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Conversion Factors

U.S. customary units to International System of Units

Multiply By To obtain
Length
inch (in.) 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Area
acre 4,047 square meter (m?)
square foot (ft?) 0.09290 square meter (m?)
square mile (mi?) 2.590 square kilometer (km?)
Volume
gallon (gal) 0.003785 cubic meter (m?)
cubic foot (ft) 0.02832 cubic meter (m?)
acre-foot (acre-ft) 1,233 cubic meter (m?)
acre-foot per year (acre-ft/yr) 1,233 cubic meter per year (m*/yr)
foot per second (ft/s) 0.3048 meter per second (m/s)
cubic foot per second (ft/s) 0.02832 cubic meter per second (m?/s)
gallon per day (gal/d) 0.003785 cubic meter per day (m?*/d)
Flow Rate
inch per year (in/yr) 25.4 millimeter per year (mm/yr)
cubic foot per second (ft¥/s) 0.02832 cubic meter per second (m?/s)
Hydraulic conductivity

foot per second (ft/s) 0.3048 meter per second (m/s)
foot per day (ft/d) 0.3048 meter per day (m/d)

Hydraulic gradient

foot per mile (ft/mi) 0.1894 meter per kilometer (m/km)
Transmissivity
foot squared per day (ft*/d) 0.09290 meter squared per day (m?%d)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

Datums

°C=(°F-32)/1.8

Vertical coordinate information is referenced to North American Vertical Datum of 1988

(NAVD 88).

Horizontal coordinate information is referenced North American Datum of 1983 (NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.

Supplemental Information

Hydraulic conductivity: Hydraulic conductivity can be expressed as cubic foot per second per

square foot [(ft%/s)/ft?]. In this report, foot per second (ft/s), is used for convenience.

Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times
foot of aquifer thickness [(ft¥/d)/ft*]ft. In this report, the mathematically reduced form, foot
squared per day (ft¥d), is used for convenience.
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Basin, Oregon

By Nora B. Herrera', Kate Ely?, Smita Mehta?, Adam J. Stonewall’, John C. Risley’, Stephen R. Hinkle', and

Terrence D. Conlon'

Executive Summary

This report presents a summary of the hydrogeology
of the upper Umatilla River Basin, Oregon, based on
characterization of the hydrogeologic framework, horizontal
and vertical directions of groundwater flow, trends in
groundwater levels, and components of the groundwater
budget. The conceptual model of the groundwater flow
system integrates available data and information on the
groundwater resources of the upper Umatilla River Basin and
provides insights regarding key hydrologic processes, such
as the interaction between the groundwater and surface water
systems and the hydrologic budget.

The conceptual groundwater model developed for the
study area divides the groundwater flow system into five
hydrogeologic units: a sedimentary unit, three Columbia River
basalt units, and a basement rock unit. The sedimentary unit,
which is not widely used as a source of groundwater in the
upper basin, is present primarily in the lowlands and consists
of conglomerate, loess, silt and sand deposits, and recent
alluvium. The Columbia River Basalt Group is a series of
Miocene flood basalts that are present throughout the study
area. The basalt is uplifted in the southeastern half of the study
area, and either underlies the sedimentary unit, or is exposed
at the surface. The interflow zones of the flood basalts are the
primary aquifers in the study area. Beneath the flood basalts
are basement rocks composed of Paleogene to Pre-Tertiary
sedimentary, volcanic, igneous, and metamorphic rocks that
are not used as a source of groundwater in the upper Umatilla
River Basin.

The major components of the groundwater budget
in the upper Umatilla River Basin are (1) groundwater
recharge, (2) groundwater discharge to surface water and
wells, (3) subsurface flow into and out of the basin, and
(4) changes in groundwater storage.

'U.S. Geological Survey.
2Confederated Tribes of the Umatilla Indian Reservation.

Recharge from precipitation occurs primarily in the
upland areas of the Blue Mountains. Mean annual recharge
from infiltration of precipitation for the upper Umatilla River
Basin during 1951-2010 is about 9.6 inches per year (in/yr).
Annual recharge from precipitation for water year 2010 ranged
from 3 in. in the lowland area to about 30 in. in the Blue
Mountains. Using Kahle and others (2011) data and methods
from the Columbia Plateau regional model, average annual
recharge from irrigation is estimated to be about 2.2 in/yr for
the 13 square miles of irrigated land in the upper Umatilla
River Basin.

Groundwater discharges to streams throughout the year
and is a large component of annual streamflow in the upper
Umatilla River Basin. Upward vertical hydraulic gradients
near the Umatilla River indicate the potential for groundwater
discharge. Groundwater discharge to the Umatilla River
generally occurs in the upper part of the basin, upstream from
the main stem.

Groundwater development in the upper Umatilla River
Basin began sometime after 1950 (Davies-Smith and others,
1988; Gonthier and Bolke, 1991). By water year 2010,
groundwater use in the upper Umatilla River Basin was
approximately 11,214 acre-feet (acre-ft). Total groundwater
withdrawals for the study area were estimated at 7,575 acre-ft
for irrigation, 3,173 acre-ft for municipal use, and 466 acre-ft
for domestic use.

Total groundwater flow into or from the study area
depends locally on geology and hydraulic head distribution.
Estimates of subsurface flow were calculated using
the U.S. Geological Survey Columbia Plateau regional
groundwater flow model. Net flux values range from 25,000
to 27,700 acre-ft per year and indicate that groundwater is
moving out of the upper Umatilla River Basin into the lower
Umatilla River Basin.

Water level changes depend on storage changes within an
aquifer, and storage changes depend on the storage properties
of the aquifer, as well as recharge to or discharge from the
aquifer. Groundwater level data in the upper Umatilla River
Basin are mostly available from wells in Columbia River
basalt units, which indicate areas of long-term water level
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declines in the Grande Ronde basalt unit near Pendleton and
Athena, Oregon. Groundwater levels in the Wanapum basalt
unit do not show long-term declines in the upper Umatilla
River Basin. Because of pumping, some areas in the upper
Umatilla River Basin have shown a decrease, or reversal, in
the upward vertical head gradient.

Key data needs are improvement of the spatial and
temporal distribution of water-level data collection and
continued monitoring of streamflow gaging sites. Additionally,
refinement of recharge estimates would enhance understanding
of the processes that provide the groundwater resources in the
upper Umatilla River Basin.

Introduction

The Confederated Tribes of the Umatilla Indian
Reservation (CTUIR) rely on sustainable supplies of
fresh water for the development and sustenance of their
economy and the preservation of their cultural heritage.
Groundwater is an important component of CTUIR water
resources. Groundwater resource development in and around
the Umatilla Indian Reservation (fig. 1) has resulted in
groundwater-level declines near the reservation (Burns and
others, 2012), and there is concern that groundwater pumping
may be affecting nearby streams. Effective management of
groundwater resources in the Umatilla Indian Reservation and
the upper Umatilla River Basin requires the development of a
conceptual understanding of the hydrologic system.

Study Objective and Report Purpose and Scope

The objective of this study was to synthesize available
geologic, hydrologic, and land- and water-use data to develop
a conceptual groundwater model of the upper Umatilla River
Basin. This report describes results of a collaborative effort
of the U.S. Geological Survey (USGS) and the CTUIR
to compile and interpret existing data, characterize the
hydrogeologic framework, characterize the hydraulic head
distribution, and estimate the groundwater budget. This
effort relies largely on data and information that the CTUIR
have collected from wells, seepage runs, spring surveys, and
assessments of water use on or near the reservation. Additional
data from USGS studies in the Columbia Plateau help define
aquifer geometries and hydraulic characteristics, and quantify
recharge, evapotranspiration, and water use. Evaluated
information includes geologic maps and stratigraphic

sections, groundwater level data, borehole geophysical

logs, stream seepage data, baseflow estimates, and aquifer
tests. Information from published and unpublished sources
that describe the hydrology of the area in and around the
reservation is also evaluated. Analysis focused on the period
between 1950 and 2012, using either mean annual estimated
values for part or all of this period or analyzing data from
2010. Water year 2010 was selected because it was a time of
intensive data collection and analysis of water use.

Location and General Features

The 913 mi? study area encompasses the upper Umatilla
River Basin upstream of Birch Creek, which joins the Umatilla
River about 5 mi west of Pendleton. The study area lies on the
northwestern flank of the Blue Mountains and the southeastern
part of the Yakima Fold Belt in eastern Oregon. The western
half of the study area is a gently northwest-sloping, slightly
dissected plateau of semi-arid land between 1,000 and 1,500 ft
elevation. Dryland and irrigated farming as well as ranching
occur in this area. The eastern half of the study area lies in the
Blue Mountains, where streams deeply dissect the northwest
and west sloping land at elevations ranging between 1,500 and
5,000 ft. In the high-elevation areas, the land is covered in a
mix of forest and grasslands (fig. 1).

Major tributaries to the upper Umatilla River include
Wildhorse, McKay, and Meacham Creeks. McKay and
Meacham Creeks are incised and have narrow floodplains.
McKay Reservoir, impounded in 1926, lies west of the
Umatilla Indian Reservation and south of Pendleton. Water
releases from the reservoir augment flow in the Umatilla River
for irrigation and fish habitat.

In Pendleton (elevation 1,490 ft), mean monthly
temperatures for 1928-2013 ranged from a minimum of
33 °F for January to a maximum of 73 °F for July (Oregon
Climate Service, 2014). In Meacham (elevation 4,060 ft),
mean monthly temperatures for 1948-2013 ranged from a
minimum of 26 °F for January to a maximum of 63 °F for
July. Annual water year precipitation ranges from 12.3 in. near
Pendleton to about 33.4 in. near Meacham (fig. 2) to 55 in. in
the eastern, upland part of the study area (1951-2010 mean,
PRISM Climate Group, 2014). Annual precipitation varies
considerably over time. Mean water year precipitation and
the cumulative departure from mean water year precipitation
for Pendleton for 1928-2014 are shown in figure 2. Several
prolonged periods of less than average precipitation occurred
from 1928 to 1939, 1960 to 1968, and 1987 to 1992.
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Figure 2. Mean water year precipitation for Pendleton (1928-2014) and Meacham (1949-1975, and 1998-2014), in
the upper Umatilla River Basin, Oregon. (Data from Oregon Climate Service, 2014.)

Approach
was used to define the extent and thickness of hydrologic units

This study is based largely on existing information. and flow boundaries.
The hydrogeologic framework defined in this study was The groundwater budget was developed using published
based on analyses of geologic maps, geochemical data, and recharge estimation techniques, streamflow analysis, seepage
geophysical logs. The regional framework developed for the runs, water-rights information, pumping data, and regional
Columbia Plateau Regional Aquifer System (Burns and others,  groundwater model results. Analysis of groundwater levels,
2011; Kahle and others, 2011) provided the elevation of the flow directions, and water-level trends was conducted using
basement rock for most areas in the study area and additional water-level measurements collected by the CTUIR; the
geologic information. Exposed basement rock and well data Oregon Water Resources Department (OWRD); Adams,
from one well allowed refinement of basement rock elevation Athena, Pendleton, and Pilot Rock municipalities; and one
in the McKay Creek drainage basin. The CTUIR created a homeowner (appendix A). Time-series data from 56 wells

database of wells containing information on lithology, which measured by CTUIR were also used.
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The upper Umatilla River Basin lies within the
Columbia River flood-basalt province and is underlain by
a thick sequence of Miocene-age volcanic flood basalts
that collectively make up the Columbia River Basalt Group
(CRBG) (figs. 3 and 44—B). In parts of the upper Umatilla
River Basin, the CRBG lava flows are overlain by Miocene
to Holocene sedimentary deposits of conglomerate, loess, silt,
sand, and recent alluvium. The CRBG lava flows are underlain
by Eocene to Oligocene volcanic rocks, and Paleocene to
Eocene arkosic sandstones assigned to the Herren Formation
(generally included as part of the Clarno Formation), and
pre-Tertiary amphibolite schist and gneiss, intrusive norite
and quartz diorite (Hogenson, 1964; Newcomb, 1970; Walker,
1973; Gonthier, 1999; Ferns and others, 2001; Ferns, 2006a,
2006b, 2006¢, 2006d, 2006¢).

