
5-10 mm for 9 of the 11 subdomains. The July—September
quarter had the largest estimated irrigation amounts, with
average basin-wide irrigation of 53-64 mm for seven of the
subdomains. For all quarters, the lower Santa Monica Basin
(LSMB) subdomain had the most irrigation, and the Seal
Beach (SEAL) subdomain had the second most irrigation. The
upper Los Angeles River (ULAR) subdomain had the smallest
irrigation amount because only a small part of the subdomain
was included in the area where urban-irrigation estimates were
defined.

Initial Conditions

Initial conditions required by LABWM include the water
contents of all root-zone layers, the perched zone (layer 7),
and the snowpack. As in previous INFILv3 applications

(Nishikawa and others, 2004; Rewis and others, 2006;

Flint and Martin, 2012; Hevesi and Christensen, 2015),

all simulations in this study were run by using an initial

water content for root-zone layers 1-5 (soil layers) that

was calculated as 1.5 times the wilting-point water content
(table 6). An initial water content of zero was assigned to root-
zone layer 6, the perched zone (layer 7), and the snowpack.
An initialization period of 9.75 years (from January 1, 1905, to
September 30, 1914) was used for all simulations in order to
mitigate the effect of initial conditions on the 100-year target-
simulation period (water years 1915-2014).

Model Calibration

Model calibration is the process of making adjustments,
within justifiable ranges, to initial estimates of selected model
parameters to obtain reasonable agreement between simulated
and measured observations. Precipitation-runoff models, such
as PRMS (Markstrom and others, 2008; Jeton and Maurer,
2011) and INFILv3 (Hevesi and others, 2003; Rewis and
others, 2006) typically are calibrated by comparing simulated
streamflow to available records of measured streamflow,
preferably by using continuous records that span multi-year
periods. In this study, calibration of the LABWM consisted of
comparing simulated daily, monthly, and annual streamflow
with measured streamflow at six gages in the LABWM area.

Streamflow Observations

The streamflow records used for calibration included
observations at four USGS streamflow gaging stations
(http://waterdata.usgs.gov/ca/nwis) and two streamflow gaging
stations maintained by the Los Angeles County Department
of Public Works (Los Angeles County Department of Public
Works, 2006; http://dpw.lacounty.gov/wrd/Runoff/index.cfm;
fig. 25; table 9). Three gages, BALC6, COMP4, and COYCl,
have drainage areas in the Los Angeles recharge-study area
(area defined as contributing recharge to the LAGSA), and
three gages, TOPG1, ALHWS, and SJCEL, have drainage
areas outside of, but next to the Los Angeles recharge-study
area (area contributing recharge to the LAGSA) boundary
(fig. 25). The four USGS gages had daily mean discharge
records. The LACDPW gages had a combination of daily,
monthly, and annual (water year) records. In general, the
USGS records were older, with the most recent data for water
year 1979, whereas the LACDPW records were more recent.
The LACDPW gages were still active at the time of this study.
The record lengths ranged from a minimum of 14 years for
gage SJCE1 to a maximum of 62 years for gage ALHWG.

The drainage areas for the six gages vary from a
minimum of 47 km? for TOPGL1 to a maximum of 388 km?
for COYC1. Only one gage, COMP4, has a drainage area
completely within the LAGSA. Two gages, BALC6 and
COYCl, have drainage areas mostly within the LAGSA.


http://waterdata.usgs.gov/ca/nwis
http://dpw.lacounty.gov/wrd/Runoff/index.cfm
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Streamflow records for gages COMP4, TOPG1, and ALHW6
were generally not affected by flow diversions. Records from
three gages (SJCE1, BALC6, and COYC1) were partially
affected by flow regulations from reservoirs, detention

basins, debris basins, or spreading grounds upstream from the
gages. Although the regulated flows increased uncertainty in
model calibration, including these records was preferable to
not including the records because of the general sparsity of
streamflow records for the study area.

Calibration Procedure

Calibration of the model was done by using a trial and
error approach where selected model parameters were adjusted
until a satisfactory fit was obtained between simulated and
measured streamflow values. Parameters adjusted during the
calibration process were based on findings from previous
applications of the INFILv3 code (Hevesi and others, 2003;
Rewis and others, 2006; Flint and Martin, 2012; Hevesi
and Christensen, 2015). The parameters included root-zone
layer thicknesses, root-density coefficients, soil hydraulic
conductivity, upper and lower hydraulic conductivity for
layer 6, the effective porosity of layer 6, the lateral seepage
hydraulic conductivity for layer 7, and coefficients defining
stream channel characteristics.

A qualitative and quantitative analysis of the goodness-
of-fit between the simulated and measured streamflow
discharge was done by using daily mean discharge, monthly
mean discharge, and annual (water year) mean discharge.
Daily streamflow was used to analyze the match of simulated
streamflow to peak flows and the timing of runoff in response
to storms. Monthly streamflow was used to analyze model fit
in terms of matching seasonal variations in streamflow. Annual
streamflow was used to evaluate model fit in terms of overall
bias and the match to variations in streamflow for wet and dry
periods.

The qualitative analysis consisted of visual comparisons
of the closeness-of-fit between measured and simulated
streamflow hydrographs. A qualitative analysis of monthly and
annual streamflow was also done by using a visual comparison
of the closeness-of-fit between the plotted values of measured
and simulated streamflow (for monthly and annual flows) and
the one-to-one line for measured streamflow.

The quantitative analysis was based on two goodness-
of-fit statistics: (1) the percent average estimation error
(PAEE; Rewis and others, 2006; Woolfenden and Nishikawa,
2014) and (2) the Nash-Sutcliffe model efficiency (NSME;
Nash and Sutcliffe, 1970; Markstrom and others, 2008). The
PAEE provides a measure of model bias and was calculated
as described in Woolfenden and Nishikawa (2014). For this
study, absolute PAEE values of 20 to 10.1 percent were
considered satisfactory, absolute values of 10 to 5.1 percent
were considered good, and values between plus 5 and minus
5 percent were considered very good. In general, values
of 20 and less indicated an acceptable or favorable model
calibration, whereas values greater than 20 indicated a poor
calibration.
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The NSME provides a standardized measure of the
overall goodness-of-fit in terms of the mean-squared
estimation error (Markstrom and others, 2008) and was
calculated following Nash and Sutcliffe (1970). Values of
NSME greater than 0 indicate a model fit better than the
sample mean, and values close to 1.0 indicate a good match
between simulated and measured streamflow (Nash and
Sutcliffe, 1970; Markstrom and others, 2008). For this study,
NSME values of 0.6 to 0.69 were considered satisfactory,
values of 0.7 to 0.79 were considered good, values of 0.8 to
0.89 were considered very good, and values of 0.9 or greater
were considered excellent in terms of indicating model
performance. In general, values of 0.6 and greater indicated an
acceptable or favorable model calibration, whereas values less
than 0.6 indicated a poor calibration.

Calibration Results

Compton Creek (gage COMP4)

Comparison of hydrographs for gage COMP4 on
Compton Creek indicated a good to very good match between
simulated and measured daily and monthly streamflow;
however, a poor fit was indicated between simulated and
measured annual streamflow by the NSME statistic (fig. 26;
table 10). The model indicated a tendency to overestimate
flows at gage COMP4, resulting in a PAEE of 18 for daily and
monthly flows and 23 for the longer, annual hydrograph. For
the shorter period covered by the daily and monthly records,
a generally favorable match was indicated between simulated
and measured peak flows. The annual records cover a longer
period (water years 1939-2011), however, and the annual
hydrograph comparison indicated a tendency of the model to
overestimate total streamflow for the water years when there
was higher total streamflow, particularly during the early part
of the record (fig. 26C).

Ballona Creek (gage BALC6)

Comparison of hydrographs for gage BALC6 on
Ballona Creek indicated a generally favorable match between
simulated and measured streamflow for water years 193278
(fig. 27; table 10). The results for Ballona Creek indicated an
overall better calibration compared to gage COMP4, because
estimation bias was much closer to zero; a PAEE value of -6
indicated a good calibration for daily, monthly, and annual
flows. In addition, the NSME results were better for monthly
and annual flows compared to results for gage COMP4; an
excellent result of 0.93 was obtained for monthly flows, and
a very good result of 0.82 was obtained for annual flows. A
good general match to the peak monthly and annual flow was
a primary reason for the greater NSME values. Although the
peak daily flows were not as well matched by the model, the
intermediate-to-low daily flows were well matched, and the
NSME of 0.74 indicated a good calibration result.
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Figure 27. Comparison of simulated and measured streamflow at gage BALCS, Los Angeles Basin watershed model (LABWM),

California: A, daily; B, monthly; C, annually.



