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Cover.  Schematic diagram showing steps toward estimation of at-site peak-streamflow frequency 
analyses for low annual exceedance probabilities. Further details are provided in figure 7, herein.
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Conversion Factors

Inch/Pound to International System of Units

Multiply By To obtain

Length

inch (in.) 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

square mile (mi2) 2.590 square kilometer (km2) 
Volume

cubic foot (ft3) 0.02832 cubic meter (m3) 
Flow rate

cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as °F = (1.8 × 
°C) + 32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as °C = (°F – 
32) / 1.8.

Datum

Horizontal coordinate information is referenced to North American Datum of 1983 (NAD 83).
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AEP annual exceedance probability
AEP4 asymmetric exponential power distribution (four-parameter probability distribution)
AIC Akaike Information Criterion for assessing goodness-of-fit
CM Cramér-von Mises statistic for assessing goodness-of-fit
CSG crest-stage gage
DCP data-collection platform (a data logging and telemetry suite used by the USGS)
EMA expected moments algorithm (a method for parameter estimation related to product 

moments but able to include sophisticated and nonstandard historical information)
GAMLSS generalized additive models for location, scale, and shape
GEV generalized extreme value distribution (three-parameter probability distribution)
GLO generalized logistic distribution (three-parameter probability distribution)
GNO generalized normal (three-parameter log-normal) distribution (three-parameter log-

normal probability distribution)
GOES Geostationary Operational Environmental Satellite
GPA generalized Pareto distribution (three-parameter probability distribution)
GPS global positioning system
HUC hydrologic unit code
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LMR method of L-moments (a method for parameter estimation using the L-moments). 
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MD Moran-Darling statistic for assessing goodness-of-fit
MLE maximum likelihood (a method for parameter estimation using the probability 

density function)
MPS maximum product of spacings (a method for parameter estimation using the 
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σdc The standard deviation of multiple quantile estimates from selected distributions for 
a given AEP based on logarithms. This is the distribution choice uncertainty of this 
report, and such an uncertainty is also known as epistemic or reducible.
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Abstract
The U.S. Geological Survey (USGS), in cooperation with 

the U.S. Nuclear Regulatory Commission, has investigated 
statistical methods for probabilistic flood hazard assessment 
to provide guidance on very low annual exceedance 
probability (AEP) estimation of peak-streamflow frequency 
and the quantification of corresponding uncertainties using 
streamgage-specific data. The term “very low AEP” implies 
exceptionally rare events defined as those having AEPs less 
than about 0.001 (or 1 × 10–3 in scientific notation or for 
brevity 10–3). Such low AEPs are of great interest to those 
involved with peak-streamflow frequency analyses for critical 
infrastructure, such as nuclear power plants. Flood frequency 
analyses at streamgages are most commonly based on 
annual instantaneous peak streamflow data and a probability 
distribution fit to these data. The fitted distribution provides 
a means to extrapolate to very low AEPs. Within the United 
States, the Pearson type III probability distribution, when 
fit to the base-10 logarithms of streamflow, is widely used, 
but other distribution choices exist. The USGS-PeakFQ 
software, implementing the Pearson type III within the Federal 
agency guidelines of Bulletin 17B (method of moments) 
and updates to the expected moments algorithm (EMA), 
was specially adapted for an “Extended Output” user option 
to provide estimates at selected AEPs from 10–3 to 10–6. 
Parameter estimation methods, in addition to product moments 
and EMA, include L-moments, maximum likelihood, and 
maximum product of spacings (maximum spacing estimation). 
This study comprehensively investigates multiple distributions 
and parameter estimation methods for two USGS streamgages 
(01400500 Raritan River at Manville, New Jersey, and 
01638500 Potomac River at Point of Rocks, Maryland). The 
results of this study specifically involve the four methods for 
parameter estimation and up to nine probability distributions, 
including the generalized extreme value, generalized log-
normal, generalized Pareto, and Weibull. Uncertainties in 
streamflow estimates for corresponding AEP are depicted 
and quantified as two primary forms: quantile (aleatoric 
[random sampling] uncertainty) and distribution-choice 
(epistemic [model] uncertainty). Sampling uncertainties 
of a given distribution are relatively straightforward to 
compute from analytical or Monte Carlo-based approaches. 

Distribution-choice uncertainty stems from choices of 
potentially applicable probability distributions for which 
divergence among the choices increases as AEP decreases. 
Conventional goodness-of-fit statistics, such as Cramér-von 
Mises, and L-moment ratio diagrams are demonstrated in 
order to hone distribution choice. The results generally show 
that distribution choice uncertainty is larger than sampling 
uncertainty for very low AEP values.

Introduction
The U.S. Geological Survey (USGS), in cooperation 

with the U.S. Nuclear Regulatory Commission (NRC), has 
investigated probabilistic flood hazard assessment using a 
statistical perspective with intent to provide guidance for very 
low annual exceedance probability (exceptionally rare event) 
estimation of peak-streamflow frequency and corresponding 
uncertainty quantification. This report is to serve as a 
resource for NRC technical decisionmakers, collaborators, 
and other interested parties on the study of the exposure 
of critical infrastructure, such as nuclear power plant sites 
to probabilistic flood hazards in the United States (NRC, 
2013; O’Connor and others, 2014; Prasad and others, 2011). 
Probabilistic flood hazard assessment is inherently complex 
and is but one part of multidisciplinary risk assessment and 
management for critical infrastructure. For the purposes of 
this study, critical infrastructure is defined as the infrastructure 
having components of very large capital investment and (or) 
substantial risk to public safety as the result of rare hydrologic 
circumstances. Such infrastructure includes nuclear power 
plants. Katz (2016, p. 439) notes, “Much economic impact of 
weather and climate is realized through extreme events,” and 
such extreme events include flood hazards. Similarly, Wang 
and Li (2016, p. 307) note, “Estimation of tail quantiles is 
of great interest in many studies of rare events that happen 
infrequently but have heavy consequences.”

Typical hazard levels or annual exceedance probabilities 
(AEPs) for flood hazard assessments are determined from the 
right tail of a probability distribution. Especially important 
for critical infrastructure are annual return intervals associated 
with very low AEP values that far exceed the length of 
observational records at individual sites or even within regions 
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of interest. The term “very low AEP” implies exceptionally 
rare events defined as those having AEPs less than about 
0.001 (or 1 × 10–3 in scientific notation or for brevity 10–3). 
(Scientific notation is used, hereinafter, for AEPs less than 
or equal to 0.001.) The results herein emphatically are not 
definitive, which is an acknowledgment that various decisions 
in the processes (steps) in flood hazard assessments have 
subjective components. Other analysts are expected to produce 
differing hazard assessments in the details, but likely not 
in generalizations, of the results herein. Although analyst 
decisions can affect results, “the unavoidable truth is that 
structural measures for reducing flood risk need hard numbers 
to dimension [infrastructure protection]” (Wilby, 2012).

The hydrologic engineering community typically studies 
instantaneous maximum streamflow (peak streamflow; 
volume per unit time) as the hazard-producing phenomenon 
that serves as input for hydraulic and hydrodynamic riverine 
models used to estimate localized water-surface elevations 
(stages) (Interagency Advisory Committee on Water Data 
[IACWD], 1982; National Research Council, 1988). The peak 
streamflow at a specific AEP is commonly estimated from 
statistical models, hydrologic models (watershed models), 
or combinations of the two. For this study, statistical models 
(probability distributions) are investigated. Estimation 
methods and uncertainty when translating peak streamflow to 
river stage, such as using numerical hydraulic models, are not 
discussed.

When flood hazard assessments are conducted at or near 
streamflow-gaging stations (“streamgages” hereafter; Lurry, 
2011; Olson and Norris, 2007), the observational record of 
annual peak streamflow forms the information foundation for 
analysis. This type of analysis is termed an “at-site” analysis; 
that is, an analysis conducted based on data collected from 
a specific streamgage. Annual data are most commonly 
associated with USGS streamgages, and annual peak 
streamflow data are provided to the public through the USGS 
National Water Information System (NWIS; USGS, 2016a). 
Information about streamgaging methods and the USGS 
database is provided in appendix 1, with emphasis on annual 
peak streamflow.

Floodplain management in the United States (Federal 
Emergency Management Agency, 2017) makes wide use of 
the magnitude of peak streamflow associated with an AEP 
of 0.01, sometimes called the 1-percent chance flood or the 
100-year flood (Dinicola, 1996). Much infrastructure in the 
form of culverts, bridges, floodplain management and riverine 
flood control is dependent on hazard levels that include AEPs 
commonly ranging from 0.1 to as small as 0.002. Uncertainty 
in accuracy and precision exists about the magnitude of 
peak streamflow for a given AEP. The uncertainty in peak-
streamflow frequency estimates (magnitudes) is not ignored, 
but convention often is to use these peak streamflows as 
point estimates for the specified AEPs of interest to a design 
circumstance and deem these sufficient as those hard numbers. 
Pappenberger and Beven (2006) provide highly cogent 
arguments concerning uncertainty analysis in hydrologic 

models (including peak-streamflow frequency) requires 
greater attention than it currently receives. Nevertheless, it is 
often sufficient to use point estimates in the design of many 
bridges and other roadway crossings where the consequences 
of losses or service interruptions generally are smaller than 
those associated with critical infrastructure.

For critical infrastructure elements, such as major dams 
and nuclear power plants, the consequences of exceedance 
are often much more substantial than for lesser elements, and 
the uncertainty in the estimated flood hazard is a particularly 
important component in complex decision- and design-making 
processes. In fact, the National Research Council (1988, 
p. 11) states that “a thorough study of low-frequency extreme 
events requires inclusion of an explicit uncertainty analysis.” 
The AEPs of interest to critical infrastructure flood hazards 
far transcend the lowest AEP (0.002) of general interest in 
transportation infrastructure and floodplain management, 
and the AEPs of 10–3, 10–4, or even lower are informative. 
Flood hazard estimates in these distal reaches of the tail 
of the underlying and unknown probability distribution 
fundamentally have much uncertainty (El Adlouni and others, 
2008). Point estimates for a given AEP might not be sufficient, 
and quantification of uncertainties is of special interest to 
critical infrastructure decisionmakers.

Purpose and Scope

The purpose of this report is to document, using data 
from two selected USGS streamgages, a framework that 
can be used to quantify uncertainty in analyses of peak-
streamflow frequency attributable to two sources: (1) the 
choice of the distribution to which the frequency curve is fit 
and (2) sampling error with respect to a chosen quantile and 
distribution. Emphasis is placed on the distribution choice 
uncertainty as a means to express or further explain however 
much uncertainty in extreme flood quantiles exists. Another 
purpose of this report is to outline with theoretical sufficiency 
the associated mathematical statistics in order to provide 
clarity in complex mathematical definitions. 

The study of flood hazard analysis described in this report 
is restricted to examining the statistical analyses of annual 
peak streamflow data using probability distributions, which is 
referred to as peak-streamflow frequency analyses. In brief, 
a probability distribution is fit to observed data in order to 
estimate the annual probability of exceeding a specified flood 
magnitude. The value of the estimated streamflow associated 
with the 0.001 AEP is a flood quantile (or just “quantile”). 
A successive sequence of quantiles for different AEPs defines 
the peak-streamflow frequency curve. 

Annual peak streamflow data for USGS streamgages 
01400500 Raritan River at Manville, New Jersey, and 
01638500 Potomac River at Point of Rocks, Maryland, 
are used in this report to illustrate methods for estimating 
very low AEP floods and their uncertainty. Two methods 
of parameter estimation are primarily utilized: the expected 
moments algorithm (Cohn and others, 1997; Cohn and 
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others, 2001) and L-moments (Hosking, 1990). The expected 
moments algorithm reduces to product moments in absence of 
nonstandard flood information. Additionally in a lesser role, 
the methods of maximum likelihood estimation and maximum 
product of spacings also are considered. Data are fitted to 
a total of nine probability distributions, six three-parameter 
distributions, two four-parameter distributions, and a single 
five-parameter distribution.

The mathematics associated with this report are 
provided as four thematic appendixes. A brief review of 
plotting positions and product moments is provided in 
appendix 2, and a similar review of L-moments is provided 
in appendix 3. Maximum likelihood (MLE) and maximum 
product of spacings (MPS) are described in appendix 4 along 
with goodness-of-fit statistics. The probability distributions 
applicable to this study in the context of L-moments are 
described in appendix 5. Those appendixes provide succinct 
mathematics through both independent and co-dependent 
figures.

Limitations of Analyses 

Although there is one historical flood in the peak 
streamflow record used for parts of computations involving 
a streamgage on the Potomac River (see next section), this 
report focuses almost exclusively on flood quantile estimation 
using only the systematic record of peak streamflows. 
Specifically, such record is composed of only data collected 
during a period of systematic (that is, deliberate) year-to-year 
data collection, and other types of non-systematic data are not 
included. Whereas other types of extant information may be 
informative for extreme quantile or “tail” (National Research 
Council, 1988, p. 7, 29–31) estimation, it is beyond the scope 
of this report to research and incorporate such information. 
This report does not consider the incorporation of information 
about historical floods and reconstructed flood events using 
paleohydrology (Baker, 1987; O’Connor and others, 2014), 
information that may be available from other streamgages 
in the area, or changes in streamflow generating processes 
attributable to changes in land use, flood control structures, 
or anthropogenic climate change (Cohn and Lins, 2005). 
By extension, the statistical properties of peak streamflow 
are assumed time invariant and thus stationary (Lins and 
Cohn, 2011).

Streamgage Selection for Analysis

The two USGS streamgages (fig. 1) selected for study 
are located within the eastern United States: 01400500 Raritan 
River at Manville, New Jersey, and 01638500 Potomac 
River at Point of Rocks, Maryland (figs. 2 and 3, table 1). 
The annual peak or annual maximum flood series for these 
streamgages constitute the data used. The streamgages were 
not selected to develop definitive peak-streamflow frequencies 
for design considerations at these streamgages; instead, 

both streamgages are simply examples used for purposes of 
illustration. 

The streamgages were selected with respect to several 
general characteristics, including a long period of record 
(tens of decades), anticipated stationarity of the data, and 
substantially large watersheds with respect to drainage areas 
representing upland regions in the humid seaboard of the 
eastern United States. A final selection criterion was a lack of 
substantial impacts by flood-flow regulation and urbanization. 
This is indicated by the absence of the peak streamflow 
qualification codes (table 1–1) in the USGS peak streamflow 
database (“peak-flow file” [appendix 1]; USGS, 2016a). The 
peak streamflows are essentially unregulated in the watersheds 
and are treated as such for purposes of this study.

The Raritan River streamgage (fig. 1) is located about 
33 miles (mi) west-southwest of the New York metropolitan 
area and has a watershed drainage area of about 490 square 
miles (mi2; table 1). The region lies within the northern New 
Jersey climate division (National Oceanic and Atmospheric 
Administration [NOAA], 2016a) and has a mean annual 
precipitation of about 43 inches (in.) for the period 1903–2015 
(NOAA, 2016b). This period corresponds closely to the 
observational peak streamflow record for the streamgage 
(table 1–2) shown in figure 4. The USGS reports drainage 
areas, gage height (stage), streamflow, and precipitation in 
English units, such as square miles, feet, cubic feet per second, 
and inches, respectively. These unit conventions are retained 
for this report.

The peak streamflow data for the Raritan River 
streamgage show attributes of stationarity based on visual 
inspection of the data (fig. 4) as well as by examination of 
peak streamflow data qualification codes associated with the 
peak streamflow record (USGS, 2016a). None of the annual 
peaks are flagged in the USGS peak streamflow database 
as being substantially affected by flood-flow regulation or 
urbanization. The Kendall’s Tau test (Conover, 1999; Helsel 
and Hirsch, 2002; Hollander and Wolfe, 1973) for temporal 
trends yields a Tau value of about +0.06 and a corresponding 
p-value of about 0.38 (table 1) from computations made using 
the USGS-PeakFQ software (Flynn and others, 2006; USGS, 
2014), indicating that there is not a statistically significant 
trend. The Kendall’s Tau test is commonly used to detect 
monotonic trends between streamflow statistics, such as 
annual peak streamflow, and time. It is therefore reasonable to 
treat peak streamflows at this streamgage as a stationary time 
series. 

Analyses were restricted only to the systematic record 
for the Raritan River to allow broadly similar application 
of different distribution fitting methods. The largest peak 
in the record is 77,600 cubic feet per second (ft3/s) in 1999 
and is the highest since 1896, whereas the smallest peak 
in the record is 6,660 ft3/s in 2000 (fig. 4; USGS, 2016a). 
The period of record for this study is water years 1904–2014, 
with gaps in the record during 1907–1908 and 1916–1921. 
A water year is the 12-month period from October 1 through 
September 30, designated by the calendar year in which it 
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ends. The restriction of using only the systematic record 
ensures a common basis on which to compare methods, 
because not all methods accommodate non-systematic record 
information in rigorously identical ways. However, this was 
not done for the historical streamflow record for the Potomac 
River at Point of Rocks streamgage.

The Potomac River streamgage (fig. 1) is located about 
40 mi northwest of Washington, D.C. and has a watershed 
drainage area of about 9,651 mi2. The region lies within the 
north-central Maryland climate division (NOAA, 2016a) and 
has a mean annual precipitation of about 47 in. for the period 
1895–2015 (NOAA, 2016b). This period corresponds closely 
to the observation peak streamflow record shown in figure 5 
for this streamgage.

Systematic records of peak streamflows are available 
for the Potomac River streamgage (table 1–3) for water years 
1895–2015; historical information also is available. An annual 
peak streamflow of 460,000 ft3/s occurred in 1889 and is 
the largest peak during the 1889–94 period, which is before 
systematic operation of the streamgage began. The largest 
peak in the record (systematic and historical) is 480,000 ft3/s 

in 1936, whereas the smallest peak in the record is 27,800 ft3/s 
in 1969 (fig. 5; USGS, 2016a).

The peak streamflow data for the Potomac River 
streamgage show attributes of stationarity based on a visual 
inspection of the data (fig. 5) as well as by examination of 
streamflow qualification codes associated with the peak 
streamflow record. None of the annual peaks are flagged 
(identified) in the USGS peak streamflow database as being 
substantially affected by flood-flow regulation or urbanization. 
The Kendall’s Tau test yields a Tau value of about –0.03 
and p-value of about 0.64 from computations made using 
the USGS-PeakFQ software, indicating that there is not a 
statistically significant trend. 

In the context of the background provided herein, 
the records of peak streamflow for both streamgages are 
suitable for a study of methods available for peak-streamflow 
frequency estimation, quantification of uncertainty, and 
right-tail estimation for low AEP. The peak streamflow data 
for the streamgages are extensive and provide favorable 
circumstances for site-specific peak-streamflow frequency 
computation.
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Figure 1.  Locations of U.S. Geological Survey streamflow-gaging stations 01400500 Raritan River 
at Manville, New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland.
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Figure 2.  River channel at U.S. Geological Survey streamflow-gaging station 01400500 Raritan 
River at Manville, New Jersey, on September 7, 2016. Photograph by Brian McDowell, U.S. 
Geological Survey.

Figure 3.  River channel at U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of Rocks, 
Maryland, on May 17, 2014. Photograph by Eric Vance, U.S. Geological Survey.



6    Application of At-Site Peak-Streamflow Frequency Analyses for Very Low Annual Exceedance Probabilities

Table 1.  Identification and ancillary properties of U.S. Geological Survey streamflow-gaging stations (streamgages) 01400500 Raritan 
River at Manville, New Jersey and 01638500 Potomac River at Point of Rocks, Maryland.

[USGS, U.S. Geological Survey; NGVD 29, National Geodetic Vertical Datum of 1929; NAVD 88, North American Vertical Datum of 1988; ft, foot; mi2, square 
mile; --, dimensionless. Text in red is referenced directly in the report]

USGS 
station 
number

Streamgage name
Latitude

(degrees)
Longitude
(degrees)

Gage datum
(ft)

Period of 
systematic 

record

Contributing 
drainage  

area
(mi2)

Kendall’s 
Tau
(--)

Kendall’s 
Tau p-value 
of analyzed 
annual peak 
streamflows

(--)

01400500 Raritan River at 
Manville, N.J.

40° 33' 20" 74° 34' 58" 20.61 NGVD 29 1904–06,  
1909–15,  
1922–2014

490 +0.06 0.38

01638500 Potomac River at Point 
of Rocks, Md.

39° 16' 24.9" 77° 32' 35.2" 199.92 NAVD 88 1895–2015 9,651 –0.03 0.64

Water year (October 1 to September 30)
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Figure 4.  Annual peak streamflow data for U.S. Geological Survey streamflow-gaging station 01400500 Raritan River 
at Manville, New Jersey.
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Figure 5.  Annual peak streamflow data for U.S. Geological Survey streamflow-gaging station 01638500 Potomac 
River at Point of Rocks, Maryland.

Background on Peak-Streamflow 
Frequency Estimation 

Analysis of peak-streamflow frequency (Stedinger and 
others, 1993) is a type of statistical analysis used to estimate 
the peak-streamflow frequency curve (commonly also called 
the flood-frequency curve). Prasad and others (2011, sec. 4.2), 
in particular, succinctly review the applicable background 
for those interested in probabilistic flood hazard assessments 
for nuclear power plants. Specific values for a hazard-level 
AEP from a peak-streamflow frequency curve are known as 
flood quantiles. A quantile simply corresponds to a single 
AEP, and for this study, AEP is the preferred term for hazard 
level. The frequency curve can be represented in two primary 
ways. First, the frequency curve can be represented by an 
empirical distribution function that is often approximated 
using Hirsch-Stedinger or other plotting positions (Hirsch and 
Stedinger, 1987; IACWD, 1982; Stedinger and others, 1993). 
The empirical distribution representation is a nonparametric 
technique that provides for visualization of the data. Second, 
parametric methods can be used to fit one or more probability 
distributions to the data (IACWD, 1982; National Research 
Council, 1988). 

This section first provides some basic information 
concerning the statistical assumptions used in peak-streamflow 
frequency analyses. The empirical and parametric approaches 
to developing peak-streamflow frequency curves are then 
described. Other possible methods for developing frequency 
curves are briefly discussed. Lastly, the uncertainties in fitted 
parametric frequency curves are discussed.

Throughout this report, frequency curves are fit to 
the base-10 logarithms of the annual peak streamflows, 
as is common practice in the discipline. The annual peak 
streamflow series often spans several orders of magnitude 
(powers of 10), and the logarithmic transformation is used 
to normalize these values and to keep unusually high values 
from having an excessive impact on a fitted frequency curve 
(Stedinger and others, 1993, p. 18.5).

For most at-site frequency analyses, an assumption is that 
the annual peaks are independent and identically distributed. 
As a result, the annual peak streamflows are treated as 
uncorrelated year-over-year (an example of serial correlation 
[dependency]). Additionally, the approach for peak-streamflow 
frequency analysis herein implicitly requires that the data be 
stationary (Lins and Cohn, 2011) for maximum reliability of 
results. Stationarity implies, for example, that commonly used 
statistics for time series such as the mean, variability, skew, 
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and higher moments do not change over time and thus are time 
invariant. For this study, an explicit assumption on stationarity 
is made for the data at both streamgages.

Peak streamflow data are obtained from measurement 
methods that have finite resolution. For example, a limited 
number of significant digits can be attributed to the limitations 
of instrument resolution and limited precision in the stage-
discharge rating curve (appendix 1). As a result, ties in the 
rank order of peak-streamflow data can occur for reasons 
such as either coarseness of the recorded data or rounding 
conventions. For example, Raritan River data used for this 
study consists of 103 values (one for each year of record) 
but only 85 unique values, and thus many ties in ranking are 
present. The Raritan River has three 15,000 ft3/s values in 
water years 1925, 1962, and 2012; this is a tie run having a 
length of three (3) for this streamflow magnitude. Such ties 
in a dataset can hinder statistical inference when the peak 
streamflows are treated as if they are continuous random 
variables; for example, the method of maximum product 
of spacings is particularly sensitive (Cheng and Stephens, 
1989) to the presence of ties because of its mathematical 
formulation.

Peak streamflow data might not originate from a purely 
random process (independence). One case practitioners should 
be aware of is that of annual peak streamflow occurring at 
the end of a water year (September 30) and the subsequent 
year’s peak streamflow occurring at the beginning of the next 
water year on or about October 1. This situation can occur 
when the flood hydrograph representing a substantial rainfall-
runoff event straddles the water year boundary. Although 
relatively unimportant for small peaks, very large events can 
complicate assumptions and computations best illustrated 
by descriptive example. Suppose the first and second largest 
annual peak streamflows in a dataset respectively occurred on 
September 30 of the 1969 water year (September 30, 1969) 
and October 1 of the 1970 water year (October 1, 1969). To 
prevent such large events from being oversampled in the data, 
the analyst might seek to replace the October 1 peak with a 
peak streamflow from a distinctly different event sometime 
between October 2, 1969, and September 30, 1970. 

Review of the Raritan River data indicates no sequential 
annual maximum peak streamflows straddling (or nearly so) 
the September 30-October 1 transition between water years. 
The same conclusion is made for the Potomac River data; 
the very large 1897 water year peak was on October 1, 1896 
but the previous year peak was on July 26, 1896. Thus, these 
events are substantially disconnected in time.

Empirical Frequency Analyses

An important component of frequency analyses is 
constructing an empirical distribution of the available data. 
The empirical distribution is defined by the data values 
without assigning a parametric form of a parent distribution. 
Empirical distributions are constructed primarily to visualize 
the distribution of the sample.

To construct an empirical distribution, plotting positions 
(appendix fig. 2–1) are used to define the nonexceedance 
probability (cumulative percentages) of individual data 
points within a sample (Cunnane, 1989; Helsel and Hirsch, 
2002; and Stedinger and others, 1993). Plotting positions 
also can be used to construct probability graph paper (such 
in USGS-PeakFQ software graphical output [USGS, 2014]) 
or be used to compare two or more distributions. Hirsch-
Stedinger plotting positions are used in this study (fig. 2–1) 
in order to accommodate historical information (Hirsch and 
Stedinger, 1987). Mathematically, in the absence of historical 
information, the Hirsch-Stedinger plotting positions are the 
same as, meaning they collapse to, the more commonly used 
Weibull plotting positions (IACWD, 1982). Hirsch-Stedinger 
plotting positions are provided in the USGS-PeakFQ software 
output.

The empirical distributions of annual peak streamflow 
data for the Raritan River and Potomac River streamgages 
are shown in figure 6. If the annual peak streamflows were 
to follow a log-normal probability distribution, then the 
data would generally plot along a straight line, with some 
variability attributed to sampling error, on the graph such as 
shown in figure 6. The steepness of the data in the figure is 
proportional to the variation or dispersion of the data, such 
as the standard deviation. The largest data values for both 
streamgages deflect upward (toward larger magnitude values) 
from a straight line, which is indicative of positive skewness 
(right-tail heavy data) for both streamgages.

Concerning the right tail for the Raritan River 
streamgage, the data have what appears to be a distinct “hinge 
point” (a distinct change in slope) at approximately 0.20 AEP. 
This change in the slope may be indicative of high-magnitude 
flood generation processes occurring about twice per decade. 
Concerning the right tail for the Potomac River streamgage, 
the data have a hinge point near approximately 0.10 AEP. 
A second hinge point is also indicated at approximately 
0.30 AEP. 

Although beyond the scope of this report, additional 
investigation of these data might provide insight into 
important flood-generating processes and thus insight into 
the interpretation of flood hazards. Factors such as the time 
of year of annual peak occurrence, moisture conditions 
just prior to the onset of annual peak-generating rainfall, 
and weather system (storm) types associated with the 
annual peaks could be examined. Covariate or conditional 
probability investigation of annual peak time series could 
also be explored, such as potential association between 
peak streamflow and the Palmer Drought Severity Index 
(Palmer, 1965) for the months in which annual peaks occur. 
In addition, one could examine the hydraulic characteristics 
of the stream channel at, and particularly upstream of, a 
streamgage. For example, channel conveyance or floodplain 
storage of flood volume can impact the relative growth of 
instantaneous peak streamflows as AEP diminishes.
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New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland.



10    Application of At-Site Peak-Streamflow Frequency Analyses for Very Low Annual Exceedance Probabilities

Parametric Frequency Analyses

Parametric methods are used to fit data to a specified 
statistical distribution, such as the Pearson type III distribution 
or the generalized extreme value distribution. The parametric 
approach will not model all of the variability observed in the 
data, but if the distribution is suitable enough, it provides 
for extrapolation beyond the exceedance probabilities 
represented by the data. Defining suitability is a challenging 
topic, and the following sections about distribution selection 
attempt to provide some bounds on what distributions may be 
considered suitable when the estimation requires considerable 
extrapolation, such as to very low AEPs. First though, 
common parametric methods for fitting a flood frequency 
curve are briefly described.

A peak-streamflow frequency curve commonly is fit 
using a single, usually unimodal, probability distribution 
(Kite, 1988). Sometimes, mixtures of probability distributions 
also are used (Karvanen, 2006; Grego and Yates, 2010; 
Scarrot, 2015; Villarini and others, 2011). In this report, 
examples pertain only to fitting data to a single probability 
distribution. For additional information about both simple 
and complex methods, Dey and Yan (2016) provide a 
comprehensive treatment of extreme value analysis, including 
applicable background and mathematics. Kite (1988) and 
Stedinger and others (1993) discuss specific applications 
of extreme value analysis with emphasis on annual peak 
streamflow, and complementarily, Paretti and others (2014) 
include a useful summary of the large body of literature on 
peak-streamflow frequency that collectively provides further 
background. 

General guidance for flood frequency computations 
in the United States follows a parametric approach and is 
described in Bulletin 17B (IACWD, 1982), which contains 
Federal agency guidelines that have been widely used in 
hydrologic education and practice (Stedinger and others, 
1993). For example, computations based on Bulletin 17B 
have commonly been used for the design of transportation 
infrastructure and floodplain management throughout the 
United States for more than 30 years. These guidelines specify 
the use of the log-Pearson type III distribution, as well as 
relatively unsophisticated methods for using historical data 
not collected as part of the systematic instrumental record, 
methods for screening for unusually small annual peak 
streamflows, and methods for including regional information 
on skewness into the analysis.