Folds and faults are common in the upper Umatilla
River Basin and can result in flow boundaries and
compartmentalization of aquifers in the CRBG (Newcomb,
1959; Porcello and others, 2009; Snyder and Haynes, 2010).
The CRBG was considerably deformed by late-Miocene
or early-Pliocene fault movement, which continued until
middle to late Pleistocene (Hogenson, 1964). Major structural
features in the study area are the northeastward-trending Blue
Mountains anticline, Agency syncline, and Rieth anticline.
The northwestern limb of the Blue Mountain anticline forms
a gently dipping slope from the Blue Mountain uplands to the
lowland areas. Further uplift of the Blue Mountain anticline
increased basalt deformation (Hogenson, 1964). Other notable
structures pertaining to this study include the Kanine Ridge,
Thorn Hollow, Wilahatya, and Hawtmi fault zones at the foot
of the Blue Mountain slope (Ferns, 2006a, 2006b, 2006¢,
2006d, 2006¢) (fig. 3). Post-Miocene sedimentary materials in
the upper basin show minor evidence of secondary structure
(Kienle and others, 1979; Personius and Lidke, 2003).

The conceptual groundwater model developed for the
study area divides the groundwater flow system into five
hydrogeologic units: the sedimentary unit, three Columbia
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River basalt units, and the basement rock unit. Because
the basement rocks are not considered a primary source of
groundwater in the study area, they will not be discussed
further in this report.

Hydrogeologic sections and maps of extent, thickness,
and elevation of the upper surface of the sedimentary unit
and Saddle Mountains basalt unit, Wanapum basalt unit, and
Grande Ronde basalt unit (figs. 4-6) are based on analysis of
well data, previous geologic framework mapping by Kahle
and others (2011), and on geologic maps of the study area
(Jenks and others, 2005; Ferns, 2006a, 2006b, 2006¢, 2006d,
2006e; Madin and Geitgey, 2007; and Mark Ferns and others,
Oregon Department of Geology and Mineral Industries,
written commun., 2008). The thicknesses of the sedimentary
and basalt units are constrained by lithologic descriptions
from OWRD water-well reports and from Hogenson (1964)
(table 1). Geochemistry of cuttings from nine wells (Ferns
and others, 2006; Madin and Geitgey, 2007; and CTUIR,
unpub. data, 2010) (table 2), surface-rock samples from nine
field-mapped stratigraphic sections defined by Ferns (2006a,
2006b, 2006¢, 2006d, 2006¢) and Ferns and Ely (2006)
(table 3), and geophysical logs from five wells (CTUIR [2007]
and this study) (table 4) (fig. 7) were analyzed to refine and
correlate subsurface geometry in the upper Umatilla River
Basin (figs.4—7). Hydrogeologic sections developed from the
data were used to generate structure contours and isopachs
of the sediment, Saddle Mountain, Wanapum, and Grande
Ronde basalt units. The data were interpolated using trend and
deterministic approaches to produce contours that represent
the range in value and local and regional variability observed
in the units. Computer generated contours were compared
against hydrogeologic unit elevation points and simplified
manually to remove irregularities and retain the character of
the contours where possible. Simplified contours were then
converted to rasters for each hydrogeologic unit. Limited
well data in the upland region of the study area resulted in
greater uncertainty in unit thicknesses and elevations in Blue
Mountains area (fig. 7).
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Figure 4. Generalized hydrogeologic sections of units trending (A) northwest to southeast, and (B) northeast to southwest in
the upper Umatilla River Basin, Oregon.
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Figure 7. Surficial distribution of selected observation wells, stratigraphic sections, springs, and streamflow-gaging stations
throughout the upper Umatilla River Basin, Oregon.
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Table 1. Summary of well data used to generate the extent, thickness, and top elevations of the sedimentary unit, Saddle Mountains
basalt unit, Wanapum basalt unit, Grande Ronde basalt unit, and basement rock, upper Umatilla River Basin, Oregon.

[The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) is the agency determining and retaining the hydrogeologic elevation data shown in this
table. All elevations are in feet above North American Vertical Datum of 1988. USGS site identification No.: Site identification number permanently assigned
to the well by the U.S. Geological Survey (USGS) and recorded in National Water Information System, a national computer database maintained by USGS.
Well log identifier: Unique identifier combining a four-letter county code and a well-log number with as many as five digits, which is assigned to the well
when a water well report is filed by the well driller with the Oregon Water Resources Deparment (OWRD) and recorded in Ground Water Resource Information
Distribution, a statewide computer database maintained by OWRD. CTUIR well identification No.: Unique number assigned to the well by the CTUIR when a
well report is filed by the driller with CTUIR and recorded in the CTUIR database. Abbreviations: *, unit not present at location; ft, foot; NA, not available]

Elevation of top of unit

USGS site Land

. e . Well log CTUIR well Well depth Saddle
identification . - . I surface i _ Wanapum Grande
No. identifier identification No. elevation (ft) Sediment Mountains bas:It Ronde basalt
basalt
453519118395201 UMAT 341 2 1,817 1,150 1,817 * 1,800 1,362
454033118465801 UMAT 530 153 1,070 700 1,070 * 1,060 1,017
454014118474701 UMAT 53635 154 1,053 761 1,053 * * 1,036
454019118421601 UMAT 855 310 1,177 655 1,177 * 1,117 707
453956118424001 UMAT 55262 381 1,204 968 1,204 * 1,072 746
454013118412401 UMAT 911 390 1,203 300 1,203 * 1,182 NA
454001118405901 UMAT 5929 422 1,215 1,057 1,215 * 1,204 779
453950118394401 UMAT 945 472 1,245 315 1,245 * 1,182 NA
454005118384301 UMAT 5930 482 1,283 1,100 1,283 * 1,261 781
NONE UMAT 973 507 1,266 135 1,266 * 1,191 NA
453859118401901 UMAT 53456 539 1,438 975 1,438 * 1,227 885
453842118432501 UMAT 1015 548 1,281 608 1,281 * 1,219 901
NONE UMAT 1013 551 1,290 635 1,290 * 1,276 920
453620118430901 UMAT 1061 685 1,465 965 1,465 * 1,345 1,030
454542118321901 UMAT 1428 829 1,710 980 1,710 1,699 1,620 962
454526118311901 UMAT 1444 831 1,657 1,030 1,657 1,628 1,567 952
454409118302901 UMAT 1446 843 1,810 1,910 1,810 1,800 1,731 1,107
NONE UMAT 1449 849 1,455 785 1,455 * 1,437 974
NONE UMAT 5362 852 1,655 860 1,655 * 1,643 1,090
454353118313901 UMAT 1453 854 1,780 936 1,780 1,762 1,666 1,127
NONE UMAT 6425 860 1,718 598 * * 1,509 1,120
NONE UMAT 1462 875 2,054 1,103 2,054 * 2,044 1,417
NONE UMAT 1468 889 2,014 380 2,014 2,004 1,959 1,324
NONE UMAT 1469 891 1,815 700 1,815 1,799 1,757 1,160
454237118273401 UMAT 1474 902 2,295 145 2,295 2,291 2,240 1,740
454751118291301  UMAT 6151 964 1,885 746 1,885 1,880 1,780 1,177
454713118242201 UMAT 3103 967 2,053 1,125 2,053 NA NA NA
454625118330901 UMAT 1432 970 1,544 1,263 1,544 1,535 1,440 964
454014118510301 UMAT 53890 1020 1,053 433 1,053 * * 1,051
454014118510302 UMAT 54072 1021 1,048 826 1,048 * * 1,044
454038118485601 UMAT 533 1056 1,202 600 * * 1,202 1,072
NONE UMAT 663 1078 1,123 46 1,123 * * 1,119
454328118444201 UMAT 1403 1091 1,485 185 1,485 1,482 1,432 1,032
NONE UMAT 1416 1094 1,432 800 1,432 * 1,404 995
NONE UMAT 1417 1095 1,330 742 1,330 * 1,315 998
NONE UMAT 1425 1096 1195 88 1,195 * 1,180 NA
NONE UMAT 1438 1100 1570 515 1,570 * 1,556 940



Table 1.

Hydrogeologic Framework

Summary of well data used to generate the extent, thickness, and top elevations of the sedimentary unit, Saddle Mountains

basalt unit, Wanapum basalt unit, Grande Ronde basalt unit, and basement rock, upper Umatilla River Basin, Oregon.—Continued

USGS site

Land

Elevation of top of unit

P, Well log CTUIR well Well depth Saddle
WentHication identifier identificationNo. e () Sediment Mountains Wonapim  Grande
basalt
454643118335501  UMAT 6433 1102 1554 1270 1,554 1,543 1444 939
454856118313801  UMAT 2977 1103 1773 1,000 1,773 1756 1,641 1,108
4551011836400 UMAT 3039 1104 1850 650 1,850 1,816 1,739 1,143
454841118363401  UMAT 3047 1106 1692 1,035 1,692 1,622 1,582 989
454755118343401  UMAT 2579 1109 1674 979 1,674 1618 1539 974
454648118355201  UMAT 3060 1 1570 1,120 1,570 * 1,559 919
454646118315901  UMAT 3063 113 1620 1,640 1,620 1,579 1471 1,010
454602118340801  UMAT 5331 116 1580 1,725 1,580 1,557 1455 940
455115118393201  UMAT 5351 117 1817 1296 1,817 1,738 1,607 997
NONE UMAT 5361 s 1532 1,000 1,532 1524 1515 982
NONE UMAT 6095 1125 1165 608 1,165 : 1,142 990
NONE UMAT 51779 1134 1,665 78 1,665 1,595 1,555 955
452957118441001  UMAT 54259 1140 1690 230 1,690 * . 1,688
453520118452501  UMAT 54546 1143 1395 385 1,305 * . 1,143
NONE UMAT 54920 1144 2150 220 2,150 * * 2,090
NONE UMAT 55441 1152 1760 1,195 1,760 1,688 NA NA
454018118484001  UMAT 55619 1156 1045 852 1,045 . - 1,021
NONE UMAT 56037 1160 1845 420 1,845 1820 1,765 1,175
NONE UMAT 57015 172 1573 1,068 1,573 . 1,518 1,237
NONE UMAT 54447 1739 1343 650 1,343 . 1,183 1,074
453642118492601  UMAT 683 1743 L1400 620 1,140 . . 1,123
454844118273101  UMAT 3088 1746 1935 1,012 1,935 . 1,890 1,330
454750118252302  UMAT 3096 1747 2000 1455 2,000 . 1,986 1435
455024118245001  UMAT 3074 1750 1836 551 1,836 . 1,828 1,285
455120118240701  UMAT 3067 1751 1510 300 1,510 * 1,498 1,008
NONE UMAT 1378 1753 1208 605 1,208 " 1,187 823
NONE UMAT 504 1754 808 185 898 * . 888
NONE UMAT 287 1765 1468 720 1,468 * 1,308 1,210
NONE UMAT 5403 1776 2063 1433 2,063 . . 2,007
NONE UMAT 55510 1780 5010 180 5,010 * 5,004 NA
NONE UMAT 55495 1781 3045 695 3,145 * 3,140 2,755
NONE UMAT 1400 1787 1598 429 1,598 1,588 1,488 888
NONE UMAT 53934 1788 1709 425 1,709 1679 1579 1,079
NONE UMAT 3019 1789 1648 1,500 1,648 1,638 1,598 728
455248118455801  UMAT 3865 1790 1650 120 1,650 1634 1559 750
452959118494001  UMAT 67 1793 1,560 1,500 1,560 * 1,513 1,392
453443118474501  UMAT 292 179 1460 700 1,460 * 1,290 1215
NONE UMAT 3035 1799 1957 405 1,957 1,923 1,823 1,200
NONE UMAT 5710 1815 1758 620 1,758 . . 1,742
NONE UMAT 6001 1816 1820 410 1,829 * . 1,822
NONE UMAT 56683 1822 1586 912 1,586 * 1,448 1,310
NONE NA 1865 1487 825 1,487 . 1,407 976
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Table 2. List of selected wells with geochemistry data, upper Umatilla River Basin, Oregon.