Coyote Creek (gage COYC1)

Calibration results for gage COYC1 on Coyote Creek
were considered good for daily streamflow and very good for
monthly and annual streamflow in terms of the NSME statistic
(fig. 28; table 10). The PAEE result indicated a tendency of
the model to overestimate streamflow at this gage, but only
by about 10 to 11 percent, which was considered a good to
satisfactory calibration for this study. The daily, monthly, and
annual hydrographs all indicated a shift in estimation bias
through time from water year 1964 to water year 1979. Prior
to about water year 1971, the model showed a tendency to
overestimate the peak daily flows, the peak monthly flows, and
the annual flows. After water year 1977, the model showed
a tendency to underestimate the peak daily flows, the peak
monthly flows, and the annual flows. For the central part of the
simulation period, a better overall fit between simulation and
measured flow was indicated.

Toponga Creek (gage TOPG1)

Results for NSME for gage TOPG1 on Toponga Creek
ranged from poor for daily streamflow to satisfactory
for monthly streamflow and good for annual streamflow
(fig. 29; table 10). Although the PAEE result is less than
5, and therefore indicated a very good calibration in terms
of minimized estimation bias, the model also indicated
a tendency to overestimate many of the lower flows
and underestimate many of the higher flows, causing a
deterioration in the NSME statistic. This was especially
true for daily streamflow, and the over- and underestimation
of peak flows resulted in a poor NSME of 0.35. The peak
monthly and annual flows were better matched by the model,
improving the NSME to 0.68 for monthly streamflow and to
0.73 for annual streamflow. Unlike results for gages BALC6
and COYCl, the hydrographs for gage TOPG1 did not
indicate a shift in the fit between simulated and measured
streamflow through time. It is possible that the changes in
watershed characteristics from increased urbanization that
could be affecting the watersheds for gages BALC6 and
COYC1 were not affecting the gage TOPG1 watershed.
This is a reasonable assumption given that the gage TOPG1
watershed is in the Santa Monica Mountains and is likely
not as affected by increased imperviousness from higher-
density development, whereas the gages BALC6 and COYC1
watersheds are in areas where imperviousness has likely
increased through time. An increase in imperviousness through
time would tend to cause an overestimation of streamflow for
earlier records and an underestimation of streamflow for more
recent records.

Alhambra Wash (gage ALHW6)

The NSME calibration results for gage ALHW6 on
Alhambra Wash were good for daily streamflow and excellent
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for monthly streamflow, but poor for annual streamflow

(fig. 30; table 10). Although the PAEE results of —18 for

daily and monthly flow and —14 for annual flow indicated
noteworthy estimation bias by an overall underestimation

of streamflow, the results were still considered satisfactory

in this study. The gage ALHW6 calibration for monthly
streamflow provided the greatest NSME value of 0.94. In
general, the hydrographs indicated a better fit to daily and
monthly streamflow for the earlier records than the later ones
(figs. 30A, B). The annual hydrograph indicated the best

fit to the mid-study records, from about water year 1948 to
1991 (fig. 30C). For the annual flows, the model consistently
overestimated streamflow prior to about water year 1948 and
consistently underestimated streamflow after water year 1991.
This temporal drift in estimation bias was consistent with the
drift in estimation bias for gages BALC6 and COYC1 and can
be explained by an increase in impervious land cover caused
by increasing urbanization through time.

San Jose Creek (SJCE1)

Calibration results for gage SJICE1 ranged from good to
excellent in terms of the NSME statistic, with the best fit being
achieved for monthly streamflow (fig. 31; table 10). Similar
to the results for gage ALHWG, the PAEE statistic of —16
to —15 indicated a tendency for the model to underestimate
streamflow at this gage. The daily hydrograph indicated
some over- and underestimation of peak flows, and the
annual hydrograph indicated a general tendency of the model
to underestimate annual flows. The monthly hydrograph
indicated that streamflow was primarily underestimated during
low-flow conditions, when managed flows from upstream
reservoir operations can be the primary source of streamflow.
The consistent underestimation during low flows caused the
PAEE statistic to be only satisfactory for this gage; otherwise,
there was a very good match to the peak daily and monthly
flows.

Monthly Streamflow

Comparison of the scatterplots of simulated against
measured monthly streamflow for each gage relative to the
one-to-one line was used for a qualitative assessment of
model calibration. The scatterplots indicated a good overall
fit between simulated and measured monthly streamflow
at most streamflow-gaging stations (fig. 32). The best fit to
the one-to-one line was indicated by the simulated monthly
streamflows for the BALC6, SJCE1, and COYCI1 gages.
Although gage ALHW6 had the best monthly NSME result
at 0.94, the scatterplot indicated a systematic underestimation
of the higher monthly flows. The poorest calibration result
was indicated for gage TOPGL1, which showed a consistent
underestimation of the higher monthly flows.
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Figure 28. Comparison of simulated and measured streamflow at gage COYC1, Los Angeles Basin watershed model (LABWM),

California: A, daily; B, monthly; C, annually.
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Annual Streamflow

Comparison of the scatterplots of simulated against
measured annual (water year) streamflow to the one-to-one
line for each gage also was used for a qualitative assessment
of model calibration (fig. 33). The scatterplot provided an
indication of the combined calibration based on all six gages.
The results indicated a strong correlation between simulated
and measured flows, and a good overall fit to the one-to-one
line. A slight tendency of the LABWM to underestimate the
largest annual streamflows was indicated by the results for
gage BALCS (fig. 33A). Overall, the combined results did
not indicate a strong bias in terms of a systematic over- or
underestimation of annual streamflow, except at the very low
annual streamflows of 0.5 cubic meters per second (m?/s) and
less measured at gage TOPG1, which the LABWM showed a
tendency to systematically overestimate (fig. 33B).

Model Sensitivity

A quantitative model-sensitivity analysis was not
performed in this study. A qualitative analysis of model
sensitivity was done as part of the calibration procedure,
however. Simulated streamflow was found to be sensitive to
estimated root-zone thickness, soil hydraulic conductivity,
percentage of impervious area, and precipitation type (rain
or snow). Areas that had a thinner soil cover (generally
the undeveloped mountainous areas), lower soil hydraulic
conductivity, and higher percentage of impervious area
generated greater runoff. In addition, runoff generation (the
overland-flow component of streamflow) was found to be
sensitive to the estimated hydraulic conductivity for layer 6
(parameters defined in part by surficial geology). Low values
of hydraulic conductivity for layer 6 resulted in a greater
potential for the generation of saturation excess (Dunnian)
runoff.

The seepage-flow component of simulated streamflow,
used in this study to represent baseflow, was found to be
sensitive to the estimated hydraulic conductivity for layers 6
and 7 and slope. A greater hydraulic conductivity and slope
resulted in more seepage (and less overland flow). Parameter
values that increased seepage tended to also decrease the
runoff component of streamflow.

Simulated recharge was found to be most sensitive
to soil thickness and the estimated hydraulic conductivity
for layers 6 and 7. In general, parameter values causing an
increase in recharge also resulted in a decrease in runoff
along with a decrease in ET. Runoff, recharge, and ET were
all very sensitive to spatially interpolated precipitation. The
effect of air temperature on the simulation of precipitation
as rain or snow was also found to be a critical input for the
higher elevation drainages in the San Gabriel Mountains.
Precipitation as rain caused an increase in streamflow in direct
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response to the storm event. Precipitation as snow caused a
delayed response in runoff and recharge and usually resulted
in lower streamflow than if the precipitation had been rain.
Unlike soil thickness and hydraulic conductivity, precipitation
and air temperature were not adjusted during the calibration
process.