Research on flood frequency analysis has continued 
since the publication of Bulletin 17B (Cohn and others, 
1997; Cohn and others, 2001; Cohn and Stedinger, 1987; 
Griffis and others, 2004; Griffis and Stedinger, 2007; 
Stedinger and Griffis, 2008). One of the newer and more 
sophisticated computational methods includes the expected 
moments algorithm (EMA), which provides a method of 
estimation for fitting the frequency curve when nonstandard 
flood information is available. For example, EMA allows 

improved representation of nonstandard flood information 
such as that obtained from historical records or paleoflood 
hydrology studies (O’Connor and others, 2014; Stedinger and 
Cohn, 1986, 1987; USGS, 2014; Veilleux and others, 2014). 
The Bulletin 17B guidance is contemporaneously (2017) being 
updated to a “Bulletin 17C” version (England and Cohn, 2007; 
John F. England, Jr., U.S. Army Corps of Engineers, written 
commun., 2017). The analyses related herein involving EMA 
are exclusively based on pending Bulletin 17C extensions, 
which are already available to practitioners (USGS, 2014; 
Veilluex and others, 2014). Barth and others (2016) provide 
extensive details on EMA and a pertinent review of mixed 
populations in peak-streamflow frequency across more than 
1,000 USGS streamgages in the western United States. 

Whereas Bulletin 17B provides Federal agency guidance, 
other statistical methods or hydrologic modeling frameworks 
also exist that can be used to obtain flood-frequency relations. 
For example, Villarini and Smith (2010) and Villarini and 
others (2011) use the generalized extreme value rather than 
the Pearson type III distribution. Kite (1988) and the National 
Research Council (1988) include a description of several other 
distributions that may be considered.

The general purpose for fitting a probability distribution 
is to represent the magnitude of floods across a wide range 
of AEP values, and a reasonable probability distribution 
is especially important when extrapolations of the fitted 
frequency curve are to be made. Several alternative and 
complementary methods to fit probability distributions include 
product moments (IACWD, 1982), maximum likelihood 
(Hazewinkel, 2001; Jones and others, 2014, p. 349), EMA 
(Lane and Cohn, 1996; Paretti and others, 2014), and 
L-moments (Hosking, 1990). Other methods include the 
percentiles (Karian and Dudewicz, 2011) and maximum 
product of spacings (Cheng and Stephens, 1989; Dey and 
others, 2016; Lind, 1994; Wong and Li, 2007). 

EMA is an iterative method of solving for the product 
moments and has been fully developed for the Pearson type III 
distribution. It also allows flexible handling of different data 
types, including historical and paleoflood data (Baker, 1987). 
Extension of EMA, however, to fit other distributions has not 
yet been fully developed. Thus, the method of L-moments was 
chosen for primary emphasis in part because extensive though 
technically demanding code for scripting parallel analyses is 
available to expand analyses to other distributions beyond the 
Pearson type III distribution, and such is the case for MLE and 
MPS. In addition, the use of L-moments (Hosking, 1990) and 
multiple probability distributions has precedence in regional 
frequency analysis of extreme rainfall (Hosking and Wallis, 
1997), and L-moments, in the precursor form of probability-
weighted moments in earlier studies (National Research 
Council, 1988). The Precipitation-Frequency Atlas of the 
United States (NOAA, 2013, p. 18–24; “Atlas 14 volumes”) is 
based prominently on L-moment statistics for computation of 
depth-duration frequency curves for precipitation (Asquith and 
Roussel, 2004).
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Other Frequency Methods

Other methods for estimating peak-streamflow frequency 
quantiles are also available. For example, rainfall-runoff 
modeling has been used to model flood response to specific 
design storms. Nathan and Weinmann (2013) suggest methods 
for analysis of very rare (AEP less than 0.01 to AEP about 
0.005 to 10–4) to extremely rare (AEP less than about 10–4) 
flood events in Australia, including use of rainfall-based 
simulation methods and estimation of the probable maximum 
flood. Methods that emphasize regional information also 
exist. For example, the index-flood method provides a means 
of incorporating regional information in peak-streamflow 
frequency estimation (Hosking and Wallis, 1997; Kite, 1988).

Quantifying Sources of Uncertainty

Two types of uncertainty in peak-streamflow frequency 
analyses are considered for this study: epistemic and aleatoric. 
Epistemic uncertainty (also called reducible uncertainty) 
is the uncertainty in not knowing the optimal model for 
probabilistic prediction and thus is related to knowledge of 
natural and physical world processes. Probabilistic prediction 
requires a model of probability (a distribution). Kite (1988, 
p. 28) states, “It is not known which of the many distributions 
available is the ‘true’ distribution” and, “It is possible to 
fit several distributions [to the same data] and end up with 
several different estimates” of an event of interest. Other 
authors have called this a model error (or alternatively model 
error variance) (Bobée and others, 1993, p. 125). The term 
“distribution choice uncertainty” is adopted for this study.

Aleatory uncertainty is that associated with inherent 
random chance. This second uncertainty is dependent on 
the random sample itself and also on the choice of event 
of interest (hazard level). Kite (1988, p. 28) states, “The 
statistical parameters of the probability distribution must 
be estimated from the sample data.” Aleatory uncertainty 
is often referred to as irreducible or stochastic uncertainty. 
Such uncertainty is also referred to as sampling uncertainty 
(Bobée and others, 1993, p. 125), and that terminology 
is the convention adopted in this study. An extensive 
body of literature concerns this uncertainty owing in part 
to convenience of mathematical tractability as well as 
accessibility within designed statistical simulation (Monte 
Carlo) experiments (Jones and others, 2014; Rizzo, 2008). 

Distribution choice uncertainty arises because analyses 
are conducted using models that are mathematical constructs 
of the physical world. Better understanding of the true or 
near-true distribution of peak streamflows would improve 
the ability to statistically model peak-streamflow frequency. 
However, the underlying probability distribution used for 
distal tail estimation will always be unknown in practical 
circumstances of very low AEP estimation. Decisions on the 
part of the analyst can greatly impact epistemic uncertainty, 
and it is not uncommon for decisions to be depicted on “logic 
trees” (Chevallier, 2016) and reliance on “multiple-expert 

opinion assessment and aggregation” (National Research 
Council, 1988, p. 11). Different analysts can legitimately 
arrive at different quantifications of epistemic uncertainty. 
Furthermore, even subtle changes in distribution tail behavior 
can result in widely divergent estimates as AEP decreases. 
For real-world hydrologic systems and especially for critical 
infrastructure applications, analytical interests are measured in 
time scales usually far in excess of the available record (with 
interests in return periods of major events perhaps greater 
than 1,000 years or more), limiting the ability to evaluate 
the chosen model (distribution) or candidate distributions 
and thereby exacerbating epistemic uncertainty impacts. The 
probability distribution is used for extrapolation, and Bobée 
and others (1993, p. 125) note that “the [epistemic uncertainty] 
is relatively more important in extrapolation.” Similarly in 
a review of methods for tail estimation using covariates or 
conditional variables, Wang and Li (2016, p. 321) conclude 
that “parametric methods are sensitive to the misspecification 
of models.”

Sampling uncertainty is attributable to the size of 
available sample (usually smaller than ideal) under an 
assumption that a particular distribution is applicable. The 
sampling uncertainty is dependent to a lesser degree on the 
properties of the parameter estimation method. Lastly, both 
the distribution choice uncertainty and sampling uncertainty 
are themselves dependent on selected AEPs, and both increase 
as AEP decreases. Specific definitions for this study are now 
offered:
1.	 Distribution Choice Uncertainty (σdc)—This uncertainty 

is quantified as the standard deviation of the quantile 
estimates of all distributions considered. Its value is 
dependent on which distributions are chosen by the 
analyst for comparison. A different set or ensemble of 
distributions would yield a different distribution choice 
uncertainty. For the analyses herein, six three-parameter 
probability distributions and three higher order 
distributions have been selected.

2.	 Sampling Uncertainty (σs)—This uncertainty represents 
the uncertainty of a given quantile estimate for a 
specific fitted distribution. For example, this is the 
sampling uncertainty for a quantile under the condition 
(assumption) that the chosen distribution is actually 
correct using the available sample data. This uncertainty 
can be constructed from analytical results, Monte 
Carlo simulation, or hybrid techniques dependent on 
mathematical tractability. The foundation of sampling 
uncertainty is the mathematical matrix describing the 
sampling variance-covariance of either the moments 
(product or L-moment) and (or) the parameters of 
the distribution based on the data values themselves. 
The sampling variance-covariance matrix defines 
the coupling of variation among the moments and 
parameters. The sampling variance-covariance matrix 
then provides a key to computing sampling uncertainty 
and also confidence limits for a given quantile.  
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A variance-covariance matrix is a technically 
complicated topic, but details for specific L-moments 
are shown in figure 3–3.

When written, the two uncertainties have inherently 
complicating syntax that is most accurately described by 
example. Distribution choice uncertainty is considered first. 
For example, suppose three 0.01 AEP estimates from three 
different probabilities distributions are 309,000; 331,000; 
and 794,000 ft3/s. Emphasis is needed that the computations 
were based on logarithmic transformation. As a result, the 
uncertainty is best expressed using logarithms, though 
descriptively, this is best left to numerical examples.

The arithmetic mean of the logarithms (base10 or 
log10) for the three values is 5.637, which is 433,000 ft3/s 
when retransformed. It is appropriate to use the mean of 
the logs, because logarithmic transformation is the native 
basis on which other statistical computations were made. 
The range in the estimates is 309,000 to 794,000 ft3/s. The 
standard deviation (σdc,) of the logarithms for the three values 
is 0.299. It is suggested that, in the context of distribution 
choice uncertainty, the estimates of the 0.01 AEP be written 
as “433,000 ft3/s (range 309,000 to 794,000 ft3/s; σdc = 0.229 
log10).” Note that σdc is the quantification of distribution 
choice uncertainty. Because the full range of estimates from 
the three selected probability distributions are shown, there is 
no implicit association to an N-percentile confidence interval 
(such as 90th percentile confidence interval). This is stated 
because it is in contrast to sampling uncertainty, which is 
described next. 

 Sampling uncertainty is best described by example. 
Suppose the 0.01 AEP estimate for a given probability 
distribution and given method of parameter estimation is 
331,000 ft3/s, which is about 5.520 log10, using a generalized 
extreme value distribution. In addition, suppose that the 
standard deviation (σs) attributable to sampling error for the 
0.01 AEP quantile is computed as 0.082 log10. The lower 
and upper limits of the 90-percent confidence interval of this 
quantile can then be computed (assuming about 100 degrees 
of freedom or about a century of data values) as 5.380 and 
5.660 log10, respectively. These limits after retransformation 
are 240,000 and 457,000 ft3/s, respectively. Lastly, it is 
suggested that in the context of sampling uncertainty, that 
the estimates of the 0.01 AEP be written as “331,000 ft3/s 
(90-percent confidence limits 240,000 to 457,000 ft3/s based 
on σs = 0.082 log10).”

The authors advise that mention of the logarithmic 
units of uncertainty (standard deviation) be retained in part 
because it is location independent (that is, independent in 
regards to location along the real-number line) to think 
in terms of log-cycles of uncertainty. For example, the 
distribution choice uncertainty is 0.147 log-cycles larger than 
the sampling uncertainty (0.229 – 0.082 = 0.147); therefore, it 
could be inferred that the choice of the distribution is a much 
greater component to overall uncertainty than the sampling 
uncertainty stemming from randomness.

Methods of Probability Distribution 
Selection and Estimation

Numerous probability distributions are considered in 
this study, and thus it is important to consider distribution 
selection and methods of estimation. Because of inherent 
conceptual complexities, a schematic diagram was created to 
depict a structure of the analyses provided herein (fig. 7). This 
schematic embodies the overall logic structure of at-site peak-
streamflow frequency as described in this report. In practical 
circumstances, the logic flow shown is not one-directional, 
and considerable iterative refinement of the process by an 
analyst is anticipated. Logic elements not used in the analysis 
herein are shown in gray. The gray is used to communicate 
that there is inherently an expansive conceptual breadth and 
fixed limits are difficult to identify.

Potentially applicable distributions are described in this 
report, but the identification of distributions to consider is 
largely based on the findings of others (Rahman and others, 
2009; p. 42 and cited references therein). For the analyses 
provided herein, six three-parameter probability distributions 
of primary interest were selected because of their previous use 
in hydrometeorologic frequency analyses (Hosking, 2015a,b; 
Hosking and Wallis, 1997; Stedinger and others, 1993). The 
six probability distributions achieve fits by describing the 
location and spread of the data, as well as the asymmetry 
of the data about the mean. In addition, three higher-order 
distributions were selected for comparison.

As shown later in this report, the choice of distribution 
does not have a substantial effect on flood quantile estimates 
for AEPs no smaller than 0.04 to 0.005. As AEP is lowered 
and estimates are made progressively farther into the right 
tail for AEP < 0.001, the examples show that the quantile 
estimates become quite sensitive to the choice of distribution. 
Multiple distributions were used for this study because of 
the inherent difficulties in establishing the optimality of 
one distribution over another to describe extreme flood 
behavior. Establishing goodness-of-fit criteria of distribution 
tail properties is difficult when there is an absence of 
observational data for such extremely rare events. 

The primary distributions chosen for this study are 
listed in table 2 and mathematically described in appendix 5. 
Starting first with three-parameter distributions, in 
alphabetical order these are the generalized extreme value 
(GEV), generalized logistic (GLO), generalized normal 
(GNO), generalized Pareto (GPA), Pearson type III (PE3), 
and Weibull (WEI) distributions. The other, higher-parameter 
distributions chosen are the asymmetric exponential power 
(AEP4, four parameter), Kappa (KAP, four parameter), and 
Wakeby (WAK, five parameter) distributions. The numeral “4” 
is used to distinguish the AEP4 from a five-parameter version 
that is not considered for this study, as well as avoiding the 
obvious conflict with AEP (annual exceedance probability). 
The analyses reported here are based exclusively on base-10 
logarithms of annual peak streamflow data, and as a result, 



Methods of Probability Distribution Selection and Estimation    13

Distribution type
   AEP4, asymmetric exponential power (four parameter)
   GEV, generalized extreme value (three parameter)
   GLO, generalized logistic (three parameter)
   GNO, generalized normal (three parameter)—Also log-normal
   GPA, generalized Pareto (three parameter)
   KAP, Kappa (four parameter)
   PE3, Pearson type III (three parameter)
   WAK, Wakeby (five parameter)
   WEI, Weibull (three parameter)—Also reversed GEV

Annual peak
streamflow values

Parametric
approach

Select distributions
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Three parameter Four or more parameter

GLO GNO GPA WEIPE3 AEP4 WAK
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Maximum
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Blue-gray shading signifies logic elements
not used in the analysis for this report.

Figure 7.  Steps toward estimation of at-site peak-streamflow frequency analyses for low annual exceedance probabilities.
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Table 2.  Identification of probability distributions referenced in this study.

[Distribution abbreviations chosen as three characters with exception of AEP4, which is extended to avoid confusion with AEP (annual exceedance probability). 
The “4” in AEP4 reflects four parameters for that distribution]

Distribution 
abbreviation

Distribution  
name

Number of 
parameters

General description and notes related to this study

Three-parameter distributions of primary interest in this study

GEV Generalized extreme 
value

3 Common in extreme value analyses in nature and has been particularly popular 
in descriptions of depth-duration frequency annual rainfall maxima. The two-
parameter Gumbel distribution is a special case. The GEV is a reversed WEI.

GLO Generalized logistic 3 Often compared to other three-parameter distributions because it is the most 
L-kurtotic of the other three-parameter distributions. The two-parameter logistic 
distribution is an asymmetrical special case. The GLO forms the upper L-kurtosis 
boundary of the KAP distribution.

GNO Generalized normal 
(same as three-
parameter log-normal)

3 Common in extreme value analyses in nature and advantageous because it 
simultaneously attains the two-parameter log-normal distribution. GNO is also 
known as a skewed normal; the normal distribution is a special case.

GPA Generalized Pareto 3 Commonly used in peaks-over-threshold analyses. Commonly is the least L-kurtotic 
distribution in many data sets from nature. The exponential distribution is a special 
case as is the uniform distribution. Some WAK distribution algorithms (Hosking 
and Wallis, 1997) fall back on the GPA in practical applications.

PE3 Pearson type III 3 Widely used in hydrologic sciences and especially so in the United States, where it 
forms the basis of Federal guidance. Widely used highway drainage infrastructure 
design and for flood hazard maps. Amendable to method of product moments 
because the parameters are the product moments.

WEI Weibull 3 Very common in survival and reliability analyses, though often shown as a two-
parameter distribution. Common in low and drought streamflow analyses. The 
WEI is a reversed GEV and thus attains a reversed two-parameter Gumbel.

Other distributions with four or more parameters

AEP4 Asymmetric exponential 
power

4 Flexible distribution with potential application in stochastic modeling that was first 
formed near the end of the 2000s as a generalization of the skewed exponential 
power distribution; the symmetric exponential power distribution is a special case. 
Might have useful tail properties for low AEP estimation relative to KAP and 
WAK for many annual peak streamflow datasets; readily attains L-kurtosis values 
larger than the GLO but not as small as the KAP.

KAP Kappa 4 Popular distribution in regional frequency studies of extreme values in nature 
because it attains the GEV, GLO, GNO, GPA, PE3, and WEI. Commonly used in 
Monte Carlo simulations to infer regional goodness-of-fit for the aforementioned 
distributions. A critique for individual peak streamflow analyses is that it is not 
L-kurtotic enough, which is borne out in this study by coincidence.

WAK Wakeby 5 Very flexible distribution of historical significance (circa late 1970s) for analysis 
of the properties of product moment estimators. A critique for individual peak 
streamflow analyses is that it is not uncommon for a parameter solution to 
not exist (Hosking and Wallis, 1997, advocate fall back to a GPA fit) and tail 
properties can regularly seem incompatible with the data, which is borne out in 
one of two case studies in this report. Cannot be represented on an L-skew and 
L-kurtosis diagram.
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the adjective “log,” as in the “log-Pearson type III,” is to 
be inferred as an encompassing adjective of all distribution 
references herein. It is common for log-PE3 to be abbreviated 
as LPIII (or something similar) in other literature. It is more 
convenient for this study to use PE3 as the abbreviation, 
because logarithms (the “L” in LPIII) are implied and the 
nomenclature is more consistent with the other abbreviations 
used herein. The mathematical definitions of these 
distributions and relations to L-moments are briefly reviewed 
in appendix 5, and their descriptions are provided in table 2.

The three-parameter distributions receive considerable 
attention, and often these are preferred over lower-order 
distributions for magnitude and frequency analyses of 
skewed datasets. The difficulty in estimating product moment 
skewness is widely known, and elaborate methods for 
enhancing shape (skewness) estimation abound in the peak-
streamflow frequency literature, mostly reliant on method of 
moment-like estimators. For example, with the PE3, standard 
practice in the United States has been to weight the at-site 
skew with a regional skew and compute a weighted skew 
for the purpose of fitting the third parameter of the PE3. 
This regional skew is derived from analyses of peak flows 
at streamgages throughout the region (Griffis and others, 
2004; IACWD, 1982; USGS, 2014; Veilleux and others, 
2014) occupied by the streamgage of interest. L-moments 
can reliably estimate skewness through sample L-skew, 
and L-moment performance is anticipated to exceed that of 
product moments and remain competitive with MLE for the 
sample sizes commonly encountered in peak-streamflow 
frequency analyses.

Use of PE3 in the United States is common because 
of its prominence in the Bulletin 17B guidelines. It must be 
recognized, however, that this distribution may not be optimal. 
Extreme value theory (Dey and others, 2016; Gumbel, 1958; 
Salvadori and others, 2007, chap. 1) naturally relates the 
GEV distribution into the question of hydrologic frequency, 
and the GEV has long precedence, though not exclusive use, 
in depth-duration frequency analyses of annual maximum 
rainfall.

Other distributions commonly used (Hosking and Wallis, 
1997) are the GLO, GPA, and GNO. First and at one extreme, 
the GLO is useful because it is a highly kurtotic distribution 
and effectively forms an upper bound on attainable kurtosis 
for the “simple” families of location-scale-shape distributions 
(fig. 3–5) seen in hydrometeorologic studies. Second and at 
the other extreme, the GPA is useful because it has some of the 
least kurtotic tendencies potentially seen in hydrometeorologic 
studies (Hosking and Wallis, 1997; Kjeldsen and others, 
2002). The GPA also is popular for peaks-over-threshold 
analyses (Stedinger and others, 1993, p. 18.37–18.39; Dey 
and others, 2016, p. 16), which are used occasionally in 
hydrometeorologic applications. Third, the GNO is useful, 
because it is a generalization of the normal distribution into 
skewness and is closely related—that is, equivalent through 
alternative parameterization—to the log-normal distribution. 
The GNO resides between the GLO and the GEV for near- 

symmetrical distributions and is less L-kurtotic than the GLO 
and GEV (for instance) for large L-skew.

The WEI distribution, which commonly is applied in 
survival and reliability studies, often is seen as having suitable 
tail behavior for estimation of low-magnitude (left tail) 
hydrometeorologic processes. The WEI is a reverse of the 
GEV, in that the negation or sign change of the data reverses 
the data. As an aside, some aspects of existing L-moment 
theory require reversing in order to accommodate censored 
data herein.

Distributions having four or more parameters (also 
called high-parameter distributions or four-plus parameter 
distributions) are not used as often as the lower-order 
distributions having three or fewer parameters, described 
elsewhere in this report. High-parameter distributions have 
inherent promise for mimicking the geometry of heavy-
tailed distributions when used with adequate sample sizes to 
reliably estimate the parameters. The parameter estimation 
method and sample size become progressively more important 
as the number of parameters to fit increases. The number 
of distribution parameters used in this study (five or less) 
implicitly mitigate concerns for model over fit.

The four-plus parameter distributions conventionally 
are fit to the mean, variance (dispersion), skewness, and at 
least the next general moment of kurtosis (conceptually just 
the next higher-order measure of shape) of a dataset. These 
high-order distributions are flexible, and for some types of 
distributional analyses they might provide useful fits that 
are not attainable by lower-order distributions. Lastly, as a 
rule, parameter estimation for higher-order distributions is 
considerably more complex than for lower-order parameter 
distributions because numerical methods for minimization or 
direct root-solving typically are required.

Methods of Parameter Estimation

This study focuses primarily on parameter estimation 
using product moments (EMA) and L-moments, described in 
more detail next. Limited attention is also given to MLE and 
MPS. Thus, combined, four different methods of parameter 
estimation are reviewed.

The Bulletin 17B guidelines use (in logarithms) the 
product moments of sample mean, variance, and skew. 
A sequence of prescriptive procedures is used to make 
adjustments to the sample moments in order to account 
for any historical record and zero flows. The Bulletin 17C 
guidelines, already implemented in software (USGS, 2014; 
Veilleux and others, 2014), also suggest the use of product 
moments estimated using EMA, which uses an iterative 
approach to solve for the product moments when nonstandard 
flood information is available. EMA is flexible and allows 
vastly more versatility in representing nonstandard data, 
such as historical data or flood peaks that are imprecisely 
known, than currently available within the theory of 
L-moments and MPS.



16    Application of At-Site Peak-Streamflow Frequency Analyses for Very Low Annual Exceedance Probabilities

The Bulletin 17C guidelines, again already implemented 
in software (USGS, 2014; Veilleux and others, 2014), also 
call for screening for potentially influential low floods, which 
are small values in the time series of annual peak streamflow 
that can strongly influence the fit of the frequency curve. 
Because these small peak streamflows are not relevant to 
fitting the right tail of the distribution, it is desirable to 
identify them. A single Grubbs-Beck test (Bulletin 17B) or a 
multiple Grubbs-Beck test (Bulletin 17C) is used to identify 
smaller floods that do not fit the bulk of the distribution. 
Implementation of these screening procedures and the 
subsequent treatment of identified peaks can greatly influence 
distribution fit but are not considered further in this report.

The USGS-PeakFQ software (USGS, 2014; Veilleux 
and others, 2014) can be used to fit the peak-streamflow 
frequency curve using the PE3 and product moments 
and EMA. The software is not readily extensible to other 
distributions, and hence the PE3 is the only distribution 
using EMA and the Grubbs-Beck test or the multiple Grubbs-
Beck test. Specifically for this study, the USGS-PeakFQ 
software was specially adapted for an “Extended Output” 
user option to provide estimates at selected AEPs from  
10–3 to 10–6.

L-moments (Hosking, 1990) are an “attractive alternative 
system of moment-like quantities” (Jones, 2004, p. 98) 
and thus are an alternative to product moments. Like other 
statistical moments, L-moments characterize the geometry of 
distributions and summarize samples. L-moments have similar 
interpretations as the product moments and thus are analogs 
of those statistics, which makes L-moments conceptually 
accessible to practical circumstances already involving 
product moments.

L-moments (appendix 3) are based on linear 
combinations of differences between the expectations of 
order statistics as opposed to the product moments, which 
are based on powers (exponents) of differences (appendix 2). 
For example, the product moment definition of skew, which 
is based on differences to a third power, can result in poor 
sampling performance for distributions characterized by 
heavy tails, asymmetry, and outliers. The performance of 
kurtosis, which is based on differences to the fourth power, 
is usually worse. Partly because of favorable sampling 
performance, Hosking (1992) concludes that “L-moments 
can provide good summary measures of distributional 
shape and may be preferable to [product] moments for this 
purpose.”

Probability-weighted moments and L-moments are 
so closely related to each other that the choice of one over 
the other is often determined by or based on mathematical 
convenience and tractability as opposed to fundamental 
differences in sampling properties. Deng and Pandey (2009) 
explore the estimation of probability-weighted moments for 
conditions of left-tail censoring using “partial probability-
weighted moments” for which several other studies of 
these moments are referenced therein. For this study, a form 

of censored L-moment computation (Wang and others, 
2010) is made in a framework anticipated as more adaptable 
to mixed censoring involving complex historical flood 
information.

The two additional methods of parameter estimation 
involved in this study, MLE and MPS, are closely related 
to goodness-of-fit metrics (appendix 4). In brief, MLE 
estimates the parameters of a distribution by maximizing the 
summation of logarithms of the probability density computed 
for each of the data values. MPS is similar in the sense 
that maximization of a summation also is involved, but for 
MPS, the quantities summed are the successive differences 
of probability estimates obtained from the cumulative 
distribution function for each of the data values. Markiewicz 
and Strupczewski (2009) study dispersion measures in peak-
streamflow frequency analyses and acknowledge that MLE 
loses applicability if an inappropriate distributional model 
has been selected when probability densities become infinite 
or exactly zero (or numerically near zero) in a tail. MPS is 
sensitive to ties between data values and close groupings 
(clusters) of them.

Distribution Validity and Goodness-of-Fit

Distribution selection is a critically important 
component of parametric frequency analyses and a difficult 
task (Gingras and Adamowski, 1994, p. 856). The problem 
is compounded when events far into the right tail are needed, 
and in practice, such information is extremely scarce. 
Methods for fit assessment are often based on distribution 
fit in the “central area” (Gringas and Adamowski, 1994) 
or “bulk of the distribution” (Apipattanavis and others, 
2010) rather than the tails. Bobée and others (1993, p. 122) 
state, “Although attempts have been made to give some 
statistical justification for the use of asymptotic extreme value 
distributions [and others] * * * there is no solid theoretical 
basis for justifying one specific type of distribution for 
modeling flood data.”

Methods for assessing distribution validity include 
goodness-of-fit tests. Goodness-of-fit describes the extent to 
which observed data match the values expected by theory. 
For the application here, a fitted distribution of a given form 
(distribution choice) serves as the theory. Goodness-of-fit in 
the context of peak-streamflow frequency analyses can be 
qualitative and guided by expert opinion using methods such 
as graphical visualization when the dimension of the problem 
is small (univariate). Goodness-of-fit can also be evaluated 
using a quantitative reference frame and can be based on one 
or more numerical measures of fit. Many goodness-of-fit 
methods result in p-values from which statistical inference 
can be made. Such methods include the nonparametric 
Kolmogorov-Smirnov or parametric Chi-squared tests 
(Conover, 1999). Mathematical details of goodness-of-fit 
applicable to this study are provided in appendix 4. Again, 
note that these traditional methods of assessing goodness-of-fit 
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have unknown utility when extrapolation far beyond the 
observed data is needed.

L-moments provide more secure inference of 
distribution shape than product (conventional) moments 
(Sankarasubramanian and Srinivasan, 1999), and L-moment 
ratio diagrams are convenient for this purpose. These diagrams 
express relations between high measures of distribution shape, 
such as L-skew and the next higher moment (L-kurtosis). 
Two diagrams that provide results specific to this study are 
introduced later. A template of the L-moment ratio diagram 
requires detailed explanation, and readers are directed to 
the discussion associated with figure 3–5 for additional 
background details.

Probability distributions are distinguished according to 
their formal mathematical definition, L-moments based on 
fundamental theory, and perhaps more obviously by their 
respective parameter values. Distributions, as a general 
result, have specific and typically unique intrarelations (that 
is, within the distribution) between moments and parameters 
(fig. 3–5). The intramoment relations between the moments 
of a distribution (theoretical or sample) provide a means 
to judge the potential suitability of candidate distributions. 
Because L-moments are a convenient and powerful tool for 
discriminating distribution shape (Hosking, 1992; Royston, 
1992), L-moment ratio diagrams, in turn, are useful for 
discriminating between distributional forms (Hosking, 
1990; Hosking and Wallis, 1997; Vogel and Fennessey, 
1993). However, as conceptually set up in L-moment ratio 
diagrams, Pandey and others (2001) conducted experiments 
on using L-kurtosis to assess goodness-of-fit by choosing 
“that distribution whose L-kurtosis is the closest to that of the 
sample data” (Pandey and others, 2001, p. 288). Compared 
to other procedures used to assess goodness-of-fit, Pandey 
and others (2001, p. 291) conclude that “L-kurtosis is a 
good indicator of distribution shape and its use in quantile 
estimation is effective.” Other contextual sources about 
L-skew and L-kurtosis joint distribution and goodness-of-fit 
are Ben-Zvi and Azmon (1997) and Liou and others (2007). 
Recently, Hosking (2015c) explored joint confidence regions 
of L-moment ratio diagrams.

L-moment ratio diagrams are one of the standard tools 
used in the regional analyses of hydrologic phenomena 
(Asquith and others, 2006; Liou and others, 2007; Peel and 
others, 2001). In fact, Sankarasubramanian and Srinivasan 
(1999, p. 26) conclude, “One of the main applications 
of L-moments is in the identification of the probability 
distribution of the observed phenomena using the L-moment 
ratio diagram.” 

L-moment ratio diagrams are information dense and 
require considerable explanation. To begin, an L-moment 
ratio diagram, such as figure 3–5, is most often a depiction of 
the two-dimensional domain of L-skew and L-kurtosis (third 
and fourth L-moments), because emphasis on hydrologic 
frequency analyses continues to be oriented toward three-
parameter distributions. Diagrams of L-skew and L-kurtosis 

are especially useful for evaluating distributional form in a 
framework that is largely independent of the location and scale 
(dispersion, variation) characteristics of the distribution. Other 
L-moment diagram variants exist. For example, Hosking and 
others (2000, p. 3) suggest that the L-moment ratio diagram 
of L-kurtosis (the fourth L-moment ratio) and the unnamed 
sixth L-moment ratio (not otherwise referenced in this study) 
can be used to distinguish different families of symmetric 
distributions.