[The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) is the agency retaining the hydrogeologic elevation data shown
in this table. All elevations are in feet above North American Vertical Datum of 1988. USGS site identification No.: Site identification
number permanently assigned to the well by the U.S. Geological Survey (USGS) and recorded in National Water Information System,
a national computer database maintained by USGS. CTUIR well identification No.: Unique number assigned to the well by the CTUIR
when a well report is filed by the driller with CTUIR and recorded in the CTUIR database. Well log identifier: Unique identifier
combining a four-letter county code and a well-log number with as many as five digits, which is assigned to the well when a water

well report is filed by the well driller with the Oregon Water Resources Deparment (ORWD) and recorded in Ground Water Resource
Information Distribution, a statewide computer database maintained by OWRD. Abbreviations: ft, foot]

USGS site CTUIR well Land surface Well

. e USGS Well log . e .
identification sitename identifier identification elevation depth

No. No. (ft) (ft)

1454001118405901 02N/33E-09DAA3 UMAT 5929 582 1,215 1,057
2454005118384301 02N/33E-11ADC4 UMAT 5930 789 1,280 1,100
453859118401901 02N/33E-15DBC1 UMAT 53456 898 1,435 975
454014118510301 02N/32E-07ADB1 UMAT 53890 965 1,150 433
454014118510302 02N/32E-07ADB2 UMAT 54072 966 1,050 1,086
454602118340801 03N/34E-04DBB UMAT 5331 1066 1,580 1,725
455115118393201 04N/33E-02CBD UMAT 5351/5449 1067 1,810 1,296
452957118441001 01S/33E-07BBB UMAT 54259 1090 1,770 230
453520118452501 01N/32E-01CAC UMAT 54546 1093 1,400 385

! Indicates well with multi-decade data; see table 6. For well location, see map identifier “O” in figure 7.

2 Indicates well with multi-decade data; see table 6. For well location, see map identifier “R” in figure 7.

Table 3. Summary of selected stratigraphic section data, upper Umatilla River Basin, Oregon.

[The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) is the agency retaining the stratigraphic section data. All unit tops elevations are in feet
above North American Vertical Datum of 1988. CTUIR sitename: Nearest topographical feature. CTUIR identification No.: Unique number assigned by the
CTUIR and recorded in the CTUIR database. Abbreviations: *, unit not present at location; ft, foot; NA, not available]

Land surface Top of Top of Land surface

CTUIR Latitude Longitude  elevation  Saddle Top of Topof Grande elevation
CTUIR . e - - . Wanapum
. identification (decimal (decimal (top of Mountains Vantage Ronde (bottom of
sitename . basalt . .
No. degrees) degrees) section) hasalt . Horizon  basalt section)
. unit .
(ft) unit unit (ft)
Reservation Mountain 1827 45.7371980 -118.3762070 2,950 2,950 2,900 2,520 2,510 1,380
Gibbon Ridge 1828 45.6647970 -118.3797970 3,280 * * * 3,280 850
Iskuulpa 1829 45.6397990 -118.4283030 3,450 N N * 3,450 2,795
Buckaroo (Kanine) 1830 45.6253180 -118.4984520 3,520 * 3,520 3,225 3,225 2,225
Emigrant 1831 45.5840980 -118.5272610 3,400 * 3,400 3,160 3,160 2,715
Table Rock 1832 45.5427200 -118.6232100 3,615 * 3,615 3,580 3,580 2,305
North Fork Umatilla River 1842 45.7399980 -118.0438970 5,045 5,045 5,010 NA 4,920 NA
Wilbur Mountain 1843 45.4900990 -118.2562000 4,120 * * * 4,120 NA
unnamed 1844 45.3694050 -118.5987060 4,355 NA NA NA 4,355 NA
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List of selected wells with borehole geophysical data, upper Umatilla River Basin, Oregon.

[USGS site identification No.: Site identification number permanently assigned to the well by the U.S. Geological Survey (USGS) and recorded in National
Water Information System, a national computer database maintained by USGS. Well log identifier: Unique identifier combining a four-letter county code and a
well-log number with as many as five digits, which is assigned to the well when a water well report is filed by the well driller with the Oregon Water Resources
Deparment (OWRD) and recorded in Ground Water Resource Information Distribution, a statewide computer database maintained by OWRD. CTUIR well
identification No.: Unique number assigned to the well by the CTUIR when a well report is filed by the driller with CTUIR and recorded in the CTUIR

database. Abbreviations: ft, foot]

_ USGSssite . o CTURwell  Welldepth  'Velseal Logged
identification USGS sitename Well log identifier ., .. " . depth interval
identification No. (ft)

No. (ft) (ft)
453842118432501 02N/33E-20BBB UMAT 1015 240 880 0-62 1-880
453620118430901 02N/33E-32CCAl UMAT 1061/1060 533 965 0-103 0-965
'454526118311901 03N/34E-11AAC UMAT 1444/55063 669 1,030 0-341 0-1,024
2453956118424001 02N/33E-08DBD3 UMAT 909/55262 27 968 0-64 0-968
453634118404801 02.00N/33.00E-34BCDO01 UMAT 57015 1141 1,068 0-400, 0-673,

0-700 700-1,068

'Indicates well with multi-decade data; see table 6. For well location, see map identifier “X” in figure 7.

’Indicates well with multi-decade data; see table 6. For well location, see map identifier “K” in figure 7.

Hydrogeologic Units
Sedimentary Unit

The sedimentary deposits overlying the CRBG consist
of four types of Tertiary and Quaternary sediments defined by
Hogenson (1964) and refined by Ferns and Ely (2006) (figs. 3
and 6): (1) recent stream alluvium, including Pleistocene
terrace deposits (Qal), (2) Quaternary alluvial fan deposits
(Qf), (3) Quaternary landslide deposits (Qls), (4) loess and
fine-grained sandstone (QTs) interpreted as late Miocene
wind-reworked, fine grained deposits correlative to the
McKay Formation, and (5) late-Miocene to early-Pliocene
conglomerate of the McKay Formation (Tms) (fig. 3). Total
thickness of the sedimentary unit within the study area ranges
from less than 10 to 320 ft (fig. 6).

The reworked loess and basaltic gravel from the Blue
Mountain uplands form the recent stream alluvium (Qal) along
present-day streams. The large proportion of silt results in low
permeability. Within the stream alluvium, limited interbeds of
reworked white volcanic ash form terraces along the canyon
bottoms and adjacent slopes. Upstream from Pendleton
there is a 7-mi stretch of approximately 40-ft thick alluvium
primarily composed of gravel (Hogenson, 1964). The alluvium
is generally not more than 50 ft thick (Mark L. Ferns, Oregon
Department of Geology and Mineral Industries, written
commun., 2014).

Coalescing, alluvial fan deposits located along the
western edge of the Blue Mountains are mapped as Qf. The
Quaternary fan deposits are primarily unconsolidated deposits
of coarse gravel, gravels and sands which overlie the basalt
and McKay formations (Ferns, 2006a, 2006b, 2006¢, 2006d,
2006e; Ferns and Ely, 2006).

Permeable loess and fine sands (QTs) overlie the
pre-Pleistocene rock units in the area, and is derived partly
from glaciolacustrine sediments found at lower altitudes and
from fine grained alluvial plain deposits. These deposits were
previously interpreted as the older loess Pleistocene Palouse
Formation by Hogenson (1964) and Walker (1973); however,
it is correlative to the middle Miocene to Pliocene McKay
Formation (Mark L. Ferns, Oregon Department of Geology
and Mineral Industries, written commun., 2014), and overlies
and interbeds with the Saddle Mountains basalt unit (Ferns,
2006a, 2006b, 2006c, 2006d, 2006¢; Ferns and Ely, 2006).
The sandy to fine silt loess ranges in thickness from 1 to 2 ft in
the upland area of the Blue Mountain region, more than 50 ft
near Helix (Hogenson, 1964), to as much as 160 ft northward
(Ferns, DOGAMI, written commun., 2014).

Poorly bedded, consolidated conglomerate that composes
the McKay Formation (Tms) is deposited primarily in the
trough of the northeast-trending Agency syncline near the
Hawtmi fault zone at the foot of the Blue Mountain slope.
The low-permeability deposit primarily consists of pebble to
cobble-sized basalt, with additional basalt fragments ranging
in size from grit to boulders, and silt and sand lenses that
can be several hundred feet long and as much as 40 ft thick
(Hogenson, 1964). Total formation thickness may be as much
as 300 ft (Ferns and McConnell, 2006). Where present, the
conglomerate directly overlies the CRBG, and underlies the
widespread loess and alluvial fan deposits (QTs and Qf).

Hydraulic properties of the sedimentary unit are
highly variable because of the diversity of deposits. Values
of hydraulic conductivity for glacial till, loess, and silty
sand deposits range from 10°to 10 ft/d, 10 to 1 ft/d, and
102 to 10* ft/d, respectively (Freeze and Cherry, 1979).
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Mean hydraulic conductivity and storage coefficient values for
the sedimentary unit were determined from well data in the
Hermiston-Umatilla area and estimated to be 24,000 ft/d and
0.15, respectively (Davies-Smith and others, 1988). Specific
capacity data from 882 wells open to basin-fill units in the
Yakima River Basin provide a mean horizontal hydraulic
conductivity value of 182 ft/day (similar to the reported
magnitude of silty sand deposits by Freeze and Cherry
[1979]), with a minimum value of 0.01 ft/day and a maximum
value of 17,715 ft/day (Vaccaro and others, 2009). These
hydrologically different sedimentary materials directly overlie
the less permeable CRBG.

Columbia River Basalt Group

The CRBG formations present in the upper Umatilla
River Basin are the Saddle Mountains Basalt (Tsu), Wanapum
Basalt (Twu), and Grande Ronde Basalt (Tgu) (figs. 3—-6).
Individual flows range in thickness from 5 to greater than
100 ft, and total thickness of the series of flows in the study
area, as calculated during this study, may be as much as
6,800 ft (fig. 6). The top and bottom of individual flows are
vesicular and commonly brecciated. When the hiatus between
flows was sufficiently long, soil or sediments accumulated on
the surface. When preserved to form interbeds between flows,
these sediments are assigned to the Ellensburg Formation.
Where present the interbeds between the Grande Ronde and
the Wanapum Basalts (Vantage Member of the Ellensburg
Formation) are an important stratigraphic marker, and are
informally referred to as the “Vantage Horizon’. The Vantage
Horizon is generally marked by a thin red to brown zone
which includes siltstone, claystone, pebble gravels, red
paleosols, and pillow lavas and breccias. Where exposed at
the surface, the Vantage horizon may be marked by spring
lines (Ferns and others, 2004, Swanson and others, 1979);
however, the interbed is typically less than 2 ft thick and
commonly not found in outcrops in the study area, with the
exception of exposed outcrops in Pendleton. Further analysis
of geochemistry and geophysical well logs by CTUIR resulted
in a refinement of the location of the contact between the
Wanapum Basalt and the top of the Grande Ronde Basalt in
the upper Umatilla River Basin.