Calibration Summary

Results for four gages, ALHW6, SICE1, BALCS,
and COYCl, indicated a change in estimation bias from
overestimating streamflow in the early part of the record to
underestimation of streamflow in the later part of the record.
The observed shift in estimation bias was likely to have been
caused by changes in watershed characteristics for which
the model did not account. For example, an increase in
imperviousness caused by the growth of urbanized areas and
developed lands would tend to cause an increase in runoff
during storms. Other factors that could cause an increase in
runoff during storms include loss of vegetation due to fire
or land development and the conversion of natural channels
to engineered channels. In addition to an increase in storm
runoff, urbanization and land development can cause an
increase in low flows in response to wastewater discharges
and increased irrigation runoff during the dry months. The
development of flood-control features, flow diversions,
and spreading grounds also cause changes in the flow
characteristics of a watershed. In some cases, the storage of
storm runoff in reservoirs upstream from the stream gage used
for calibration can result in a reduction in water-year runoff
because of evaporation and seepage losses from reservoirs.
For this study, however, a consistent trend of decreasing water-
year runoff was not identified by using the average water year
runoff for the six calibration gages.

Model Application

By using the calibrated LABWM, simulations were run
for the 12 model subdomains (fig. 9). The daily simulation
period was January 1, 1905, to September 30, 2014, and
included a 9.75 year model-initialization period (January 1,
1905, through September 30, 2014) and a 100-year target-
simulation period for water years 1915-2014 (October 1,
1914, through September 30, 2014). Results from the
12 model subdomains were combined to develop maps of
average annual values and average monthly values for various
components of the simulated water budget. The combined
results were used to calculate the total potential recharge in the
Los Angeles recharge-study area, including the direct recharge
component in the LAGSA as well as the mountain-front
recharge component from tributary upland areas bordering the
LAGSA.
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Simulation Results, Water Years 1915-2014

Simulation results for water years 1915-2014 were used
to map the 100-year averages for components of the water
budget, including PET, ET, streamflow, and recharge. The
mapped results were used to analyze the distribution patterns
of the water-budget components and to identify areas of
maximum and minimum values.

Potential Evapotranspiration

Simulated average annual PET for water years 1915-
2014 ranged from high values of 1,437 mm/yr for low-lying,
south-facing slopes in the hilly and mountainous regions
of the LABWM area to low values of 550 mm/yr for the
steeper, north-facing slopes in the San Gabriel Mountains
(fig. 34). A basin-wide average PET rate of 1,237 mm/yr was
simulated for the LABWM area (table 11). The average PET
for subbasins ranged from a minimum of 1,188 mm/yr for the
upper San Gabriel River to a maximum of 1,274 mm/yr for
Rio Hondo. Lower PET rates were simulated for the coastal
areas compared to the inland areas. The overall distribution
of simulated PET was comparable to published reference ET
(ET,) zones 4, 6, 9, and 14 for California (California Irrigation
Management Information System (CIMIS), 2005), showing
reference ET_ of about 1,450 mm/yr for inland areas (zone 14)
and 1,180 mm/yr for the Los Angeles urban area (zone 4).

A basin-wide average PET rate of 1,258 mm/yr
was simulated for the LAGSA (table 12). In general, the
differences in basin-wide average PET among the
groundwater basins were small, with a maximum PET of
1,285 mm/yr simulated for the Whittier Area groundwater
basin and a minimum of 1,240 mm/yr simulated for the Santa
Monica groundwater basin.

Evapotranspiration

The highest maximum ET rates of 701 to 1,104 mm/yr
were simulated for south-facing slopes in the San Gabriel and
Santa Monica Mountains, and also for irrigated pervious cells
in urban areas (fig. 35). The lowest ET rates of 0 to 100 mm/yr
were simulated for impervious areas of urban centers and also
for water bodies (the LABWM does not simulate evaporation
from water bodies or impervious surfaces). The 100-year
basin-wide average ET rate simulated for the LABWM area
was 362 mm/yr (table 11), and the 100-year basin-wide
average ET rate simulated for the LAGSA was
297 mm/yr (table 12). In the LABWM area, the upper San
Gabriel River subdomain had the highest ET rate at
444 mm/yr, and in the LAGSA, the Whittier Area groundwater
basin had the highest ET rate at 380 mm/yr. In general, the
higher ET rates were simulated for the more pervious cells
receiving larger precipitation amounts in the mountainous
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areas, urban irrigation, or a combination of both these things.
Compared to other subdomains, the upper San Gabriel River
subdomain had the highest 100-year precipitation rate at

669 mm/yr (table 11). Compared to other groundwater basins,
the Whittier Area had the highest urban irrigation rate of

184 mml/yr (table 12). In the developed and urbanized land
areas, higher ET was also simulated for cells downstream from
more impervious cells that tended to generate runoff (fig. 35).

Runoff

Results for runoff included the combined simulated
runoff from overland and seepage flows. The average
annual simulated runoff for water years 1915-2014 included
a maximum runoff of 9.5 m%/s simulated for the cells
representing the lower reaches of the main channel of the
Los Angeles River downstream from the confluence with
the Rio Hondo near the mouth of the San Gabriel River
(fig. 36). Relatively high average runoff rates up to 2 m%/s
were simulated for the lower section of Ballona Creek, Rio
Hondo, the upper sections of the Los Angeles and San Gabriel
Rivers, and near the mouth of the Dominguez Channel. Low
to intermediate average runoff rates of 0.11 to 1 m%s were
simulated for the tributaries draining into the main channels
of the lowlands and also the headwater drainages in the San
Gabriel Mountains. Relatively low average annual runoff rates
of 0.01 to 0.1 m¥/s were simulated for the first- and second-
order drainages represented by the majority of the stream
channels in the LABWM area. The average-annual runoff rate
simulated for the LABWM area was 145 mm/yr, which was
about 30 percent of the average annual precipitation rate and
26 percent of the combined average inflows from precipitation
and urban irrigation (table 11). The upper San Gabriel River
subdomain had the highest simulated-runoff rate at
192 mm/yr. In comparison, the lower Santa Monica Basin
subdomain had the lowest runoff rate at 84 mm/yr. The
highest surface-water outflow of 812 mm/yr was simulated
for the lower Los Angeles River subdomain, which included
a combined surface-water inflow of 643 mm/yr from the
upstream subdomains upper Los Angeles River and Rio
Hondo in addition to the 169 mm/yr runoff generated in
the lower Los Angeles River subdomain. The average
100-year runoff simulated for the LAGSA was 140 mm, or
about 42 percent of the average precipitation of 336 mm/yr
(table 12). Excluding the surface-water inflows from the three
major surface-water drainages upstream from the LAGSA
(the Los Angeles River, the San Gabriel River, and the Rio
Hondo), inflow of runoff from mountain-front drainages
bordering the LAGSA averaged 24 mm/yr for the 100-year
simulation, resulting in a total simulated surface-water
discharge of 164 mm/yr from the LAGSA. The Hollywood
groundwater basin had the highest average surface-water
inflow at 136 mm/yr and also had the highest average surface-
water discharge at 324 mm/yr (table 12).
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Figure 35. Spatially distributed average annual evapotranspiration simulated for water years 1915-2014 by using the Los Angeles
Basin watershed model (LABWM), California.
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Figure 36. Simulated average streamflow for water years 1915-2014 by using the Los Angeles Basin watershed model (LABWM),
California.



Recharge

The average-annual simulated recharge for water years
1915-2014 was 45 mm/yr for the LABWM area (table 11).
This recharge rate was about 9 percent of the precipitation
rate, and about 8 percent of the combined inflow rate of
precipitation and urban irrigation. As would be expected,
the spatially distributed recharge rate varied notably
(fig. 37). The highest average recharge values of 200 to
1,810 mm/yr were simulated for stream channels that received
large surface-water inflows from upstream areas and also
had relatively permeable soil and underlying rock layers. In
the low-lying urbanized areas, relatively high recharge rates
of more than 50 mm/yr were mostly in the irrigated areas
subject to frequent inflows from upstream impervious areas
in addition to continuous inflows from irrigation. For most
low-lying urbanized areas, however, simulated recharge was
negligible (less than 1 mm/yr). Recharge tended to be higher
in upland areas that have relatively more precipitation and thin
soils underlain by permeable rock units. The Topanga Creek
subdomain had the highest recharge rate at 150 mm/yr, about
26 percent of the precipitation rate of 566 mm/yr (table 11).
The Long Beach subdomain had the lowest recharge rate at
25 mm/yr, about 6 percent of the combined precipitation and
urban irrigation inflow of 420 mm/yr (table 11).