L-moment ratio diagrams address, but cannot completely 
solve, the nontrivial problem of selecting a distributional 
form for arbitrary data. The diagrams, however, provide a 
convenient tool to use when considering or distinguishing 
distributional form. Distributions can have unique points, 
lines, or regions on an L-moment ratio diagram; the diagram 
can be used to evaluate the portion of the L-skew and 
L-kurtosis domain occupied by the distribution that is most 
similar to the sample estimates of L-skew and L-kurtosis 
from the data. The difficulty in estimating sample L-skew and 
L-kurtosis from relatively small samples makes this evaluation 
inexact, and this partly explains why regional analyses 
are considered in order to provide clarity on distributional 
form (Asquith and others, 2006; Hosking and Wallis, 1997, 
numerous references therein; NOAA, 2013).

At-Site Peak-Streamflow Frequency 
Analyses for Very Low Annual 
Exceedance Probabilities

This section presents results of the analysis of data 
from two streamgages chosen for this study. The results are 
shown in parallel sections for each streamgage. The peak-
streamflow frequency curves for the four multiple parameter 
estimation methods for the PE3 are presented, and such curves 
are followed by a review of the multiple frequency curves. 
Tables specific to each streamgage of numerical results 
including quantiles, 90-percent confidence limits, distribution 
choice uncertainty, and sampling uncertainty are identified. 
L-moment ratio diagrams specific to each streamgage are 
shown, and attendant discussion concerning distribution 
validity is made. Two additional sections discuss (1) goodness-
of-fit using several approaches in an effort to semi-quantify 
relative distribution fits, and (2) the distribution of the 0.01 
and 0.001 AEP quantiles by both method and distribution 
using Monte Carlo simulation. Lastly, the results are highly 
parallel and discussion comparably written, and hence results 
are similar in generalities and even in some specifics. This is 
quite by coincidence and not deliberate design in the selection 
of the two streamgages for this study. Readers are asked to not 
over-interpret the similarities in the L-moment diagram results 
of this report as general representations applicable to other 
circumstances.
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Results for the Raritan River at Manville, New 
Jersey, Streamgage

Comparison of Parameter Estimates
The parameters for a selected distribution for a given 

dataset are simultaneously dependent on the choice of 
parameter estimation method. Results for the Raritan River 
data, respectively, for the parameters (mean, standard 
deviation, skew) of the PE3 distribution using methods 
of EMA (product moments), L-moments, MLE, and MPS 
are listed in table 3. Of special note concerning results for 
the Raritan River data in table 3 are the small differences 
in the means and standard deviations (the first and second 
parameters of the PE3 distribution). The four fitted PE3 curves 
to these four ensembles of parameter estimates are shown in 
figure 8 in comparison to the data. The largest differences 
in table 3 are in the third parameter, skew, indicated by the 
curvature of the line. Visible curvature indicates that skew is 
measurably different from zero.

Figure 8 shows the four fits for the PE3 are similar, and 
divergence among them increases as AEP diminishes. For 
these data, the two methods of L-moments and MPS produce 
nearly identical parameter estimates; however, inference that 
these two methods always produce nearly identical quantile 
estimates is not intended. The product moment estimate has 
the most positive skew, and hence, the trajectory for its PE3 
curves up and away from the other three. The larger skew 
might be attributable, in part, to the influence of the two 
largest peaks, which seem to be outliers relative to other 
large values. Product moments are more sensitive to potential 
outliers than the L-moments (Hosking, 1990; Stedinger and 
others, 1993). Lastly, the quantile estimates produced by 
MLE are the lowest of the four; interpretation, however, that 

this method (MLE) always produces the smallest quantile 
estimates in other practical applications is not intended. 
Similarly, product moments do not always produce the largest 
quantiles.

The top five largest annual peak streamflows are all 
associated with late summer tropical cyclones in the region, 
and all have occurred within about a 5-week interval (August 
19 through September 22) over approximately the past 
century. Other associations with tropical storm systems seem 
to exist for smaller peaks, but further study of population 
mixing (Barth and others, 2016; Grego and Yates, 2010; 
Karvanen, 2006; Scarrott, 2016; Scarrott and Yang, 2015) 
within the annual peak streamflow series is outside the scope 
of this paper. Villarini and others (2014) provide a topical 
review of tropical system impacts for most of the eastern 
United States.

Frequency Curve Comparisons and Confidence 
Limits

A visual comparison of the selected probability 
distributions for this study applied to the annual peak 
streamflow data for the Raritan River streamgage is shown in 
figure 9. (The Kappa distribution is not shown or discussed 
further because it lacks solutions for both the Raritan River 
and Potomac River data.) The far right tail is of interest in this 
study, and thus the horizontal axis on a probability scale that 
starts at the 0.30 AEP and is carried through to the 10–6 AEP 
(one part in 1 million). Peak streamflows from the systematic 
record are shown in figure 9, plotted using Hirsch-Stedinger 
plotting positions (fig. 2–1). For these systematic-record-only 
data, these plotting positions are the same as the Weibull 
plotting positions (fig. 2–1). The numerical values for the 
parameter estimates by L-moments for the Raritan River are 
listed in table 4.

The respective trends or trajectories of the fitted 
probability distributions as AEP decreases are especially 
important (fig. 9). All of the distributions have similar fits to 
the underlying data within the range of empirical probabilities 
of the data. The exception is the GPA, which shows a fit 
having an upper support (boundary) less than the two largest 
values. This is an important point, because the fitted GPA to 
these data represents a physically implausible situation— 
a great and inappropriate underestimation of the right tail is 
self-evident.

Another point evident in figure 9 is that as distance into 
the right tail increases (AEP decreases), divergence between 
distributions becomes progressively larger. The two high-
parameter distributions shown are the AEP4 and WAK. Both 
distributions are more flexible than the six three-parameter 
distributions, because these are fit through L-kurtosis (AEP4 
and WAK) and the unnamed fifth L-moment (WAK only). In 
particular, the WAK distribution, by having five parameters, 
can be lauded as a highly flexible distribution capable of 
mimicking subtle details in the data. A downside of flexible 
distributions, however, is that they can have large variance in 

Table 3.  Distribution parameters for the Pearson type III 
distribution by four parameter estimation methods for U.S. 
Geological Survey streamflow-gaging station (streamgage) 
01400500 Raritan River at Manville, New Jersey, using systematic 
record only.

[PE3, Pearson type III distribution. PE3 is fit to logarithms of the annual peak 
streamflow data for respective streamgage. PE3(mean, standard deviation, 
skew) represents the respective parameters of the distribution in the same 
ordering as in mathematics of figure 5–5]

Distribution abbreviation  
and parameter values

Parameter  
estimation method

PE3(  4.2204,  0.1734,  0.748) Method of product moments 
(expected moments algorithm)

PE3(  4.2204,  0.1696,  0.5741) Method of L-moments
PE3(  4.2204,  0.1708,  0.4604) Method of maximum likelihood
PE3(  4.2202,  0.1701,  0.5686) Method of maximum product of 

spacings
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Pearson type III probability distribution fit to logarithms of systematic record, by parameter estimation method

   Product moments

   L-moments

   Maximum likelihood

   Maximum product of spacings

Annual peak streamflow from systematic record plotted according to Hirsch-Stedinger plotting position

EXPLANATION

USGS, U.S. Geological Survey

USGS 01400500 Raritan River at Manville, New Jersey

Figure 8.  Comparison of four parameter estimation methods for the Pearson type III probability distribution fit to the 
logarithms of annual peak streamflow data for U.S. Geological Survey streamflow-gaging station 01400500 Raritan 
River at Manville, New Jersey.

the distribution tails for sample sizes common in streamflow 
data. Regional studies could aid in higher moment estimation, 
such as L-skew or L-kurtosis. The two distributions (AEP4 
and WAK) have quite similar trajectories and collectively 
reside between the GLO and GNO fits. The two fits for the 
PE3 are different as in figure 8; the PE3-EMA lies above 
the L-moment PE3 fit. In part, because the L-skew for these 
data is not particularly large, the GEV and WEI have similar 
fits, although these distributions are reversed relative to each 
other. Only in the very distant tail at the right-hand side of 
the figure does the tail difference between the GEV and WEI 
begin appearing. There is much vertical variation for a given 

AEP shown in the figure, and thus is a visual portrayal of 
distribution choice uncertainty.

The estimated 90-percent confidence intervals for the two 
solutions of the PE3 are shown to provide a visual reference 
of sampling uncertainty. The two PE3 fits increasingly 
diverge from each other as AEP decreases. As anticipated, the 
confidence limits of the two PE3 fits differ, and the differences 
between them are attributed to different methods of parameter 
estimation and mathematical approach to computation of 
the confidence limits. The analytical 90-percent confidence 
limits for the PE3-EMA are obtained from the USGS-
PeakFQ software and are mathematically correct if the parent 
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USGS 01400500 Raritan River at Manville, New Jersey

Figure 9.  Annual nonexceedance probability plot and fitted distributions for U.S. Geological Survey (USGS) streamflow-
gaging station 01400500 Raritan River at Manville, New Jersey, based on flood frequency analysis using expected moments 
algorithm with multiple Grubbs-Beck test (no low outliers detected) and station skew as generated by USGS-PeakFQ software 
(USGS, 2014).
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Table 4.  Distribution parameters by the methods of L-moments and expected moments algorithm for selected probability distributions 
for U.S. Geological Survey streamflow-gaging station (streamgage) 01400500 Raritan River at Manville, New Jersey, using systematic 
record only.

[Each distribution is fit by the method of L-moments to logarithms of the annual peak streamflow data for respective streamgage and parameter values listed 
in the same ordering as in the mathematics in appendix 5; for example, PE3(mean, standard deviation, skew) represents the respective parameters of the 
distribution in the same ordering as in mathematics of figure 5–5. EMA, expected moments algorithm. PE3-EMA, Pearson type III fit by EMA. Only three 
significant figures are available for skew from PE3-EMA]

Distribution abbreviation  
and parameter values

Distribution  
name

Number of 
parameters

Applicable 
appendix 5 

figure

AEP4(  4.1674,  0.1614,   0.8096,  1.2416)1 Asymmetric exponential power 4 Figure 5–7
GEV(  4.1496,  0.1512,   0.1220)2 Generalized extreme value 3 Figure 5–1
GLO(  4.2059,  0.0934, –0.0939)2 Generalized logistic 3 Figure 5–2
GNO(  4.2044,  0.1653, –0.1925)2 Generalized normal 3 Figure 5–3
GPA(  3.9688,  0.4170,   0.6567)2 Generalized Pareto 3 Figure 5–4
PE3(  4.2204,  0.1696,   0.5741)2 Pearson type III 3 Figure 5–5

PE3-EMA(  4.2204,  0.1734,   0.748)2 Pearson type III by EMA 3 Figure 5–5
WAK(  3.8570,  1.8585,   7.5700,  0.1514, –0.0330)3 Wakeby 5 Figure 5–9
WEI(–3.8735,  0.3917,   2.1735)2 Weibull 3 Figure 5–6

1For the AEP distribution (four parameters), the order of parameters shown is “location,” “scale,” “shape1,” and “shape2.”
2For a three parameter distribution, the order of parameters shown is “location,” “scale,” and “shape.”
3For the Wakeby distribution (five parameters), the order of parameters shown is “location,” “scale1,” “scale2,” “shape1,” and “shape2.”

distribution is in fact a log-Pearson type III distribution. 
In contrast, the confidence limits stemming from Monte 
Carlo simulation of the PE3 by L-moments are based on the 
distribution-free exact variance-covariance structure (fig. 3–3) 
of the sample L-moments (fig. 3–2). The variance-covariance 
structure of the sample L-moments permits Monte Carlo 
simulation to be used to generate a large number of sequences 
(number of simulations = 5,000; sample size = 103 [systematic 
record]) of sample L-moments, successively fit the PE3 to 
these, and compute simulated quantiles for a given AEP. The 
distribution of these simulated quantiles for a given AEP is 
then used to compute the 5th and 95th percentiles to form the 
90-percent confidence interval. This discussion is provided to 
explain visible differences between the EMA and L-moment 
PE3 quantiles and confidence limits in figure 9 and to indicate 
that exact matching of results is not anticipated. The quantile 
fits and 90-percent confidence intervals associated with the six 
three-parameter distributions fit by the method of L-moments 
are listed in table 5. The quantile fits and 90-percent 
confidence intervals restricted to the PE3 are listed in table 6.

Concerning table 5, it is useful to provide two examples 
of syntax stating the estimate for 10–4 AEP using the GEV, 
which are “The 10–4 AEP streamflow estimate based on 
the GEV distribution is 96,800 ft3/s (90-percent confidence 
interval 44,910 to 361,800 ft3/s based on σs = 0.2788 log10)” 
or “The 10–4 AEP streamflow estimate based on the GEV 
distribution is 96,800 ft3/s (σs = 0.2788 log10).”

Distribution choice uncertainty can now be quantified, 
and the results are listed in table 7. Distribution choice 

uncertainty for a given AEP is computed by the standard 
deviation of quantile estimates for the models (distributions) 
selected. It is established visually in figure 9 that the GPA is 
obviously not an acceptable fit to the Raritan River data. For 
brevity, only the remaining five three-parameter distributions 
were used to compute the uncertainty. The AEP4 and WAK 
distributions were not included. The five quantiles for selected 
AEP from the distributions are listed in table 7. The standard 
deviation of the logarithms of these is also listed, below which 
the mean of the logarithms is expressed in the originating units 
(cubic feet per second).

Inspection of the values listed in table 7 indicates that 
the range of the quantiles is exceptional for the lowest AEP 
of 10–6. For example, the range 153,000 to 7,069,000 ft3/s, 
measured in logarithms, is almost 1.7 log-cycles for 10–6 AEP 
and the standard deviation of the logarithms (σdc) is 0.7034 for 
10–6 AEP. It is particularly important to stress that quantiles 
not too far into the right tail (0.1 or 0.01 AEP) are relatively 
insensitive to distribution choice. To clarify, these two AEPs 
correspond, respectively, to cumulative percentiles of 90 
and 99 percent of the unknown parent distribution, and the 
insensitivity to distribution choice is shown by σdc being less 
than about a tenth of a log-cycle for AEP > 0.01.

Two examples of syntax are now provided, each stating 
the estimate for 10–4 AEP based on the transformed mean 
of logarithms (table 7). These examples are “The 10–4 AEP 
streamflow estimate when acknowledging uncertainty 
in the probability model is 137,400 ft3/s (range 91,530 
to 373,600 ft3/s; σdc = 0.2497 log10)” or “The 10–4 AEP 



22    Application of At-Site Peak-Streamflow Frequency Analyses for Very Low Annual Exceedance Probabilities

Table 5.  Confidence limits and quantile fits of peak-streamflow frequency for six three-parameter probability distributions fit by the 
method of L-moments for U.S. Geological Survey streamflow-gaging station 01400500 Raritan River at Manville, New Jersey, using 
systematic record only.

[ft3/s, cubic foot per second; GEV, generalized extreme value; GLO, generalized logistic; GNO, generalized normal; GPA, generalized Pareto; PE3, Pearson type 
III; WEI, Weibull; lower, the lower limit of the 90th percentile confidence interval. The lower limit is the 5th percentile of the quantile distribution; upper, the 
upper limit of the 90th percentile confidence interval. The upper limit is the 95th percentile of the quantile distribution. Computations were made on the basis of 
logarithmic transformation, and hence the standard deviation of a quantile (σs) is reported in logarithms. Text in red is referenced directly in the report]

Distribution 
abbreviation

Statistic
Quantile (ft3/s) or standard deviation for annual exceedance probability (AEP) 

AEP=0.1
(ft3/s)

AEP=0.01
(ft3/s)

AEP=1 × 10−3

(ft3/s)
AEP=1 × 10−4

(ft3/s)
AEP=1 × 10−5

(ft3/s)
AEP=1 × 10−6

(ft3/s)

GEV Lower 24,660 34,690 41,030 44,910 47,070 48,250

Fit 28,000 48,060 71,650 96,800 121,500 144,200

Upper 31,600 69,190 154,900 361,800 871,300 2,158,000
σs 0.0323 0.0909 0.1757 0.2788 0.3982 0.5352

GLO Lower 24,240 39,770 63,990 103,600 168,700 275,500

Fit 27,150 55,240 129,800 373,600 1,387,000 7,069,000

Upper 30,420 79,510 328,400 2,793,000 70,850,000 9,280,000,000
σs 0.0305 0.0910 0.2159 0.4423 0.8316 1.4870

GNO Lower 24,530 36,190 47,550 59,790 72,760 86,850

Fit 27,840 48,930 79,890 126,700 198,400 309,100

Upper 31,480 68,040 151,200 354,600 882,400 2,385,000
σs 0.0325 0.0835 0.1517 0.2339 0.3301 0.4404

GPA Lower 25,230 28,440 28,800 28,840 28,850 28,850
(distribution 

rejected for 
right tail 
performance)

Fit 29,090 37,390 39,520 40,010 40,120 40,140
Upper 33,170 51,390 61,270 65,640 67,500 68,220
σs 0.0364 0.0784 0.1012 0.1117 0.1166 0.1189

PE3 Lower 24,580 36,140 47,740 60,080 73,630 88,190

Fit 27,900 48,390 76,760 116,600 172,500 250,700

Upper 31,840 66,320 129,000 242,400 447,000 816,500
σs 0.0340 0.0805 0.1324 0.1865 0.2420 0.2985

WEI Lower 24,650 34,990 44,460 53,590 62,500 71,370

Fit 28,090 46,180 67,090 91,530 120,000 153,000

Upper 31,970 62,450 108,800 178,700 279,400 423,700
σs 0.0341 0.0758 0.1177 0.1583 0.1975 0.2353

streamflow estimate when acknowledging uncertainty in 
the probability model is 137,400 ft3/s (σdc = 0.2497 log10).” 
Although statements such as these quantify distribution choice 
uncertainty, it is necessary to emphasize that the uncertainty 
is somewhat semi-quantitative in that it is controlled by the 
choices an analyst makes concerning which distributions to 
incorporate. This last observation is not unique to this study, 
because the National Research Council (1988) states in this 
same context that “assessment of relative weights (degrees of 
belief) on alternative distributions may be needed.”

Sampling uncertainty is now reconsidered in comparison 
to distribution choice uncertainty. A rough comparison of 
the numerical entries for σs and σdc listed in tables 5 and 7, 

respectively, is informative. The authors conclude that for 
about 10–3 AEP and greater (toward the left), the σs values 
among the distributions appear larger than σdc; however, for 
about 10–4 AEP and lower (toward the right), σdc is larger 
than σs. The comparison is said to be rough or imprecise, 
because there is inherent dependency on the sampling data 
and particularly on the probability distributions involved. 
For example, the GLO has considerably larger σs than any 
of the other corresponding values for the other distributions 
as AEP decreases beyond 0.01 AEP (table 5) because the 
GLO fit curves up and away from the bulk of the remaining 
distributions (fig. 9).
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Table 6.  Confidence limits and quantile fits of peak-streamflow frequency using the Pearson type III distribution fit by two methods for 
U.S. Geological Survey streamflow-gaging station 01400500 Raritan River at Manville, New Jersey, using systematic record only.

[ft3/s, cubic foot per second; PE3, Pearson type III and PE3 fit by method of L-moments; EMA, expected moments algorithm (product moments); lower, 
the lower limit of the 90th percentile confidence interval. The lower limit is the 5th percentile of the quantile distribution; upper, the upper limit of the 
90th percentile confidence interval. The upper limit is the 95th percentile of the quantile distribution. Computations were made on the basis of logarithmic 
transformation, and hence the standard deviation of a quantile (σs) is reported in logarithms]

Distribution 
abbreviation1 Statistic

Quantile (ft3/s) or standard deviation for annual exceedance probability (AEP) 

AEP=0.1
(ft3/s)

AEP=0.01
(ft3/s)

AEP=1 × 10−3

(ft3/s)
AEP=1 × 10−4

(ft3/s)
AEP=1 × 10−5

(ft3/s)
AEP=1 × 10−6

(ft3/s)

PE3 Lower 24,580 36,140 47,740 60,080 73,630 88,190

Fit 27,900 48,390 76,760 116,600 172,500 250,700

Upper 31,840 66,320 129,000 242,400 447,000 816,500

σs 0.0340 0.0805 0.1324 0.1865 0.2420 0.2985

PE3-EMA Lower 25,100 41,280 61,020 85,840 117,200 156,600

Fit 28,300 51,950 87,750 142,400 225,600 350,900

Upper 33,950 93,710 267,100 702,900 1,839,000 4,773,000

σs 0.0316 0.0714 0.1212 0.1749 0.2304 0.2874
1Notes concerning distribution parameters: PE3(mean, standard deviation, skew) parameters by method are listed below and mimic nomenclature of tables 3 

and 4. Only three significant figures are available for skew from PE3-EMA, Pearson type III distribution fit by expected moments algorithm:
 PE3-EMA	  PE3(  4.2204,  0.1734,  0.748)
     PE3	  PE3(  4.2204,  0.1696,  0.5741)

Table 7.  Distribution choice uncertainty computed as logarithmic standard deviation of quantile estimates for five three-parameter 
probability distributions fit by the method of L-moments for U.S. Geological Survey streamflow-gaging station 01400500 Raritan River at 
Manville, New Jersey, using systematic record only.

[ft3/s, cubic foot per second; GEV, generalized extreme value; GLO, generalized logistic; GNO, generalized normal; PE3, Pearson type III; WEI, Weibull;  
σdc, distribution choice uncertainty computed by standard deviation of base-10 logarithms of the listed quantiles. The σdc values are shaded to emphasize the 
product of this table; the quantiles are also listed in table 5. Text in red is referenced directly in the report]

Distribution 
abbreviation

Statistic

Quantile (ft3/s) for annual exceedance probability (AEP) and distribution choice uncertainty

AEP=0.1
(ft3/s)

AEP=0.01
(ft3/s)

AEP=1 × 10−3

(ft3/s)
AEP=1 × 10−4

(ft3/s)
AEP=1 × 10−5

(ft3/s)
AEP=1 × 10−6

(ft3/s)

GEV Fit 28,000 48,060 71,650 96,800 121,500 144,200

GLO Fit 27,150 55,240 129,800 373,600 1,387,000 7,069,000

GNO Fit 27,840 48,930 79,890 126,700 198,400 309,100

PE3 Fit 27,900 48,390 76,760 116,600 172,500 250,700

WEI Fit 28,090 46,180 67,090 91,530 120,000 153,000

σdc 0.0059 0.0293 0.1137 0.2497 0.4430 0.7034

Transformed mean of logarithms 27,790 49,270 82,520 137,400 233,400 413,500
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L-moment Ratio Diagram
L-moment ratio diagrams of L-skew and L-kurtosis 

are thoroughly described in the context of figure 3–5 ahead 
of superposition of data for this study. The sample L-skew 
and L-kurtosis for the systematic record of the Raritan River 
streamgage are shown in figure 10, along with results from a 
Monte Carlo simulation experiment (number of simulations 
= 3,000; sample size = 103 years [systematic record]). The 
simulation facilitates exploration of the joint distribution 
potential between sample L-skew and L-kurtosis.

The L-skew and L-kurtosis for the Raritan River 
streamgage plot as a single point above the trajectory for the 
GLO shown in figure 10. Several conclusions can be made. 
This point lies above the accessible domain of the KAP 
distribution, and thus, the distribution cannot be fit to these 
data. The AEP4 distribution includes L-skew and L-kurtosis 
domain not covered by the KAP, and the AEP4 can be fit to 
these data. Lastly, the GLO is the closest three-parameter 
distribution to the point; thus, the GLO is most consistent with 
these data. Sample variability, however, affects the precise 
plotted location of this point, because the sample L-skew and 
L-kurtosis are obviously dependent on the respective data.

Simulation through Monte Carlo methods can be used for 
evaluation outside the context of regional information, such as 
is the case here. Simulation based on the variance-covariance 
structure (fig. 3–3) may be used. Using the variance-
covariance matrix of the sample L-moments of Raritan River 
streamgage data, 3,000 simulations of these L-moments 
from a multivariate normal distribution were made. For each 
simulation, the L-skew and L-kurtosis were computed and 
are scattered around the L-skew and L-kurtosis of the data 
(fig. 10). The 90th-confidence level (ellipse) shown is based 
on the covariance structure of the 3,000 simulated values. 
The plotting of these simulation results provides a visual and 
inferential depiction of inherent variation. The general scatter 
of the simulated points is spread (distributed) near the GLO, 
and as a result, the GLO might be more favorable than other 
three-parameter distributions. The GEV, GNO, and PE3 all 
pass through the ellipse for the L-skew of the data and the 
trajectories are close to one another. The frequency curves 
should thus show considerable similarity with each other. The 
trajectories for the GPA and WEI pass outside the ellipse, and 
as a result, these distributions are less likely to be applicable. 
Moreover, the GPA is divergent from the simulation results 
and thus should show the least favorable fit to the Raritan 
River data.

Results for the Potomac River at Point of Rocks, 
Maryland, Streamgage

Comparison of Parameter Estimates
Numerical and graphical comparisons of parameter 

estimates were made for the Potomac River data for the 

PE3 distribution (fig. 11 and table 8). The four methods 
of parameter estimation are represented. Only the 
systematic record for the Potomac River was used to 
form a common base on which to compare the methods 
of parameter estimation. As a result, only data for the 
systematic record are shown in the figure. As in table 3 for 
the Raritan River data, the largest differences in table 8 are 
for the third parameter, skew. The skew values, however, 
are measurably similar to zero (meaning becoming close 
to zero) and hence the four distributions in figure 11 
appear quite straight, thus indicating a nearly log-normal 
distribution.

The similarity among the four fits for the PE3 
distribution is indicated by figure 11, which also shows that 
divergence among them increases as AEP diminishes. For 
these data, the two methods of product moments and MPS 
produce nearly identical parameter estimates, and these two 
estimates are the most positive of the four.

Frequency Curve Comparisons and Confidence 
Limits

Selected probability distributions for this study as 
applied to annual peak streamflow data for the Raritan River 
streamgage are shown for comparison in figure 9. The Kappa 
distribution is not shown or discussed further, because its PE3 
lacks a solution for the Potomac River data. Peak streamflows 
from the systematic and historical record are also shown in 
figure 9 and were plotted using Hirsch-Stedinger plotting 
positions (fig. 2–1). The numerical values for the parameter 
estimates by L-moments for the Potomac River are listed in 
table 9.

The top half of table 9 lists the parameters using only 
the systematic record. The bottom half of the table lists 
the parameters using a censoring approach in an effort 
to accommodate the historical information available for 
this streamgage. Historical information was included for 
the L-moments using a censoring approach that required 
distributional reversal by flipping the data first, whereas 
historical information inclusion for PE3-EMA did not. 
However, a notable comparison can be made. Using 
historical information, the PE3-EMA estimates mean, 
standard deviation, and skewness as 5.0233, 0.2303, and 
0.311, respectively. (The units for the mean and standard 
deviation are logarithms.) The L-moments similarly 
estimates a reversed PE3 having a mean, standard deviation, 
and skewness of 1.2263, 0.2241, and –0.1963, respectively, 
with a flip of 6.249365. The two estimates of standard 
deviation can be compared, because this statistic is always 
positive: 0.2303 versus 0.2241. The two skews can be 
compared after sign reversal for the L-moments value: 
0.311 versus 0.1963. The two estimates of the mean can be 
compared after flipping: 5.0233 versus 6.249365 – 1.2263 = 
5.0231.
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Figure 10.  L-moment ratio diagram of L-skew and L-kurtosis of annual peak streamflow data for U.S. Geological Survey 
streamflow-gaging station 01400500 Raritan River at Manville, New Jersey, and comparison to theoretical relations of 
numerous distributions.



26    Application of At-Site Peak-Streamflow Frequency Analyses for Very Low Annual Exceedance Probabilities

Pe
ak

 s
tre

am
flo

w
, i

n 
cu

bi
c 

fe
et

 p
er

 s
ec

on
d

120,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000
1,000,000

2,000,000

Exceedance probability

1×10–51×10–41×10–30.01 0.0020.0050.020.040.10.20.3 1×10–6

Note: For clarity, exceedance probabilities less than 0.002 are shown in scientific notation.

Pearson type III probability distribution fit to logarithms of systematic record, by parameter estimation method

   Product moments

   L-moments

   Maximum likelihood

   Maximum product of spacings

Annual peak streamflow from systematic record plotted according to Hirsch-Stedinger plotting position

EXPLANATION

USGS, U.S. Geological Survey

USGS 01638500 Potomac River at Point of Rocks, Maryland

Figure 11.  Comparison of four parameter estimation methods for the Pearson type III probability distribution fit to 
logarithms of systematic record of the annual peak streamflow data for U.S. Geological Survey streamflow-gaging 
station 01638500 Potomac River at Point of Rocks, Maryland.

The parameters including historical information (table 9, 
bottom half) were used to draw the distributions shown in 
figure 12. An exception is made for the PE3 distribution in 
which the curves for the systematic record only by EMA and 
L-moments are also shown. The primary emphasis should be 
those PE3 curves by EMA and L-moments incorporating the 
historical information as well.

The GPA distribution for the Potomac River data has an 
unacceptable fit (fig. 12) for the same reason indicated for 
the Raritan River data (fig. 9). The distribution has an upper 
limit that is less than one or more of the largest data values. 

The high-parameter distributions AEP4 and WAK also are 
shown; however, these do not have a similar fit into the tail, 
which is unlike that shown in figure 9 for the Raritan River. 
For the Potomac River data, the WAK distribution has an 
upper limit comparable to the largest data value, and this is 
an unacceptable fit relative to the other distributions. The 
WAK does bend upwards to mimic the eight largest values 
that do plot above the trajectories of all the distributions. The 
AEP4 distribution lies between the GLO and PE3-EMA and 
accommodates the L-kurtosis of these data.
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Table 8.  Distribution parameters for the Pearson type III 
distribution by four parameter estimation methods for U.S. 
Geological Survey streamflow-gaging station (streamgage) 
01638500 Potomac River at Point of Rocks, Maryland, using 
systematic record only.