The vesicular and brecciated flow tops and bottoms
of individual flows are commonly permeable and form the
principal aquifers in the CRBG. Between these interflow
zones, the dense flow interiors are relatively impermeable.
Conceptually, the CRBG is a series of productive aquifers
consisting of relatively high permeability interflow zones
separated by the low permeability flow interiors. The
uppermost part of the CRBG is often permeable and
unconfined, and has a good hydraulic connection with the
overlying alluvial aquifer and, in some cases, streams.
Permeable interflow zones at depth are confined by the flow
interiors. Although interflow zones may yield large amounts of

water initially, continued withdrawals result in large declines
in water levels because of low storage properties and limited
recharge of water reaching these productive zones through
the low-permeability flow interiors. Upland areas in the Blue
Mountains where permeable interflow zones intersect land
surface likely provide recharge to CRBG aquifers at depth.

The youngest CRBG formation present in the upper
Umatilla River Basin is the Saddle Mountains Basalt. It is
typically overlain by sedimentary deposits throughout the
study area, though it outcrops in the Wildhorse Creek stream
channel near Athena, and erosional remnants are present in
the upper reaches of the Umatilla River channel upstream of
Gibbon. Only one lava flow of the Saddle Mountains Basalt
is present in the upper Umatilla River Basin. The flow is
generally less than 100 ft thick near Adams and Athena and
thickens, where not eroded through by streams, to the north
and northwest to about 150 ft at the boundary of the study area
(fig. 6). The Saddle Mountains Basalt is not present southwest
of Adams.

The Wanapum Basalt underlies both the sedimentary unit
and the Saddle Mountains Basalt in the upper Umatilla River
Basin; it is exposed along stream channels and as erosional
remnants at higher elevations in the Blue Mountain uplands.
The faulted and uplifted Blue Mountains results in younger
Wanapum Basalt in the lowland juxtaposed with older Grand
Ronde Basalt in the uplifted block. Flows of the Frenchman
Springs Member of the Wanapum Basalt known to be present
in the upper Umatilla River Basin are the Sentinel Gap and
Sand Hollow. The Basalt of Dodge is the only flow of the
Eckler Mountain Member present in the study area. The total
thickness of the Wanapum basalt unit is as much as 870 ft
in the northern and northwestern part of the study area,
between 600 and 700 ft thick near Helix and Adams, Oregon,
400-500 ft thick near Mission, Oregon, and thins to less than
100 ft in areas near Pendleton and near the southwestern
boundary of the study area (fig. 6). Erosional remnants in the
Blue Mountain uplands range from 10 to 350 ft thick.

The oldest CRBG formation in the study area is the
Grande Ronde Basalt. It is present at land surface in the
upper Umatilla River Basin east and southeast of Mission and
Cayuse. The northeast-trending Kanine Ridge, Wilahatya,
and Hawtmi fault zones mark the edge of the Blue Mountain
slope and generally mark the surficial extent of the Grande
Ronde Basalt to the west and northwest (fig. 3) (Ferns, 2006a,
2006b, 2006¢, 2006d, 2006¢); however, it is present at depth
to the west and northwest (figs. 4 and 6). The Grande Ronde
Basalt is estimated to consist of more than 100 flows in the
Umatilla River Basin (Reidel and others, 1989). Multiple
flow members are present in the upper basin and include
ferroandesite of Fiddlers Hell, feeder dikes and vent deposits,
and magnetostratigraphic units R1, N1, R2, and N2 (which
includes the prominent Sentinel Bluffs and Winter Water
Members). Individual flows range from a few feet to 200 ft
thick. Unit thicknesses also include the scattered, capping



flows of mid-Miocene olivine basalts and trachyandesite
lavas (Powder River Volcanic Field rocks) which overlie the
Grand Ronde Basalt in the eastern upland region of the Blue
Mountains (Ferns and McClaughry, 2013; Ferns and others,
2002), where it is present well above the regional water table.
Grande Ronde basalt unit thickness in the study area, except
where incised by stream drainages, generally ranges from
3,000 to 4,000 ft, and thickens to the northwest, reaching
6,100 ft near Helix (fig. 6).

Mean values of hydraulic conductivity determined
from about 1,700 short-duration specific capacity tests in the
Umatilla River Basin are 18 ft/d for the Saddle Mountains
basalt unit, 170 ft/d for the Wanapum basalt unit, and 65 ft/d
for the Grande Ronde basalt unit (Davies-Smith and others,
1988). Values of transmissivity for the CRBG derived from the
numerical model of the Umatilla River Basin by Davies-Smith
and others (1988) ranged from 0.005 to 0.25 ft*/s. Hydraulic
conductivity values estimated for specific-capacity data from
573 basalt wells in the entire Columbia Plateau Regional
Aquifer System study ranged from 0.1 to 58,000 ft/d, with
a mean of 800 ft/d and a median of 70 ft/d (Kahle and
others, 2011).

Storage coefficient values derived during the
Davies-Smith and others (1988) study from model calibration
results average 0.01, 0.0045, and 0.0050 for the Saddle
Mountains basalt unit, Wanapum basalt unit, and Grande
Ronde basalt unit, respectively. Davies-Smith and others
(1988) tabulated other storage coefficient values from
(1) OWRD aquifer tests, (2) a study that calculated storage
coefficients using volumetric analysis, and (3) a previous
basalt groundwater-flow model in the Walla Walla River Basin
(McNish and Barker, 1976). These storage coefficient values
ranged from 0.00001 to 0.0065 (higher values are typical of
leaky artesian conditions) for the basalt aquifers.

Groundwater Elevations and Flow
Directions

Groundwater elevations provide insight into the spatial
distribution of hydraulic head that drives groundwater flow.
The CRBG contains multiple permeable zones (aquifers)
separated by less permeable confining units. Groundwater
flows from high water-level elevations (high head) to areas
of low water-level elevations (low heads). Because wells in
the study area are commonly open to multiple permeable
zones, the water levels in wells can represent a composite
head representing a range of depths. Consequently, the
three-dimensional distribution of hydraulic head in this study
area can only be partially understood given available data.
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Data Sets and Limitations

The CTUIR collected water-level measurements
during autumn 2008 and spring 2009 for 158 and 193 wells
(appendix A), respectively, that were less than 400 ft deep to
understand seasonal water level changes. Between January 3,
2012, and June 18, 2012, monthly water-level measurements
were made at 110 field-located wells tapping basalt aquifers
to delineate head distribution and horizontal and vertical
flow (appendix A). During that period, a subset of 56 wells
was measured monthly to evaluate monthly variability in
water levels. Only 2 of the 56 wells had water levels that
varied more than 10 ft between January and June 2012.
Measurements from April and May were generally used to
represent water level elevations for spring 2012.

The large open intervals in most of the measured wells
limits understanding vertical gradients over the full range
of the aquifer system and creates uncertainty in measured
hydraulic heads at greater depth within the aquifer system
because measured water levels are a composite of the head in
aquifers from various depths. The general direction of vertical
flow was determined in some locations using proximate well
pairs that were completed in individual hydrogeologic units
of different depths or sufficiently different in completed depth
such that even the composite heads provided an indication of
the direction of the vertical gradient.

Because springs occur where the land surface intersects
the water table spring elevations can be used to estimate the
water table elevation. In August to September 2009, CTUIR
conducted a survey of 19 springs (all located in the study area
or on the Umatilla Indian Reservation) (fig. 7 and table 5).

General Horizontal and Vertical Flow Directions

The regional pattern of groundwater flow in the CRBG
is from the upland areas in the southeast and north, generally
toward the Umatilla River, where heads are lowest (fig. 8).
Horizontal hydraulic gradients inferred from wells less than
400 ft deep are typically 40-50 ft/mi in the lowland area.
Gradients steepen to 400-500 ft/mi along the slope of the Blue
Mountains and are locally influenced by streams. Horizontal
hydraulic gradients inferred from wells greater than 400 ft
deep in the lowland area are typically greater than 50 ft/mi
north of the Umatilla River, and about 100 ft/mi south of the
Umatilla River. Scarcity of data prevents quantifying deeper
horizontal gradients in the Blue Mountain uplands and as they
transition across the Blue Mountain slope. Lack of measured
water level information in the sedimentary unit precludes
delineation of horizontal gradients; however, work by Jones
and others (2007) and Poole and others (2008) indicates that
hyporheic exchange is prevalent along the main-stem Umatilla
River, suggesting that shallow horizontal head gradients are
similar to the stream gradient in the floodplain.
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Table 5.

Summary of Confederated Tribes of the Umatilla Indian Reservation 2009

survey data of springs, upper Umatilla River Basin, Oregon.

[All elevations are in feet above North American Vertical Datum of 1988 The Confederated
Tribes of the Umatilla Indian Reservation (CTUIR) is the agency retaining the spring survey data.
Abbreviations: ft, foot; acre-ft/yr, acre-foot per year; NA, not measurable or not accessible]

Latitude Longitude Land Discharge
CTUIR Survey . . surface rate on
- (decimal (decimal .

identifier date degrees) degrees) elevation survey date

(ft) (acre-ft/yr)
1577 08-10-09 45.68239316 -118.6844668 1,329 63.2
1216 08-10-09  45.66535096 -118.6699883 1,225 NA
1325 08-24-09  45.51160778 -118.6610685 2,078 15.7
1335 08-24-09  45.50732003 -118.6797477 1,878 37.4
1338 08-24-09  45.50637487 -118.6606713 1,866 1.9
1699 08-26-09  45.57775805 -118.5575179 2,992 7.5
1387 08-26-09  45.57780993 -118.5563529 2,975 NA
1425 08-28-09  45.34852168 -118.59739 4,492 33
1347 09-01-09  45.61610174 -118.5024775 3,560 NA
1231 09-01-09  45.6273954 -118.5054092 3,295 NA
1683 09-01-09  45.6861318 -118.3929072 1,794 3.7
1698 09-09-09  45.65377074 -118.3990225 2,005 NA
1218 09-21-09  45.62588238 -118.6161292 1,822 77.3
1680 09-21-09  45.64561009 -118.6054549 1,623 9.9
1690 09-23-09  45.72197076 -118.4092567 2,677 NA
1250 09-23-09  45.69026702 -118.5371739 1,669 8.5
1246 09-23-09  45.68725864 -118.5089794 1,560 NA
1254 09-10-09  45.719169 -118.187233 2,474 23
972 unknown  45.684367 -118.483544 1,525 NA

In general, recharge areas have downward vertical
gradients and discharge areas have upward gradients. Although
data are scarce, decreasing head with depth in the CRBG
in areas higher than the valley floor generally indicates that
upland areas constitute a recharge zone. As the elevation of the
bottom of the open interval in wells decrease, the measured
water levels generally decrease. Water level measurements
at City of Pilot Rock wells 01S/32E-17ACD (shallow) and
01S/32E-17DBA (fig. 7, map letter E and F, respectively)
(deep) completed in the Grande Ronde basalt unit (fig. 7)
indicate a downward vertical gradient. A downward vertical
gradient is also evident at a shallow/deep well pair where
the shallow well (01N/33E-03DDD1; fig. 7, map letter C) is
completed to 121 ft in the upper Grande Ronde basalt unit
and the deep well (01N/33E-03DDD2; fig. 7, map letter D) is
completed to 1,150 ft (and cased to 26 ft) in the Grande Ronde
basalt unit (fig. 7). This well pair is located at the base of the
Blue Mountain slope in the southwestern part of the study
area. Water level measurement records indicate the deep well
was originally completed to 255 ft and had water levels similar
to the shallow well until it was deepened in 1981. Spring
2012 water level elevations were 1,823 ft and 1,568 ft for the

shallow and deep wells, respectively—a difference of 255 ft,
and evidence of a downward vertical gradient. There are no
well pairs at high elevations in the basin to confirm downward
head gradients in upland areas.