The average 100-year simulated direct recharge for
the LAGSA was 35 mm/yr, or about 10 percent of the
simulated precipitation and about 7 percent of the total
combined inflow of 495 mm/yr from precipitation, surface-
water inflow, and urban irrigation (table 12). The direct-
recharge component only included recharge from the net
infiltration of precipitation, irrigation, and surface water
through the root zone; it did not account for mountain-
front recharge as underflow to the groundwater basin from
bordering tributary drainages. In the LAGSA, the Montebello
Forebay groundwater basin had the highest simulated direct
recharge rate at 43 mm/yr, whereas the Orange County
groundwater basin had the lowest simulated direct recharge
rate at 26 mm/yr.

Annual Results

Annual Time Series

The 100-year time series of annual results were used to
analyze the temporal variability of the simulated water-budget
components for the LABWM area (appendix 1), the Los
Angeles recharge-study area (appendix 2), and the LAGSA
(appendix 3). With the exception of PET, the annual results
for the LABWM area indicated a high degree of year-to-year
variability in all components of the water budget (figs. 38A,

B; appendix 1). Spatially interpolated, basin-wide annual
precipitation ranged from a maximum of 566,000 ha-m for
water year 2005 to a minimum of about 68,000 ha-m for
water year 2007. In addition to water year 2007, three other
water years—1961, 2002, and 2014—had annual precipitation

Model Application 19

amounts less than 100,000 ha-m. In addition to water year
2005, five other water years had precipitation greater than
500,000 ha-m: 1941, 1978, 1983, 1993, and 1998. For all
100 water years, simulated basin-wide PET, which varied
between about 589,000 and 665,000 ha-m for most water
years, was greater than basin-wide precipitation for the
LABWM area. After precipitation, the largest component

of the LABWM area water budget was ET, which reached a
maximum of about 274,000 ha-m during water year 1983 and
a minimum of about 103,000 ha-m during water year 2007.
In general, ET was strongly correlated to precipitation, but

it exceeded precipitation during twenty one water years that
had less than average precipitation (for water years 1924-25,
1942, 1948, 1951, 1959-61, 1964, 1970, 1981, 1984, 1987,
1990, 1994, 1999, 2002, 2007, and 2012-14), mostly because
of the additional inflows from urban irrigation. Runoff was
the third largest component of the LABWM area simulated
water budget, with relatively high runoff amounts of more
than 200,000 ha-m during the wettest water years: 1941, 1969,
1978, 1983, 1993, and 2005. Water year 2005, the wettest
year, also had the most runoff at 246,000 ha-m. For many
drier than average years, generally less than 200,000 ha-m of
precipitation, runoff was less than 50,000 ha-m. Simulated
recharge was a much smaller component of the LABWM
area water budget compared to simulated ET and runoff. The
maximum annual recharge of 85,000 ha-m was simulated for
water year 1941, and other relatively high recharge amounts of
more than 50,000 ha-m were simulated for water years 1969,
1978, 1980, 1983, 1993, 1998, and 2005 (fig. 38A).

The annual variability in basin-wide water-budget
components for the Los Angeles recharge-study area was
similar to the basin-wide results for the LABWM area
(figs. 38C, D; appendix 2). Water years 1941, 1978, 1998, and
2005 were the wettest for the Los Angeles recharge-study area,
with annual precipitation exceeding 150,000 ha-m. Annual ET
was highest, more than 70,000 ha-m, during water years 1941,
1958, 1978, 1983, 1993, 1995, 1998, and 2005, all water years
with annual precipitation of more than 100,000 ha-m. During
the drier years, such as 1948, 1964, 2002, 2007, and 2014,

ET was greater than precipitation because of urban irrigation
of 24,000 ha-m. The annual runoff was greatest, more

than 50,000 ha-m, in water years 1941, 1978, 1983, 1993,
1995, 1998, and 2005, with 2005 having the most runoff at
61,677 ha-m. The annual recharge amounts were highest, more
than 20,000 ha-m, during these same water years; however,
annual recharge was greatest, 34,000 ha-m, during water year
1941. The 100-year averages for the Los Angeles recharge-
study area included a precipitation rate of 66,928 ha-meters
per year (ha-m/yr), an ET rate of 58,021 ha-m/yr, a runoff rate
of 24,745 ha-m/yr, and a recharge rate of 7,909 ha-m/yr.

For the LABWM area, the most recharge was simulated
for the Topanga Creek (TOPC) subdomain, where annual
recharge was as high as 545 mm for water year 1941 and
535 mm for water year 2005 (fig. 38E). The upper Santa
Monica Basin (USMB) subdomain had the next highest
recharge, with annual recharge of 267 mm for water year
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Figure 37. Spatially distributed average annual recharge simulated for water years 1915-2014 using the Los Angeles Basin watershed
model (LABWM), California.
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1941, 246 mm for water year 1978, and 238 mm for water
year 2005. During the driest years, recharge for all subdomains
was less than 50 mm/yr. The cumulative departure from mean
annual recharge indicated an initial period of lower than
average recharge for all subdomains for water years 1918-36,
followed by a period of higher than average recharge for water
years 1937-45, and then a long period of generally lower than
average recharge for water years 194677 (fig. 38F). Water
years 1978-83 and 1992-98 were two periods of higher than
average recharge for most years, whereas water years 1984-91
and 1998-2014 were two periods of lower than average
recharge for most years. The Seal Beach (SEAL) subdomain
had the greatest cumulative departure from mean annual
precipitation at 932 percent ending with water year 1945,
whereas the lower Santa Monica Basin (LSMB) subdomain
had the least cumulative departure from mean annual
precipitation at —639 percent ending with water year 1977. For
the entire LABWM area, the maximum cumulative departure
of 546 percent ended with water year 1944, and the minimum
cumulative departure of —346 percent ended with water year
1977.

Annual results for water-budget components for the
LAGSA and the eight groundwater basins in the LAGSA
are provided in appendix 3. Annual variability in water-
budget components for the groundwater basins was generally
consistent with the results for the entire LAGSA in terms of
year-to-year variability and wet or dry periods (figs. 38C,
D). Comparison of results among the groundwater basins,
however, also indicated some differences in annual variability
in water-budget components. For example, the wettest year
for Montebello Forebay was water year 1998 with 878 mm
of precipitation, whereas the wettest year for Central Basin
Pressure was water year 1978 with 768 mm of precipitation,
and the wettest year for West Coast Basin was water year
2005 with 727 mm of precipitation (appendix tables 3-1, 3-2,
3-3). The driest water year for all three groundwater basins
was 2007, with 60 mm for Montebello Forebay, 75 mm for
Central Basin Pressure, and 77 mm for West Coast Basin. For
the Hollywood groundwater basin, the wettest groundwater
basin in terms of average annual precipitation, water year
2005 was the wettest at 942 mm of precipitation, and water
year 2007 was the driest at 91 of mm precipitation (appendix
table 3-7). For the Orange County groundwater basin, water
year 1941 was the wettest at 748 mm of precipitation, and
water year 2007 also was the driest at 72 mm of precipitation
(appendix table 3-4). Results for simulated annual runoff
were similar to results for precipitation, such that differences
among groundwater basins in water years with the highest
and lowest runoff were closely correlated to differences in
precipitation. Results for direct recharge indicated that the
water years with the highest and lowest direct recharge for all
groundwater basins were consistent; the most direct recharge
for all groundwater basins was in water year 1941, and the
least direct recharge for all groundwater basins was in water
year 2014,

Comparison of Recharge for Wet and Dry Years

The spatial distribution of recharge for water year 2005,
the wettest year in the last decade of the simulation period
with basin-wide average recharge of 139 mm, was compared
to results for water year 2007, the driest year in the simulation
period with basin-wide average recharge of 6 mm (fig. 39).
The maximum recharge for water year 2005 was 3,786 mm
(fig. 39A), compared to a maximum recharge of only 297 mm
for water year 2007 (fig. 39B). For the relatively wet water
year (2005), recharge of 210 mm and greater was simulated
for many upland areas underlain by bedrock with intermediate
to high permeability. For upland areas with low permeability
bedrock, such as along the northern boundary of the LABWM
area in the San Gabriel Mountains, recharge was mostly
limited to about 2-10 mm and was about the same as the
recharge simulated for the dry year 2007. For the dry water
year (2007), recharge for much of the San Gabriel Mountains
was reduced from high values of more than 210 mm in water
year 2005 to about 11-50 mm. Recharge for much of the Santa
Monica Mountains was reduced from high values of more than
210 mm for wet water year (2005) to values of 10 mm and
less. During the dry water year (2007), the increased recharge
from urban irrigation was a larger component of overall
recharge in the lowland areas compared to results for the wet
water year (2005).