[PE3, Pearson type III distribution. PE3 is fit to logarithms of the annual peak 
streamflow data for respective streamgage. PE3(mean, standard deviation, 
skew) represents the respective parameters of the distribution in the same 
ordering as in the mathematics provided in figure 5–5]

Distribution abbreviation  
and parameter values

Parameter  
estimation method

PE3(  5.0182,  0.2240,  0.222) Method of product moments 
(expected moments algorithm)

PE3(  5.0182,  0.2204,  0.1052) Method of L-moments
PE3(  5.0182,  0.2229,  0.1671) Method of maximum likelihood
PE3(  5.0187,  0.2329,  0.1703) Method of maximum product of 

spacings

Sampling uncertainty can now be reviewed. The 
estimated 90-percent confidence intervals for the PE3 are 
shown to visually portray sampling uncertainty. The analytical 
90-percent confidence limits for the PE3-EMA are obtained 
from the USGS-PeakFQ software and are mathematically 
correct if the parent distribution is in fact a (log-)Pearson type 
III distribution. In contrast, the confidence limits obtained 
from Monte Carlo simulation of the PE3 by L-moments are 
based on the distribution-free exact variance-covariance 
structure of the sample L-moments. Again, as made for the 
Raritan River streamgage, the variance-covariance structure 
of the sample L-moments permits a Monte Carlo simulation to 
be used to generate a large number of sequences (simulation 
size = 5,000; sample size = 121 [systematic record]) of sample 
L-moments, successively fit the PE3 to these, and compute 
simulated quantiles for a given AEP. The distribution of these 
simulated quantiles for a given AEP is then used to compute 
the 5th and 95th percentiles to form the 90-percent confidence 
interval. The quantile fits and 90-percent confidence intervals 
associated with the six three-parameter distributions fit by the 
method of L-moments are listed in table 10. The quantile files 
and 90-percent confidence intervals restricted to the PE3 are 
listed in table 11.

Note that the inclusion of historical information can 
increase or decrease the sampling uncertainty and associated 
confidence limits for the quantile estimates, depending on 
how much the historical information extends the record 
and whether it is consistent with the fit indicated by the 
systematic record. A more complete examination of the use of 
nonsystematic data for peak-streamflow frequency analysis is 
left for future inquiry.

Concerning table 10 for historical plus systematic record, 
it is useful to provide two examples of syntax stating the 
estimate for 10–4 AEP using the GEV, which are “The 10–4 
AEP streamflow estimate based on the GEV distribution is 
721,100 ft3/s (90th percentile confidence limit of 439,800 
to 1,290,000 ft3/s based on σs = 0.1407 log10)” or “The 10–4 
AEP streamflow estimate based on the GEV distribution is 
721,100 ft3/s (σs = 0.1407 log10).”

Distribution choice uncertainty can now be quantified, 
and the results are listed in table 12. Distribution choice 
uncertainty for a given AEP is computed by the standard 
deviation of quantile estimates for the models (distributions) 
selected. As in figure 12, the GPA is obviously not an 
acceptable fit to the Potomac River data. For brevity, only 
the remaining five three-parameter distributions were used to 
compute the uncertainty. The AEP4 and WAK distributions 
were not included. The five quantiles for selected AEPs from 
the distributions are listed in table 12.

Inspection of the values listed in table 12 indicates that 
the range of the quantiles for historical plus systematic record 
is exceptional for the lowest AEP (10–6). For example, the 
range of 705,400 to 16,070,000 ft3/s measured in logarithms 
is almost 1.4 log-cycles for 10–6 AEP, and the standard 
deviation of the logarithms (σdc) is 0.5190 for 10–6 AEP. As 
for the Raritan River streamgage, the quantiles for 0.1 or 
0.01 AEP are relatively insensitive to distribution choice, 
which is shown by the σdc being less than about a 1/10 of 
log-cycle.

Two examples of syntax are now provided, stating the 
estimate for 10–4 AEP based on the transformed mean of 
logarithms (table 12). These examples are “The 10–4 AEP 
streamflow estimate when acknowledging uncertainty in the 
probability model is 957,100 ft3/s (range 592,000 to 2,325,000 
ft3/s; σdc = 0.2284 log10)” or “The 10–4 AEP streamflow 
estimate when acknowledging uncertainty in the probability 
model is 957,100 ft3/s (σdc = 0.2284 log10).”

Sampling uncertainty is now reconsidered in comparison 
to distribution choice uncertainty. A rough comparison of 
the numerical entries for σs and σdc listed in tables 10 and 
12 is informative. The authors conclude that for about 10–3 

AEP and greater, the σs values among the distributions are 
larger than the choice of distribution. For about 10–4 AEP 
and lower, however, σdc is larger than σs. The comparison 
is said to be rough or imprecise, because there is inherent 
dependency on the sampling data and particularly on the 
probability distributions involved. For example, the GLO has 
considerably larger σs than any of the other corresponding 
values for the other distributions as AEP decreases beyond 
0.01 AEP (table 5). As for the Raritan River streamgage, the 
GLO curves up and away from the bulk of the remaining 
distributions (fig. 12).
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Table 9.  Distribution parameters by the methods of L-moments and expected moments algorithm for selected probability distributions 
for U.S. Geological Survey streamflow-gaging station (streamgage) 01638500 Potomac River at Point of Rocks, Maryland.

[Each distribution is fit by the method of L-moments to logarithms of the annual peak streamflow data for respective streamgage and parameter values listed 
in the same ordering as in the mathematics in appendix 5—for example, PE3(mean, standard deviation, skew) represents the respective parameters of the 
distribution in the same ordering as in mathematics of figure 5–5; flip is the value used to reverse (mirror or “flip”) a distribution; for example, flip – PE3(1–
AEP; mean, standard deviation, skew) would be the quantile for annual exceedance probability (AEP; itself reversed on 1 [unity]) for the PE3 having those 
respective parameters; EMA, expected moments algorithm; PE3-EMA, Pearson type III fit by EMA. Only three significant figures are available for skew from 
PE3-EMA]

Distribution abbreviation  
and parameter values

Distribution  
name

Number of  
parameters

Applicable 
appendix 5 

figure

Systematic record

AEP4(  5.0044,  0.2390,   0.9604,  1.3555)1 Asymmetric exponential power 4 Figure 5–7
GEV(  4.9378,  0.2159,   0.2532)2 Generalized extreme value 3 Figure 5–1
GLO(  5.0147,  0.1243, –0.0171)2 Generalized logistic 3 Figure 5–2
GNO(  5.0143,  0.2202, –0.0351)2 Generalized normal 3 Figure 5–3
GPA(  4.6536,  0.7046,   0.9326)2 Generalized Pareto 3 Figure 5–4
PE3(  5.0182,  0.2204,   0.1052)2 Pearson type III 3 Figure 5–5

PE3-EMA(  5.0182,  0.2240,   0.222)2 Pearson type III by EMA 3 Figure 5–5
WAK(  4.5046,  2.4971,   6.2334,  0.1756, –0.0434)3 Wakeby 5 Figure 5–9
WEI(–4.3840,  0.7083,   3.1766)2 Weibull 3 Figure 5–6

Historical plus systematic record

No flipping/reversal used:
   PE3-EMA(  5.0233,  0.2303,   0.311)2 Pearson type III by EMA 3 Figure 5–5

Flipping value (“flip”) for distribution reversal = 6.249365:
AEP4(  1.2526,  0.2434,   1.0791,  1.3642;  flip)4 Asymmetric exponential power 4 Figure 5–7
GEV(  1.1539,  0.2294,   0.3421;  flip)5 Generalized extreme value 3 Figure 5–1
GLO(  1.2330,  0.1260,   0.0320;  flip)5 Generalized logistic 3 Figure 5–2
GNO(  1.2337,  0.2234,   0.0655;  flip)5 Generalized normal 3 Figure 5–3
GPA(  0.8309,  0.8432,   1.1322;  flip)5 Generalized Pareto 3 Figure 5–4
PE3(  1.2263,  0.2241, –0.1963;  flip)5 Pearson type III 3 Figure 5–5

WAK(  0.5358,  6.6358, 13.1703,  0.2956, –0.3299;  flip)6 Wakeby 5 Figure 5–9
WEI(–0.3597,  0.9509,   4.4022;  flip)5 Weibull 3 Figure 5–6

1For the AEP4 distribution (four parameters) the order of parameters shown is “location,” “scale,” “shape1,” and “shape2.”
2For a three parameter distribution, the order of parameters shown is “location,” “scale,” and “shape.”
3For the Wakeby distribution (five parameters), the order of parameters shown is “location,” “scale1,” “scale2,” “shape1,” and “shape2.”
4For the AEP4 distribution (four parameters), the order of parameters shown is “location,” “scale,” “shape1,” and “shape2,” and the flip.
5For a three parameter distribution, the order of parameters shown is “location,” “scale,” “shape,” and the flip.
6For the Wakeby distribution (five parameters), the order of parameters shown is “location,” “scale1,” “scale2,” “shape1,” and “shape2,” and the flip.
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Figure 12.  Annual nonexceedance probability plot and fitted distributions for U.S. Geological Survey (USGS) streamflow-
gaging station 01638500 Potomac River at Point of Rocks, Maryland, based on flood frequency analysis using expected moments 
algorithm with multiple Grubbs-Beck test (no low outliers detected) and station skew as generated by USGS-PeakFQ software 
(USGS, 2014).
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Table 10.  Confidence limits and quantile fits of peak-streamflow frequency for six three-parameter probability distributions fit by  
the method of L-moments for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of Rocks,  
Maryland.—Continued

[ft3/s, cubic foot per second; GEV, generalized extreme value; GLO, generalized logistic; GNO, generalized normal; GPA, generalized Pareto; PE3, Pearson 
type III; WEI, Weibull; lower, the lower limit of the 90th percentile confidence interval. The lower limit is the 5th percentile of the quantile distribution; upper, 
the upper limit of the 90th percentile confidence interval. The upper limit is the 95th percentile of the quantile distribution; computations were made on the basis 
of logarithmic transformation and hence the standard deviation of a quantile (σs) is reported in logarithms. Text in red is referenced directly in the report]

Distribution 
abbreviation

Statistic

Quantile (ft3/s) or standard deviation for annual exceedance probability (AEP) 

AEP=0.1
(ft3/s)

AEP=0.01
(ft3/s)

AEP=1 × 10−3

(ft3/s)
AEP=1 × 10−4

(ft3/s)
AEP=1 × 10−5

(ft3/s)
AEP=1 × 10−6

(ft3/s)

Systematic record only

GEV Lower 178,900 250,100 284,600 300,000 306,400 309,100

Fit 203,300 334,500 438,600 510,100 554,900 581,600

Upper 231,400 465,900 773,900 1,130,000 1,488,000 1,824,000

σs 0.0341 0.0813 0.1315 0.1756 0.2121 0.2416

GLO Lower 173,500 298,400 465,700 689,100 973,200 1,313,000

Fit 196,300 406,200 842,800 1,796,000 3,946,000 8,946,000

Upper 221,300 565,500 1,734,000 6,830,000 36,640,000 287,000,000

σs 0.0322 0.0842 0.1729 0.3044 0.4879 0.7361

GNO Lower 176,600 267,800 350,700 430,300 506,200 581,400

Fit 200,900 353,300 540,900 774,800 1,065,000 1,424,000

Upper 228,300 478,400 906,100 1,641,000 2,904,000 5,061,000

σs 0.0338 0.0767 0.1262 0.1794 0.2356 0.2947

GPA Lower 181,500 200,300 201,600 201,700 201,700 201,700

(distribution 
rejected for 
right tail 
performance)

Fit 209,300 250,500 255,800 256,400 256,500 256,500

Upper 242,100 327,500 349,600 354,300 355,200 355,400

σs 0.0375 0.0646 0.0726 0.0745 0.0750 0.0751

PE3 Lower 176,000 264,400 341,900 413,200 479,000 539,900

Fit 200,900 353,100 540,100 772,500 1,060,000 1,414,000

Upper 229,600 476,400 886,300 1,549,000 2,607,000 4,281,000

σs 0.0350 0.0777 0.1248 0.1732 0.2222 0.2716

WEI Lower 176,600 263,000 338,900 411,400 481,900 550,400

Fit 201,800 338,500 484,700 643,900 817,600 1,006,000

Upper 231,300 446,100 732,300 1,104,000 1,584,000 2,192,000

σs 0.0352 0.0699 0.1019 0.1311 0.1581 0.1833

Table 10.  Confidence limits and quantile fits of peak-streamflow frequency for six three-parameter probability distributions fit by  
the method of L-moments for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of Rocks,  
Maryland.

[ft3/s, cubic foot per second; GEV, generalized extreme value; GLO, generalized logistic; GNO, generalized normal; GPA, generalized Pareto; PE3, Pearson 
type III; WEI, Weibull; lower, the lower limit of the 90th percentile confidence interval. The lower limit is the 5th percentile of the quantile distribution; upper, 
the upper limit of the 90th percentile confidence interval. The upper limit is the 95th percentile of the quantile distribution; computations were made on the basis 
of logarithmic transformation and hence the standard deviation of a quantile (σs) is reported in logarithms. Text in red is referenced directly in the report]
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Table 10.  Confidence limits and quantile fits of peak-streamflow frequency for six three-parameter probability distributions fit by  
the method of L-moments for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of Rocks,  
Maryland.—Continued

[ft3/s, cubic foot per second; GEV, generalized extreme value; GLO, generalized logistic; GNO, generalized normal; GPA, generalized Pareto; PE3, Pearson 
type III; WEI, Weibull; lower, the lower limit of the 90th percentile confidence interval. The lower limit is the 5th percentile of the quantile distribution; upper, 
the upper limit of the 90th percentile confidence interval. The upper limit is the 95th percentile of the quantile distribution; computations were made on the basis 
of logarithmic transformation and hence the standard deviation of a quantile (σs) is reported in logarithms. Text in red is referenced directly in the report]

Distribution 
abbreviation

Statistic

Quantile (ft3/s) or standard deviation for annual exceedance probability (AEP) 

AEP=0.1
(ft3/s)

AEP=0.01
(ft3/s)

AEP=1 × 10−3

(ft3/s)
AEP=1 × 10−4

(ft3/s)
AEP=1 × 10−5

(ft3/s)
AEP=1 × 10−6

(ft3/s)

Historical plus systematic record

GEV Lower 180,900 273,500 358,400 439,800 519,600 599,100

Fit 207,400 359,300 529,300 721,100 936,900 1,178,000

Upper 237,700 481,300 823,300 1,290,000 1,912,000 2,736,000

σs 0.0364 0.0736 0.1085 0.1407 0.1706 0.1986

GLO Lower 177,000 316,000 518,200 795,100 1,175,000 1,673,000

Fit 201,100 436,800 978,600 2,325,000 5,899,000 16,070,000

Upper 227,500 617,800 2,140,000 10,140,000 72,830,000 896,000,000

σs 0.0330 0.0877 0.1847 0.3338 0.5494 0.8515

GNO Lower 180,200 281,900 378,700 476,800 575,800 676,700

Fit 206,200 377,600 603,700 904,400 1,302,000 1,825,000

Upper 234,700 518,800 1,051,000 2,054,000 3,956,000 7,635,000

σs 0.0350 0.0801 0.1338 0.1927 0.2559 0.3233

GPA Lower 186,100 212,200 215,000 215,300 215,300 215,300

(distribution 
rejected for 
right tail 
performance)

Fit 216,100 257,100 261,600 262,100 262,100 262,100

Upper 251,300 314,000 321,400 322,100 322,200 322,200

σs 0.0395 0.0510 0.0522 0.0524 0.0524 0.0524

PE3 Lower 180,200 280,700 375,200 469,000 561,700 653,700

Fit 206,300 377,000 600,400 894,700 1,280,000 1,780,000

Upper 234,000 503,400 967,900 1,755,000 3,094,000 5,319,000

σs 0.0345 0.0773 0.1254 0.1752 0.2261 0.2775

WEI Lower 182,200 264,700 308,000 329,300 339,400 344,000

Fit 208,600 359,100 491,700 592,000 660,900 705,400

Upper 236,400 498,800 898,100 1,428,000 2,033,000 2,670,000

σs 0.0344 0.0841 0.1407 0.1936 0.2400 0.2799
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Table 11.  Confidence limits and quantile fits of peak-streamflow frequency using the Pearson type III distribution fit by two methods 
for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of Rocks, Maryland.

[ft3/s, cubic foot per second; PE3, Pearson type III and PE3 fit by method of L-moments; EMA, expected moments algorithm (product moments); lower, 
the lower limit of the 90th percentile confidence interval. The lower limit is the 5th percentile of the quantile distribution; upper, the upper limit of the 
90th percentile confidence interval. The upper limit is the 95th percentile of the quantile distribution. Computations were made on the basis of logarithmic 
transformation; hence, the standard deviation of a quantile (σs) is reported in logarithms]

Distribution 
abbreviation1 Statistic

Quantile (ft3/s) or standard deviation for annual exceedance probability (AEP) 

AEP=0.1
(ft3/s)

AEP=0.01
(ft3/s)

AEP=1 × 10−3

(ft3/s)
AEP=1 × 10−4

(ft3/s)
AEP=1 × 10−5

(ft3/s)
AEP=1 × 10−6

(ft3/s)

Systematic record only

PE3 Lower 176,000 264,400 341,900 413,200 479,000 539,900

Fit 200,900 353,100 540,100 772,500 1,060,000 1,414,000

Upper 229,600 476,400 886,300 1,549,000 2,607,000 4,281,000

σs 0.0350 0.0777 0.1248 0.1732 0.2222 0.2716

PE3-EMA Lower 180,600 304,800 437,200 581,400 739,300 910,800

Fit 204,200 376,300 605,000 910,600 1,316,000 1,846,000

Upper 241,300 565,900 1,218,000 2,499,000 4,987,000 9,749,000

σs 0.0300 0.0608 0.0975 0.1371 0.1780 0.2195

Historical plus systematic record

PE3 Lower 180,200 280,700 375,200 469,000 561,700 653,700

Fit 206,300 377,000 600,400 894,700 1,280,000 1,780,000

Upper 234,000 503,400 967,900 1,755,000 3,094,000 5,319,000

σs 0.0345 0.0773 0.1254 0.1752 0.2261 0.2775

PE3-EMA Lower 185,500 324,400 482,900 666,800 880,100 1,125,000

Fit 211,300 408,300 688,300 1,087,000 1,647,000 2,424,000

Upper 251,300 627,500 1,465,000 3,293,000 7,227,000 15,570,000

σs 0.0316 0.0656 0.1058 0.1493 0.1944 0.2402
1Notes concerning distribution parameters: PE3(mean, standard deviation, skew) parameters by method are listed below and mimic nomenclature of tables 8 

and 9. Only three significant figures are available for skew from PE3-EMA, Pearson type III distribution fit by expected moments algorithm:

01638500 Potomac River at Point of Rocks, Maryland (systematic record only)

    PE3	 PE3(  5.0182,  0.2204,   0.1052)

PE3-EMA	 PE3(  5.0182,  0.2240,   0.222)

01638500 Potomac River at Point of Rocks, Maryland (historical plus systematic record)

    PE3	 PE3(  1.2263,  0.2241, −0.1963; flip=6.249365)	 (see table 9 for description of flip)

PE3-EMA	PE3(  5.0233,  0.2303,   0.311)
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Table 12.  Distribution choice uncertainty computed as logarithmic standard deviation of quantile estimates for five three-parameter 
probability distributions fit by the method of L-moments for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at 
Point of Rocks, Maryland. 

[ft3/s, cubic foot per second; GEV, generalized extreme value; GLO, generalized logistic; GNO, generalized normal; PE3, Pearson type III; WEI, Weibull;  
σdc, distribution choice uncertainty computed by standard deviation of base-10 logarithms of the listed quantiles. The σdc values are shaded to emphasize the 
product of this table; the quantiles are also listed in table 10. Text in red is referenced directly in the report]

Distribution 
abbreviation

Statistic
Quantile (ft3/s) for annual exceedance probability (AEP) and distribution choice uncertainty

AEP=0.1
(ft3/s)

AEP=0.01
(ft3/s)

AEP=1 × 10−3

(ft3/s)
AEP=1 × 10−4

(ft3/s)
AEP=1 × 10−5

(ft3/s)
AEP=1 × 10−6

(ft3/s)

Systematic record only

GEV Fit 203,300 334,500 438,600 510,100 554,900 581,600

GLO Fit 196,300 406,200 842,800 1,796,000 3,946,000 8,946,000

GNO Fit 200,900 353,300 540,900 774,800 1,065,000 1,424,000

PE3 Fit 200,900 353,100 540,100 772,500 1,060,000 1,414,000

WEI Fit 201,800 338,500 484,700 643,900 817,600 1,006,000

σdc 0.0057 0.0336 0.1085 0.2065 0.3206 0.4466

Transformed mean of logarithms 200,600 356,200 554,300 812,000 1,151,000 1,602,000

Historical plus systematic record

GEV Fit 207,400 359,300 529,300 721,100 936,900 1,178,000

GLO Fit 201,100 436,800 978,600 2,325,000 5,899,000 16,070,000

GNO Fit 206,200 377,600 603,700 904,400 1,302,000 1,825,000

PE3 Fit 206,300 377,000 600,400 894,700 1,280,000 1,780,000

WEI Fit 208,600 359,100 491,700 592,000 660,900 705,400

σdc 0.0061 0.0349 0.1167 0.2284 0.3636 0.5190

Transformed mean of logarithms 205,900 380,900 620,900 957,100 1,435,000 2,125,000

L-moment Ratio Diagram
The sample L-skew and L-kurtosis for the systematic 

record of the Potomac River streamgage are shown in 
figure 13, which depicts another L-moment ratio diagram. 
The results of a simulation experiment (number of simulations 
= 3,000; sample size = 121 years [systematic record]) are also 
shown in the figure to facilitate the exploration of the joint 
distribution potential between sample L-skew and L-kurtosis. 

The L-skew and L-kurtosis for the Potomac River 
streamgage plot as a single point; however, two circles 
are used to show the properties of the Potomac River data 
(fig. 13). One circle simply represents sample L-skew for the 
systematic record only and the other represents the magnitude 
of L-skew computed for censored L-moments for the flipped 
data. This L-skew technically is negative and would plot 
on the opposite side of the vertical zero line. However, the 
L-skew is plotted with a sign change (to make it positive) only 
for ease of comparison to L-skew magnitude of the systematic 
data. 

As with the Raritan River streamgage (fig. 10), 
the L-skew and L-kurtosis point for the Potomac River 
streamgage plots above the trajectory for the GLO in 

figure 13. The KAP cannot be fit to these data because 
the point is above the GLO. The GLO is the closest three-
parameter distribution to the point, and thus, the GLO is most 
consistent with these data. Sample variability, however, affects 
the precise location of the point, because the sample L-skew 
and L-kurtosis are obviously dependent on the respective data.

Monte Carlo simulation can be used for evaluation 
outside the context of regional information, as is the case 
here. The simulated values through Monte Carlo simulation 
based on systematic record and the associated 90-percent 
confidence region shown in figure 13 are based on the 
sample variance-covariance structure (fig. 3–3). The ellipse 
indicating the 90-percent confidence level is also shown. 
The GLO line passes through the points, and as a result, the 
GLO might be more favorable than other three-parameter 
distributions. The GEV, GNO, and PE3 all pass outside but 
the ellipse for the L-skew of the data. The frequency curves 
should thus show considerable similarity with each other. The 
trajectories for the GPA and WEI pass outside the ellipse, and 
as a result, these distributions are less likely to be applicable. 
In particular, the GPA is divergent from the simulation results 
and thus should show the least favorable fit to the Raritan 
River data.
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Figure 13.  L-skew and L-kurtosis of annual peak streamflow data for U.S. Geological Survey streamflow-gaging station 
01638500 Potomac River at Point of Rocks, Maryland, and comparison to theoretical relations of numerous distributions.
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Further Evaluation of Goodness-of-Fit and 
Uncertainties

 As noted in the “Distribution Validity and Goodness-of-
Fit” section, goodness-of-fit is difficult to reliably evaluate for 
peak-streamflow frequency. This is true because the primary 
interest is in the far right tail of the unknown distribution. 
There are no observed data available, and reliable evaluation 
is further confounded, because ultimately the sample sizes 
are too few in practical applications of low AEP. By focusing 
on the higher moments, the L-moment ratio diagrams are 
used to help address the difficulty in evaluating goodness-
of-fit just described. As discussed previously, the L-moment 
ratio diagrams (figs. 10 and 13) allow a visual evaluation of 
goodness-of-fit on the premise that superior fit is achieved 
when the higher L-moments exhibit good fit. Achieving 
a close match to L-kurtosis is favorable, and much of the 
thinking behind this view is described by Hosking and 
Wallis (1997). Sampling variation, however, exists around 
any L-kurtosis computed from a random sample. L-moment 
ratio diagrams can be used for statistical inference, such as 
represented by the elliptical regions depicted through Monte 
Carlo simulation. The difference between the observed 
L-kurtosis of the data and the L-kurtosis for the fitted 
distribution is a measure of goodness-of-fit. For purposes of 
reference to other goodness-of-fit measures, this difference is 
identified in this report as “Delta L-kurtosis.” Liou and others 
(2008) discuss goodness-of-fit in the context of L-moments.

For this study, four conventional goodness-of-
fit measures were selected, but their ability to quantify 
goodness-of-fit for the unobserved far right tail is unknown. 
Nevertheless, goodness-of-fit does inform distribution choice. 
The measures investigated are the Cramér-von Mises statistic 
(CM), Kolmogorov-Smirnov statistic (KS), Moran-Darling 
statistic (MD), and Akaike Information Criterion (AIC). 

The CM statistic (Csörgö and Faraway, 1996; Faraway 
and others, 2015) is based on the integrated square distance 
between an empirical cumulative distribution function of the 
data and a fitted cumulative distribution function. The KS 
statistic (Hollander and Wolfe, 1973; Marsaglia and others, 
2003) is based on the supremum (greatest lower bound) of a 
set of absolute differences between an empirical distribution 
function of the data and a fitted cumulative distribution 
function. The MD statistic (Cheng and Stephens, 1989) is 
based on the summation of logarithms of the cumulative 
probabilities of an ordered sample, computed through a fitted 
cumulative distribution function. The MD statistic naturally 
arises from MPS, and this statistic is closely related to the 
Anderson-Darling statistic (not included in this report). 
The AIC statistic is based on the log-likelihood of the fitted 
probability density function, which conveniently arises from 
MLE, though AIC can be computed for other fitting methods. 
Other factors being equal, such as sample size and number of 
parameters in a distribution, smaller values of CM, KS, DM, 
and AIC are desirable when comparing fits.

The goodness-of-fit statistics just described qualify 
the overall fit of a probability distribution to the bulk of the 
data because in practical applications of peak-streamflow 
frequency analyses, the true form of the parent distribution is 
unknown. As a result, the p-values for these statistics can be 
misleading in the single-sample versions of hypothesis tests 
involving these statistics. Thus when fit by parameters from 
the sample, the test statistic is nearly always smaller than the 
statistic for a prespecified set of parameters. For this important 
line of reasoning, p-values are not reported here and only the 
relative magnitudes of the statistics are reported and should be 
compared. Finally, it must be stressed that these metrics do not 
answer the fundamental question about whether a given fit is 
in fact adequate.

For the six three-parameter probability distributions and 
the AEP4 fit using the method of L-moments, five goodness-
of-fit measures were computed and are listed in table 13 (top 
half). The table presents results for both the Raritan River and 
Potomac River streamgages. Only the systematic record for 
the Potomac River was used, which means that the historical 
information, though used for some parts of this study, was not 
used to compute or assess goodness-of-fit for this study. Also 
listed in the table (bottom half) are relative ranks of preference 
for distribution fit. These ranks provide the most effective 
means for scrutiny.

The CM, KS, DM, and AIC statistics, along with Delta 
L-kurtosis, all provide similar relative ranks (table 13). Rank 
similarity mostly reflects the fundamental fact that these 
statistics measure somewhat similar information. For the 
application here for the Potomac River data, KS does not 
show as much sensitivity as the others as evidenced by the 
ranges of ranks listed in table 13. Considering the six three-
parameter distributions, the relative ranks of the CM, KS, DM, 
and AIC all generally indicate a favoring of the GLO, followed 
by the GNO, PE3, GEV, WEI, and GPA. Such ranking 
is thought to be consistent with visual comparison of the 
frequency curves to the data in figures 9 and 12. The AEP4, 
however, is often the second most favorable distribution, 
between the GLO and the GNO, which is consistent with how 
the AEP4 plots relative to these two distributions in figures 9 
and 12.

It is notable that the first ranked distribution is the 
GLO for the CM, KS, DM, and AIC statistics, and the 
AEP4 for the Delta L-kurtosis statistic (table 13). The 
Delta L-kurtosis measure automatically favors the AEP4 
because, of the distributions listed, only the AEP4 directly 
fits, that is matches, the L-kurtosis of the data. It could 
be reasoned by that fact alone that the AEP4 has superior 
fit. Each statistic is computed using all of the data values; 
however, the KS statistic ultimately depends only on the 
single largest difference between the empirical probabilities 
of the data and the fitted cumulative distribution. This largest 
value could exist in applied circumstances in the left tail of 
the distribution, which is not of interest in this study.
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Table 13.  Goodness-of-fit statistics and ranking of selected probability distributions fit to systematic record of annual peak 
streamflows for U.S. Geological Survey streamflow-gaging stations 01400500 Raritan River at Manville, New Jersey and 01638500 
Potomac River at Point of Rocks, Maryland.