Water levels measured near the Umatilla River, where
discharge is to be expected, generally indicate an upward
vertical gradient; however, in areas of intensive pumping
from the Grande Ronde basalt unit near the Umatilla River, a
downward vertical gradient is evident. This is demonstrated
in the study area between Pendleton and Mission, where a
downward vertical gradient is apparent directly to the west of
an area with an upward vertical gradient (where pumping is
primarily from the Wanapum basalt unit). This is discussed
further in the section, Trends in Groundwater Levels. There
are no data available to determine vertical gradients near
the Umatilla River in the Pendleton area; however, pumping
from the Grande Ronde basalt unit has lowered water levels.
Measured water levels from wells completed in the Grande
Ronde basalt unit near Pendleton typically are about 800 ft
elevation, whereas water level measurements near Pendleton
in the late 1960s typically were about 900 ft.
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Umatilla River Basin, Oregon. Water level contours reflect the top of the saturated zone and do not fully reflect incised topography.
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Trends in Groundwater Levels

Analysis of long-term data on groundwater levels can

is inherently limited by the small number (29) of wells with
multi-decade groundwater level data (fig. 7 and table 6) and

provide insights into the response to natural and artificial

stresses such as changes in recharge or groundwater pumping.
The CTUIR (2007) assessed groundwater level trends

in the upper Umatilla River Basin. A summary of those
interpretations, an assessment of new data from the USGS
National Water Information System database, and additional
data published by Snyder and Haynes (2010) and Burns and
others (2012) are presented herein. These data are sufficient
to establish some general temporal patterns in groundwater

levels in the Umatilla River Basin study area, but the analysis

Table 6.

Wells with multi-decade groundwater level data, upper Umatilla River Basin, Oregon.

the absence of broad geographic coverage in those data.

Groundwater levels in alluvial gravels and Wanapum
basalt aquifers in the upper Umatilla River Basin have been
approximately stable over a period of decades. Available
groundwater level data for alluvial gravels in the floodplain of
the Umatilla River show seasonal fluctuations that are related
to river stage, but groundwater levels are stable at longer
timeframes (CTUIR, 2007). Groundwater level fluctuations in
well 02N/33E-09ADA1 (map letter M, figs. 7 and fig. 9) are
typical of wells in alluvial gravels.

[Water-level data is recorded and maintained by either USGS or OWRD, or both. All elevations are in feet above North American Vertical Datum of 1988.
Map identifier: Matches well to location on figure 7. USGS site identification No.: Site identification number permanently assigned to the well by the U.S.
Geological Survey (USGS) and recorded in National Water Information System, a national computer database maintained by USGS. Well log identifier:
Unique identifier combining a four-letter county code and a well-log number with as many as five digits, which is assigned to the well when a water well
report is filed by the well driller with the Oregon Water Resources Deparment (OWRD) and recorded in Ground Water Resource Information Distribution,

a statewide computer database maintained by OWRD. CTUIR well identification No.: Unique number assigned to the well by the Confederated Tribes of
the Umatilla Indian Reservation (CTUIR) when a well report is filed by the driller with CTUIR and recorded in the CTUIR database. Period of record: a,
water-level data is recorded and maintained by the CTUIR. Abbreviation: ft, foot]

Map _ US(_5§ sil_e ) Well log _ CTU_IB we:II Land sm:face Well _
. r identification USGS sitename . e identification elevation depth Period of record
identifier identifier
No. No. (ft) (ft)
A 453230118464601 01N/32E-26CAC UMAT 326 1735 1,580 1,100 1976-2006
B 453221118512201 0IN/32E-30ACB2 UMAT 332 1774 1,599 600 1978-2006
C 453516118394401 O01N/33E-03DDD1 UMAT 55430 9 1,833 121 1974-2012
D 453519118395201 01N/33E-03DDD2 UMAT 341 252 1,819 1,150 19712012
E 452850118501501 01S/32E-17ACD UMAT 90 967 1,700 309 1945-2005
F 452842118502301 01S/32E-17DBA UMAT 89 968 1,650 486 1956-2005
G 452751118461501 01S/32E-23DAA UMAT 6472 1781 2,000 794 1950-2006
H 454033118465801 02N/32E-02CCD UMAT 530 74 1,070 700 1958-2004
I 453949118514901 02N/32E-07CCA UMAT 55330 1098 980 287 1942-2016
J 453934118491701 02N/32E-16BAB UMAT 583 1015 1,066 1,500 1965-2005
K 453956118424001 02N/33E-08DBD3 UMAT 909/55262 27 1,205 968 1953-2012;
2013-2016a
L 454004118412701 02N/33E-09ACC3 UMAT 915 562 1,226 220 19812011
M 454014118410101 02N/33E-09ADA1 UMAT 55286 500 1,214 25 19792012
N 454014118410102 02N/33E-09ADA2 UMAT 55285 501 1,214 255 1979-2012
(0] 454001118405901 02N/33E-09DAA3 UMAT 5929 582 1,215 1,057 1996-2013a
P 453958118394901 02N/33E-10DAALI UMAT 951/6078 475 1,242 190 1978-2012
Q 453954118401601 02N/33E-10DBC1 UMAT 943 563 1,230 182 1981-2012
R 454005118384301 02N/33E-11ADC4 UMAT 5930 789 1,277 1,100 1996-2013a
S 454041118333501 02N/34E-04DDA2  UMAT 55051 498 1,406 13 19792012
T 454041118333502 02N/34E-04DDA3 UMAT 55050 499 1,406 103 1979-2012
U 454104118285901 02N/35E-06ACA3 UMAT 55287 502 1,529 18 1979-2012
v 454104118285902 02N/35E-06ACA4  UMAT 55288 503 1,529 52 1979-2012
W 454625118330901 03N/34E-03BAC UMAT 1432 666 1,544 1,263 1953-2016
X 454526118311901 03N/34E-11AAC UMAT 1444/55063 669 1,659 1,030 19402012
Y 454352118313801 03N/34E-23ABBI1 UMAT 1452 191 1,779 660 1968-2016
V4 454353118313901 03N/34E-23ABB2 UMAT 1453 195 1,775 936 1968-2016
AA 454832118295001 04N/34E-24DAD UMAT 50183 1078 1,700 1,145 1946-2005
BB 454643118335501 04N/34E-33DCA UMAT 6433 1052 1,555 1,575 19512016
CC 454904118254201 04N/35E-22AAA UMAT 3092 1715 1,980 1,000 19552016
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Figure 9. Selected wells, upper Umatilla River Basin, Oregon. Groundwater levels from 02N/33E-09ADA1, alluvial
gravels; 02N/35E-06ACA4 and 02N/33E-09ADA2, Wanapum basalt unit; and 01N/33E-03DDD2, 02N/32E-16BAB, and
04N/34E-24DAD, primarily Grande Ronde basalt unit. See figure 7 for well (map letter) locations.

Groundwater levels in the Wanapum basalt unit, both
in the vicinity of centers of groundwater pumping and
distant from such centers, are variable at short (months to
years) timescales but stable at longer (decades) timescales.
Short-term variability includes fluctuations resulting
from climate, shown as immediate or delayed changes in
water levels that are a response to annual and seasonal
precipitation (for example, the changes in groundwater levels
that align with wet and dry periods shown in a well near
Mission, 02N/33E-09ADA1, and a well east of Mission,
02N/35E-06ACA4 [map letters M and V, respectively, figs. 7
and 9]), and from a combination of localized pumping effects
and climate (for example, the steep decrease in groundwater
levels during months of increased water use, as well as
changes that align with wet and dry periods, shown in a well
near Mission, 02N/33E-09ADA2 [map letter N, figs. 7 and
9]; CTUIR, 2007). Aquifer response to climate variability that
is observed in the upper Umatilla River Basin study area is
also observed more broadly in the Columbia Plateau, where
variability in recharge and groundwater levels is linked to
the interannual (year-to-year) variability of precipitation (Ely
and others, 2014). These short-term fluctuations aside, the

Wanapum basalt unit groundwater levels are approximately
stable over longer timeframes.

Groundwater levels in the Grande Ronde basalt unit
exhibit long-term trends that in some cases differ from those
observed in the Wanapum basalt unit in the Umatilla River
Basin. Well 01N/33E-03DDD?2 (map letter D, figs. 7 and 9),
located south of Mission is cased primarily in the Grande
Ronde basalt unit. Groundwater levels dropped sharply
in 1981 when the well was deepened (reflecting a strong
downward gradient), but have remained approximately stable
since 1981. In contrast, wells 02N/32E-16BAB, located
near Pendleton, and 04N/34E-24DAD (map letters J and
AA, respectively, figs. 7 and 9), located near Athena, tap
groundwater in the Grande Ronde basalt unit and show clear
evidence of multi-decade groundwater level declines (figs. 7
and 9). In both cases, groundwater level declines have been
attributed to groundwater pumping (CTUIR, 2007).

Groundwater-level declines in the Grande Ronde basalt
unit have occurred near Mission, Pendleton, Adams, Weston,
McKay Reservoir, Pilot Rock (CTUIR, 2007) and west of
the upper Umatilla River Basin study area. February water
levels measured in wells 02N/32E-02CCD, 02N/32E-07CCA,
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02N/32E-16BAB, and 03N/31E-30ABC (map letters H, I,
and J, fig. 7; and off-map, respectively) near Pendleton have
similar elevations and show an average decline of 3 ft/yr from
the 1970-2005 (figs. 10 and 11). Figure 11 shows groundwater
levels on a normalized axis by plotting the difference between
the groundwater elevation and the mean of all February
groundwater elevations for the well. After 2005, the rate of
decline diminished to about 1 ft/yr in wells 02N/32E-07CCA
and 03N/31E-30ABC (fig. 11). The reduction in the rate
of decline in these wells near Pendleton could be due to
increases in precipitation and therefore groundwater recharge,
reductions in pumping in the area, and artificial recharge
in the Grande Ronde basalt unit by the City of Pendleton
which started in the mid-2000s (City of Pendleton, 2016).
Water levels in a well in Mission (02N/33E-09DAA3, fig. 7,
map letter O) have a shorter record starting in 1997 and
appear to decline until 2005 (fig. 11). The rate of apparent
decline is greater than in wells in or near Pendleton. It is
unclear if the declines in Mission are related to the declines
near Pendleton because (1) it is difficult to determine trends
and rates of trends in the Mission well because of the large
variation in water levels in the well, especially after 2005,
(2) the large difference in water elevations (fig. 10) between
the Pendleton and Mission areas suggests that the two areas
have a poor hydraulic connection, and (3) water levels in a
well (02N/33E-08DBD3, fig. 7, map letter K) open to both
the Wanapum basalt unit and Grande Ronde basalt unit and
located between Pendleton and Mission increase from 2006 to
2016 suggesting that water level declines are not continuous
between Pendleton and Mission. Presently, available data
are insufficient to determine the cause of declines and the
hydraulic connection of Pendleton and Mission areas.

Snyder and Haynes (2010) determined that groundwater-
level declines were widespread across the Columbia Plateau.
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Figure 10. Groundwater elevations for selected wells
near Pendleton and Mission, upper Umatilla River Basin,
Oregon. See figure 7 for well (map letter) locations.

Wanapum basalt unit groundwater-level declines were
mostly small to moderate, with few areas of large declines.
Grande Ronde basalt unit groundwater-level declines were
moderate in most areas, with some greater than 200 ft.
Although comparable, trends in groundwater levels in the
upper Umatilla River Basin are generally more consistent with
trends observed in the lower Umatilla River Basin (Burns and
others, 2012). In the Umatilla River Basin, Burns and others
(2012) determined that groundwater levels were declining in
deeper CRBG aquifers, while a small group of shallow CRBG
aquifers have either stable or slightly rising water levels.
Similarly, groundwater levels in the upper Umatilla River
Basin indicate long-term water level declines in the Grande
Ronde basalt unit in localized areas. In contrast, groundwater
levels in wells completed in the Wanapum basalt unit do not
show long-term declines in the upper Umatilla River Basin.
Trends in groundwater levels across the Columbia
Plateau were attributed to groundwater pumping, changes
in recharge (from the introduction of irrigation and from
variable climate), and commingling (Ely and others, 2014).
Commingling is the connection of multiple aquifer units by
an open borehole that crosses low-permeability units. In the
upper Umatilla River Basin, the presence of groundwater-level
declines in the Grande Ronde basalt unit, and not (to date) in
the Wanapum basalt unit, indicates that commingling between
basalt aquifer units in the Wanapum and Grande Ronde basalt
units is not responsible for the observed groundwater-level
declines in the study area; however, commingling between
multiple water-bearing zones likely influences water levels
within the Grande Ronde basalt unit in areas of the upper
Umatilla River Basin. Groundwater pumping appears to be
the dominant driver of long-term (on the scale of decades)
groundwater-level declines that have been observed in Grande
Ronde basalt unit in the upper Umatilla River Basin.
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Figure 11. Groundwater elevations for selected wells

during month of February, upper Umatilla River Basin,
Oregon. See figure 7 for well (map letter) locations.