Average Monthly Results

Average monthly results were calculated as basin-wide
averages for the LABWM to analyze the seasonal distribution
of selected water-budget components. The highest average
monthly precipitation of 59,000 ha-m was during February,
and the lowest average monthly precipitation of about zero
was in July (fig. 40A). The maximum average monthly ET of
about 28,000 ha-m was attained in April, and the maximum
streamflow of about 24,000 ha-m was in February (fig. 40A).
Average monthly recharge did not show a correlation to
average monthly urban irrigation (fig. 40B), indicating that the
timing of recharge was more dependent on precipitation than
on urban irrigation. The maximum average monthly recharge
of about 4,700 ha-m was during March the last month of
the quarter that had the minimum urban irrigation rate of
750 ha-m.

The distribution of average monthly inflows and
outflows shows the approximate water budget (changes in
root-zone storage are excluded) and the relative magnitudes
of the various water-budget components. Precipitation was
the dominant inflow from October through May, but urban
irrigation was the dominant inflow from June through
September (fig. 40C). Streamflow was the dominant outflow
from December through February, whereas ET was the
dominant outflow from March through November. Streamflow
discharge from the LABWM was zero for the months of May
through August, but recharge was 1,000 ha-m or more for
these months.
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Figure 39. Simulated annual recharge, Los Angeles basin watershed model (LABWM), California, for A, water year 2005; and B, water
year 2007.
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Figure 40. Average basin-wide monthly simulation results for water years 1915-2014, Los Angeles Basin watershed model (LABWM),
California: A, water-budget components; B, urban irrigation and recharge; C, inflows and outflows.
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Recharge Estimates Developed for the LAGSA

The LABWM was primarily developed to estimate
recharge for the LAGSA, which is the general area of
interest for groundwater resources in the region. By using
the LABWM simulation results, monthly and quarterly
recharge were calculated for the areas of the LAGSA and
six bordering drainages upstream from and tributary to the
LAGSA that were included in the Los Angeles recharge-study
area (fig. 41). The tributary drainages that were included in
the Los Angeles recharge-study area contribute surface-water
inflows, including overland runoff and seepage flow, to the
LAGSA. Although the effect of the surface-water inflows on
increasing direct recharge within the LAGSA is represented in
the INFILv3 simulation, additional recharge from the tributary
drainages could also contribute to the total recharge for the
LAGSA as a mountain-front recharge component, and this
was not directly represented by the INFILv3 simulation. In
order to improve estimates of the total potential recharge to the
LAGSA, the monthly and quarterly mountain-front recharge
components along the LAGSA boundary were calculated
and added to the direct recharge in the LAGSA. This method
of developing estimates of total potential recharge for the
LAGSA using the combined direct and mountain front
recharge components is similar to methods used in Reichard
and others (2006) for estimating total recharge.

Similar to the annual recharge results for the LABWM
area, the total, direct, and mountain-front annual recharge
results for the LAGSA indicated a high degree of year-to-
year variability (fig. 42A). A maximum annual total recharge
of 34,000 ha-m was simulated for water year 1941, of which
the mountain-front recharge component contributed about
12,000 ha-m, and direct recharge in the LAGSA contributed
about 22,000 ha-m. A minimum total annual recharge of
781 ha-m was simulated for water year 2014, of which
mountain-front recharge was 194 ha-m. The 100-year average
total potential recharge rate for the LAGSA was about
7,900 ha-m/yr, of which about 2,700 ha-m/yr was mountain-
front recharge, and 5,200 ha-m/yr was direct recharge n the
LAGSA.

To identify wet and dry periods in terms of multi-
year averaged recharge estimates, the 5-year moving-
average recharge was calculated for the LAGSA, the eight
groundwater basins in the LAGSA, and the six bordering
mountain-front areas that potentially contribute recharge to
the LAGSA. The wettest 5-year period ended with water
year 1941 and had an average of about 75 mm/yr of direct
recharge for the LAGSA (fig. 42B). The 5-year periods ending
with water year 1982 and 1999 also had higher than average
direct recharge in the LAGSA of more than 50 mm/yr. The
5-year average recharge for all eight groundwater basins
were similar; water years 1937-41 had the highest 5-year
average recharge rate for all groundwater basins, and water
years 1987-91 had the lowest 5-year average recharge rate
for all but the Orange County groundwater basin, which

had the lowest 5-year average recharge rate for water years
1960-64. The Montebello Forebay Basin consistently had the
highest 5-year average recharge, and the Orange County Basin
consistently had the lowest 5-year average recharge. For all
basins, the 5-year average recharge rate followed a pattern

of high values for the 5-year periods ending with water years
1939-45, water years 1980-84, and water years 1995-2001.
Similarly, all groundwater basins followed a pattern of low
5-year average recharge rates for periods ending with water
years 1948-67, 1974-77, 1988-92, 2002-03, and 2010-14.

For most periods, the 5-year average recharge for
all six of the tributary mountain-front areas bordering the
LAGSA was greater than the direct recharge for the LAGSA
(fig. 42C). The Palo Verdes Hills had less average recharge
than the LAGSA for a few of the drier periods, such as water
years 1927-31, 1949-51, 1957, and 1991. The Santa Monica
Mountains had the highest 5-year average recharge for all
water years except 1980, when the Puente Hills had a higher
recharge rate. The 100-year average recharge was 94 mm/yr
for the Santa Monica Mountains, 52 mm/yr for the Elysian
Hills, 62 mm/yr for the Repetto Hills, 66 mm/yr for the
Puente Hills, 52 mm/yr for the Brea and Fullerton Creeks, and
51 mm/yr for the Palo Verdes Hills, compared to a 100-year
average recharge of 35 mm/yr for the LAGSA.

The average monthly recharge was highest during March
for all six mountain-front areas contributing recharge to the
LAGSA (fig. 42D). The Santa Monica Mountains and the
Puente Hills peripheral drainages had the highest average
monthly recharge rate at about 20 mm. From January through
July, the recharge rate for all peripheral drainages exceeded
the internal-area recharge rate for the LAGSA. From August
through November, however, the internal-area recharge
exceeded the recharge rate for five of the six upstream
peripheral drainages because of increased recharge from urban
irrigation in the internal area.

Effect of Urban Irrigation on Recharge

Simulation results with and without urban irrigation
were compared for the eight LABWM subdomains containing
the area of the LAGSA and the mountain-front recharge
areas in the Los Angeles recharge-study area (table 13). The
comparison was done for simulated ET, change in root-zone
water storage, recharge, and runoff. For the total area of the
subdomains, the results showed a 51 percent increase in ET
from urban irrigation, with 82 percent of the irrigation inflow
contributing to ET (table 13). The Long Beach subdomain had
the largest increase in ET from urban irrigation (62 percent),
and the upper Santa Monica basin subdomain had the largest
percentage of urban irrigation contributing to ET (69 percent).
Urban irrigation resulted in a 247 percent decrease in the
change in root-zone water storage for the total area of the eight
subdomains, with a change in water storage of =211 ha-m/yr
with urban irrigation compared to a change in water storage of
—61 ha-m/yr without urban irrigation.
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The comparison of recharge results for the eight
subdomains indicated an approximate doubling of the average
recharge rate for water years 1915-2014 when urban irrigation
was included in the model, with an average recharge of
8,473 ha-m/yr including urban irrigation compared to an
average recharge of 3,741 ha-m/yr without including urban
irrigation (table 14). About 18 percent of urban irrigation
contributed to recharge, varying from 12 percent for the upper
Santa Monica basin subdomain to 20 percent for the lower
Los Angeles River subdomain. For the total area of the eight
subdomains, the irrigation-induced recharge provided an
average return flow of 4,733 ha-m/yr. In contrast to recharge,
the effect of urban irrigation on streamflow was slight; it
increased only 48 ha-m/yr from urban irrigation for the total
area of the eight subdomains, which was only 0.2 percent of
urban irrigation.