[AEP4, four-parameter asymmetric exponential power (not to be confused with AEP, which is used elsewhere in this report for annual exceedance probability); 
GEV, generalized extreme value; GLO, generalized logistic; GNO, generalized normal; GPA, generalized Pareto; PE3, Pearson type III; WEI, Weibull (reversed 
GEV); CDF, cumulative distribution function; PDF, probability density function; QDF, quantile distribution function. Delta L-kurtosis represents the difference 
between the observed L-kurtosis of the data and that for the fitted distribution and “zero” is deliberate and indicates that AEP4 is fit to L-kurtosis. --, not 
applicable because of degeneration in underlying mathematics caused by finite support of the distribution. Ties between statistics are shown as a range (“1–2”). 
Rank among statistics for a given test is determined by ascending sort, because the smallest numerical value of each of the tests is favorable]

Goodness-of-fit statistic
Conceptual 

under-
pinning

AEP4
Three-parameter probability distribution type

GEV GLO GNO GPA PE3 WEI

01400500 Raritan River at Manville, New Jersey Values for statistics

Cramér-von Mises statistic CDF 0.021 0.051 0.017 0.047 0.229 0.051 0.076

Kolmogorov-Smirnov statistic CDF 0.039 0.049 0.039 0.049 0.087 0.049 0.058

Moran-Darling statistic CDF 52.699 56.835 51.469 55.861 -- 56.442 --

Akaike Information Criterion (AIC) PDF −71.520 −68.845 −72.189 −69.620 -- −68.851 --

Delta L-kurtosis QDF1 Zero 0.065 0.016 0.060 0.163 0.065 0.086

01638500 Potomac River at Point of Rocks, Maryland

Cramér-von Mises statistic CDF 0.044 0.087 0.037 0.068 0.356 0.069 0.088

Kolmogorov-Smirnov statistic CDF 0.058 0.058 0.050 0.058 0.099 0.058 0.058

Moran-Darling statistic CDF 83.347 87.725 82.168 85.810 -- 85.868 88.974

Akaike Information Criterion (AIC) PDF −15.629 −11.323 −16.263 −14.338 -- −14.324 −11.805

Delta L-kurtosis QDF1 Zero 0.071 0.013 0.057 0.176 0.057 0.074

01400500 Raritan River at Manville, New Jersey Relative ranks among the statistics listed by statistic

Cramér-von Mises statistic CDF 2 4 1 3 7 5 6

Kolmogorov-Smirnov statistic CDF 1–2 4 1–2 4 7 4 6

Moran-Darling statistic CDF 2 5 1 3 -- 4 --

Akaike Information Criterion (AIC) PDF 2 5 1 3 -- 4 --

Delta L-kurtosis QDF1 1 5 2 3 7 4 6

01638500 Potomac River at Point of Rocks, Maryland

Cramér-von Mises statistic CDF 2 5 1 3 7 4 6

Kolmogorov-Smirnov statistic CDF 2–6 2–6 1 2–6 7 2–6 2–6

Moran-Darling statistic CDF 2 5 1 3 -- 4 6

Akaike Information Criterion (AIC) PDF 2 6 1 3 -- 4 5

Delta L-kurtosis QDF1 1 5 2 3 7 4 6
1The L-moments are defined in terms of the quantile (distribution) function of the probability distribution. A three-parameter distribution is fit through to the 

third L-moment where L-kurtosis is the next higher measure of distributional geometry and the Delta L-kurtosis represents such departure of sequentially higher 
fit.
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Among three-parameter distributions, the GLO provides 
the best fit to data from both streamgages (table 13). The 
marked upward curvature of the GLO indicates that it 
estimates much larger streamflows for very low AEP than 
estimated by the other distributions. The GLO’s σs (sampling 
uncertainty, tables 5 and 10) is the largest among the 
distributions for AEPs less than 0.01. The σdc (distribution 
choice uncertainty, tables 7 and 12) is smaller than σs if 
the unknown true distribution is close to the GLO, but as a 
general rule, scrutiny of σdc and σs in tabulated results shows 
that σdc is the largest of the two for about 10–3 to 10–4 AEP and 
remains so for lower AEP. Hence for very low AEP, it is likely 
that decisions associated with probability model selection 
constitute greater uncertainty than that associated with the data 
sample.

Alternative and Visual Representation of 
Quantile Uncertainty 

Alternative and visual representations of quantile 
uncertainty for both streamgages are presented in this section. 
For simplification, only the systematic records for the Raritan 
River and Potomac River streamgages were used.

Confidence limits, as well as the standard deviation 
of a quantile, are a means to express sampling uncertainty 
(tables 5, 6, 10, 11). These confidence limits can be considered 
a quantification of uncertainty in conjunction with the standard 
deviation of the quantile distribution (σs in tables 5, 6, 10, and 
11). Considering only the method of L-moments, a reminder is 
provided that the distribution-free variance-covariance matrix 
(fig. 3–3) of the sample L-moments was used to repeatedly 
simulate L-moments. In succession for each simulation, the 
respective distribution was fit and quantiles for selected AEPs 
computed. The confidence limits estimated for each AEP were 
estimated from the distribution of the simulated quantiles. This 
technique is computationally complex.

A less complicated method was used to express sampling 
uncertainty in a semi-quantitative manner. The method is 
considered semi-quantitative, because box plots were used to 
depict variation in the distribution of the 0.01 and 0.001 AEP 
quantiles. This less complicated method for depicting variation 
was selected because of algorithmic efficiency to explore 
potential differences or similarities in distribution between 
the parameter estimation methods of L-moments (LMR), 
maximum likelihood (MLE), and maximum product of 
spacings (MPS). (Reiteration of acronyms and the specific use 
of LMR for purposes here is deliberate.) 

The less complicated method is based on the premise that 
the LMR (or MLE or MPS) of the systematic record can be 
used to compute an appropriate parent probability distribution 
for a given distribution. A logarithmic transformation of the 
data was used to be consistent throughout this report. Next, 
a parent distribution was used for Monte Carlo simulation 
for sample sizes equal to that of the systematic record for the 

streamgage to generate many repeated random samples (the 
number of simulations was set to 2,000 to be suitably large 
enough). For each of these random samples, LMR (or MLE or 
MPS) was used to fit a chosen distribution. From many fits of 
the chosen distribution, up to 2,000 quantile estimates at the 
0.01 AEP and 0.001 AEP were made. These estimates for a 
given method, distribution, and AEP were then used to create a 
box plot showing the distribution of these simulated quantiles.

Raritan River Streamgage
Box plots of the simulated distribution of 2,000 random 

samples were created by distribution type for the six three-
parameter distributions and are shown in figure 14 for the 0.01 
and 0.001 AEP quantiles. These quantiles were retransformed 
to units of volume per time and the box plots computed. The 
simulation size is shown as 2,000 for each of the box plots, 
because the L-moments guarantee a fit to these distributions. 
The mean and median of the simulated quantiles are shown 
in order to highlight central tendency. These two statistics are 
generally close to those listed for the fit in table 5.

Considerable differences in the uncertainties expressed 
through the box plots between distributions are shown in 
figure 14. In particular, the GLO distribution shows the widest 
variation, which is consistent with the larger L-kurtosis of 
this distribution for a given L-skew than that of the other 
distributions. Visually, this means that more frequently in the 
simulation, the right tail of the GLO bends upwards toward 
larger streamflow values than for the other five distributions. 
The GPA distribution conversely shows the narrowest 
variation, which is consistent with the smallest L-kurtosis 
and flattest right tail (upper limit of fit as AEP diminishes). 
Lastly, it is evident that the variation of all the boxes increases 
(vertically lengthens) for 0.001 AEP relative to 0.01 AEP.

The box plots in figure 14 semi-quantitatively show the 
uncertainty by distribution using L-moments. A comparison 
between parameter estimation methods was made using 
the same Monte Carlo simulation framework described in 
relation to figure 14. For parameter estimation comparison, 
the GEV, GNO, and PE3 distributions were chosen, and the 
methods of LMR, MLE, and MPS were used. Box plots for 
the simulations are shown in figure 15. The simulation counts 
above the box plots are not all equal to 2,000 because MLE 
and MPS, being numerical optimization techniques, can fail 
occasionally for technically complex reasons. Results for 
both 0.01 and 0.001 AEP are shown. A potentially striking 
result is the comparative insensitivity of the quantiles to the 
choice of parameter estimation method. The sample size 
is large, however, being 103 years of record for this study, 
so performance benefits of L-moments and MPS in small 
samples relative to MLE are small. Close inspection suggests 
that MPS estimates slightly larger quantiles across the board 
than LMR and MLE, whose boxes appear quite similar for a 
given distribution.
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EXPLANATION

USGS 01400500 Raritan River at Manville, New Jersey

Figure 14.  Quantile estimates through Monte Carlo simulation among six three-parameter distributions by the method of 
L-moments for systematic record for U.S. Geological Survey streamflow-gaging station 01400500 Raritan River at Manville, 
New Jersey.
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“parent distribution” unique to each distribution type fit by the method of L-moments

EXPLANATION

Distribution type
   GEV, generalized extreme value (three parameter)
   GNO, generalized normal (three parameter)
   PE3, Pearson type III (three parameter)
Method type
   LMR, L-moments
   MLE, maximum likelihood
   MPS, maximum product of spacings

USGS 01400500 Raritan River at Manville, New Jersey

Figure 15.  Quantile estimates through Monte Carlo simulation among three three-parameter distributions and three 
methods of parameter estimation for systematic record for U.S. Geological Survey streamflow-gaging station 01400500 
Raritan River at Manville, New Jersey.
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Potomac River Streamgage
Box plots of the simulated distribution for the Potomac 

River streamgage are shown in figure 16. As a reminder, the 
mean and median of the simulated quantiles are generally 
similar to those listed for the fit in table 10. The similarity 
shows the simulation is consistent with the data analysis. 
Considerable differences exist in the uncertainties expressed 
through the box plots between distributions. In particular, 
the GLO distribution shows the widest variation, which is 
consistent with the larger L-kurtosis of this distribution for a 
given L-skew than the other distributions. Visually, this means 
that more frequently in the simulation, the right tail of the 
GLO bends upwards toward larger streamflow values than for 
the other five distributions. The GPA distribution conversely 
shows the narrowest variation, which is consistent with the 
smallest L-kurtosis and flattest right tail (upper limit of fit 
as AEP diminishes). Lastly, it is evident that the variation of 
all the boxes increases (vertically lengthens) for 0.001 AEP 
relative to 0.01 AEP.

A comparison between parameter estimation methods 
using the same Monte Carlo simulation framework as for the 
Raritan River box plots (fig. 15) is shown for the Potomac 
River streamgage in figure 17. Again, the simulation counts 
above the box plots are not all equal to 2,000 because 
MLE and MPS can fail occasionally, and again, results for 
both 0.01 and 0.001 AEP are shown. A potentially striking 
result is the comparative insensitivity of the quantiles to the 
choice of parameter estimation method. The sample size 
is large, however, being 121 years of record for this study, 
so performance benefits of L-moments and MPS in small 
samples relative to MLE are small. Close inspection suggests 
that MPS estimates slightly larger quantiles across the board 
than LMR and MLE, whose boxes appear quite similar for a 
given distribution.

Further Considerations 

This section discusses examples of analyst end-products 
used to estimate at-site peak-streamflow frequency for very 
low AEP. Peak-streamflow frequency analysis for a very 
low AEP requires both the estimate as well as the associated 
uncertainties. Distribution choice uncertainty is abbreviated as 
σdc, and sampling uncertainty is abbreviated as σs. Assuming 
the generalized logistic distribution (GLO) is singularly the 
most applicable (best fit) three-parameter distribution for 
the data at both streamgages, estimates for the 10–4 AEP 
streamflow based on the method of L-moments can be stated 
as follows: (1) “For the systematic record at Raritan River 
at Manville, the 10–4 AEP streamflow estimate based on the 
GLO distribution is 373,600 ft3/s (90-percent confidence 
interval 103,600 to 2,793,000 ft3/s based on σs = 0.4423 log10) 
with σdc = 0.2497 log10”; and (2) “For the systematic and 
historical record at Potomac River at Point of Rocks, the 10–4 
AEP streamflow estimate based on the GLO distribution is 
2,325,000 ft3/s (90-percent confidence interval 795,100 to 

10,140,000 ft3/s based on σs = 0.3338 log10) with σdc = 0.2284 
log10.” The numerical values shown are from tables 5 and 7 
(Raritan River) and tables 10 and 12 (Potomac River).

The remaining discussion is not all encompassing but 
identifies topics considered especially applicable to the 
documentation of uncertainty associated with the estimation of 
events of low AEP for which virtually no information exists.

Quantile Dependency—An almost universal problem 
in the estimation of peak-streamflow frequency for low AEP 
is an incomplete understanding of the processes used to 
determine the magnitude and shape of the right tail. This is 
not a new observation and was certainly clear to the National 
Research Council (1988). Further, some processes potentially 
affecting the tail may not be evident and thus not evident in 
the data because of insufficient record length; such cases are 
a form of mixed population effects. Wang and Li (2016, p. 
315) state, “To estimate extreme conditional quantiles in the 
very far tails [low AEP] with few or no observations available, 
additional conditions or models for the tails are needed.” Wang 
and Li (2016) provide a contemporaneous summary of the 
various methods of quantile dependency analysis, including 
quantile regression. Succinctly, Wang and Li (2016) consider 
what causative variables or conditions affect the slope and 
shape of the right tail. Many examples exist. 

For example, is the right tail directly caused by tropical 
storm systems or in other regions of the United States rain-
on-snow events (Cohen and others, 2015). Another for the 
western United States is the impact of atmospheric rivers 
on extreme quantiles (Barth and others, 2016). As another 
example, under physically applicable circumstances, does 
storage of runoff volume in very large floodplains cause a 
near finite upper limit to instantaneous peak streamflow? 
This question implies a contrast to the continued growth by 
some distributions, such as the GLO, shown in this study. An 
alternative approach for examining tail dependency might 
be in the form of generalized additive models for location, 
scale, and shape (GAMLSS; Rigby and Stasinopoulos, 
2005; Stasinopoulos and others, 2016) using combinations 
of predictor variables (covariates) including those such as 
month of annual peak, climate indices, or other potentially 
statistically significant predictor variables or bivariate copulas 
(Nelsen, 2006; Salvadori and others, 2007). 

Parameter Estimation—Different parameter estimation 
methods exist, and four are used in this report. In practical 
applications, it is not always clear whether a single method 
should be preferred over all others. Whereas uncertainty 
about parameter estimation methods did not appear to be as 
dominant as distribution choice uncertainty in this study, the 
use of multiple parameter estimation methods does have the 
obvious potential to provide documentation of a component 
of epistemic uncertainty. The model itself is dependent on 
the methods chosen for parameter estimation. Perhaps in 
practical applications in which nonstandard peak streamflow 
information is not used, the methods of EMA (if extended to 
more three-parameter distributions than the PE3), L-moments 
(or variants), MLE, and MPS could all be used.
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EXPLANATION

USGS 01638500 Potomac River at Point of Rocks, Maryland

Figure 16.  Quantile estimates through Monte Carlo simulation among six three-parameter distributions by the method of 
L-moments for systematic record for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of 
Rocks, Maryland, using systematic record only.
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EXPLANATION

Distribution type
   GEV, generalized extreme value (three parameter)
   GNO, generalized normal (three parameter)
   PE3, Pearson type III (three parameter)
Method type
   LMR, L-moments
   MLE, maximum likelihood
   MPS, maximum product of spacings

USGS 01638500 Potomac River at Point of Rocks, Maryland

Figure 17.  Quantile estimates through Monte Carlo simulation among three three-parameter distributions and three 
methods of parameter estimation for systematic record for U.S. Geological Survey streamflow-gaging station 01638500 
Potomac River at Point of Rocks, Maryland.
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Regional Information—Regional information is 
a conceptual and practical means to incorporate or add 
information to the problem of peak-streamflow frequency 
estimation. Perhaps most often information about skewness 
is added from regional studies. Potentially higher moments 
could also be regionalized, which would have a benefit 
towards identification of more preferential distributions 
than other distributions for purposes of very low AEP 
estimation. Regional or generalized skew (IACWD, 1982) is 
a widely known conceptual example. To expand knowledge 
of distribution choice, regional study of L-skew and more 
importantly L-kurtosis could be highly informative in the 
context of this study. Regional information also can be used 
to extend or further interpret peak streamflow data for a 
given USGS streamgage. Other regional information could 
inform analyses of quantile dependency and constrain the 
development of mixed population models (Barth and others, 
2016).

Physical Processes and Potential Constraints—
Including confidence limits as well, the supports of positively 
skewed distributions tend to have effectively infinite upper 
bounds. Moreover, even negatively skewed distributions can 
have asymptotic upper limits so large that such estimates 
might conflict with physical (deterministic) constraints of 
instantaneous peak streamflow for some riverine settings. 
Another potentially open problem is how the probable 
maximum flood (Stedinger and others, 1993, p. 9.37–9.38), 
which is the result of a deterministic analysis, can be used 
to inform distal tail behavior of probability distributions to 
provide a type of holistic perspective.

Asymmetric Exponential Power and Kappa Distribution 
Mixture—For this study and the data used in it, the AEP4 
and the WAK are the only distributions considered that 
simultaneously matched both the L-skew and L-kurtosis 
of the data. Hence, both distributions provided a higher 
moment fit than any of the three-parameter distributions for 
conditions that a sufficient sample size (not judged for this 
study) is available for fourth-moment estimation. The AEP4 
has lower L-kurtosis bounds (fig. 3–5) that might be too close 
to potential regions of L-skew and L-kurtosis for universal 
application within annual peak streamflow (logarithmic 
as well as untransformed) analyses, although this was not 
observed in this study. The KAP exists for L-kurtosis below 
the AEP4, but the AEP4 exists for L-kurtosis above the KAP 
(figs. 10, 13, and 3–5). Asquith (2014, p. 955) makes “a 
proposal * * * for AEP4 implementation in conjunction with 
the [four-parameter KAP] distribution to create a mixed-
distribution framework encompassing the [entire] joint L-skew 
and L-kurtosis domains” for which a proration between 
distribution form in the shared region (Asquith, 2014, fig. 6) 
could be made. The proration could be based on L-kurtosis 
as an overlap percentage between the distributions, and the 
quantile functions of separately fit AEP4 and KAP and mixed 
by a prorated weight factor. 

In conclusion as this study shows, the estimation of 
at-site peak-streamflow frequency for very low AEP is a 

profoundly difficult problem. A broad computational and 
statistical skill set is required to address or discern the 
profoundly complex details, such as parameter estimation 
and multiple probability distributions. Estimation of very 
low AEPs is complicated further because suboptimal 
circumstances exist in the presence of tail estimates for which 
extremely limited information is available to analysts. That is, 
event rarity may be so extreme that the actual presence of such 
events in observational datasets will be exceedingly small. The 
results generally show that distribution choice uncertainty is 
larger than sampling uncertainty for very low AEP values.

Summary
The U.S. Geological Survey (USGS), in cooperation with 

the U.S. Nuclear Regulatory Commission, has investigated 
probabilistic flood hazard assessments using a statistical 
perspective with intent to provide guidance for very low 
annual exceedance probability (exceptionally rare event) 
estimation of peak-streamflow frequency and corresponding 
uncertainty quantification. This report serves as a resource 
to Nuclear Regulatory Commission (NRC) technical 
decisionmakers, collaborators, and other interested parties 
in the study of the exposure of critical infrastructure, such 
as nuclear power plant sites, to flood hazards in the United 
States. Probabilistic flood-hazard assessment is inherently 
complex and is but one part of multidisciplinary risk 
assessment and management for critical infrastructure. For 
the purposes of this study, critical infrastructure is defined 
as infrastructure having components of very large capital 
investment and (or) substantial risk to public safety as a result 
of rare hydrologic circumstances. Such infrastructure includes 
nuclear power plants.

The typical hazard level or annual exceedance 
probability (AEP) for probabilistic flood-hazard assessments 
is determined in the right tail of a probability distribution. 
Especially important for critical infrastructure are annual 
return intervals associated with very low AEP values that far 
exceed the length of observational records at individual sites 
or even within regions of interest. The term “very low AEP” 
implies exceptionally rare events defined as those having 
AEPs less than about 0.001 (or 1 × 10–3 in scientific notation 
or for brevity 10–3). When assessments are conducted at or 
near streamflow-gaging stations (“streamgages” hereafter), 
the observational record of annual peak streamflow is the 
fundamental information used for the analysis. This type 
of analysis is termed an “at-site” analysis; that is, analysis 
conducted based on data for a specific streamgaging site. 
Annual data for these analyses are most commonly associated 
with USGS streamgages. Information about streamgaging 
methods and the USGS National Water Information System 
(NWIS) database is provided in an appendix to this report.

Annual peak streamflow data for the USGS streamgage 
01400500 Raritan River at Manville, New Jersey, and 
01638500 Potomac River at Point of Rocks, Maryland, are 
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used in this report to illustrate methods for estimating very 
low AEP floods and their uncertainty. The Raritan River 
streamgage is located about 33 miles west southwest of the 
New York metropolitan area and has a watershed drainage 
area of about 490 square miles. The period of record for this 
study of the Raritan River streamgage is water years 1904–
2014, though with gaps in the record from 1907–1908 and 
1916–1921. The Potomac River streamgage is located about 
40 miles northwest of Washington, D.C., has a watershed 
drainage area of about 9,651 square miles, and the systematic 
record of peak streamflow is available for water years 
1895–2015.

Peak-streamflow frequency analyses are a type of 
statistical analysis used to estimate the peak-streamflow 
frequency curve (commonly also called the flood-frequency 
curve). The frequency curve can be represented in two primary 
ways. First, the frequency curve can be represented by an 
empirical distribution function that is often approximated 
using Hirsch-Stedinger or other plotting positions. Second, 
parametric methods can be used to fit one or more probability 
distributions to the data. The empirical distributions of 
the annual peak streamflow data for the Raritan River and 
Potomac River streamgages are shown.

Parametric methods are used to fit data to a specified 
statistical distribution (for example, the Pearson type III 
distribution or the generalized extreme value distribution). 
The parametric approach will not model all of the variability 
observed in the data, but if the distribution is suitable 
enough, it provides for extrapolation beyond the exceedance 
probabilities represented by the data.

The general purpose for fitting a probability distribution 
is to represent the magnitude of floods across a wide spread 
of AEP values, and a reasonable probability distribution 
is especially important when extrapolations of the fitted 
frequency curve are to be made. Several alternative and 
complementary methods to fit probability distributions include 
product moments, maximum likelihood (MLE), expected 
moments algorithm (EMA), L-moments, and maximum 
product of spacings (MPS).

Technically complex mathematics applicable to this 
study are provided in thematic appendixes. A brief review 
of product moments and a similar primer on L-moments are 
provided. MLE and MPS are described, along with goodness-
of-fit statistics. The probability distributions applicable to 
this study in the context of L-moments are also described. 
The appendixes provide succinct mathematics through both 
independent and co-dependent figures.

The EMA is an iterative method of solving for the 
product moments and has been fully developed for the Pearson 
type III distribution. Extension of EMA, however, to fit other 
distributions has not yet been fully developed. Thus, the 
method of L-moments was chosen for primary emphasis, in 
part, because extensive though technically demanding code 
for scripting parallel analyses is available to expand analyses 
to other distributions beyond the Pearson type III distribution, 
and such is the case for MLE and MPS.

Two core types of uncertainty in peak-streamflow 
frequency analyses are considered for this study. The 
first uncertainty is often referred to as either epistemic or 
reducible, whereas the second uncertainty is often referred 
as aleatoric, irreducible, or stochastic. Epistemic uncertainty 
is the uncertainty in not knowing the optimal model for 
probabilistic prediction, and thus is related to knowledge of 
natural and physical world processes. Aleatory uncertainty 
is that associated with inherent random chance (hence 
the adjectives “irreducible” or “stochastic”). This second 
uncertainty is dependent on the random sample itself and on 
the choice of the event of interest (hazard level). An extensive 
body of literature concerns this uncertainty, owing in part to 
conveniences of mathematical tractability and accessibility 
of the designed statistical simulation (Monte Carlo). Both 
variances are themselves dependent on selected AEPs and both 
increase as AEP decreases.

Numerous probability distributions are considered in 
this study. The three-parameter distributions considered are 
generalized extreme value (GEV), generalized logistic (GLO), 
generalized normal (GNO), generalized Pareto (GPA), Pearson 
type III (PE3), and Weibull (WEI). Other, higher-parameter 
distributions considered are the asymmetric exponential power 
(AEP4, four parameter), Kappa (KAP, four parameter), and 
Wakeby (WAK, five parameter). The analyses are exclusively 
based on base-10 logarithms of annual peak streamflow data, 
and as a result, the adjective “log” as in the “log-Pearson 
type III” is to be inferred as an encompassing adjective of all 
distribution references.

This study focuses primarily on parameter estimation 
using product moments (EMA, USGS-PeakFQ software) and 
L-moments, and frequency curves for the distributions are 
depicted for both of the streamgages. L-moments are based on 
linear combinations of differences of the expectations of order 
statistics as opposed to the product moments, which are based 
on powers (exponents) of differences.

The two additional methods of parameter estimation used 
in this study of MLE and MPS are closely related to goodness-
of-fit metrics. Succinctly, MLE estimates the parameters of a 
distribution by maximizing the summation of logarithms of the 
probability density computed for each of the data values. MPS 
is similar in that maximizing a summation also is involved, but 
for MPS, the quantities summed are the successive differences 
of probability estimates through the cumulative distribution 
function for each of the data values.

Distribution selection is a difficult and critically 
important component of parametric frequency analyses. The 
problem is compounded when events far into the right tail of 
a distribution are needed, and in practice, such information 
is extremely scarce. One method for assessing distribution 
validity is the goodness-of-fit test. Goodness-of-fit describes 
the extent to which observed data match the values expected 
by theory. In this study, a fitted distribution of a given form 
(distribution choice) serves as the theory. Goodness-of-fit in 
the context of peak-streamflow frequency analyses can be 
qualitative and guided by expert opinion using methods such 
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as graphical visualization when the dimension of the problem 
is small (univariate). Goodness-of-fit can also be evaluated 
using a quantitative reference frame and can be based on one 
or more numerical measures of fit.

Probability distributions are distinguished according to 
their formal mathematical definition, moments, and respective 
parameter values. Distributions, as a general result, have 
specific and typically unique intrarelations (that is within 
the distribution) between moments and parameters. The 
intramoment relations between the moments of a distribution 
(theoretical or sample) have been considered as a means 
to judge the potential suitability of candidate distributions. 
Because L-moments are a convenient and powerful tool for 
discriminating distribution shape, L-moment ratio diagrams in 
turn are useful for discriminating between distributional forms.

The results are shown in parallel for each streamgage 
within which the peak-streamflow frequency curves for the 
four multiple parameter estimation methods for the PE3 are 
shown. These curves are followed by a review of the multiple 
frequency curves restricted to PE3-EMA as well as the PE3 
and other distributions fit by the method of L-moments. 
Tables specific to each streamgage of numerical results 
including quantiles, 90-percent confidence limits, distribution 
choice uncertainty, and sampling uncertainty are identified. 
L-moment ratio diagrams specific to each streamgage are 
shown and attendant discussion concerning distribution 
validity is made. Two further sections are given concerning 
(1) goodness-of-fit using several approaches in an effort to 
semi-quantify and rank relative fits for the distributions, and 
(2) the distribution of the 0.01 and 0.001 AEP quantiles by 
both method and distribution using Monte Carlo simulation. 
General discussion describing further considerations of 
estimation of at-site peak-streamflow frequency for low AEP 
concludes.

Peak-streamflow frequency analysis for a very low 
AEP requires both the estimate as well as the associated 
uncertainties. Distribution choice uncertainty is abbreviated 
as σdc, and sampling uncertainty is abbreviated as σs. 
Assuming GLO is singularly the most applicable (best fit) 
three-parameter distribution for the data at both streamgages, 
estimates for the 10–4 AEP streamflow based on the method of 
L-moments can be stated as follows: (1) “For the systematic 
record at Raritan River at Manville, the 10–4 AEP streamflow 
estimate based on the GLO distribution is 373,600 cubic feet 
per second (ft3/s) (90-percent confidence interval 103,600 to 
2,793,000 ft3/s based on σs = 0.4423 log10) with σdc = 0.2497 
log10”; and (2) “For the systematic and historical record at 
Potomac River at Point of Rocks, the 10–4 AEP streamflow 
estimate based on the GLO distribution is 2,325,000 ft3/s 
(90-percent confidence interval 795,100 to 10,140,000 ft3/s 
based on σs = 0.3338 log10) with σdc = 0.2284 log10.” The 
σdc is smaller than σs if the unknown true distribution is close 
to the GLO, but as a general rule scrutiny of σdc and σs in 
tabulated results shows that σdc is the largest of the two for 
about 10–3 AEP to about 10–4 AEP and remains so for lower 

AEP. Hence for very low AEP, it is likely that decisions 
on probability model constitute larger uncertainty than the 
uncertainty stemming from the data sample.

The estimation of at-site peak-streamflow frequency 
for very low AEP is a difficult problem, as this study 
demonstrates. A broad computational and statistical skill set 
is required to address or discern the profoundly complex 
details, such as parameter estimation and multiple probability 
distributions. Estimation of very low AEPs is complicated 
further because suboptimal circumstances exist in the presence 
of tail estimates for which limited information is available to 
the analyst. That is, event rarity may be so extreme that the 
actual presence of such events in observational datasets will be 
extremely unusual. The results generally show that distribution 
choice uncertainty is considerably larger than sampling 
uncertainty for very low AEP values.
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Appendix 1

reamflow Frequency Analyses for Very Low Annual Exceedance Probabilities

Appendix 1.  U.S. Geological Survey Streamgaging Methods and Annual Peak 
Streamflow

By Dan Wagner, Julie E. Kiang, and William H. Asquith

U.S. Geological Survey Streamgaging Methods

Introduction
Streamflow information is a vital national asset of the 

United States that is used extensively to safeguard lives, 
protect property, manage water supplies, and conduct 
scientific investigations. The U.S. Geological Survey (USGS) 
operates streamflow-gaging stations (“streamgages” hereafter; 
Lurry, 2011; Olson and Norris, 2007) throughout the Nation 
to provide quantitative information about flow in rivers and 
streams. Streamflow, or discharge (used herein when usage 
requires), is defined as the volumetric rate of water flow 
(volume per unit time) in an open channel, including any 
sediment or other solids that may be dissolved in (or mixed 
with) it that adhere to the Newtonian physics of open-channel 
hydraulics of water (Turnipseed and Sauer, 2010).

The majority of USGS streamgages are referred to 
as continuous-record streamgages, because they provide a 
continuous time series of streamflow data. These streamgages 
provide comprehensive information about normal flow 

conditions as well as extreme high flows and extreme low 
flows. The USGS operates a network of more than 8,000 
streamgages nationwide (USGS, 2016b) and delivers data 
through the USGS National Water Information System 
(NWIS; USGS, 2016c). Other streamgage types include 
those monitoring only low flows or high flows, known as 
partial record streamgages. Yet other types include those 
monitoring tidal flow or those recording only peak flow for 
water-surface elevations. Different types of streamgages exist 
to meet specific needs. This appendix describes continuous-
record streamgages with emphasis on annual peak streamflow, 
although gages recording only peak streamflows, also known 
as crest-stage gages, are also described.

Streamgages typically contain instruments that 
automatically measure and record stage at a regular time 
interval (typically every 15 minutes). The instrumentation 
commonly is housed in unobtrusive structures along bridge 
crossings, such as the metal structure with antenna shown in 
figure 1–1. Others are more substantial structures, such as the 
one schematically depicted in figure 1–2. Commonly through 
satellite telemetry, stage data are transmitted hourly from 
streamgages to USGS computers for further processing. 

Figure 1–1.  U.S. Geological Survey streamflow-gaging station 07048495 Town Branch at Armstrong Road at 
Fayetteville, Arkansas, on July 15, 2016. Photograph by Dan Wagner, U.S. Geological Survey.
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Figure 1–2.  Traditional stilling-well style of U.S. Geological Survey streamflow-gaging station after Nielsen and Norris (2007).