Groundwater Budget

The groundwater budget is an accounting of the
amount of groundwater moving in and out of the study arca
by various processes. The components of the groundwater
budget in the upper Umatilla River Basin study area include
groundwater recharge; groundwater discharge to surface
water, evapotranspiration, and wells; subsurface flow into and
out of the basin; and changes in groundwater storage. The
groundwater budget can be represented as:

INFLOW = OUTFLOW + STORAGE (1
INFLOW = RECHARGE + SUB, 2)

OUTFLOW = DISCHARGE + ET 3)
+ PUMPING + SUB,_ ,

where
STORAGE is the change in the volume of water stored
in the groundwater system,

is recharge to the groundwater system from
precipitation, irrigation, and streams,

is the subsurface flow of groundwater into the
study area,

is discharge of groundwater to streams and
springs,

ET is evapotranspiration directly from aquifers,

PUMPING is discharge of groundwater to wells, and

SUB,,,, is the subsurface flow of groundwater out of
the study area.

RECHARGE

SUB

IN

DISCHARGE

Each of these components is described and quantified
with the exception of evapotranspiration from the aquifer
system. Although evapotranspiration from the soil zone is
a very large component of the overall hydrologic budget,
evapotranspiration directly from aquifers is a very small
component of the groundwater budget. Evapotranspiration
from the aquifer system in the upper Umatilla River Basin
is likely to occur only in vegetated areas of very shallow
groundwater near the Umatilla River and its tributaries, and
adjacent to springs. In most areas of the basin, depth to water
precludes evapotranspiration directly from aquifers, and it is
assumed to be a small component of the groundwater budget.

Recharge from Precipitation and Applied
Irrigation Waters

Recharge to aquifers in the upper Umatilla River Basin
occurs through natural and artificial means. Precipitation and
stream leakage are natural sources of recharge. Infiltration of
irrigation water is an artificial source of recharge.
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Recharge from infiltration of precipitation is estimated
using a regression equation developed by Bauer and Vaccaro
(1990) relating annual recharge to annual calendar year
precipitation:

R = (P x 0.00865) + (P x 0.1416) — 1.28 (4)

where
R is recharge, in inches, and
P is precipitation, in inches.

Equation 4 was developed using a daily-time-step
moisture and energy balance model (Deep Percolation
Model, Bauer and Vaccaro, 1987) on the Columbia Plateau
for 1956-77. The regression equation predicts the simulated
recharge values as a function of mean annual precipitation
with a correlation coefficient of 0.92. Equation 4 yields
negative values when annual precipitation is less than 6.48 in.
In areas with annual precipitation of less than 6.48 in.,
recharge from precipitation is assumed to be zero. This did not
limit calculations during the recharge estimate period of record
because recorded annual precipitation was 6.48 in. or greater
in all parts of the study area during 1951-2010.

For this study, annual recharge estimates were calculated
for 60 water years (1951-2010) using 4 km gridded
precipitation values from PRISM for the upper Umatilla River
Basin (Precipitation-elevation Regressions on Independent
Slopes Model) (Oregon Climate Service, 2011) (fig. 12).

The start year, 1951, was selected because it coincides with
the beginning of groundwater pumping for irrigation in the
Umatilla River Basin. Annual water year recharge estimates
were used to estimate monthly recharge by proportioning
the annual water year recharge into monthly values based
on monthly landscape evapotranspiration (ET). Monthly
landscape ET was estimated using the Thornthwaite method
(Dunne and Leopold, 1978) which is based on air temperature.
Monthly air temperature data (1951-2010) were taken from
the PRISM model (PRISM Climate Group, 2014). Monthly
net precipitation was then calculated (precipitation minus
evapotranspiration), and the calculated annual water year
recharge amount was apportioned to months having net
precipitation greater than zero, starting in September and
then going backward through the water year to October.

An example of this method is shown for a single 4-km
PRISM cell within the study area for the 2010 water year
(fig. 134 and table 7), which assumes a lag between the
onset of fall precipitation and replenishment of the summer
soil moisture deficit, resulting in a late winter and spring
recharge pulse. Water levels from shallow wells (for example
02N/33E-09ADA1, map letter M, figs. 7 and 9) reflect

this timing.



24 Hydrogeologic Framework and Selected Components of the Groundwater Budget for the upper Umatilla River Basin, Oregon

40

EXPLANATION
| Annual water-year recharge
[ ] Annual water-year precipitation
3511 Mean annual recharge (1951-2010)
Mean annual precipitation (1951-2010)

30

25 ‘

20 ‘
15

i i i in -! !

I \

Annual water year precipitation and estimated annual water year recharge, inches per year

ni I

o < (<=3 (==} o o < © [~=] o o < (<= [==] o o < [{=3 (== o o < (=) (==} o o~ < [{=3 [==) o

w0 0 0 0 ©o © o © o ~ ~ r~ ~ r~ [==) (==} [==] [==3 [==] {=2] [=2] {=2] D {=r] o o o o (=) —

=2 =2 =2 =2 (=2 =2 D =2 D (=2 (=2 o (=2 o D =z D =z D =z (=2 =z (=2 =z o o o o o o

p= — p= p=1 p= p=1 p= p=1 p= — p= — p= — p= — — — p= — — — — — N I3 ~ N ~ N
Water year

Figure 12. Annual water year precipitation and estimated annual water year recharge from infiltration of
precipitation, upper Umatilla River Basin, Oregon, 1951-2010.

Table 7. Example of recharge estimate method for a single 4-km PRISM cell using precipitation, landscape evapotranspiration, net
precipitation, and recharge for water year 2010, upper Umatilla River Basin, Oregon.

[Precipitation from monthly 4 km PRISM, evapotranspiration calculated from Thornthwaite method, annual recharge estimated using a modified Bauer and
Vacarro (1990) regression equation. Example location shown on figure 11. All values are in inches. Values are rounded. Abbreviations: ET, evapotranspiration;
NA, not applicable]

Component  October November December January February March April May June July August September Total

Precipitation 1.51 1.71 1.65 2.02 0.67 1.33 235 329 259 0.19 0.30 1.39 18.97
Potential ET 1.45 0.84 0.00 0.59 0.83 1.14 1.58 208 3.04 4.18 3.14 2.88 21.77
Net precipitation  0.06 0.87 1.65 1.43 -0.17 0.19 077 120 -0.45 -3.99 -2.85 -1.50 NA

Recharge 0.00 0.00 0.92 1.43 0.00 0.19 077 120 0.00 0.00 0.00 0.00 4.52
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Figure 13. Estimated mean annual recharge from (A) infiltration of precipitation for 1951-2010, and from (B) infiltration of
irrigation water for 1985-2007, upper Umatilla River Basin, Oregon.
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Mean annual (water year) recharge from infiltration of
precipitation is correlated with observed precipitation and
occurs mostly from November to May (fig. 14). Mean water
year recharge from precipitation for 1951-2010 (fig. 11) is
about 9.6 in/yr, or 467,500 acre-ft/yr over the entire upper
basin. Mean water year recharge from precipitation for
1951-2010 ranged from 1.9 to 33.7 in. over the study area
(fig. 134), and for water year 2010 ranged from 3 in. in the
west-northwest region of the study area to nearly 30 in. in the
Blue Mountains. The mean recharge for the upper Umatilla
River Basin for water year 2010 was 9.8 in; equivalent to
about 478,500 acre-ft/yr. Estimated mean monthly recharge for
2000-10 ranges from 0 to 2.3 in. (fig. 14). The upland areas
contribute about 85 percent of the recharge to the groundwater
system in the study area.

In agricultural areas, irrigation water is commonly the
principal source of recharge from April through October.

For irrigated areas, data from the soil water balance model
(SOWAT) results described in detail in Kahle and others
(2011) was used to estimate recharge from infiltration of
irrigation for calendar years 1985-2007 (fig. 13B8) (J. Haynes,
U.S. Geological Survey, written commun., 2012). Methods
from Kahle and others (2011) were used to estimate a mean
annual recharge rate of 1,500 acre-ft/yr (about 2.2 in/yr) for
the approximately 13 mi® of groundwater and surface water
irrigated land in the upper Umatilla River Basin.

Discharge to Springs

The upper Umatilla River Basin contains numerous
springs. During September—August 2009, measured discharge
to springs surveyed by the CTUIR ranged from no discernable
flow to 77.3 acre-ft/yr (0.1 cubic feet per second), with largest
flows occurring at faults, fractures, or flow contacts (table 5).
This work complemented a spring inventory completed by the
U.S. Forest Service (USFS) in the Umatilla National Forest
during July—October 2008, where 39 springs in the upper
Umatilla River Basin were located and inventoried (Johnson
and Clifton, 2008). Discharge from springs in the survey
conducted by the USFS ranged from 0.2 to 32 acre-ft/yr, with
a mean discharge of 4.3 acre-ft/yr. Thirteen of the 39 springs
were located on or near the geologic contact associated with
the Vantage Horizon. This suggests the Vantage Horizon has
low permeability and induces horizontal flow along this contact
where the sedimentary interbed is present (Johnson and Clifton,
2008). In the groundwater budget, spring discharge is assumed
to be included in estimates of discharge to streams.

Recharge from and Discharge to Streams

Streamflow consists of surface runoff and groundwater
discharge (baseflow). Streamflow data from the study area
were analyzed to determine the relative proportions of runoff
and groundwater discharge. The hydrologic character of each
stream reach was evaluated using both hydrograph separation
and seepage run data analyses.
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Figure 14. Estimated mean monthly recharge for 2000-10
from infiltration of precipitation, upper Umatilla River
Basin, Oregon.

The analyses in this study relied on historical streamflow
records from 23 sites in the upper Umatilla River Basin
(table 8; fig. 7) that include 16 USGS, 4 OWRD, and 3 USFS
streamflow-gaging stations. Periods of record range from 4 to
86 years. Daily streamflow data were used to calculate mean
monthly and annual streamflows.

Baseflow Analysis

Hydrograph separation is a method for differentiating
the component of streamflow originating as groundwater
discharge from the runoff component in stream hydrographs.
Hydrograph separation was performed on hydrographs from
23 streamgages in the upper Umatilla River Basin using
the PART computer program (Rutledge, 1998, 2007). Six
of the 23 streamgages were selected to represent the total
baseflow originating from the upper Umatilla River Basin
(table 8). Total drainage area for the 6 streamgages is about
828 square-miles, and includes all high-elevation, relatively
wet drainage basins in the study area. Average annual baseflow
estimates for these 6 streamgages total 374,400 acre-ft.
Hydrograph separation integrates conditions in the entire
drainage upstream of the analyzed streamgage. Consequently,
hydrograph separation can provide insights into groundwater
conditions in watersheds high in the basin.