Simulations with and without urban irrigation were
compared to evaluate the effect of urban irrigation on the
spatial distribution of ET, the change in root-zone water
content, streamflow, and recharge in the Los Angeles recharge-
study area. Results for simulated ET without urban irrigation
indicated a large reduction in ET in the Los Angeles recharge-
study area (fig. 43). Rates of ET showed maximum reductions
of 321 to 412 mm where the most urban irrigation was used
(fig. 43). The rate of ET was reduced more than 40 mm/yr in
most of the Los Angeles recharge-study area.

Results for the change in root-zone storage using the
simulation without urban irrigation indicated a drier root
zone compared to results with urban irrigation (fig. 44). The
areas where root-zone storage increased were greatly reduced
without irrigation. The difference between irrigated and
non-irrigated changes in the root-zone water content was the
greatest for the more pervious locations that received surface-
water run-on in addition to urban irrigation, with differences
of 4 mm/yr and greater (fig. 44).

The difference between simulated streamflow with
urban irrigation and simulated streamflow without it indicated
an increase in runoff caused by urban irrigation (fig. 45).

In the area of the Los Angeles recharge-study area, runoff
from irrigation increased primarily in the upland areas of

the peripheral drainages, where the soils are thinner and the
storage capacity of the root zone is less than in the lowland
areas with thick alluvium. In the lowland areas, urban
irrigation caused only a very slight increase in runoff. The
larger stream channels draining the upland areas, however,
showed a greater increase in streamflow, and the maximum
difference in streamflow was in the most upstream portions of
the main channels.

The difference between simulated recharge with urban
irrigation and simulated recharge without urban irrigation
indicated increases in recharge in response to urban irrigation
by as much as 201 to 452 mm/yr in areas with inflows from
surface-water run-on (fig. 46).

Average monthly recharge simulated without including
urban irrigation was compared to simulation results that
included urban irrigation (figs. 42D, 47A, B, C). The monthly
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distribution of recharge for the internal recharge area of the
LAGSA and the six peripheral drainage areas contributing
mountain-front recharge to the LAGSA were similar for the
with and without irrigation results, but showed the expected
overall decrease in recharge for all months when irrigation
was not included (fig. 47B). The greatest absolute difference
in the average monthly recharge showed the greatest absolute
difference, about 5.25 mm, during March in the internal
recharge area (fig. 47B). In general, the absolute increase

in recharge for all areas was greatest during the months of
January through May, indicating that the largest increases

in recharge were caused by an increase in net infiltration
from run-on with wet antecedent soil conditions when urban
irrigation was included. The largest relative increases in
average monthly recharge for irrigated minus non-irrigated
simulation results were for the months of July through January
(fig. 47C). The greater recharge in the summer months was
caused directly by the net infiltration of urban irrigation. The
greater recharge during December and January, however, was
caused by the wet antecedent soils enhancing recharge from
precipitation and run-on components. The largest relative
increase in recharge from urban irrigation was in the internal
recharge area of the LAGSA, which had increases of more
than 1,000 percent for September through November and
increases of more than 100 percent for all other months.

In contrast, the relative increases in recharge for the Santa
Monica Mountains contributing area was less than 10 percent
for all months.

To qualitatively evaluate the sensitivity of simulated
recharge and ET to the urban-irrigation estimates, simulation
results for water years 1928-2011 for the eight subdomains
overlying the Los Angeles recharge-study area (area
contributing recharge to the LAGSA) were compared for a
range of urban irrigation estimates that were calculated by
a simple scaling of the urban irrigation rates using a linear
multiplier. A multiplier of 1.0 was used to identify the results
obtained for the calibrated model, referred to in this analysis
as the baseline result. The minimum multiplier was 0 (no
urban irrigation), and the maximum multiplier was 2.0 (for
a doubling of the urban irrigation rates used in the baseline
simulation). Simulated 1928-2011 average recharge and ET
were the most affected by variations in urban irrigation. For
most subdomains, recharge approximately doubled with a
corresponding doubling of irrigation relative to the base case
(fig. 48A), and ET increased by more than 25 percent for
most subdomains (fig. 48B). The maximum recharge rate was
simulated for the upper Santa Monica Basin (USMB)
subdomain, where recharge of about 79 mm/yr in the baseline
simulation increased to about 111 mm/yr when urban
irrigation was doubled (fig. 48A). The Seal Beach (SEAL)
subdomain had the greatest sensitivity of recharge to urban
irrigation. Without urban irrigation (irrigation multiplier set
to 0), Seal Beach (SEAL) had the lowest recharge rate at
about 5 mm/yr. As the irrigation rate was increased to double
the baseline rate, however, the Seal Beach (SEAL) recharge
rate increased to about 80 mm/yr (about a 16-fold increase in
recharge).
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Comparison of average monthly simulated recharge, Los Angeles Basin watershed model (LABWM), California: A, average
monthly recharge without irrigation; B, average monthly difference in recharge with and without urban irrigation; C, average monthly
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The upper Santa Monica Basin (USMB) subdomain
had the highest ET rate for urban-irrigation multipliers of
1.4 and less (fig. 48B). For multipliers of 1.6 and greater, the
LSMB subdomain had the highest ET rate, which reached a
maximum of 452 mm/yr with a multiplier of 2.0. In contrast to
the results obtained for recharge, simulated ET was similar for
the Dominguez Channel (DOMC), Long Beach (LONG), and
lower Los Angeles River (LARV) subdomains over the entire
range of urban-irrigation multipliers.

For all eight subdomains, the percentage of urban
irrigation contributing to recharge increased as urban irrigation
increased, whereas the percentage of irrigation contributing to
ET decreased (fig. 49). At a multiplier of 0.1, urban irrigation
varied between 8 and 14 mm/yr for the eight subdomains,
contributing about 4 to 9 percent to recharge (fig. 49A) and
91 to 95 percent to ET (fig. 49B). At a multiplier of 2.0, urban
irrigation varied from about 175 to 289 mm/yr, contributing
20 to 27 percent of the irrigated water to recharge (fig. 49A)
and 72 to 78 percent to ET (fig. 49B). For all ranges and all
subdomains, most of the urban irrigation was returned to the
atmosphere by ET. Runoff and the average root-zone water
content were also affected by variations in urban irrigation
estimates; however, the relative changes to these components
of the water balance were small compared to recharge and
ET. At an urban-irrigation multiplier of 2.0, simulated runoff
increased by less than 2 percent for all subdomains.

Comparison with Previous Recharge Estimates

The recharge estimates developed by using the LABWM
were compared with recharge estimates developed previously
by Reichard and others (2003) for water years 1971-2000. By
using the method applied in developing recharge estimates for
the LAGSA, the total recharge estimated for the groundwater
model defined in Reichard and others (2003) included both
a direct-recharge component for the area of the groundwater
model and also a mountain-front recharge component from the
tributary upland areas bordering the model domain (fig. 50).
For this analysis, the mountain-front recharge component
included seven tributary upland areas bordering the model
area. In addition to the recharge comparison, the LABWM
spatially interpolated precipitation was compared with
precipitation values used in Reichard and others (2003) to
develop the transient recharge estimates.

The comparison between annual precipitation estimated
with the LABWM and annual precipitation used in Reichard
and others (2003) showed agreement between the annual and
long-term average precipitation used to estimate recharge
in both studies (fig. 51A). The greatest differences in
precipitation estimates were for water years 1975, 1984, and
1992. Agreement was good for most wetter than average water
years, such as 1978, 1983, and 1998. The long-term average
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for water years 1971-2000 applied by Reichard and others
(2003) was 391 mm/yr, which is comparable to the long-term
average of 389 mm/yr estimated by the LABWM for the same
period.