The most critical processing step is the development of a 
relation between stage and streamflow. This relation, known 
as a stage-discharge rating and often referred to as a rating 
curve for its graphical appearance, is developed using paired 
observations of stage and streamflow collected in the field. At 
some sites, a third parameter is needed to compute streamflow, 
such as index velocity, stream slope, or the rate of change in 
stage at a site. Such complex ratings are not presented herein 
but compose about 5 to 10 percent of the USGS streamgaging 
network. Regardless of whether simple or complex rating 
methods are used, the measured stage and computed 
streamflow data are made available to the public (USGS, 
2016c); by convention, the USGS expresses streamflow in 
units of cubic feet per second and water-surface elevation in 
feet.

Annual peak streamflow represents the maximum 
instantaneous peak flow experienced during a given year at a 
streamgage. Such streamflows are also referred to as annual 
maximum peaks or annual peak streamflows. These peak 
streamflow data are among the most important data produced 
by the USGS streamgaging program and are a product of 
nearly every continuous-record streamgage. Similarly, high-
flow partial-record streamgages and peak-streamflow-only 

streamgages are designed and operated to record peak 
streamflows.

Annual peak streamflow data are important because they 
are often used for analyses supporting floodplain management 
(including establishment of zones requiring flood insurance) 
and infrastructure design (dams, highway drainage, and 
bridges). These data, as exemplified by the statistical analyses 
described in the main body of this report, are used to develop 
peak-streamflow frequency. Typically, such analyses fit time 
series of annual peak streamflows to the Pearson type III 
distribution and a risk-level is specified as an exceedance 
probability (or recurrence interval) associated with a particular 
streamflow magnitude. 

Creating Continuous Records of Streamflow
The majority of streamgages produce continuous 

record because doing so provides a high degree of temporal 
data resolution, making the information obtained at a given 
location suitable for a wide variety of scientific, engineering, 
recreational, and resource-management uses. Under most 
circumstances, it is not practical to directly measure 
streamflow continuously. River stage is, however, easier to 
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measure continuously. Because of this, most streamgages are 
located in riverine settings that exhibit a strong physical and 
thus mathematical relation between stage and streamflow. 
A continuous record of streamflow is computed from the 
continuous record of the “surrogate” parameter (stage) using a 
stage-discharge rating.

The creation and maintenance of reliable continuous 
records of streamflow involves several steps, including 
(1) measuring and recording stage (automatically) and 
processing stage data for quality-control and assurance (both 
automatic and human-supervised); (2) making periodic 
discrete (that is, unique in time) measurements of river 
streamflow at various stage levels to represent the full range 
of streamflow occurring at a given location; (3) developing 
the mathematical relation between stage and streamflow, 
known as a stage-discharge rating, and (4) applying the stage-
discharge rating to the continuous record of stage in order to 
compute streamflow. These steps are described in more detail 
in the sections that follow.

Measurement of Stage
Sauer and Turnipseed (2010) describe stage measurement 

methods and equipment in detail. Measurement of stage 
has evolved considerably since the USGS began collecting 
such data over a century ago. Stage is typically recorded 
every 15 minutes at USGS streamgages using one or more 
of several different styles or types of water-level sensors, 
with a single sensor being the most common setup. Whereas 
most streamgages record information at a 15-minute interval 
during normal operations, some streamgages are set up 
using different time intervals to meet specific purposes. For 
example, a streamgage in a very small watershed characterized 
by flashy (short-duration) peaks might require a 5-minute data 
interval to sufficiently define the flood hydrograph (that is, 
a graphical plot of stage versus time). A traditional style of 
stage measurement is shown in figure 1–2, which depicts a 
streamgage constructed with a stilling well.

A streamgage with a stilling well is hydraulically 
connected to the river such that the water level in the stilling 
well matches that of the river. The stilling well acts to 
physically minimize water-level fluctuations by calming  
the water surface where it is monitored by equipment such  
as (1) a float and tape coupled with a shaft encoder or  
(2) a pressure transducer measuring hydrostatic head. 

In newer streamgages (fig. 1–1), stage measurements are 
made by physically locating the pressure measuring apparatus 
in the riverine environment. Alternatively, noncontact radar 
can be mounted above the water surface and stage recorded 
using the beam distance between the radar and the water. 
For these newer types of streamgages, a smaller footprint 
for construction can be used to house the streamgaging 
equipment. 

Figure 1–2 shows a recorder inside the streamgage 
structure. (The recorder is not visible in figure 1–1.) The 
recorder is a special-purpose onsite computer, referred to as a 

data-collection platform (DCP), that automates the operation 
of stage sensors, auxiliary stage sensors, and other sensors 
such as water quality or weather instruments. The type of 
equipment and sensors used are dependent upon the physical 
conditions at the site and the specific needs of the cooperative 
funding agency. Stage measurements are stored in the DCP 
memory and transmitted hourly on a preset schedule to USGS 
computers using the National Oceanic and Atmospheric 
Administration (NOAA), National Environmental Satellite, 
Data, and Information Service (NESDIS), Geostationary 
Operational Environmental Satellite (GOES) (fig. 1–3). 
During emergency situations, such as when intense rainfall 
and runoff cause a river or stream to exceed a predetermined 
high stage or a rapid rate of change in stage, the DCP can 
be programmed to acquire auxiliary measurements of stage 
more often—every 5 minutes or less, depending on the 
instrumentation used to measure stage—and auxiliary data 
can be transmitted by satellite more often than under normal 
operating conditions to provide timely data. 

The accuracy and precision of stage measurements 
is influenced by many factors, such as the type of 
instrumentation (instrument error), methods of field 
verification (comparison of recorder readings to reference 
gages such as staff plates or wire-weight gages) during visits 
to the streamgages by USGS personnel, and the complex, 
site-specific nature of localized hydraulics affecting the water 
surface near stage measuring devices. The USGS utilizes 
instrumentation capable of reporting stage to the nearest 
hundredth of a foot. During regularly scheduled site visits, 
concurrent readings of stage from the reference gage (a 
manual measurement of stage independent of the automated 
equipment) and stage sensor are made, and the reading of 
the stage sensor corrected to that of the reference gage, if 
necessary. Differential leveling techniques are used every  
1 to 3 years to ensure changes to the (vertical) gage datum and 
the reference gage are not occurring at the site. The largest 
uncertainty associated with stage measurement is usually the 
local hydraulics of the river. Uncertainty associated with stage 
measurement typically is greatest for fast moving water and 
turbulent flow associated with annual peak streamflow.

Measurement of Streamflow
As with stage measurement, methods for measuring 

streamflow have evolved. Until the late 20th century, 
mechanical current meters measured flow by using the force 
of moving water to spin the rotating cups on the meter. These 
meters are still used, but are increasingly being replaced by 
equipment that uses acoustic Doppler methods to measure 
water velocity (Turnipseed and Sauer, 2010). Other methods 
used less frequently include portable weirs and flumes, floats, 
volumetric tanks, tracers, and indirect methods (Benson and 
Dalrymple, 1967). Of these alternative methods, only indirect 
methods for computing peak streamflow are discussed here 
because of their relevance to the statistical computations in 
this report.
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Figure 1–3.  General workflow of hydrological data for a data-collection platform (DCP) transmission from a U.S. Geological Survey streamflow-gaging station to 
the Internet (from Sauer and Turnipseed, 2010, fig. 48).
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The most traditional method of streamflow measurement 
is the velocity-area method, whereby streamflow is computed 
by subdividing a cross section of the stream into segments, 
measuring the depth and velocity at selected vertical locations, 
and summing the products of the partial areas of the stream 
cross section and their respective mean velocities (Turnipseed 
and Sauer, 2010). USGS application of the velocity-area 
method typically involves dividing a cross section of the 
stream channel into 25 to 30 rectangular sections. The 
width of each section is determined by using a marked line 
(commonly referred to as a tag line), cableway, or bridge rail 
to measure the distance from an initial point from either bank. 
A wading rod or sounding reel is used to measure depth and a 
current meter is used to measure velocity for a predetermined 
amount of time (typically 40 seconds) at one or more locations 
in the water column, depending on depth and other conditions. 
For each of the 25 to 30 rectangular subsections, the width, 
depth, and velocity are multiplied to compute discharge within 
that subsection. The subsection discharges are then summed 
to compute total streamflow. Either mechanical current 
meters or acoustic Doppler velocimeters (ADVs; SonTek/
YSI Corporation, 2002) are commonly used for this type of 
measurement. Acoustic Doppler current profilers (ADCPs; 
Oberg and Mueller, 2007; Mueller and Wagner, 2009) are 
occasionally used in this manner as well.

More commonly, ADCPs are used to make “moving 
boat” measurements. ADCPs are capable of measuring 
velocity every 2–10 inches (in.) (5–25 centimeters) in a given 
stream cross section to create a detailed velocity profile 
(Turnipseed and Sauer, 2010). ADCPs are commonly used 
to make velocity measurements in large rivers or in streams 
exceeding water depths that can be safely waded (Mueller 
and Wagner, 2009). ADCPs can be used on manned, tethered, 
or remote-control boats, and when coupled with an onboard, 
global positioning system (GPS), yield accurate positional and 
velocity data. 

During flooding, it may be impossible, impractical, or 
unsafe to measure peak streamflows within some streams. The 
peak may not occur when personnel resources are available. 
For example, small rivers may crest for such short periods 
of time, that is, are so “flashy,” that a measurement, even 
if it could be safely performed, cannot be made when the 
peak occurs. As a result, the vast majority of annual peak 
streamflows are not obtained through direct measurements of 
streamflow. Instead, the peak streamflows are computed using 
the stage-discharge rating and the measured peak stage. 

Sometimes river streamflows during flood events 
can be determined using indirect methods (Benson and 
Dalrymple, 1967), either for purposes of defining the 
stage-discharge rating or to provide the actual annual 
peak. Indirect measurements are performed after the event 
itself by collecting information in the stream reach or at a 
hydraulic structure (such as a bridge, culvert, or dam) in 
order to construct a numerical model of streamflow. Indirect 
techniques for determining peak streamflow include slope-
area (Dalrymple and Benson, 1967), contracted-opening 

(Matthai, 1967), flow-through-culvert (Bodhaine, 1968), and 
flow-over-dam (Hulsing, 1967) methods. These methods 
have specific requirements for locating and surveying high-
water marks, structure geometry (if applicable), and cross 
sections of the stream channel. Many indirect methods also 
require determining the roughness (boundary friction) of a 
representative reach of the stream channel or the structure 
used in the computation. Furthermore, structures must 
closely resemble standard configurations, because discharge 
coefficients, which represent hydraulic efficiency, are 
determined from limited empirical laboratory experiments. 
The uncertainty associated with indirect methods is typically 
greater than that for direct measurement methods. The exact 
uncertainty depends on the quality of information available 
and the nature of the channel. 

After a streamflow measurement is made, the hydrologic 
technician rates the measurement as either “excellent,” 
“good,” “fair,” or “poor.” A measurement rated as excellent 
is considered to have 2-percent error or less; a good 
measurement 5-percent error or less; a fair measurement 
8-percent error or less; and a poor measurement greater than 
8-percent error (Turnipseed and Sauer, 2010). Despite these 
numerical assignments, however, the measurement quality 
ratings are subjective. The ratings are based on stream 
conditions and limitations of the equipment used during the 
measurement that affect data quality, which include but are  
not limited to (1) low or conversely high water velocities 
relative to the measurement performance (operational 
limitations) of the equipment; (2) shallow water in the cross 
section; (3) a large flow-direction angle relative to cross-
section orientation; (4) substantial two- and three-dimensional 
flow components relative to the downstream direction; 
(5) rapidly changing stage; and (6) other limitations of the 
equipment, such as a low signal-to-noise ratio for ADVs or 
loss of bottom-tracking or GPS signal for ADCPs (Turnipseed 
and Sauer, 2010). 

Relating Stage to Streamflow
The continuous record of stage is converted to a 

continuous record of streamflow by developing and applying 
a stage-discharge rating. This rating is developed for each 
streamgage from numerous physical measurements of 
streamflow made at that streamgage over a wide range of 
stage values (from low to flood stage). Stage-discharge 
ratings change over time for various reasons, such as natural 
riverine processes causing erosion or deposition of sediments 
or natural vegetation growth and succession. In other words, 
changes in channel morphology or frictional resistance cause 
the relation between stage and streamflow to vary with time. 
Considerable resources within the USGS are expended to 
maintain stage-discharge ratings. An example stage-discharge 
rating for an arbitrary USGS streamgage is shown in 
figure 1–4. 

The relation between stage and streamflow depends on 
the shape, size, slope, and roughness of a section or channel 
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Figure 1–4.  Example diagram of stage-discharge rating from internal U.S. Geological Survey National Water Information System record-processing software for 
USGS streamflow-gaging station 07340000 Little River near Horatio, Arkansas, showing the current shifted and base ratings as well as recent and other informative 
streamflow measurements as of November 1, 2016. (Q is discharge, in cubic feet per second; GH is gage height [stage], in feet; CHG is gage-height change, in feet per 
hour; and Qm is discharge measurement.)
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reach downstream of the gaging station and is different for 
every streamgage. A section or reach of the stream channel 
downstream of the streamgage, known as the control, 
eliminates the effect of all other downstream conditions on 
the velocity of flow at the streamgage (Kennedy, 1984). 
A feature at a single point in the stream channel downstream 
of the streamgage that affects the relation between stage and 
discharge at low flow is called the section control. The section 
control is recognized by a clear break in the water surface 
across the entire width of the channel. Such controls may 
be a bedrock ledge, a riffle, or other natural or man-made 
feature that becomes submerged at medium to high flows. 
At medium flows (up to bankfull stage), the physical features 
of the channel reach downstream of the streamgage, such as 
obstructions and (or) vegetation, bedrock outcrops, irregular 
banks, and constrictions and expansions in the width of the 
channel all affect the relation between stage and streamflow 
and constitute what is known as the channel control. 

Above bankfull stage, the effects of vegetation or 
structures on the floodplain begin to dominate the relation 
between stage and streamflow and are known as overbank 
control. The graphical appearance of the stage-discharge 
rating is typically a compound curve with multiple inflection 
points and consists of two to three segments. These segments 
correspond to the ranges of stage and streamflow affected 
by each of the controls present in the reach of stream near 
the gaging station, with transitional curves connecting the 
segments. 

Stage-discharge ratings, especially within the ranges 
affected by the section and channel controls, often change after 
floods, when the physical force of floodwater and suspended 
material can alter the dimensions of the streambed or stream 
channel. To keep stage-discharge ratings accurate and up-to-
date, USGS personnel visit each streamgage approximately 
once every 6 to 8 weeks to directly measure streamflow. 
Additional unscheduled measurements of streamflow are 
often made during high flows to verify the overbank range of 
the stage-discharge rating and afterward to assess changes in 
the streambed or channel that affect the section and channel 
controls. For streams having unstable channels, such as sand-
bed streams, the frequency of streamflow measurements may 
be made as often as once per week, depending upon the level 
of accuracy needed.

Computation of Continuous Record of 
Streamflow

After a site visit and streamflow measurement are made 
at a streamgage, USGS personnel check the plotting of the 
measurement to assess whether or not it either conforms to 
the current stage-discharge rating or indicates that a shift 
to part of the rating may be needed so that streamflow 
computed by means of the stage-discharge rating matches the 
measured streamflow. Shifts are temporary changes to the 
stage-discharge rating that result from the natural alteration 

of section or channel controls during storm events or floods, 
such as scour or aggradation of gravel riffles or mass wasting 
of cut banks. Such changes typically affect only the lower-
to-middle range of streamflow. Appreciable changes to the 
floodplain occur less frequently and, therefore, the high ranges 
of stage-discharge ratings affected by overbank control tend 
to change infrequently and require few shifts. Shifts in the 
stage-discharge rating are temporal in nature but the duration 
of a given shift is a highly site-specific component of USGS 
discharge record computations.

If a streamflow measurement indicates that a shift to part 
of a stage-discharge rating may be necessary, the hydrologic 
technician will verify whether obvious changes to the section 
or channel controls occurred that might explain the shift or 
if recent measurements have all indicated a similar shift. If 
deemed appropriate, the technician computes the required shift 
and applies it to the appropriate period of record. 

Streamflows corresponding to periods of missing stage 
record are estimated using various techniques that take into 
account the streamflow at other streamgages along the stream 
or, if none are available, at streamgages in adjacent basins. 
Estimated streamflows are flagged in the NWIS database with 
a code “e” to alert the end-user about the quality of the data 
(USGS, 2016b).

In developing and updating stage-discharge ratings, 
the rated quality of streamflow measurements is considered. 
Ratings are developed (drawn) with a goal of minimizing 
differences between the rating and the measurements used 
to develop the rating. As part of rating development, the 
differences between the rated discharges—those predicted by 
the rating—and measured discharges do not exceed the percent 
errors assigned to the measured discharges. This is not always 
possible to achieve, and as such, it is important that quality 
ratings assigned to streamflow measurements are appropriate 
and account for all possible sources of error. To ensure the 
quality of stage-discharge ratings, they are generally updated, 
checked, and reviewed on a regular basis as part of rigorous 
USGS records processing. That is, the hydrologic technician’s 
work for the period for which the streamflow record is being 
computed is checked for accuracy and completeness by a 
fellow technician, sent back for revision and rechecked if 
necessary, and finally reviewed and approved by a senior-level 
technician or supervisor. 

As with individual streamflow measurements, hydrologic 
technicians assign a qualitative rating of “excellent,” 
“good,” “fair,” or “poor,” to records computed from the 
stage-discharge rating for each water year. A water year is 
the 12-month period from October 1 through September 30, 
designated by the calendar year in which it ends. The rating is 
assigned on the basis of factors such as the amount of missing 
data, the degree to which stage corrections were required, the 
adequacy of measurements used to verify the stage-discharge 
rating, and the frequency with which shifts were used to 
compute streamflow. Thus, a record obtained from a stable 
channel might receive an excellent rating if no equipment 
malfunctions occurred and measurements were made to verify 
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the stage-discharge rating over the full range of stage values 
observed during the year. In contrast, a record assigned a poor 
rating might have extended periods of missing stage record 
requiring estimation of both low and high flows, numerous 
corrections to the continuous stage record because of drift 
in the stage sensor, poor coverage over the range of stage 
experienced owing to few measured streamflows, or numerous 
shifts required for the stage-discharge rating that are not easily 
attributed to channel changes or particular high-flow events. 

In practice, the quality rating of streamflow records is 
subjective. USGS records include notes if a portion of the 
record is particularly problematic; for example, a 120-day 
period might be rated good except for a 2-week period that is 
rated poor because of intermittent or missing stage data owing 
to a malfunctioning stage sensor that ultimately required 
estimation of streamflow during the period. The USGS is 
pursuing methods for quantitative estimation of uncertainty 
in the stage-discharge rating and streamflow records. This 
has been a difficult research problem to address because of 
the unstable nature of the stage-discharge rating, along with 
the subjective nature of the accuracy assigned to discharge 
measurements and the intermittent frequency of those 
measurements.

Crest-Stage Gages and Peak Verification
Crest-stage gages (CSGs) are a simple type of device 

used to passively record maximum stages associated with 
floods or small stormflow events. A CSG-only streamgage is 
purposed to acquire peak stages, such as annual peak stage 
from which peak streamflow can be computed. At other 
streamgages, CSGs are often used as a complementary backup 
device for continuously recording sensors. For example, 
should the recording equipment at a streamgage malfunction 
or be damaged during a flood event, the CSG can provide 
valuable information for estimation of streamflow record. 
Many continuous-record streamgages have one or more CSGs 
functioning for such a purpose, and CSGs are used to verify 
peak stage even when equipment malfunction is not suspected. 
Where CSGs are not available or overtopped/damaged, 
gaged peaks can be verified by high-water marks and other 
apparatus, such as minimum and maximum clips indicating 
such stages on float and tape devices.

CSG-only streamgages are purposed for annual peak 
streamflow collection, and in fact, entire subnetworks of 
USGS streamgages can be composed of CSGs (Harwell and 
Asquith, 2011) used to collect data of particular interest to 
those involved with the design of transportation infrastructure 
in small watersheds. Streamflows associated with CSGs can 
often be exclusively based on indirect methods rather than 
direct measurements of streamflow.

A CSG is a simple way to passively record maximum 
stage after an event. A wooden stick (typically 0.75 in. thick 
by 1.50 in. wide in various lengths) is placed within a 2-in.-
diameter galvanized steel pipe that is mounted vertically in 
the path of flow either in the gage pool, channel, or upstream 

of the drawdown zone of any structure. At the bottom of 
the wooden stick, a mesh basket is secured and filled with a 
supply of granulated cork. The steel pipe has end caps on the 
top and bottom that are each vented with predrilled holes to 
allow water to enter and air to escape. The bottom of the stick 
rests on a pin in the bottom cap of the pipe, and the elevation 
of the pin is surveyed and referenced to the (vertical) gage 
datum. As the stage rises, the cork floats up inside the pipe, 
and when the stage falls, a cork line is left on the wooden 
stick indicating the peak stage during the event. The stick 
is removed during a visit and the water level is recorded. 
In preparation for the next stormflow event, the cork line is 
brushed away from the stick, and the mesh basket is recharged 
with new cork.

Data Delivery 
Through the USGS National Water Information System 

Web interface (NWIS; USGS, 2016c), continuous records 
of stage and streamflow data from streamgages are made 
available to water-data users in near-real time to meet the 
needs of water resource managers, emergency management 
agencies, and others (Wahl and others, 1995). NWIS also 
provides access to streamflow statistics—such as daily, 
monthly, and annual mean streamflows, and annual peak 
streamflows—for the period of record for all active and 
discontinued streamgages operated by the USGS. These 
statistics are derived from the continuous records of 
streamflow. Although the data immediately available in NWIS 
are typically provisional and subject to revision, when the 
data become approved, they are flagged as such when viewed 
through or retrieved from the database.

Annual Peak Streamflow and the Peak-Flow 
File

Annual peak streamflow represents the highest 
streamflow experienced at a streamgage during a given water 
year, and the value is recorded in a peak-flow file in the USGS 
database associated with that streamgage. The peak-flow file 
for one or more streamgages can be acquired from NWIS 
(USGS, 2016a). The annual time series of peak streamflows 
contained in the peak-flow file is used to conduct peak-
streamflow frequency analyses at individual streamgages.

The vast majority of peak streamflows are collected 
as part of the systematic streamgaging program, whereby 
peak streamflow information is systematically collected 
each year at a streamgage location. At some locations, 
historical information about extraordinarily large floods is 
used to supplement the peak-flow file. The term “historical 
information” is intended to reflect flood information that is 
outside the period of record but available in general historical 
records, such as newspapers, from the time of earliest settlers 
to modern times. When and where available, historical peaks 
may be included in the peak-flow file. 
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Paleoflood information is another type of information 
outside the period of systematic record that may be available 
for a streamgage or within the surrounding locale. Paleoflood 
hydrology is used to reconstruct information about unobserved 
floods through careful analysis of long-lasting traces of 
past floods (Baker, 1987; O’Connor and others, 2014). For 
example, information can be derived from careful analysis of 
sediment deposits, erosional features on the landscape, and 
scars left on trees. Currently (2017), paleoflood information is 
not stored in the peak-flow file and must be accessed through 
individual reports or other reference material. 

In contrast to annual peak streamflows, secondary peaks, 
that is, large peaks that are not the maximum for the year, are 
also recorded in the peak-flow file at some streamgages. Such 
data can be used to construct a dataset of “peaks above base,” 
that is, all peaks that were observed at a streamgage above 
a specified streamflow threshold. Unfortunately, secondary 
peaks have been stored somewhat inconsistently, meaning 
that, although an uncommon case, historical data may exist but 
a digital storage equivalent might not be available. Different 
thresholds were sometimes used in different years, and the 
way in which thresholds were set for different streamgages 
may not allow regional analysis. As a general rule, only annual 
maximum peak streamflows are used for flood frequency 
analysis of extreme events.

The peak-flow file for a streamgage contains all annual 
peak streamflows associated with the streamgage. Ancillary 
information about the streamgage is also contained in the 
text file and includes the latitude and longitude of the gaging 
station, the drainage area of the watershed at the location of 
the streamgage, the 8-digit hydrologic unit code (HUC), and 
the (vertical) gage datum. For each entry, the year, month, day, 
and time of occurrence (if available); the magnitude of the 
annual peak streamflow (in cubic feet per second); the stage 
associated with the annual peak streamflow; and the discharge 
qualification codes assigned to the peak are provided. If the 
gage height associated with the peak streamflow is not the 
highest for the year (attributable to backwater or other factors), 
the peak gage height for the year is entered in a separate field 
in addition to the value associated with the peak streamflow. 

Discharge Qualification Codes
Qualification codes are used to document watershed 

or environmental conditions that may affect the accuracy of 
the annual peak streamflows or other information deemed 
potentially useful in statistical analyses and interpretive 
studies (table 1–1). Every annual peak does not necessarily 
require a qualification code, and annual peaks can be assigned 
multiple codes. Codes used to qualify gage heights in the 

Table 1–1.  Qualification codes used by the U.S. Geological Survey in the archival of peak streamflow data for streamflow-gaging 
stations (streamgages).

Qualification 
code

Verbatim definition from U.S. Geological Survey (USGS)  
National Water Information System database (USGS, 2016a)

Peak discharge (streamflow)
1 Streamflow is a maximum daily average.
2 Streamflow is an estimate.
3 Streamflow affected by dam failure.
4 Streamflow is less than indicated value, which is the minimum recordable value at this site.
5 Streamflow affected to an unknown degree by regulation or diversion.
6 Streamflow is affected by regulation or diversion.
7 Streamflow is a historical peak.
8 Streamflow is actually greater than the indicated value.
9 Streamflow is affected by snowmelt, hurricane, ice-jam, or debris-dam breakup.
A Year of occurrence is unknown or not exact.
B Month or day of occurrence is unknown or not exact.
C All or part of the record is affected by urbanization, mining, agricultural changes, channelization, or other anthropogenic 

activity.
D Base streamflow changed during this year.
E Only annual peak streamflow available for this year.

Gage height
1 Gage height affected by backwater.
2 Gage height not the maximum for the year.
3 Gage height at different site and(or) datum.
4 Gage height below minimum recordable elevation.
5 Gage height is an estimate.
6 Gage datum changed during this year.
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peak-flow file are available but not presented in this report. 
Peak streamflow qualification codes and their meanings are 
listed in table 1–1.

Qualification codes 5, 6, 7, C, and combinations of these 
with other codes are of particular interest and are referred 
to as primary peak qualification codes. Code 5 is assigned 
to annual peak streamflows at streamgages that have some 
degree of regulation or diversion in the watershed upstream of 
the gage but likely not enough to affect the magnitude of peak 
streamflows. Code 6 is assigned to annual peak streamflows 
at a streamgage for which 10 percent or more of the upstream 
drainage area is regulated by reservoirs. Code 6 also is used 
to indicate that regulation in the watershed upstream of 
the streamgage might be enough to substantially affect the 
magnitude of flow and, consequently, the interpretation of the 
data for practical purposes such as statistical computations. 
Code C is assigned to annual peak streamflows from 
watersheds that have extensive anthropogenic channel 
alteration or are affected by substantial urbanization; typically 
such watersheds contain at least 10 percent impervious surface 
(Feaster and others, 2009; Gotvald and others, 2009; Weaver 
and others, 2009).

Code 7 is intended to be assigned to annual peak 
streamflows that represent historically notable, high-
magnitude peaks that were observed or inferred outside the 
period of systematic record, commonly referred to as historic 
peaks. These peaks may be inferred from old newspaper 
articles, letters, anecdotal evidence, other historical sources, 
or by analysis of geological, botanical, or other paleoflood 
information. Code 7 streamflows may also have been 
physically measured during a noteworthy flood event or 
computed by post-event indirect methods to provide better 
areal coverage of the hydrology of the flood. Such annual 
peak streamflows, although often subject to considerable 
uncertainty, are useful in peak-streamflow frequency analysis 
because they allow the analyst to define thresholds for historic 
periods that otherwise could not be considered. Occasionally, 
annual peak streamflows assigned a code 7 are simply 
opportunistic, meaning that they were observed during a storm 
event that was otherwise not particularly great in magnitude 
or otherwise of notable historical importance. It is up to 
the analyst to determine whether or not historical peaks are 
truly historic or merely opportunistic and to properly apply 
historical peak streamflows to perception thresholds for time 
periods outside the systematic record when using the expected 
moments algorithm (EMA) or other data-censoring techniques 
for peak-streamflow frequency analyses such as described in 
this report. 

The remaining qualification codes provide information 
about the individual annual peak streamflows. Code 1 is 
assigned to peaks that are maximum daily mean streamflows, 
rather than annual maximum instantaneous peak streamflows. 
Often a maximum daily mean streamflow value is recorded 
in the peak-flow file when the maximum instantaneous 
streamflow was unavailable because the stage-discharge 
rating was exceeded or the stage recording equipment was 

over ranged (a term meaning that stage was higher than 
instrumentation could handle) during the actual peak, but 
enough stage readings were recorded to compute daily mean 
streamflow. Code 1 has also been applied to peaks from 
periods when stage and streamflow were noted only once 
daily. The degree to which the maximum daily mean differs 
from the maximum instantaneous peak streamflow depends 
on the nature of the river system. Some rivers and streams 
respond quickly to storm events, resulting in rapid changes 
in the streamflow hydrographs from hour to hour or minute 
to minute. In such cases, it is possible for the maximum 
instantaneous peak to far exceed maximum daily mean 
streamflow. For other river systems, increases and decreases 
in flow are much more gradual, and in terms of percentage, 
the difference between the daily mean flow and the maximum 
instantaneous flow may be so small as to be negligible for 
practical applications. As a result, annual maximum daily 
means can be aggregated with annual peak streamflow into a 
common sample for statistical analysis. 

Code 2 indicates that the annual peak streamflow is an 
estimate. This code may be used for several reasons, generally 
to indicate that the accuracy of such peak streamflows is less 
than the others but the accuracy cannot be quantified. Code 3 
indicates annual peak streamflow that resulted from, or was 
affected by, dam failure; these are unique, nonrecurring 
events that are not representative of future flood risk. Code 4 
indicates that the annual peak streamflow is less than the 
value stored in the database, which is the minimum recordable 
value at a streamgage; this code is most often applied to 
annual peaks from crest-stage gaging stations when the annual 
peak streamflow was not great enough to register a mark on 
the crest-stage gage. Code 8 indicates that the annual peak 
streamflow is greater than the value shown in the database. 
Code 9 indicates that the streamflow resulted from, or was 
affected by, snowmelt, a hurricane, or ice-jam or debris-dam 
breakup; code 9 is used to identify circumstances that may 
differ from the predominant flood-generating mechanism at 
the streamgage. 