Baseflow analysis indicates that all streams in the
upper Umatilla River Basin are composed of a large
component of groundwater. The percentage of annual flow
consisting of baseflow varies from 65 percent at the upper
Wildhorse Creek near Athena (streamflow-gaging station
14020900) to 87 percent at the North Fork Umatilla River
(streamflow-gaging station 14019500). Annual baseflow yields
per unit of drainage area are greatest in the high-elevation,
relatively wet, eastern portion of the basin and smallest in the
low-elevation, relatively dry, western portion of the basin.
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Seepage Run Analysis

A seepage run is a series of streamflow measurements
made over a short period of time along a specific reach of
river to quantify gains and losses along the reach. After
accounting for all tributary inflows and diversions, and
assuming that evaporation is negligible, the difference in
discharge between streamflow measurement locations is
attributed to groundwater. In contrast to hydrograph separation
analyses, which integrate conditions for entire drainage basins
upstream of the streamgage locations, seepage runs provide
information only for the lower-elevation part of the main-stem
Umatilla River. Two seepage runs were made on the Umatilla
River and tributaries in late summer on September 19 and
25,2007 (figs. 154-B, appendix B) that span the river from
the confluence of the north and south forks (river mile 89.5)
downstream to about the town of Umatilla (river mile 2.1).

Sources of uncertainty in seepage runs include error in
the streamflow measurements and changing conditions along
the stream during the period which measurements were made.
Because of the intrinsic error in streamflow measurements,
differences in streamflow between measurement sites of less
than 5 percent were not considered significant. Active USGS
streamgages on the main stem of the Umatilla River showed
that there was little variation of streamflow during the seepage
runs. The most variability occurred at the streamflow-gaging
station Umatilla River at west reservation boundary near
Pendleton (14020850, fig. 7, map number 10,) on September
19. The range of the streamgage for that day was 10 percent of
the daily mean discharge. All other ranges for the 2 days were
less than 5 percent. Weather was typical for eastern Oregon in
late summer. Daytime highs were 21 and 23 °C, respectively,
on the measurement days, and there was a trace of rain on
September 19 and no rain on September 25 (National Oceanic
and Atmospheric Administration, 2012).

Overall, gaining and losing reaches are fairly evenly
distributed along the reach of the Umatilla River evaluated
with seepage runs (fig. 154—B). Gain and loss rates along
the stream in the upper Umatilla River Basin generally were
less than 3 (ft/s)/mi, but there were a few reaches with
losses ranging from 5 to 34 (ft*/s)/mi. The largest change
(-34 [ft¥/s]/mi) was the loss between river miles 73.5 and 73.2
on the September 19 seepage run, and that is attributable to
hyporheic exchange with a large gravel deposit in this reach
(Scott O’Daniel, CTUIR, oral commun., 2012). Measurement
sites at river miles 73.5 and 73.2 were selected to verify if
possible inflow from or outflow to the Thorn Hollow Fault
Zone affected streamflow. The hyporheic flow in gravel
deposits and floodplains confounds the effect, if any, of faults
as a pathway for groundwater-surface water exchange.
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Gains and losses along the reach of the main stem
evaluated using seepage runs relate to geology and
topography. Large gains or losses are generally attributable
to hyporheic flow into and out of gravel deposits along the
stream channel (Jones and others, 2007; Poole and others,
2008). The Umatilla River gains water in the high-elevation,
relatively wetter part of the basin, where the river is restricted
to a relatively small channel through the Grande Ronde
Basalt. As the channel begins to widen westward in the low,
dry part of the basin, where the river flows on a relatively
thin sediment layer over the basalt, the river begins to lose
water to the subsurface as indicated by the data from both the
September 19 and 25 seepage runs (fig. 15). Data from the
September 19 seepage run also show several segments where
the Umatilla River gains and then loses over short distances,
indicating hyporheic flow into and out of the sediments
overlying the Wanapum Basalt.

Where the geologic contact between the Grande Ronde
Basalt and the Wanapum Basalt occurs beneath the alluvium,
measurements indicate a net gain to the stream (measured
stream segments were 1.4 and 1.7 mi). This net gain may be
attributable to either hyporheic flow, or that the contact is
relatively impermeable and promotes discharge where the
contact intersects land surface (Johnson and Clifton, 2008),
or both. Flow gains cannot be confirmed with data from the
September 25 seepage run because data collection points were
more widely spaced in the upper basin on that day.

Measured flows on the Umatilla River main stem
were within 4 ft¥/s at comparable locations between the
September 19 and September 25 seepage runs (appendix B).
The cumulative change in streamflows measured at
comparable locations between the September 19 and
September 25 seepage runs were within 9 ft*/s. The cumulative
change (when accounting for diversions or tributary
inflow) in streamflow for the measured reaches between
the North Fork Umatilla River and the Umatilla River at
Pendleton during the September 19 and 25 seepage runs
were -15.3 and -6.5 ft¥/s (about 11,100 and 4,700 acre-ft/yr),
respectively. The cumulative change in streamflow for the
measured reaches between the North Fork Umatilla River
and just outside the study area at Umatilla River upstream of
Coombs Canal were -18.2 and -11.1 ft*/s (about 13,200 and
8,000 acre-ft/yr), respectively. These values are small
compared to the total estimated annual discharge of baseflow
to streams (374,400 acre-ft/yr). Because the gains and losses
along the mainstem of the Umatilla River in the upper basin
are generally attributed to hyporheic flow, and not a net gain
from or loss to groundwater, values are not included in the
groundwater budget.
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Figure 15. Estimated seepage for selected Umatilla River reaches on (A) September 19, 2007, and (B) September 25, 2007, upper
Umatilla River Basin, Oregon.



Discharge to Wells

Groundwater in the upper Umatilla River Basin is
primarily used for agricultural-irrigation, municipal, or
domestic use (fig. 16). Municipal water use includes all water
distributed by public supply systems and is used for drinking,
industrial, commercial, and urban landscape irrigation
purposes. Domestic water use includes all water pumped from
private or grouped domestic wells.

Agricultural groundwater use was estimated using
water rights information from 2011 OWRD files and 2013
information from the CTUIR. Google Earth Imagery from
2009, 2011, and 2012 were used to determine whether areas
with mapped water rights were actively irrigated. During
that time period, about 13 mi® (8,528 acres) were irrigated
with groundwater and surface water. The area included both
primary groundwater rights, where groundwater is the only
source of irrigation water, and supplemental groundwater
rights, where groundwater is only used when surface water is
not available for irrigation.

The distribution of pumping among wells was determined
using OWRD data. In cases where there were multiple wells
associated with a single groundwater right, the estimated
pumping volume was distributed equally among the wells.

In 2012, there were 22 supplemental groundwater rights in
the study area. For supplemental groundwater rights, it was
assumed that one-sixth of the total water use was derived
from surface water, and five-sixths of the total water use was
derived from groundwater. The division of water volumes is
based on typical surface water availability for 1 month of the
6-month irrigation season in the upper Umatilla River Basin.

In water year 2010, 142 of 211 active OWRD
groundwater rights and CTUIR water permits had metered
wells. Meter readings from water year 2010 for the 142 wells
were used to determine an average irrigation groundwater
rate of use (about 1 acre-ft/acre). This average use value was
applied to irrigated parcels associated with the 69 non-metered
wells to estimate total irrigation groundwater use of
7,575 acre-ft for water year 2010 (table 9).

Municipal groundwater use by the City of Pendleton
and the Umatilla Indian Reservation was determined using
data from public works departments, which provide OWRD
annual withdrawal volumes by wells. For the Cities of Adams,
Athena, Helix, and Rieth, which did not have water use data
available through 2010, municipal use for water year 2010
was extrapolated based on a linear regression of the total
use from previous years (table 10). On average, population
increases have been less than 1 percent per year from 2000
to 2010 (U.S. Census Bureau, 2014). Total water year 2010
estimated volume of use was apportioned between a city’s
active municipal wells based on relative pumpage volumes
between those wells in the most recent 2 or 3 years of
available groundwater use data (table 10). Values of monthly
well use obtained from each city for the city’s municipal well
that contributed the greatest volume of groundwater were
averaged on a monthly basis over the most recent 3 years of
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Table 9. Groundwater withdrawals for water year 2010, upper
Umatilla River Basin, Oregon.

[All values are in acre-feet.]

Month Year Irrigation Municipal Domestic Total
October 2009 379 236 25 640
November 2009 0 119 17 136
December 2009 0 129 22 151
January 2010 0 61 30 91
February 2010 0 52 36 88
March 2010 0 66 41 107
April 2010 0 109 42 151
May 2010 379 90 42 511
June 2010 757 216 44 1,017
July 2010 1,894 764 60 2,718
August 2010 2,272 824 64 3,160
September 2010 1,894 507 43 2,444

Total by use 7,575 3,173 466 11,214
Table 10. Mean annual municipal groundwater use, period of

record, upper Umatilla River Basin, Oregon.

[Population served: From U.S. Census Bureau (2010); Rieth population
estimate from City of Pendleton (2014; http://pendleton.or.us/fire-ambulance/
area-and-population-served)]

Municipal Population Period of Record Groundwater use
system served record length (acre-feet)
Adams 350 19912013 24 60
Athena 1,126 1988-2008 21 313
Helix 184 1988-2002 11 84
Mission! 1,037  1998-2013 16 773
Pendleton 16,612  1988-2013 26 1,874
Pilot Rock? 1,502  1988-2008 19 466
Rieth? 150  1989-2006 11 68
Weston? 667  1988-2013 26 184

'Mission census-dedicated-community is serviced by Confederated Tribes
of the Umatilla Indian Reservation municipal wells.

“Borders study area.

record to estimate monthly municipal groundwater use. During
water year 2010, 3,173 acre-feet of municipal water use in the
upper Umatilla River Basin was estimated as coming from
groundwater (table 9).

Domestic well water use data were estimated using
OWRD’s well log database and CTUIR’s Water Resources
Department database. Only wells determined to be domestic
use within the study area were considered. Each domestic
well was assigned an average annual use of 0.3 acre-ft/yr
based on an estimated per capita use of groundwater for each
dwelling unit in the upper Umatilla River Basin (fig. 16).

This value was derived from the assumption that per capita
use of groundwater in Oregon is approximately equal to
100 gal/d (0.11 acre-ft/yr) (Maupin and others, 2014, p. 22).


http://pendleton.or.us/fire-ambulance/area-and-population-served
http://pendleton.or.us/fire-ambulance/area-and-population-served
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Figure 16. Location and primary use of groundwater in the upper Umatilla River Basin, Oregon, water year 2010.



The estimated population in the study area not served by
municipal systems (excluding Weston and Pilot Rock), is
4,158. Average household size for Umatilla County, Oregon, is
2.67 persons (U.S. Census Bureau, 2010), and results in 1,557
households supplied by groundwater from wells. CTUIR
records for this analysis indicate 1,911 total wells in study
area (26 municipal, 222 irrigation wells, and 1,663 domestic
wells). Total domestic use in the study area is estimated to be
466 acre-feet/yr (table 9).

Monthly groundwater use for water year 2010 is
summarized in table 9. Total groundwater use in 2010 was
approximately 11,214 acre-ft, and total surface water use
was 4,720 acre-ft (appendix C). Groundwater use is about
2.5 percent of the estimated total out from the groundwater
budget in the upper Umatilla River Basin. Of the groundwater
withdrawals in 2010, 67.5 percent (7,575 acre-ft) was for
irrigation, 28.3 percent (3,173 acre-ft) was for municipal use,
and 4.2 percent (466 acre-ft) was for domestic use.

Subsurface Flow Across Study-Area Boundaries

The southern and eastern study area boundaries
correspond to natural drainage divides across which little or no
groundwater flow occurs. The western boundary (Birch Creek)
and the northern boundary, both of which correspond to local
drainage divides, may have groundwater flow across them.
The amount of groundwater flow into or out of the study area
across such boundaries (subsurface flow) depends on geology
and hydraulic head distribution. Estimates of subsurface
flow into and out of the study area were calculated using the
Columbia Plateau regional groundwater flow model (Ely and
others, 2014).