The LABWM simulated 30-year-average recharge
of 7,975 ha-m/yr was in close agreement with the average
of 8,321 ha-m/yr obtained by Reichard and others (2003;
fig. 51B). The comparison of annual recharge, however,
indicated a greater degree of annual variability in recharge
estimated by the LABWM relative to the estimates obtained
by Reichard and others (2003). For water years 1971-2000,
annual recharge greater than 21,000 ha-m was simulated for
water years 1978 and 1998, whereas annual recharge of 10,300
was estimated by Reichard and others (2003) for the same
years. For most water years, including years with average-
to-below-average precipitation, recharge simulated by the
LABWM was less than that estimated by Reichard and others
(2003). It should be noted that the estimates in Reichard and
others (2003) were developed as the boundary condition for a
calibrated groundwater-flow model and, therefore, indirectly
accounted for the damping effect of the deeper unsaturated
zone in terms of reducing year-to-year variability in recharge
(this damping effect was not accounted for by the LABWM).
The temporal pattern of annual recharge was generally similar
for the two recharge estimates, with water years 1978-80,
1983, 1993, 1995, and 1998 all indicating greater than average
recharge.

The LABWM results indicated that most of the recharge
volume was in the internal recharge area, which is similar to
the previous recharge estimates obtained for the LAGSA. The
30-year-average direct recharge simulated by the LABWM
for the internal area was 5,350 ha-m/yr, compared to only
2,650 ha-m/yr simulated by the LABWM for the contributing
mountain-front recharge areas.

The LABWM results were also compared to previous
estimates of recoverable water for basins in the southern
California region (Crippen, 1965). Recoverable water was
defined by Crippen (1965) as the sum of recharge and runoff.
For the comparison, recoverable water was plotted against
effective precipitation in the LABWM subbasins and the
basins analyzed by Crippen (1965). The LABWM results both
included the with and without urban irrigation simulations.
For the with irrigation results, the sum of precipitation and
irrigation was referred to as effective precipitation. The
LABWM results tended to indicate greater recoverable
water amounts for a given amount of effective precipitation
compared to results obtained by Crippen (1965; fig. 52). The
high percentage of impervious area used in the LABWM
likely caused more runoff than in most of the basins analyzed
by Crippen (1965). A better match between the LABWM
results and the estimates of recoverable water by Crippen
(1965) was obtained when urban irrigation was included.
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Model Limitations

A primary limitation of the LABWM applied in this study
is the uncertainty in model calibration using a comparison
of simulated runoff to available streamflow records. The
LABWM does not account for regulated streamflow, and
only a few unregulated streamflow records were available for
calibration. The watershed area upstream from the unregulated
streamflow-gaging stations used for calibration included only
a fraction of the total area modeled by using the LABWM.

In addition, the length of most of the streamflow records
used for model calibration did not span the full simulation
period. Model uncertainty for simulated recharge is assumed
to be greater than simulated runoff because the model is

not calibrated directly to recharge data, which generally is
not available. Additional data used for calibration, such as
measurements of soil moisture at varying depths and times,
could greatly reduce the uncertainty in simulated recharge.

A major assumption applied in the LABWM was
that runoff generated in response to rainfall, snowmelt,
irrigation, and shallow subsurface-seepage flow is the
primary component of streamflow measured in the study
area. Streamflow resulting from deep groundwater discharge,
wastewater discharge, or flow diversions was not represented
by the LABWM. In addition, simulation of streamflow was
based on a daily routing algorithm that assumed all streamflow
either discharges from the drainage basin or infiltrates into the
root zone at the end of each day. This limitation could cause
an overestimation of streamflow and a corresponding under- or
overestimation of recharge. Streamflow was overestimated
because the dampening effect (time delay) caused by channel
storage of water (including reservoirs and retention basins)
was not accounted for. This increased streamflow either can
cause an over- or underestimation of recharge, depending on
the location and the effective hydraulic conductivity of the
channel represented by the model.

Dispersive streamflow (divergent as opposed to
convergent streamflow), which can be an important
characteristic of streamflow and overland flow across alluvial
fans and basins with braided channels, was not directly
represented in the surface-water flow-routing algorithm. All
surface-water flow was simulated as convergent streamflow.
These limitations in simulating surface-water flow could result
in an overestimation of recharge in some parts of the study
area, particularly in the higher elevation sub-drainage basins
and along the mountain front to basin transition.

Although relatively high-resolution (30-m) data were
used in this study for defining the percentage of impervious
areas for model cells, uncertainty remains about the effective
impervious area represented in the model. The effective
impervious area includes only those impervious surfaces
generating runoff that is routed to downstream cells. In
actuality, a large amount of runoff generated by impervious
surfaces is routed to pervious areas in the same cell, rather
than a downstream cell. For example, runoff from an
impervious roof can be routed directly to the pervious lawn
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area rather than an impervious street gutter or storm drain.
Impervious area runoff routed to pervious areas potentially
does not generate runoff for the cell.

Storm runoff is modeled as a cascading flow process in
the LABWM. For a given cell, surface-water run-on (inflow
from upstream cells) is distributed to the area of the cell (as a
uniform inflow depth). In developed urbanized areas, however,
storm runoff from impervious areas is usually collected by
a network of storm drains that directly connect with the
main channels. In doing so, the storm drains cause a more
rapid hydrologic response to storms. Although the LABWM
empirically accounts for channelized flow in the larger
channels, the highly channelized flow along street gutters and
through the storm-drain network is not directly represented by
the model.

The physical characteristics of the watersheds defined
in the LABWM are static; they do not change with time.
Changes in land use and land cover caused by factors such as
urbanization and wildfires can cause great changes through
time in imperviousness, vegetation, land-cover characteristics,
and stream-channel characteristics that are not represented
by the model. Examination of land-use data sets and results
from model calibration and testing indicated that watershed
characteristics were likely to have changed notably during the
target-simulation period (water years 1915-2014).

Although snow does not fall in the LAGSA or in most
of the LABWM area, snow is an important component of
the hydrologic system in the higher elevation drainages of
the San Gabriel Mountains. The streamflow records used
for model calibration did not include these higher elevation
drainages, and therefore, the calibrated model had a high
degree of uncertainty in the simulation of snow fall and
snow melt in the San Gabriel Mountains. In the LABWM
area, snow was simulated only when the average daily air
temperature was 0 °C or less. In actuality, notable snow can
accumulate can during storms when the average recorded air
temperature is greater than 0 °C. Additional model calibration
for the headwater drainages in the San Gabriel Mountains
could improve the simulation of recharge and runoff for these
locations.

Additional limitations are associated with the urban-
irrigation estimates developed in this study. A key assumption
of the minimum-month method is that during the minimum-
month, landscaped vegetation does not receive any irrigation,
but relies solely on natural rainfall. This is most likely not the
case in many areas of the southwest, where rainfall can be
sporadic, and home owners leave automatic sprinkler systems
turned on. Consequently, the minimum-month method is prone
to an underestimation of outdoor water use (Department of
Water Resources, 1994; DeOreo and others, 1996; Mayer and
others, 1999; Gleick and others, 2003).

Another assumption was that the irrigation rate for
single-family neighborhoods was representative of the rate
in other land-use classes. Typical residential neighborhood
landscaping consists of grasses, trees, and bushes, which is
similar to the landscaping in commercial or other urbanized



land uses. Theoretically, the water used to maintain those
plants is similar, regardless of the type of land-use class in
which they are maintained; however, this assumption has not
been validated to date.

A further consideration is that of the land-use map.

Land cover for a select number of land-use classes in the

San Fernando Valley was hand digitized in order to test the
accuracy of the reported imperviousness from the LACDPW
(Johnson and Belitz, 2012). The results showed that the
LACDPW dataset was very good at estimating perviousness in
the less vegetated land-use classes, but overestimated it in the
single-family residential class. An overestimation would cause
more water to be applied to the landscape.

Lastly, if a particular land use was designated as
containing irrigated vegetation (table 10), it was assumed that
all pervious areas in that land use were irrigated. This is not
always the case, however. Many pervious areas, such as barren
landscapes or vacant land parcels, are not irrigated.