Lettered codes A and B indicate the year, month, or day 
of occurrence is unknown or not exact; code D indicates that 
the base streamflow changed during the coded year; and code 
E is used to indicate those years in which no secondary peaks 
exceeded the base. Specifically, code E is needed to document 
that the absence of secondary peaks from the record means 
that, other than the annual peak (which may be above or below 
the base streamflow), all remaining flows were below the 
base streamflow. This code is not used unless a search for the 
secondary peaks was made and none were found to be greater 
than the partial-duration base value.

Reliable qualifications of annual peak streamflows 
are important for end-user application using the data. For 
example, codes 5, 6, and C are useful for peak-streamflow 
frequency analysis, because they document anthropogenic 
activities that could substantially affect annual peak 
streamflows. In many cases, however, the percentage of 
drainage area regulated by reservoirs or covered by an 
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impervious surface has not been explicitly determined, nor 
has the effect of these characteristics on the numerical value 
of peak streamflow been quantified. Furthermore, analyst-to-
analyst variability in the interpretation and application of the 
coding system remains in the peak-flow file, despite efforts to 
standardize application.

Uncertainty of Annual Peak Streamflows
Although quantitative estimates of the uncertainty of 

individual peaks are not available, some information can 
be inferred from information in the peak-flow file or the 
streamflow records. When qualification codes 1, 2, 4, or 8 are 
applied to a peak, larger than normal uncertainty then exists 
for the peak in question, as discussed in the previous section.

The largest peaks at a streamgage location may define 
the upper end of the stage-discharge rating, as there are very 
few measurements available for these rare events. In such 
cases, the uncertainty of the individual measurements will 
strongly affect the uncertainty associated with the peak in 
the streamflow record. Annual peak streamflow databases 
of the USGS do not include information about measurement 
uncertainty or measurement methods for these streamflow 
measurements. Additional consultation with USGS personnel 
familiar with the streamgage in question may be useful. 

In general, the uncertainty of an individual peak is far 
smaller than the range of peak streamflows observed at a 

streamgage. Consequently, the uncertainties of peaks within 
the systematic record typically are not explicitly accounted 
for in flood frequency analysis. Where historical information 
or paleoflood information is used, attempts are often made 
to assign an upper and lower bound to the peak streamflow 
to reflect the greater uncertainty associated with this type of 
information.

Annual Peak Streamflow Data Used for Example 
in This Study

The annual peak streamflow data on which the 
computations and results of this study are based for very 
low annual exceedance probability (AEP) estimation 
were acquired from NWIS (USGS, 2016a), and these data 
simultaneously serve as example data from the USGS peak-
flow file for purposes of this appendix. The annual peak 
streamflow data for streamgage 01400500 Raritan River at 
Manville, New Jersey, are listed in table 1–2 and the data 
for 01638500 Potomac River at Point of Rocks, Maryland, 
are listed in table 1–3. Several columns of information 
(almost exclusively null values) unrelated to the annual peak 
streamflow and its corresponding gage height are not shown 
for brevity.
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Water 
year

Peak  
stream- 

flow  
date

Peak 
stream-

flow
(ft3/s)

Dis-
charge 
qualifi-
cation 
code

Gage 
height

(ft)

Gage-
height 
qualifi-
cation 
code

Highest 
since 
year

1904 1903–10–10 28,600 E 18.50 -- --
1905 1905–01–07 18,600 E 15.40 -- --
1906 1906–03–04 13,600 E 13.30 -- --
1909 1909–02–24 15,300 E 14.00 -- --
1910 1910–01–22 18,900 E 15.50 -- --
1911 1911–09–01 10,800 E 12.00 -- --
1912 1912–03–13 20,400 E 16.00 -- --
1913 1912–12–31 14,100 E 13.50 -- --
1914 1914–03–18 15,300 E 14.00 -- --
1915 1915–02–02 25,200 E 17.50 -- --
1922 1922–02–02 13,000 E 13.00 -- --
1923 1923–03–16 14,100 -- 13.50 -- --
1924 1924–04–07 17,500 -- 15.00 -- --
1925 1925–02–12 15,000 -- 13.36 -- --
1926 1926–02–26 13,000 -- 13.00 -- --
1927 1927–08–01 12,100 -- 12.60 -- --
1928 1927–10–19 15,600 -- 14.10 -- --
1929 1929–02–27 13,600 -- 13.34 -- --
1930 1930–03–08 11,300 -- 11.93 -- --
1931 1931–07–11 9,690 -- 11.30 -- --
1932 1932–03–28 14,800 -- 13.76 -- --
1933 1933–08–24 21,000 -- 16.22 -- --
1934 1934–03–05 16,600 -- 14.52 -- --
1935 1935–02–15 10,500 -- 11.60 -- --
1936 1936–01–03 20,600 -- 16.10 -- --
1937 1936–12–20 15,800 -- 14.23 -- --
1938 1938–09–22 36,100 -- 20.42 -- --
1939 1939–02–04 17,500 -- 14.99 -- --
1940 1940–03–15 27,400 -- 18.15 -- --
1941 1941–02–08 17,500 -- 15.00 -- --
1942 1942–08–09 33,200 -- 19.70 -- --
1943 1942–12–31 14,500 -- 13.73 -- --
1944 1944–01–06 18,000 -- 15.09 -- --
1945 1945–01–02 13,800 -- 14.40 -- --
1946 1946–06–02 19,900 -- 17.76 -- --
1947 1947–04–05 7,480 -- 10.89 -- --
1948 1947–11–09 11,900 -- 13.57 -- --
1949 1948–12–31 22,100 -- 19.80 -- --
1950 1950–03–23 8,660 -- 11.59 -- --
1951 1950–11–26 18,200 -- 16.17 -- --
1952 1951–11–07 20,400 -- 17.17 -- --
1953 1953–04–07 15,400 -- 14.70 -- --
1954 1953–12–14 9,820 -- 12.10 -- --
1955 1955–08–19 34,600 -- 21.80 2 --
1956 1955–10–15 26,200 -- 19.60 2 --
1957 1957–04–05 10,800 -- 13.10 -- --
1958 1958–02–28 16,500 -- 16.10 -- --
1959 1958–10–26 9,200 -- 11.96 -- --
1960 1960–09–13 14,700 -- 15.30 -- --
1961 1961–03–24 11,500 -- 13.55 -- --
1962 1962–03–13 15,000 -- 15.40 -- --
1963 1963–03–07 11,700 -- 13.57 -- --

Table 1–2.  Annual peak streamflow data for U.S. Geological Survey streamflow-gaging station 01400500 Raritan River at Manville, New 
Jersey.

[Discharge and gage-height qualification codes are listed in table 1–1, and only a small fraction are listed with these data. Text in red is referenced directly in the 
report. ft3/s, cubic foot per second; ft, foot; --, no entry or not available]

Water 
year

Peak  
stream- 

flow  
date

Peak 
stream-

flow
(ft3/s)

Dis-
charge 
qualifi-
cation 
code

Gage 
height

(ft)

Gage-
height 
qualifi-
cation 
code

Highest 
since 
year

1964 1964–01–10 13,600 -- 14.52 -- --
1965 1965–02–08 12,700 -- -- -- --
1966 1966–02–14 13,200 -- 14.63 -- --
1967 1967–03–07 16,600 -- 16.46 -- --
1968 1968–05–29 17,000 -- 16.56 -- --
1969 1969–07–29 13,100 -- 14.23 -- --
1970 1970–04–03 23,700 -- 18.22 -- --
1971 1971–08–28 36,300 -- 23.80 -- --
1972 1972–06–23 21,800 -- 17.89 -- --
1973 1973–08–02 19,600 -- 17.47 -- --
1974 1973–12–21 20,000 -- 18.42 -- --
1975 1975–03–20 17,200 -- 16.12 -- --
1976 1976–01–28 13,400 -- 14.22 -- --
1977 1977–03–23 18,300 -- 16.59 -- --
1978 1978–01–26 19,400 -- 17.77 -- --
1979 1979–01–25 23,000 -- -- -- --
1980 1980–03–22 17,700 -- 16.63 -- --
1981 1981–05–12 17,900 -- 15.99 -- --
1982 1982–01–05 17,000 -- 16.60 -- --
1983 1983–04–16 22,800 -- 18.39 -- --
1984 1984–07–07 27,300 -- 19.95 -- --
1985 1985–09–28 11,500 -- 13.33 -- --
1986 1986–01–26 15,800 -- 14.65 -- --
1987 1987–04–04 17,600 -- 16.17 -- --
1988 1988–07–27 10,900 -- 12.86 -- --
1989 1989–09–21 16,200 -- 16.24 -- --
1990 1989–10–21 14,400 -- 14.99 -- --
1991 1990–12–04 8,730 -- 11.63 -- --
1992 1992–06–06 12,300 -- 13.85 -- --
1993 1992–12–11 14,500 -- 15.13 -- --
1994 1994–01–29 14,900 -- 15.55 -- --
1995 1995–03–09 8,010 -- 11.17 -- --
1996 1996–01–20 24,300 -- 19.82 -- --
1997 1996–10–20 32,000 -- 22.41 -- --
1998 1998–04–10 10,900 -- 12.26 2 --
1999 1999–09–16 77,600 -- 27.10 2 1896
2000 2000–02–14 6,660 -- 9.23 2
2001 2001–01–19 12,000 -- 12.19 -- --
2002 2002–05–14 10,600 -- 11.97 -- --
2003 2003–06–04 11,000 -- 12.83 2 --
2004 2003–12–11 19,100 -- 16.53 -- --
2005 2005–04–03 19,300 -- 16.90 -- --
2006 2005–10–12 19,200 -- 16.44 -- --
2007 2007–04–16 30,400 -- -- -- --
2008 2008–03–09 19,700 -- 16.71 -- --
2009 2008–12–12 15,800 -- 16.00 -- --
2010 2010–03–14 28,900 -- 21.54 -- --
2011 2011–08–28 53,000 -- 26.24 -- --
2012 2011–12–08 15,000 -- 14.85 -- --
2013 2013–06–08 15,200 -- 15.23 -- --
2014 2014–05–01 25,300 -- 19.99 -- --
-- -- -- -- -- -- --
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Table 1–3.  Annual peak streamflow data for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of 
Rocks, Maryland.

[Discharge and gage-height qualification codes are listed in table 1–1, and only a small fraction are listed with these data. Text in red is referenced directly in the 
report. ft3/s, cubic foot per second; ft, foot; --, no entry or not available]

Water 
year

Peak 
stream- 

flow  
date

Peak 
stream-

flow
(ft3/s)

Dis-
charge 
qualifi-
cation 
code

Gage 
height

(ft)

Gage-
height 
qualifi-
cation 
code

Highest 
since 
year

1889 1889–06–02 460,000 7 40.20 3 --
1895 1895–04–10 68,500 -- 10.70 3 --
1896 1896–07–26 56,000 -- 9.40 3 --
1897 1896–10–01 204,000 -- 27.20 3 --
1898 1898–08–12 127,000 -- 18.00 3 --
1899 1899–03–06 128,000 -- 18.10 3 --
1900 1900–03–21 57,700 -- 9.60 3 --
1901 1901–04–22 161,000 -- 22.00 3 --
1902 1902–03–02 219,000 -- 29.00 3 --
1903 1903–03–01 110,000 -- 16.60 6 --
1904 1904–06–01 44,500 -- 8.60 -- --
1905 1905–03–11 71,400 -- 11.90 -- --
1906 1906–03–29 81,300 -- 13.10 -- --
1907 1907–03–15 119,000 -- 17.60 -- --
1908 1908–01–13 152,000 -- 21.60 -- --
1909 1909–04–16 83,000 -- 13.30 -- --
1910 1910–06–18 168,000 -- 23.50 -- --
1911 1911–09–01 106,000 -- 16.10 -- --
1912 1912–02–28 95,400 -- 14.80 -- --
1913 1913–03–28 139,000 -- 20.00 -- --
1914 1914–03–19 73,900 -- 12.20 -- --
1915 1915–06–04 139,000 -- 20.00 -- --
1916 1916–03–29 124,000 -- 18.30 -- --
1917 1917–03–13 123,000 -- 18.10 -- --
1918 1918–04–16 127,000 -- 18.60 -- --
1919 1919–05–11 80,500 -- 13.00 -- --
1920 1920–03–06 109,000 -- 16.40 -- --
1921 1921–05–06 88,800 -- 14.00 -- --
1922 1922–03–17 78,800 -- 12.80 -- --
1923 1923–04–16 40,700 -- 8.80 -- --
1924 1924–05–13 277,000 -- 32.20 -- --
1925 1925–02–13 89,000 -- 15.00 -- --
1926 1926–02–27 60,500 -- 11.50 -- --
1927 1926–11–17 89,900 -- 15.10 -- --
1928 1928–05–02 145,000 -- 21.30 -- --
1929 1929–04–18 180,000 -- 24.94 -- --
1930 1929–10–23 110,000 -- 17.40 -- --
1931 1931–05–24 36,800 -- 8.16 -- --
1932 1932–05–14 158,000 -- 23.34 -- --
1933 1933–04–21 123,000 -- 19.30 -- --
1934 1934–01–09 36,700 -- 8.06 -- --
1935 1934–12–02 128,000 -- 19.78 -- --
1936 1936–03–19 480,000 -- 41.03 -- --
1937 1937–04–27 310,000 -- 33.86 -- --
1938 1937–10–30 175,000 -- 24.93 -- --
1939 1939–02–05 124,000 -- 19.39 -- --
1940 1940–04–21 93,600 -- 15.67 -- --
1941 1941–04–07 69,000 -- 12.56 -- --
1942 1942–05–24 125,000 -- 21.13 -- --
1943 1942–10–16 418,000 -- 40.43 -- --

Water 
year

Peak 
stream- 

flow  
date

Peak 
stream-

flow
(ft3/s)

Dis-
charge 
qualifi-
cation 
code

Gage 
height

(ft)

Gage-
height 
qualifi-
cation 
code

Highest 
since 
year

1944 1944–05–08 70,300 -- 13.92 -- --
1945 1945–09–20 139,000 -- 21.98 -- --
1946 1946–06–03 53,100 -- 11.40 -- --
1947 1947–03–16 42,100 -- 9.65 -- --
1948 1948–04–15 87,000 -- 16.04 -- --
1949 1949–06–20 132,000 -- 21.20 -- --
1950 1950–02–03 64,700 -- 13.09 -- --
1951 1950–12–05 128,000 -- 20.75 -- --
1952 1952–04–29 127,000 -- 20.67 -- --
1953 1952–11–23 118,000 -- 19.68 -- --
1954 1954–03–03 109,000 -- 18.65 -- --
1955 1955–08–20 214,000 -- 29.08 -- --
1956 1956–04–09 60,800 -- 12.54 -- --
1957 1957–04–07 69,200 -- 13.74 -- --
1958 1958–05–07 72,000 -- 14.13 -- --
1959 1959–06–04 55,700 -- 11.80 -- --
1960 1960–05–10 124,000 -- 20.28 -- --
1961 1961–02–21 102,000 -- 17.90 -- --
1962 1962–03–23 116,000 -- 19.45 -- --
1963 1963–03–21 125,000 -- 20.47 -- --
1964 1964–03–06 87,000 -- 16.00 -- --
1965 1965–03–06 97,800 -- 17.35 -- --
1966 1966–02–15 71,300 -- 14.04 -- --
1967 1967–03–08 144,000 -- 22.53 -- --
1968 1968–03–18 76,800 -- 14.73 -- --
1969 1969–03–27 27,800 -- 7.15 -- --
1970 1970–04–03 92,100 -- 16.64 -- --
1971 1971–02–24 86,400 -- 15.92 -- --
1972 1972–06–23 347,000 -- 37.43 -- --
1973 1972–10–08 106,000 -- 18.28 -- --
1974 1973–12–28 132,000 -- 21.27 -- --
1975 1975–03–21 181,000 -- 26.15 -- --
1976 1976–01–02 109,000 -- 18.71 -- --
1977 1976–10–11 193,000 -- 27.25 -- --
1978 1978–03–16 139,000 -- 22.01 -- --
1979 1979–02–27 178,000 -- 25.94 -- --
1980 1979–10–11 69,500 -- 13.87 -- --
1981 1981–04–14 41,900 -- 9.81 -- --
1982 1982–06–15 92,000 -- 16.66 -- --
1983 1983–04–26 115,000 -- 19.21 -- --
1984 1984–02–16 199,000 -- 28.14 -- --
1985 1985–02–13 84,700 -- 15.57 -- --
1986 1985–11–07 309,000 -- 36.28 -- --
1987 1987–04–18 153,000 -- 23.49 -- --
1988 1988–05–20 96,100 -- 17.01 -- --
1989 1989–05–17 80,900 -- 15.11 -- --
1990 1990–05–31 39,800 -- 9.30 -- --
1991 1991–03–25 85,000 -- 15.63 -- --
1992 1992–04–23 90,000 -- 16.25 -- --
1993 1993–03–06 167,000 -- 24.94 -- --
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Water 
year

Peak 
stream- 

flow  
date

Peak 
stream-

flow
(ft3/s)

Dis-
charge 
qualifi-
cation 
code

Gage 
height

(ft)

Gage-
height 
qualifi-
cation 
code

Highest 
since 
year

1994 1993–11–29 115,000 -- 19.25 -- --
1995 1995–01–17 87,200 -- 15.90 -- --
1996 1996–01–21 310,000 -- 36.34 -- --
1997 1996–12–03 85,200 -- 15.65 -- --
1998 1998–03–22 123,000 -- 20.24 -- --
1999 1999–03–20 40,600 -- 9.42 -- --
2000 2000–02–20 61,600 -- 12.54 -- --
2001 2001–03–23 66,600 -- 13.23 -- --
2002 2002–04–24 52,300 -- 11.21 -- --
2003 2003–09–21 150,000 -- 23.12 -- --
2004 2003–12–12 118,000 -- 19.58 -- --

Water 
year

Peak 
stream- 

flow  
date

Peak 
stream-

flow
(ft3/s)

Dis-
charge 
qualifi-
cation 
code

Gage 
height

(ft)

Gage-
height 
qualifi-
cation 
code

Highest 
since 
year

2005 2005–03–30 116,000 -- 19.37 -- --
2006 2005–12–01 73,100 -- 14.10 -- --
2007 2007–04–17 96,000 -- 17.00 -- --
2008 2008–05–13 96,000 -- 16.99 -- --
2009 2009–05–06 100,000 -- 17.50 -- --
2010 2010–03–15 172,000 -- 25.52 -- --
2011 2011–04–18 144,000 -- 22.52 -- --
2012 2011–12–09 74,800 -- 14.32 -- --
2013 2012–10–31 106,000 -- 18.19 -- --
2014 2014–05–17 145,000 -- 22.62 -- --
2015 2015–04–22 52,300 -- 11.21 -- --

Table 1–3.  Annual peak streamflow data for U.S. Geological Survey streamflow-gaging station 01638500 Potomac River at Point of 
Rocks, Maryland.—Continued

[Discharge and gage-height qualification codes are listed in table 1–1, and only a small fraction are listed with these data. Text in red is referenced directly in the 
report. ft3/s, cubic foot per second; ft, foot; --, no entry or not available]
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Appendix 2.  Primer on Product Moment Theory and Plotting Positions as 
Applicable to This Study

This appendix summarizes the theory of plotting 
positions and the mathematical theory related to product 
moments used for probability distribution fitting. Product 
moments are used by the USGS-PeakFQ software with 
two options for parameter estimation—those described in 
Bulletin 17B (Interagency Advisory Committee on Water Data 
[IACWD], 1982) and the expected moments algorithm (EMA) 
(England and Cohn, 2007; John F. England, Jr., U.S. Army 

Corps of Engineers, written commun., 2017). The mathematics 
of the EMA fitting process are complex (USGS, 2014; 
Veilluex and others, 2014). For this report, the lesser complex 
product moments are presented in three compartmentalized 
figures. Plotting positions as used in this study are reviewed in 
figure 2–1. The theoretical product moments (centered on the 
arithmetic mean) are shown in figure 2–2, whereas the sample 
versions are shown in figure 2–3.

Appendix 2
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Plotting Positions for Graphical Display of the Empirical Distribution

Weibull Plotting Positions
Plotting positions can be used to define the exceedance probabilities S of individual data points from the
order statistics x1:n ≥ x2:n ≥ ·· · ≥ xn:n of sample size n when no historical information is present. Plot-
ting positions are used for graphical display of the empirical distribution in this report. Si ≡ AEP is annual
exceedance probability as used elsewhere in this report. An elementary formula to compute S for the ith
largest flood is

Si =
i−a

n+1−2a
(2.1.1)

where i is an ascending rank and a is a coefficient and treated as a = 0 in this report (the Weibull plotting posi-
tions; Asquith (2011a,b, 2016)). The true probability associated with the largest (and smallest) observation is
a random variable with mean 1/(n+1) and a standard deviation of nearly 1/(n+1). The formula gives rough
estimates of the unknown AEP and particularly rough estimates associated with largest and smallest events.
As n becomes large, the choice of a becomes relatively unimportant. To reiterate, equation 2.1.1 holds for a
complete flood sample lacking historical information.

Hirsch-Stedinger Plotting Positions
The more complex Hirsch-Stedinger plotting positions (Hirsch and Stedinger, 1987) provide a generalization
to historical information. Plotting positions for systematic record floods below a threshold must be adjusted
to reflect the additional information provided by the historical flood record. The mathematic nomenclature
herein closely follows that of John F. England, Jr. (U.S. Army Corps of Engineers, written commun., 2017).
The number of thresholds of the historic record is defined as j ∈ 1, · · · ,m that is to read “ j in the integer
sequence 1 to m,” where the discharge thresholds Q j ∈ 1, · · · ,m are ordered (sorted) from largest to smallest
such that Q1 > Q2 > · · ·> Qm. The probability of exceedance Se j for each threshold j is computed as

Se j = Se j−1 +(1−Se j−1)×qe j , (2.1.2)

where qe j is the conditional probability that a flood falls between the jth and ( j−1)th threshold and is

qe j =
k j

n j −∑ j−1
m=1 km

, (2.1.3)

where k j is the number of floods that exceed threshold j but also not any higher thresholds ( j− 1), and the
denominator represents the number of years (n j) that threshold Q j applies minus the sum of all floods km that
exceed any higher ( j−1, j−2, · · ·) thresholds during period n j. The above-threshold floods can be plotted by

Si = Se j−1 +(1−Se j−1)×qe j

(
i−a

k j +1−2a

)
, (2.1.4)

and the below-threshold floods can be plotting using

Sr = Se j +(1−Se j)

(
r−a

ns − es +1−2a

)
, (2.1.5)

where r ∈ 1, · · · ,(ns − es); es is the number of systematic-record floods that exceed a threshold; and ns is the
length of the systematic record.

Figure 2–1.  Definition of plotting positions in context of empirical distributions after Asquith (2011a,b, 2016) and Hirsch 
and Stedinger (1987).
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Theoretical Central Product Moments

Theoretical product moments (centered on the arithmetic mean) of random variable X are defined by center-
ing differences on the arithmetic mean. The first product moment is the mean, which measures the location
of the distribution on the real-number line, and is defined as the expectation (E[· · · ])

µ = E[X ] =
∫ ∞

−∞
x f (x) dx. (2.2.1)

The higher-order product moments (Mr) for moment order r are defined in terms of expectations of powers of
differences from the mean µ:

Mr = E[(X −µ)r] =
∫ ∞

−∞
(x−µ)r f (x) dx for r ≥ 2, (2.2.2)

where M2 is known as the variance σ2 and the standard deviation is σ =
√

σ2. In practice, dimension is often
removed for r ≥ 2 to form the well-known ratios that represent the coefficient of variation, skew, and kurtosis:

CV = σ/µ = coefficient of variation, (2.2.3)

G = M3/M3/2
2 = skew, and (2.2.4)

K = M4/M2
2 = kurtosis. (2.2.5)

Figure 2–2.  Definition of theoretical product moments centered on the arithmetic mean from definitions of the 
probability density function of a given distribution after Asquith (2011a,b; 2016) and references therein.



70    Application of At-Site Peak-Streamflow Frequency Analyses for Very Low Annual Exceedance Probabilities

Sample Central Product Moments

Sample product moments (centered on the arithmetic mean) for a random sample x1,x2, · · · ,xn of size n are
ubiquitous sample statistics. The sample mean and higher sample moments for moment order r are

µ̂ =
1
n

n

∑
i=1

xi and Mr =
1
n

n

∑
i=1

(xi − µ̂)r for r ≥ 2, (2.3.1)

but the Mr are biased. An unbiased estimator for M2 is computed as

σ̂2 =
1

n−1

n

∑
i=1

(xi − µ̂)2, (2.3.2)

and note the division by n−1 instead of n. The sample standard deviation and sample coefficient of variation
thus are

σ̂ =
√

σ̂2 and ĈV = σ̂/µ̂ . (2.3.3)

Although σ̂2 is an unbiased estimator of variance,
√

σ̂2 is not an fully an unbiased estimator of σ̂ . Nearly
unbiased estimators of sample skew and sample kurtosis are

Ĝ =
M3

σ̂3 × n2

(n−1)(n−2)
and (2.3.4)

K̂ =
1

σ̂4 × n2

(n−2)(n−3)
×
[(

n+1
n−1

)
M4 −3M2

2
]
+3, (2.3.5)

care is needed with K̂, because its definition can vary between software packages, including the addition of
+3 because K = 3 is the kurtosis of the Normal distribution. K̂ is not used for fitting of probability distribu-
tions having three or fewer parameters.

Figure 2–3.  Definition of sample product moments centered on the arithmetic mean from definitions of the probability 
density function of a given distribution after Asquith (2011a,b; 2016) and references therein.
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Appendix 3.  Primer on L-moment Theory as Applicable to This Study

This appendix summarizes the theory related to 
L-moments applicable to this study. A sequence of four 
compartmentalized figures is presented, each constructed 
with the intent of presenting an absolutely minimal summary 
of technically demanding mathematics. Many references are 
provided in the main body of the text, and for clarity, only the 
most pertinent references are listed here.

The core mathematics of L-moments shown in this 
appendix are thoroughly reviewed by Hosking (1990), 
Hosking and Wallis (1997), Kandeel (2015), Stedinger 
and others (1993), and Nair and Vineshkumar (2010), and 
extensions available in Asquith (2011a,b), Karian and 
Dudewicz (2011), and Elamir and Seheult (2003, 2004). In 
particular, the mathematics herein are listed in near verbatim 
from typesetting sources of Asquith (2011a,b) and Asquith 
(2016). Readers are directed to the research packages by 
Asquith (2016) [R package lmomco], Hosking (2015a) 
[R package lmom], and Karvanen (2016) [R package 
Lmoments], which describe the computation of L-moments 
in the R language (R Core Team, 2016). Much more limited 
support for L-moment computation is provided by a few other 
packages, including some for other programming languages, 
which can be found by Internet keyword search.

Theoretical L-moments are defined for probability 
distributions and summarized in figure 3–1. The L-moments of 
samples are defined in figure 3–2, which provides definitions 
for whole samples (Hosking, 1990) and for a type of censored 
data germane to this study (Wang and others, 2010). The 
variance-covariance structure of the sample L-moments used 
for this study is defined in figure 3–3 following the definitions 
of Elamir and Seheult (2004) and implementations by Asquith 
(2016) and Karvanen (2016). Lastly, the sample variance-
covariance computations are dependent on probability-
weighted moments (PWMs, defined in fig. 3–4), which are 
linearly related to L-moments. Also defined in figure 3–4 are 
the concepts of L-skew and L-kurtosis and other L-moment 
ratios that are analogs to product moments of similar name 
and concept.

A template of an L-moment ratio diagram (Asquith, 
2014; Vogel and Fennessey, 1993) is shown in figure 3–5 
depicting theoretical relations between L-skew and L-kurtosis 
for distributions considered or referenced in this study. These 
distributions and the mathematics of their L-moments are 
summarized in appendix 5. Figure 3–5 functioned as the 
template for figures 10 and 13 in the report. An L-moment 
ratio diagram contains a copious amount of information, and 
considerable discussion is required.

First, the horizontal and vertical axes depict L-skew and 
L-kurtosis, respectively, with the axis limits being chosen 

narrower than the theoretical joint L-skew and L-kurtosis 
domain for convenience. The lower bounds of the joint 
relation between these two statistics is labeled as “lower 
bounds of L-skew and L-kurtosis” and is shown in the 
lower right part of the figure. The choice of the limits for 
the horizontal axis shows that primary interest is in positive 
L-skew, which is indicative of right-tail heavy (right-skewed) 
distributions, as is common in hydrology. The vertical 
origin line represents the boundary between left and right 
distributional asymmetry.

Second, two-parameter distributions having location 
and scale formulations plot as points in an L-moment ratio 
diagram (Hosking and Wallis, 1997), though none are shown 
in figure 3–5. The mathematics of these three two-parameter 
distributions are not shown in this report. The normal 
distribution is symmetrical and would plot as a point at an 
L-skew of zero and L-kurtosis of about 0.123. The Gumbel 
is a special case of the generalized extreme value (GEV) 
distribution and thus would plot as a point at L-skew about 
0.170 and L-kurtosis about 0.150 on the trajectory of the 
GEV. Similarly, the exponential distribution is a special case 
of several other distributions (generalized Pareto distribution 
[GPA], Pearson type III distribution [PE3], Weibull probability 
distribution [WEI], and lower boundary of the asymmetric 
exponential power distribution [AEP4]). The exponential 
would plot as a point at L-skew about 0.333 and L-kurtosis 
about 0.167.