The regional model indicates that both subsurface
inflow and outflow occur. Subsurface flow into the study
area ranged from 32,300 to 35,200 acre-ft/yr during the
1951-2007 simulation period (table 11), and the flow is
reasonably assumed, based on groundwater flow directions,
to largely occur along the northern and northeastern
boundaries. The average simulated inflow to the study area
was 33,400 acre-ft/yr. Subsurface flow out of the study area
ranged from 57,500 to 62,700 acre-ft/yr during the same
period and is assumed to generally occur along the western
boundaries. The average simulated outflow from the study area
was 59,600 acre-ft/yr. Net subsurface flow is outward, and
ranged from 25,000 to 27,700 acre-ft/yr during the simulation
with an average of 26,100 acre-ft/yr (table 11). Simulated
subsurface flow values for the sedimentary unit and the Saddle
Mountains basalt unit are generally small compared to other
hydrogeologic units. The Wanapum basalt unit and Grande
Ronde basalt unit are the most areally extensive and thickest
units in the study area, and most subsurface flow occurs within
these units. Simulated net subsurface flow for the Wanapum
and Grande Ronde basalt units is approximately 5 percent of
the total groundwater budget.
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Budget Summary

Recharge is the largest component of the groundwater
budget (table 11). Total recharge estimates for the upper
Umatilla River Basin average 467,500 acre-ft/yr from
precipitation and 1,500 acre-ft from irrigation. Average
annual discharge to rivers (baseflow) estimates indicate about
374,400 acre-ft of groundwater leaves the upper Umatilla
River Basin through discharge to streams (tables 8 and 11).
For the period 1951-2010, mean water year recharge from
precipitation ranged from 207,000 to 760,000 acre-ft. As
a percentage, estimates of baseflow exhibit a similar range
of values due to the correlation between precipitation and
streamflow (from which the baseflow estimates are derived).
Because streamflow and baseflow are directly correlated
with precipitation, the uncertainty surrounding baseflow
values can be directly attributed to values derived from data
collected over different periods of record and different climate
signatures during those periods. For the six streamflow-gaging
stations used to estimate annual baseflow for the upper
Umatilla River Basin, periods of record range from 4 to over
68 years.

Other components of the groundwater budget are
small relative to recharge. Net subsurface flow out of the
study area is simulated as 26,100 acre-ft annually, which is
about 5 percent of annual inputs to the groundwater system.
Withdrawals by wells in water year 2010 were 11,214 acre-ft,
or 2 percent of long-term mean water year recharge in the
study area (tables 9 and 11). Long-term changes in storage,
primarily caused by pumping, are probably small (CTUIR,
2007), and present at only a few locations in the upper
Umatilla River Basin. Overall, water supply and demand in
the upper Umatilla River Basin follows typical patterns with
the greatest demand for groundwater during the summer when
surface water supplies are at their lowest levels (fig. 17).

Because there is uncertainty in the groundwater budget
estimates, there is a discrepancy between the total in and total
out for the groundwater budget components of 56,900 acre-ft.
In addition to the effects of climate variability during the
period of analysis, estimates of recharge, baseflow, and
boundary flux are sensitive to the method used to provide the
estimate. Because baseflow is often used as a surrogate of
recharge, a comparison of the results of the baseflow analysis
(groundwater leaving the system) to the estimate of recharge
(water entering the groundwater system) demonstrates
differences in most drainage areas in the upper Umatilla River
Basin, and the implicit uncertainty associated with these
estimates (tables 8 and 11). Further analysis of methods to
estimate recharge and baseflow are outside the scope of this
study; however, additional analysis should be considered for
future work. Most uncertainty in the groundwater budget is
attributed to these estimates, which are the largest components
of the groundwater budget.
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Table 11.

Hydrogeologic Framework and Selected Components of the Groundwater Budget for the upper Umatilla River Basin, Oregon

Estimates of groundwater budget components, upper Umatilla River Basin, Oregon.

[Bold numbers are used to calculate Total IN and Total OUT. Kaf: Kaf is kilo acre feet. Value and Range expressed in thousand acre-feet per year. Source and
remarks: PRISM, PRISM Climate Group, Oregon State University; SOWAT, soil water balance model (Kahle and others, 2011)]

Kaf
Budget item Source and remarks
Value Range
IN:
Precipitation
Precipitation (this study) 1,388 Water year 2010 from PRISM Climate Group (2011)
Precipitation (this study) 1,307 Water years 1951-2010 mean, from PRISM Climate Group (2011)
Recharge from precipitation
Recharge from precipitation (this study) 478.5 Water year 2010, estimated using Bauer and Vacarro (1990) regression
equation
Recharge from precipitation (this study) 467.5  207-760 Water years 1951-2010 mean, estimated using Bauer and Vacarro
(1990) regression equation, , minimum (1977) and maximum (1984)
Recharge from irrigation 1.5 Based on 1985-2007 annual average, calendar year, estimated using
Kahle and others (2011) soil water balance model (SOWAT)
Subsuface flow, gross in 33.4 32.3-35.2 1951-2007 annual average, calendar year, simulated subsurface inflow
from Columbia Plateau regional groundwater flow model (Ely and
others, 2014)
Total in (Ely and others, 2014) 497 1951-2007 annual average, calendar year, simulated recharge from
Columbia Plateau regional groundwater model (Ely and others, 2014)
Total IN 2502.4
OUT:
Discharge to streams
Umatilla River near Cayuse, Oregon 307.0 Mean annual baseflow (12.2 years) - Station ID 14020700
Moonshine Creek near Mission, Oregon 1.7 Mean annual baseflow (7.0 years) - Station ID 14020740
Cottonwood Creek near Mission, Oregon 1.2 Mean annual baseflow (5.9 years) - Station ID 14020760
Wildhorse Creek at Pendleton, Oregon 9.3 Mean annual baseflow (11.0 years) - Station ID 14020990
Tutuilla Creek at Pendleton, Oregon 1.1 Mean annual baseflow (4.0 years) - Station ID 14021990
McKay Creek near Pilot Rock, Oregon 54.1 Mean annual baseflow (68.4 years) - Station ID 14022500
Total discharge to streams (this study) 374.4
Discharge to wells
Discharge to wells (irrigation) 7.6 Based on water year 2010 primary irrigation, groundwater
Discharge to wells (municipal) 32 Based on water year 2010 metered use or averaged value
Discharge to wells (domestic) 0.5 Based on 2010 U.S. Census Bureau (2010) population estimates
Total discharge to wells (this study) 11.2
Evapotranspiration
Discharge to evapotranspiration 0.3 2007, irrigated areas (Kahle and others, 2011)
Subsurface flow
Subsurface flow, gross out 59.6 57.5-62.7 1951-2007 annual average, calendar year, simulated subsurface outflow
from Columbia Plateau regional groundwater flow model (Ely and
others, 2014)
Subsurface flow, net out 126.1  25.0-27.7 1951-2007 annual average, calendar year, net simulated subsurface
outflow from Columbia Plateau regional groundwater flow model
(Ely and others, 2014)
Total OUT 2445.5

'Differences due to rounding.

“Differences between Total IN and Total OUT are the result of uncertainty in independently estimated values.
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Figure 17.

Mean monthly pumping (water year 2010) and streamflow for select streamgages (station ID and station name) used in

calculation of total discharge to streams in groundwater budget, during period of record in the upper Umatilla River Basin, Oregon.

Data Needs

Data needs were identified during analysis of the
hydrogeology of the upper Umatilla River Basin. A key
need is improvement of the spatial and temporal distribution
of water-level data collection. This includes measuring
more wells in upland areas, more uniform well coverage
in lowland areas, and more focus in areas of highest water
use. Monitoring would ideally be periodic and include
both shallow and deep wells throughout the upper Umatilla
River Basin. In particular, instrumentation of deep wells
in both the Pendleton and Mission areas would provide
important information to help determine the spatial effects of

groundwater pumping in the upper basin.
Time-series measurements of water levels in “well
pairs” (wells located near to one another, but open to different

aquifers) would be useful for determining seasonal changes in
vertical head gradients. An improved network of deep wells
with short open intervals to provide long-term groundwater
level data would help determine if commingling in basalt
aquifers might be affecting water levels in parts of the upper
Umatilla River Basin.

Continued measurement of streamflow at active
streamflow-gaging stations, including USFS and USGS
streamflow-gaging stations subjected to minimal effects
from water diversions and overlapping basin areas between
drainage basins, would help minimize temporal climate signals
evident in streamflow data collected in short-term intervals.
Exploration of remote sensing applications, water-balance
modeling, tracer methods or geophysical techniques would
help to improve understanding and better quantify recharge

processes in the upper Umatilla River Basin.
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Appendix C. Estimated Groundwater and Surface Water
Withdrawals, upper Umatilla River Basin, Oregon,
Water Year 2010

Table C1. Estimated groundwater and surface water withdrawals, upper Umatilla River Basin, Oregon, water year 2010.

[All values are in acre-feet. Abbreviations: GW, groundwater; SW, surface water; ALL, both groundwater and surface water]

Irrigation Municipal Domestic Total
Month Year
GW sw GW sw GW GW SW ALL
October 2009 379 0 236 147 25 640 147 787
November 2009 0 0 119 140 17 136 140 276
December 2009 0 0 129 207 22 151 207 358
January 2010 0 0 61 396 30 91 396 487
February 2010 0 0 52 489 36 88 489 577
March 2010 0 0 66 549 41 107 549 656
April 2010 0 0 109 535 42 151 535 686
May 2010 379 811 90 550 42 511 1,361 1,872
June 2010 757 0 216 450 44 1,017 450 1,467
July 2010 1,894 0 764 150 60 2,718 150 2,868
August 2010 2,272 0 824 149 64 3,160 149 3,309
September 2010 1,894 0 507 147 43 2,444 147 2,591

Water year 2010 totals 7,575 811 3,173 3,909 466 11,214 4,720 15,934







Publishing support provided by the U.S. Geological Survey
Science Publishing Network, Tacoma Publishing Service Center

For more information concerning the research in this report, contact the
Director, Oregon Water Science Center
U.S. Geological Survey
2130 SW 5th Avenue
Portland, Oregon 97201
https://or.water.usgs.gov


https://or.water.usgs.gov

m Cmmm Herrera and others—Hydrogeologic Framework of the Groundwater Budget for the Upper Umatilla River Basin, Oregon—Scientific Investigations Report 2017-5020

https://doi.org/10.3133/sir20175020

ISSN 2328-0328 (online)




	Hydrogeologic Framework and Selected Components of the Groundwater Budget for the Upper Umatilla River Basin, Oregon
	Contents
	Figures
	Tables
	Conversion Factors
	Supplemental Information
	Executive Summary
	Introduction
	Study Objective and Report Purpose and Scope
	Location and General Features
	Approach

	Hydrogeologic Framework
	Hydrogeologic Units
	Sedimentary Unit
	Columbia River Basalt Group


	Groundwater Elevations and Flow Directions
	Data Sets and Limitations
	General Horizontal and Vertical Flow Directions

	Trends in Groundwater Levels
	Groundwater Budget
	Recharge from Precipitation and Applied Irrigation Waters
	Discharge to Springs
	Recharge from and Discharge to Streams
	Baseflow Analysis
	Seepage Run Analysis

	Discharge to Wells
	Subsurface Flow Across Study-Area Boundaries
	Budget Summary


	Data Needs
	Acknowledgments
	References Cited
	Datums

	Appendix A.  Summary of Water-Level Elevation Measurements for Selected Wells in the Upper Umatilla River Basin, Oregon, 2008, 2009, and 2012
	Appendix B.  Measurements Used to Define Gains and Losses on September 19 and 25, 2007, for the Umatilla River, Oregon
	Appendix C.  Estimated Groundwater and Surface Water Withdrawals, upper Umatilla River Basin, Oregon, 
Water Year 2010