Daily PET was simulated by using an hourly time step
and an energy-balance model to improve the representation
of the shading effects of rugged terrain relative to changes
in solar position during the year (Flint and Childs, 1987).
Daily ET was simulated as a combined function of daily PET;
the vertical distribution of available water in the root-zone
layers; and the root-zone density, where the root-zone density
represents the characteristics of vegetation. Variations in root
density were not adjusted or varied according to differences
in soil texture; however, the effect of soil properties on ET
was accounted for indirectly by differences in layer thickness,
water-holding capacity, and vertical hydraulic conductivity.

Summary and Conclusions

A daily precipitation-runoff model, the Los Angeles
Basin watershed model (LABWM), was used to estimate
recharge and runoff for the principal groundwater basins
underlying the greater Los Angeles area, referred to in this
study as the Los Angeles groundwater study area (LAGSA).
The area of interest for estimating recharge to the LAGSA, the
Los Angeles recharge-study area, included tributary drainages
upstream from and peripheral to the LAGSA boundary. The
tributary drainages have the potential to contribute a large
amount of recharge to the LAGSA. The LABWM uses the
distributed-parameter INFILv3 precipitation-runoff modeling
code for simulating spatially and temporally variable recharge
and runoff on a daily time step. The recharge estimates were
used to develop spatially and temporally distributed recharge
for the LAGSA and also mountain-front recharge for the
peripheral drainages. The mountain-front recharge simulated
for the tributary upland areas bordering the LAGSA was
combined with the direct recharge simulated for the internal
area of the LAGSA in order to define the total potential
transient recharge for the LAGSA. An important aspect of the
application of the LABWM for recharge estimation is that the
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effect of climate variability on recharge is deterministically
simulated by using a process-based daily water balance
calculation, rather than an empirical approach, where
recharge is estimated as a statistical function of precipitation.
Variations in recharge in response to the spatial variability of
watershed characteristics are also directly accounted for in
the distributed-parameter, deterministic simulation. Another
important aspect of the LABWM application for estimating
recharge is that urban irrigation was included in the daily
water-balance simulation and, therefore, it accounted for
increased recharge from urban irrigation return flows.

A gridded discretization of the LABWM area was used
to represent spatially distributed climate and watershed
characteristics affecting the surface and shallow sub-surface
hydrology. Daily climate data obtained from a local network
of 201 monitoring sites and PRISM-derived average monthly
precipitation and maximum and minimum air temperature
maps for the 30-year period (1971-2000) were used to
develop the climate inputs for the LABWM. Data from 2001
defining topography, land use, land cover, soils, vegetation,
and surficial geology were used as input to represent the
contemporary conditions of the physical characteristics
of the LABWM area. A new method for estimating urban
irrigation (representing mostly residential and commercial
landscape watering) based on land use and the percentage
of imperviousness was incorporated into the LABWM. The
urban-irrigation estimates were defined on a quarterly basis to
account for seasonal changes in water demand.

The LABWM was calibrated by using available records
of streamflow at six streamflow gaging stations within the
LABWM. The six gages included three gages with drainage
areas in the LAGSA and three gages outside of, but next
to, the LAGSA. The calibration was limited because the
drainage areas for the six gages did not include most of the
LABWM area and because the drainage areas upstream
from the gages did not represent all the characteristics and
conditions of the LABWM area. The comparison between
simulated and measured streamflow was good for the three
gages in the LAGSA and satisfactory for the three gages next
to the LAGSA, indicating an acceptable overall calibration
for the six gages and for most of the goodness-of-fit statistics
considered. The satisfactory calibration result included PAEE
values within plus or minus 20 percent and NSME values of
0.7 or greater for most of the streamflow components analyzed
for all six gages.

The best calibration was obtained for gage BALC6, with
a PAEE of —6 and NSME values of 0.74 for daily streamflow,
0.93 for monthly streamflow, and 0.82 for average water year
streamflow. The next best calibration was obtained for gage
COYCl1, with PAEE values of 10 to 11 and NSME values
of 0.77 for daily mean discharge, 0.87 for average monthly
streamflow, and 0.83 for average water year streamflow.
Results for gage ALHW6 showed a good calibration for daily
and monthly streamflow, with NSME values of 0.78 and
0.94, respectively. Calibration results for average water-year
streamflow, however, were poor for gage ALHW6, with an
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NSME of only 0.52. There was a moderate tendency of the
model to underestimate streamflow at this location, resulting
in PAEE values of —14 to —18. Calibration results for gage
COMP4 were good for daily and monthly streamflow, with a
PAEE of 18 and NSME values of 0.76 for daily flow and 0.81,
for monthly flow; however, the results for average water-

year streamflow indicated a poor calibration, with a PAEE

of 23 and NSME of only 0.57. For this location, there was a
moderate tendency of the model to overestimate streamflow.
The NSME results for gage SICE1 were good for daily,
monthly, and average water-year streamflow, with values of
0.74 or greater. The best results for gage SJCE1 were obtained
for monthly streamflow, with an NSME of 0.91 indicating

an excellent model fit. The PAEE of —16 for gage SICEI
indicated an overall tendency to underestimate streamflow

but was considered satisfactory for model calibration and

was within the PAEE calibration criteria of plus or minus

20 that was used in calibrating the LABWM. The PAEE
results of 3 and 4 obtained for gage TOPG1 indicate a very
good calibration in terms of minimal estimation bias. The
monthly NSME of 0.68 and the annual result of 0.73 indicated
satisfactory and good calibration results, respectively, however
the daily NSME result of 0.35 indicated a poor fit to daily
streamflow at gage TOPG1.

Model application to a 100-year target-simulation period,
from water years 1915 through 2014, was used to quantify
and evaluate spatial and temporal variability of water-budget
components, including evapotranspiration (ET), recharge,
and runoff. The largest outflow of water from the LABWM
area was ET; the 100-year average ET rate of 362 mm/yr
(182,473 ha-m/yr) represented 65 percent of the combined
water inflow of 488 mm/yr (246,405 ha-m/yr)
from precipitation and 63 mm/yr (31,906 ha-m/yr) from
urban irrigation. Simulated ET rates within the LABWM
area varied from a minimum of 0—-100 mm/yr for impervious
areas to high values of more than 1,000 mm/yr for many
locations, including the south-facing slopes of the San
Gabriel Mountains, stream channels underlain by permeable
soils and thick root zones, and pervious locations receiving
inflows both from urban irrigation and runoff. After ET,
surface-water runoff was the next largest outflow from the
LABWM, averaging 145 mm/yr (73,212 ha-m/yr) for the
100-year period, or 26 percent of the combined precipitation
and urban irrigation inflow. Recharge averaged 45 mm/yr
(22,577 ha-m/yr), or about 8 percent of the combined inflow
from precipitation and urban irrigation.

Simulation results indicated that recharge in response
to urban irrigation was an important component of spatially
distributed recharge, contributing more than 50 percent of
the total recharge to many of the groundwater basins in the
LAGSA. For the eight subdomains included in the LABWM
area that contained the LAGSA, urban irrigation contributed
23 mm/yr (4,733 ha-m/yr) to the total recharge of 41 mm/yr
(8,473 ha-ml/yr), accounting for 56 percent of the total
recharge.

Simulation results indicated that mountain front recharge
from adjacent upland areas and hilly drainages outside of but
tributary to the lower lying area of the groundwater basins
made an important contribution to the total recharge. The
mountain front recharge was assumed to occur as groundwater
underflow from the upland areas into the LAGSA, and was
assumed to be equal to the total direct recharge simulated for
upland drainages. The time-averaged recharge rate was similar
to the combined direct- and mountain-front recharge estimates
developed in a previous study of the LAGSA and used as
input for a calibrated groundwater flow model. The annual
(water year) recharge estimates provided by the LABWM
simulation, however, indicated much greater year-to-year
variability compared to the previous estimates that were based
on an empirical function of annual precipitation. The greater
year-to-year variability in the LABWM recharge estimate
was most strongly correlated to the year-to-year variability in
precipitation and to variations in the timing, magnitude, and
frequency of daily precipitation. In addition, the LABWM
recharge estimates indicate a high degree of spatial variability
caused by spatially varying drainage basin characteristics,
climate, and urban irrigation.
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