Third, the trajectories of the distributions require further 
discussion. The GEV, by having a mutable third parameter 
controlling shape, spans a range in L-skew but simultaneously 
is bound to a joint value of L-kurtosis, meaning that there is 
a specific conversion between the L-skew of the GEV and its 
next higher L-moment (L-kurtosis). Hence, the GEV can be 
represented as a line on the diagram. Other three-parameter 
distributions are also shown. The WEI is a reversed form of 
the GEV and vice versa; thus, the trajectories for these are 
mirror images of each other, centered about the origin line. 
This explains why they intersect just above an L-kurtosis 
of 0.1, precisely at an L-skew of zero. Other distributional 
crossing might or might not be coincident with other 
distribution forms. The intersection of the AEP4 and GPA at 
an L-skew of zero corresponds to the uniform distribution 
(unlabeled in fig. 3–5). The generalized logistic distribution 
(GLO) is generally regarded in the hydrologic literature as 
the most L-kurtotic of the three-parameter distributions. 
Conversely, the GPA distribution is usually the least L-kurtotic 
of the three-parameter distributions until L-skew surpasses 
that of the exponential, at which point the PE3 becomes the 
least L-kurtotic of the three-parameter distributions shown. 
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Theoretical L-moments

Theoretical L-moments of order r for a real-valued random variable X with quantile function x(F) for nonex-
ceedance probability F are defined from the theoretical expectations of order statistics (the ascending order
X1:n ≤ X2:n ≤ ·· · ≤ Xj:n ≤ ·· · ≤ Xn:n for sample size n):

λr =
1
r

r−1

∑
k=0

(−1)k
(

r−1
k

)
E[Xj:n], (3.1.1)

where r is the integer order of the L-moment, and E[Xr−k:r] is the expectation of the r− k order statistic of a
sample of size r:

E[Xj:n] =
n!

( j−1)!(n− j)!

∫ 1

0
x(F)×F j−1 × (1−F)n− j dF , (3.1.2)

where the quantity to the left of the integral is

n!
( j−1)!(n− j)!

= n
(

n−1
j−1

)
for which notationally

(
a
b

)
=

a!
(a−b)!b!

for b ≤ a. (3.1.3)

L-moments also are formulated from rth-shifted Legendre polynomials (the term in brackets):

λr =
∫ 1

0
x(F)

[ r

∑
k=0

(−1)r−k
(

r
k

)(
r+ k

k

)
Fk

]
dF . (3.1.4)

The λr for r ≥ 2 in terms of the cumulative distribution function F(x) are

λr =
1
r

r−2

∑
j=0

(−1) j
(

r−2
j

)(
r

j+1

)∫ ∞

−∞
[F(x)]r− j−1 × [1−F(x)] j+1 dx, (3.1.5)

or alternatively

λr =
∫ ∞

−∞
F(x)× [1−F(x)]×Lr(F(x)) dx, (3.1.6)

where the Lr(u) is computed as

Lr(u) =
1

1− r

r−2

∑
j=0

(−1) j
(

r−1
j

)(
r−1
j+1

)
ur−2− j(1−u) j. (3.1.7)

The λr can be written in terms of the derivatives of the quantile function x(r)(F) (for example, x(0)(F)≡ x(F)
and x(1)(F) is the first derivative):

λr+1 =
1
r!

∫ 1

0
Fr(1−F)r × x(r)(F) dF . (3.1.8)

This form helps interpretation of λ2 (L-scale), which is a measure of distribution variability or spread. Vari-
ability is proportional to the rate of change (the first derivative) of x(F)—the greater the rate of change, the
larger distance between successively ordered samples.

Figure 3–1.  Definition of theoretical L-moments from definitions of the quantile function and cumulative distribution 
functions of a given distribution after Asquith (2011a,b; 2016) and references therein.
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Sample L-moments

Uncensored Sample Version
Sample L-moments of order r are computed from the sample order statistics
x1:n ≤ x2:n ≤ ·· · ≤ x j:n ≤ ·· · ≤ xn:n for sample size n and are

λ̂r =
1
r

(
n
r

)−1 n

∑
i=1

[
r−1

∑
j=0

(−1) j
(

r−1
j

)(
i−1

r−1− j

)(
n− i

j

)]
xi:n. (3.2.1)

Right-Censored Sample Version
Right-censored data can be accommodated by using λ̂r based on a right-censoring indicator. For indica-
tor censoring each of the x j:n, it is known that x j:n = min(Xj:n,Tj) for a threshold T that can be mutable as
assigned to the jth order statistic. The threshold is unknown, is not explicitly needed, and Tj is itself possibly
a random variable generated along side each realization of the random variable X . Let δ j:n be indicators of
censoring: δ j:n = 0 indicates that x j:n is uncensored, δ j:n = 1 indicates that x j:n is right censored (“RC”).

The λ̂ (RC)
r by right-censoring indictor variable are computed by

λ̂r =
n

∑
j=1

w j:n(r)× x j:n, where w j:n(r) is a weight factor function computed by (3.2.2)

w j:n(r) =
1
r

r−1

∑
k=0

(−1)k
(

r−1
k

)
[B�(p;a,b)−B�(q;a,b)], (3.2.3)

where B(q;a,b) is the Beta distribution for quantiles p and q and parameters a and b. The two Beta distribu-
tions B� and B� are computed by

B�(p;a,b) = B(1− Ŝ j:n(x j:n); r− k,k+1), and (3.2.4)

B�(q;a,b) = B(1− Ŝ j−1:n(x j−1:n);r− k,k+1), (3.2.5)

for parameters r− k and k+1 and empirical survival function Ŝ (an exceedance probability), which is defined
as

Ŝ j:n(x) =




1 j = 0,

∏x j:n≤x
( n− j

n− j+1

)1−δ j:n x1:n ≤ x < xn:n, and

0 x ≥ Xn:n,

(3.2.6)

where 1− Ŝ represent conversion to nonexceedance probability.

Left-Censored Sample Version
The L-moments for left censoring by indicator variable λ̂ (LCφ) as yet are not rigorously studied but left cen-
soring can be accommodated by variable flipping and using λ̂ (RC) of the right-censoring version. Let Y be a
random variable having left censoring, flipping is made by transforming

X = φ −Y , (3.2.7)

where φ is an arbitrary constant greater than or equal to the maximum max(Y ), forming the sample order
statistics x j:n and then computing the λ̂ (RC)

r . Distributions fit to the λ̂ (RC)
r require retransformation by unflip-

ping.

Figure 3–2.  Definition of sample L-moments for whole samples and for two types of censoring after Asquith (2011a,b; 
2016) and references therein.
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Sample Variance-Covariance of L-moments

A distribution-free, variance-covariance matrix (v̂ar(λ )) of the sample L-moments (λ̂r) for r ∈ 1:r (up to rth
moment order [number of L-moments involved]) is defined by the matrix product

v̂ar(λ ) = C Θ̂CT, (3.3.1)

where the r× r matrix C for number of L-moments r represents the coefficients of the linear combinations
responsible for converting β̂k (sample probability-weighted moments) to λ̂r and the rth row in the matrix
(row notation C[r, ], meaning “whole row”) is defined as

C[r, ]k=0:(r−1) = (−1)(r−1−k)
(

r−1
k

)(
r−1+ k

k

)
, (3.3.2)

where the row is padded from the right with zeros for k < r to form the required lower triangular structure.
Letting the falling factorial be defined as

a(b) = Γ(b+1)
(

a
b

)
, (3.3.3)

an entry in the Θ̂ matrix is denoted as θ̂kl , defined as

θ̂kl = β̂kβ̂l −
A

n(k+l+2) , (3.3.4)

where β̂k or β̂l are the sample probability-weighted moments for subscripted moment order
(k, l ∈ [0 : (r−1)]), and A is defined as

A =
n−1

∑
i=1

n

∑
j=i+1

[
(i−1)(k)( j− k−2)(l) + (i−1)(l)(i− l −2)(k)

](
xi:n × x j:n

)
, (3.3.5)

where xi:n are the sample order statistics for a sample of size n. Incidentally, the matrix Θ̂ is the variance-
covariance structure of β̂ , thus v̂ar(β ) = Θ̂.

A Taylor-series-based approximation can be used to estimate the variance of an L-moment ratio (τr for r ≥ 3)
is based on structure of the variance of the ratio of two uniform variables in which the numerator is the rth
L-moment and the denominator is λ2:

var(τr)∼=
[

var(λr)

E(λr)2 +
var(λ2)

E(λ2)2 − 2cov(λr,λ2)

E(λr)E(λ2)

][
E(λr)

E(λ2)

]2

, (3.3.6)

where var(· · ·) are the along the diagonal of v̂ar(λ ) and cov(· · ·) are the off-diagonal covariances. The expec-
tations E(· · ·) are replaced with the sample estimates of the L-moments.

Figure 3–3.  Definition of sample variance-covariance of L-moments for whole samples after Asquith (2016) and 
Karvanen (2016) and references therein.
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Probability-Weighted Moments, Relation to L-moments, and L-moment Ratios

Theoretical Probability-Weighted Moments
Theoretical probability-weighted moments βr of random variable X with a cumulative distribution function
of F(x) and quantile function of x(F) are defined by the expectations

Mp,r,s = E[x(F)p F(x)r (1−F(x))s], (3.4.1)

where for the probability-weighted moment M, the p, r, and s are integers. By historical convention, βr =
M1,r,0 = E[x(F)Fr], and so for a x(F), the βr for r ≥ 0 are

βr =
∫ 1

0
x(F) Fr dF . (3.4.2)

Sample Probability-Weighted Moments
Unbiased sample probability-weighted moments β̂r are computed from the sample order statistics x1:n ≤
x2:n ≤ ·· · ≤ x j:n ≤ ·· · ≤ xn:n by

β̂r = n−1
n

∑
j=1

(
j−1

r

)
x j:n. (3.4.3)

and the so-called plotting-position estimators of β̂r are computed by

β̃r =
1
n

n

∑
j=1

(
j+A
n+B

)r

x j:n, (3.4.4)

where A and B are plotting-position coefficients A > B >−1.

Relation to L-moments
The βr and L-moments λr are linear combinations of each other. Methods based on one can be based on
the other, and choice is often by mathematical and interpretive convenience. The system of linear equations
relating λr to βr and sample versions λ̂r to β̂r is

λr+1 =
r

∑
k=0

(−1)r−k
(

r
k

)(
r+ k

k

)
βk and λ̂r+1 =

r

∑
k=0

(−1)r−k
(

r
k

)(
r+ k

k

)
β̂k for r ≥ 0. (3.4.5)

L-moment Ratios
Although β0 is the arithmetic mean, the individual βr for r ≥ 2 are difficult to interpret in terms of the geome-
try of a probability distribution or a sample. L-moments however have direct interpretations. The L-moment
ratios (often just termed “L-moments”) are

τ2 = λ2/λ1 and τ̂2 = λ̂2/λ̂1 ≡ coefficient of L-variation, (3.4.6)

τ3 = λ3/λ2 and τ̂3 = λ̂3/λ̂2 ≡ L-skew, and (3.4.7)

τ4 = λ4/λ2 and τ̂4 = λ̂4/λ̂2 ≡ L-kurtosis, (3.4.8)

and for r ≥ 5, which are unnamed, are

λr = λr/λ2 and λ̂r = λ̂r/λ̂2. (3.4.9)

Figure 3–4.  Definition of probability-weighted moments, their relation to L-moments, and L-moment ratios after Asquith 
(2011a,b; 2016) and references therein.
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Figure 3–5.  Template of an L-moment ratio diagram depicting theoretical relations between L-skew and L-kurtosis for 
distributions considered or referenced in this study.
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Fourth, the AEP4 is a four-parameter distribution and 
thus occupies an area or region in figure 3–5. The AEP4 does 
have a lower bound, however, indicating that the exponential 
distribution is a limiting form of the AEP4 for a certain 
L-skew, but otherwise the AEP4 has its own unique lower 
boundary of L-skew and L-kurtosis. The theoretical upper 
limit of the AEP4 is not germane to this study but does extend 
well beyond the upper limit of the vertical axis (Asquith, 
2014). The partial range of the AEP4 shown in figure 3–5 
indicates that the distribution spans many three-parameter 
distributions except for the PE3 and WEI for L-skew beyond 
the exponential. Incidentally, the Kappa (KAP) is a four-
parameter distribution, and its upper and lower L-skew and 
L-kurtosis boundaries are shown in figure 3–5. The domain 
of the KAP extends from the theoretical lower bounds of 
L-skew and L-kurtosis up to the trajectory of the GLO. Lastly, 
the other high-parameter distribution, the Wakeby (WAK), 
has much more complicated L-skew and L-kurtosis relations 
than the other distributions listed. The WAK is not depicted 
in figure 3–5 (and cannot readily be) because it occupies 
complex areas within the diagram. 
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Appendix 4.  Primer on Goodness-of-Fit Metrics and Association to the 
Methods of Maximum Likelihood and Maximum Product of Spacings as 
Applicable to This Study

This appendix summarizes the theory for selected metrics 
of goodness-of-fit applicable to this study through presentation 
of two compartmentalized figures of associated mathematics 
and discussion. In addition, this appendix documents the 
formulation for the two methods of maximum likelihood 
(MLE) and maximum product of spacings (MPS) considered 
for parts of this study to also estimate distribution parameters. 
The first two goodness-of-fit measures as hypothesis 
tests are the Cramér-von Mises (fig. 4–1, top section) and 
Kolmogorov-Smirnov (fig. 4–1, bottom section). These two 
tests are shown together in a common figure, because there is 
some mathematical similarity between the two. The principal 
commonality is that both are based on differences between 
the empirical cumulative distribution function that stems from 
the data and the theoretical cumulative distribution function. 
The latter function is usually taken as the final form of a fitted 
distribution to the data by a parameter estimation method, such 
as MLE. The mathematics in figure 4–1 show that Cramér-
von Mises fundamentally is based on a square difference 

between two functions for the cumulative distribution, 
whereas Kolmogorov-Smirnov is based on the largest absolute 
difference. Further details are shown within the figure.

The next two goodness-of-fit measures as just a value 
or hypothesis test, respectively, are the Akaike Information 
Criterion (AIC; fig. 4–2, top section) and Moran-Darling 
(fig. 4–2, bottom section). Both are shown in a common 
figure, because their close association to MLE and MPS 
provides a concise means to compare and contrast the two 
tests. The AIC is simply a shift in the value for the objective 
function involved in the method of maximum likelihood. AIC 
and MLE are both based on the probability density function. 
The Moran-Darling test is oriented around Moran’s M, which 
is a summation of the logarithmic spacings between ordered 
probabilities for the sample from the cumulative distribution 
function. Maximization of Moran’s M is the method of 
maximum product of spacings. Further details are shown 
within the figure.
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Goodness-of-Fit Statistics (Cramér-von Mises Test and Kolmogorov-Smirnov Test)

Cramér-von Mises Test
The Cramér-von Mises test for goodness-of-fit is defined on the cumulative distribution function by the
squared distance ω2 computed as

ω2 =
∫ ∞

−∞

[
Fn(x)−Fθ (x)

]2 dF(x), (4.1.1)

where Fθ (x) is a continuous cumulative distribution function for some distribution having parameters θ and
Fn(x) is the empirical cumulative distribution function defined as

Fn(x) =
1
n

n

∑
i=1

I[−∞,x]xi:n, (4.1.2)

where I[−∞,x] is an indicator function equal to 1 if xi:n ≤ x and equal to 0 otherwise. The test is implemented
for the sample order statistics x1:n ≤ xi:n ≤ xn:n of a sample of size n. The test statistic ω2

n is defined (Ander-
son, 1962; Csörgö and Faraway, 1996) as

ω2
n =

1
12n

+
n

∑
i=1

[
2i−1

2n
−Fθ (xi)

]
, (4.1.3)

If the value for ω2 is larger than some critical value, reject the null hypothesis. The null hypothesis is that
F is the function specified by θ , whereas the alternative hypothesis is that F is some other function. A null
distribution of ω2

n is required, is technically rigorous, and discussed by Faraway and others (2015). The sig-
nificance level will be smaller than intended. Compared to Moran-Darling (fig. 4–2), Cramér-von Mises
places more weight on observations in the tails of the distribution.

Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test for goodness-of-fit (Faraway and others, 2015; Hollander and Wolfe, 1973;
Marsaglia and others, 2003) also is based on the cumulative distribution function for which the test statistic is
the distance

Dn = supx|Fn(θ)−Fθ (x)|, (4.1.4)

where supx is the supremum of the set of absolute distances. If the value for Dn is larger than some critical
value, reject the null hypothesis. The required null distribution of Dn is defined as

FDn(x) =

√
2π
x

∞

∑
k=1

exp
[
−(2k−1)2π2/(8x2)

]
. (4.1.5)

Figure 4–1.  Definition of goodness-of-fit tests (measures) Cramér-von Mises and Kolmogorov-Smirnov after Anderson 
(1962), Csörgö and Faraway (1996), and Faraway and others (2015), Hollander and Wolfe (1973), Marsaglia and others (2003), 
and references therein.
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Goodness-of-Fit Statistics (Akaike Information Criterion and Moran-Darling Test)

Akaike Information Criterion — A Relative of the Method of Maximum Likelihood
The Akaike Information Criterion (AIC) is based on the probability density function transformed into the
likelihood function, and AIC is defined as

AIC = 2k−2log(Ln), (4.2.1)

where log(a) is the natural logarithm and Ln is defined as the maximum value of likelihood, and k is the
number of parameters in the probability density function. The quantity log(Ln) is readily obtained from the
method of maximum likelihood (MLE), but for any fitted distribution, it computed as

log(Ln) =
n

∑
i=1

log( f (xi;θ)), (4.2.2)

where n is the sample size, xi is the ith value, and f (x;θ) is the probability density function given the k
parameters in the vector θ . Maximization of log(Ln) for candidate θ constitutes MLE.

Moran-Darling Test — A Relative of the Method of Maximum Product of Spacings
The Moran-Darling test is readily obtained from the method of maximum product of spacings (MPS). Let the
cumulative distribution function be F(x;θ) and let Ui(θ) = F(xi:n;θ) be a nonexceedance probability of the
sample order statistics xi:n for a sample of size n, now define the differences

Di(Θ) =Ui(θ)−Ui−1(θ) for i = 1, . . . ,n+1, and (4.2.3)

with the inclusions of U0(θ) = 0 and Un+1(θ) = 1. The MPS objective function is

Mn(θ) =
n+1

∑
i=1

log
[
Di(θ)

]
. (4.2.4)

Maximization of Mn for candidate θ constitutes MPS. If all U are equally spaced, then the absolute value
|M(θ)| = Io = (n+ 1) log(n+ 1) and establishes the concepts towards goodness-of-fit. The Mn(θ) is a form
of the Moran-Darling statistic for goodness-of-fit. The Mn(θ) is a normal distribution with

µM ≈ (n+1)[log(n+1)+ γ]− 1
2
− 1

12(n+1)
for the mean, and (4.2.5)

σM ≈ (n+1)
(

π2

6
−1

)
− 1

2
− 1

6(n+1)
for the standard deviation, (4.2.6)

where γ ≈ 0.577221 (Euler-Mascheroni constant). An extension into small samples using the well-known
Chi-Square distribution (χ2

n ) with n degrees of freedom requires two coefficients computed as

C1 = µM −
√

σ2
M n
2

and C2 =

√
σ2

M
2n

, and (4.2.7)

finally the Moran-Darling test statistic is

T (θ) = (Mn(θ)−C1 + k/2)/C2, (4.2.8)

where the term k/2 is a bias correction based on the number of fitted distribution parameters k. The null
hypothesis that the fitted distribution is correct is to be rejected if T (θ) exceeds a critical value from χ2

n .
Compared to Cramér-von Mises (fig. 4–1), Moran-Darling places more weight on observations in the tails of
the distribution.

Figure 4–2.  Definition of goodness-of-fit tests (measures) for Akaike Information Criterion and Moran-Darling and 
association to methods of maximum likelihood and maximum product of spacings after Asquith (2016), Cheng and 
Stephens (1989), Dey and others (2016), and references therein.
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Appendix 5.  Primer on Probability Distributions Applicable to This Study in the 
Context of L-moments

This appendix defines and summarizes the probability 
density, cumulative distribution, and quantile functions 
of six three-parameter and four or more parameter (high 
parameter) probability distributions considered for this study. 
The parameterization of distributions by the same name can 
vary subtly between sources. In addition, some sources might 
present a distribution with a different number of parameters 
(usually one more or one less) than used for this study. For 
example, the Weibull distribution is a distinct three-parameter 
distribution here but is shown as a two-parameter version 
under the same name in Evans and others (2000).

The core mathematics of the six three-parameter 
distributions in context of L-moments are available in Hosking 
(1990), Hosking and Wallis (1997), Stedinger and others 
(1993) and extensions to the high-parameter distributions 
are available in Asquith (2007), Asquith (2011a,b), Asquith 
(2014), and Karian and Dudewicz (2011). Readers are directed 
to the research packages by Asquith (2016) [R package 
lmomco] and Hosking (2015a,b) [R packages lmom and 

lmomRFA] that describe computation of L-moments in the 
R language (R Core Team, 2016). Another useful package is 
by Karvanen (2016) [R package Lmoments].

The six three-parameter distributions (generalized 
extreme value, generalized logistic, generalized normal [log-
normal], generalized Pareto, Pearson type III, and Weibull) are 
defined in figures 5–1 through 5–6. These distributions are of 
primary interest for this study.

The high-parameter distributions are acknowledged and 
briefly demonstrated for this study. As a general rule, the 
mathematics of higher-parameter distributions is considerably 
more complex than that of the three-parameter distributions. 
Two four-parameter distributions are considered, the 
asymmetric exponential power distribution and the Kappa 
distribution, defined in figures 5–7 and 5–8. The asymmetric 
exponential power distribution does not suffer from multiple 
solution complexities like the generalized lambda distribution 
(Asquith, 2007; Karian and Dudewicz, 2011). Lastly, the five-
parameter Wakeby distribution is defined in figure 5–9. 

Appendix 5
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Generalized Extreme Value Distribution

The generalized extreme value (GEV) distribution is a common distribution in applications involving
extreme value analysis of natural phenomena. The two-parameter Gumbel distribution is a special case of
the GEV for shape parameter κ = 0. The distribution functions for parameters ξ (location), α (scale, α > 0),
and κ (shape, κ >−1) are

f (x) = α−1 exp[−(1−κ)Y − exp(−Y )], and (5.1.1)
F(x) = exp[−exp(−Y )], (5.1.2)

where

Y =




−κ−1 log [1−κ(x−ξ )/α] if κ �= 0, and

(x−ξ )/α if κ = 0,
(5.1.3)

and

x(F) =




ξ +α(1− [− log(F)]κ)/κ if κ �= 0, and

ξ −α log[− log(F)] if κ = 0.
(5.1.4)

The ranges of the distribution are

−∞ < x ≤ ξ +α/κ if κ > 0, (5.1.5)
−∞ < x < ∞ if κ = 0, and (5.1.6)

ξ +α/κ ≤ x < ∞ if κ < 0. (5.1.7)

The L-moments are

λ1 = ξ +α[1−Γ (1+κ)]/κ , (5.1.8)

λ2 = α(1−2−κ)Γ (1+κ)/κ , (5.1.9)

τ3 = 2(1−3−κ)/(1−2−κ)−3, and (5.1.10)

τ4 =
5(1−4−κ)−10(1−3−κ)+6(1−2−κ)

(1−2−κ)
, (5.1.11)

where Γ (a) is the complete gamma function and is Γ (a) =
∫ ∞

0 ta−1 exp(−t) dt.

Fitted Distribution Nomenclature for this Report
A GEV distribution has three parameters. In the same ordering as described above, a GEV having arbitrary
parameters ξ = 4.6, α = 0.18, and κ = 0.14 is written as “GEV(4.6, 0.18, 0.14)” for precision.

Figure 5–1.  Mathematical definitions and related details for the three-parameter generalized extreme value 
distribution after Asquith (2011a,b; 2016) and Hosking and Wallis (1997) and references therein.



Appendix 5    85

Generalized Logistic Distribution

The generalized logistic (GLO) distribution likely is not as frequently used in hydrology as the generalized
extreme value (GEV), generalized normal (GNO), or Pearson type III (PE3), but represents an informative
upper bounds of L-skew and L-kurtosis for many earth-system data. The distribution functions for parame-
ters ξ (location), α (scale, α > 0), and κ (shape, −1 < k < 1) are

f (x) =
α−1 exp[−(1−κ)Y ]

[1+ exp(−Y )]2
, and (5.2.1)

F(x) = 1/[1+ exp(−Y )], (5.2.2)

where

Y =



−κ−1 log[1−κ(x−ξ )/α] if κ �= 0, and

(x−ξ )/α if κ = 0,
(5.2.3)

and

x(F) =




ξ +α(1− [(1−F)/F ]κ)/κ if κ �= 0, and

ξ −α log[(1−F)/F ] if κ = 0.
(5.2.4)

The ranges of the distribution are

−∞ < x ≤ ξ +α/κ if κ > 0, (5.2.5)
−∞ < x < ∞ if κ = 0, and (5.2.6)

ξ +α/κ ≤ x < ∞ if κ < 0. (5.2.7)

The L-moments are

λ1 = ξ +α[1/κ −π/sin(κπ)], (5.2.8)
λ2 = ακπ/sin(κπ), (5.2.9)
τ3 =−κ , and (5.2.10)

τ4 = (1+5κ2)/6, (5.2.11)

and the relation between τ3 and τ4 is

τ4 =
1+5(τ3)

2

6
. (5.2.12)

The parameters are

κ =−τ3, (5.2.13)

α =
λ2 sin(κπ)

κπ
, and (5.2.14)

ξ =−λ1 −α
(

1
κ
− π

sin(κπ)

)
. (5.2.15)

Fitted Distribution Nomenclature for this Report
A GLO distribution has three parameters. In the same ordering as described above, a GLO having arbitrary
parameters ξ = 4.6, α = 0.18, and κ =−0.14 is written as “GLO(4.6, 0.18, −0.14)” for precision.

Figure 5–2.  Mathematical definitions and related details for the three-parameter generalized logistic distribution after 
Asquith (2011a,b; 2016) and Hosking and Wallis (1997) and references therein.
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Figure 5–3.  Mathematical definitions and related details for the three-parameter generalized normal (three-parameter 
log-normal) distribution after Asquith (2011a,b; 2016) and Hosking and Wallis (1997) and references therein.

Generalized Normal Distribution

The generalized normal (GNO) distribution accommodates nonzero skewness and retains the normal as a spe-
cial case. The GNO is lauded as equivalent to the three-parameter log-normal distribution (LN3) but avoids
logarithmic transformation of the data prior to computation of sample statistics. The distribution functions
for parameters ξ (location), α (scale, α > 0), and κ (shape) are

f (x) =
exp(κY −Y 2/2)

α
√

2π
, (5.3.1)

F(x) = Φ(Y ), and (5.3.2)
x(F) has no explicit analytical form,

where Φ(Y ) is the cumulative distribution function of the standard normal distribution and Y is

Y =




−κ−1 log[1−κ(x−ξ )/α] if κ �= 0, and

(x−ξ )/α if κ = 0.
(5.3.3)

The ranges of the distribution with bounds η are

−∞ < x ≤ ξ +α/κ if κ > 0, (5.3.4)
−∞ < x < ∞ if κ = 0, and (5.3.5)

ξ +α/κ ≤ x < ∞ if κ < 0. (5.3.6)

The first two L-moments are

λ1 = ξ +
α
κ

[
1− exp(κ2/2)

]
and λ2 =

α
κ

[
exp(κ2/2)

][
1−2Φ(−κ/

√
2)
]

. (5.3.7)

There are no simple expressions for λ3, λ4, and λ5.
The GNO is the LN3 because for x > 0 and λ3 > 0, the LN3 has the same distribution functions with the
substitution of Y for the following

Y =
log(x−ζ )−µlog

σlog
, (5.3.8)

where ζ is the lower bounds (real space) for which ζ < λ1 −λ2, µlog is the arithmetic mean in log-space, and
σlog is the standard deviation in log-space. The parameter equalities, by letting η = exp(µlog), are

ξ = ζ +η and α = ησlog and κ =−σlog. (5.3.9)

The parameters of the LN3 in terms of the parameters of the GNO, by letting η = λ1 −ζ , are

σlog =
√

2×Φ (−1)(0.5[1+λ2/η ]) and µlog = log(η)−0.5σ2
log, (5.3.10)

for a known bounds ζ and, by letting η = α/σlog, are

σlog =−κ and µlog = log(η) and ζ = ξ −η , (5.3.11)

for an unknown bounds ζ .

Fitted Distribution Nomenclature for this Report
A GNO distribution has three parameters. In the same ordering as described above, a GNO having arbitrary
parameters ξ = 4.6, α = 0.18, and κ =−0.10 is written as “GNO(4.6, 0.18, −0.10)” for precision.
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Generalized Pareto Distribution

The generalized Pareto (GPA) distribution likely is not as frequently used in hydrology as the generalized
extreme value (GEV), generalized normal (GNO), or Pearson type III (PE3), but represents an informative
lower bounds of L-skew and L-kurtosis for many earth-system data. The distribution functions for parame-
ters ξ (location), α (scale, α > 0), and κ (shape, κ >−1) are

f (x) = α−1 exp[−(1−κ)Y ], and (5.4.1)
F(x) = 1− exp(−Y ), (5.4.2)

where

Y =




−κ−1 log[1−κ(x−ξ )/α] if κ �= 0, and

(x−ξ )/α if κ = 0,
(5.4.3)

and

x(F) =




ξ +α[1− (1−F)κ ]/κ if κ �= 0, and

ξ −α log(1−F) if κ = 0.
(5.4.4)

The ranges of the distribution are

ξ < x ≤ ξ +α/κ if κ > 0, and (5.4.5)
ξ ≤ x < ∞ if κ ≤ 0. (5.4.6)

The L-moments are

λ1 = ξ +α/(1+κ), (5.4.7)
λ2 = α/[(1+κ)(2+κ)], (5.4.8)
τ3 = (1−κ)/(3+κ), and (5.4.9)
τ4 = (1−κ)(2−κ)/[(3+κ)(4+κ)]. (5.4.10)

The parameters for a known ξ are

κ = [(λ1 −ξ )/λ2]−2, and (5.4.11)
α = (1+κ)(λ1 −ξ ), (5.4.12)

and the relation between τ3 and τ4 is

τ4 =
τ3(1+5τ3)

5+ τ3
, (5.4.13)

and the parameters for an unknown ξ are

κ = (1−3τ3)/(1+ τ3), (5.4.14)
α = (1+κ)(2+κ)λ2, and (5.4.15)
ξ = λ1 − (2+κ)λ2. (5.4.16)

Fitted Distribution Nomenclature for this Report
A GPA distribution has three parameters. In the same ordering as described above, a GPA having arbitrary
parameters ξ = 4.6, α = 0.40, and κ = 0.55 is written as “GPA(4.6, 0.40, 0.55)” for precision.

Figure 5–4.  Mathematical definitions and related details for the three-parameter generalized Pareto distribution after 
Asquith (2011a,b; 2016) and Hosking and Wallis (1997) and references therein.
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Pearson Type III Distribution

The Pearson type III (PE3) distribution is a three-parameter distribution and is a widely used probability dis-
tribution in the hydrologic sciences. The product moments are explicit parameters, which greatly simplifies
comparisons between parameter estimates between product moments and L-moments. The distribution func-
tions for parameters µ (arithmetic mean, location), σ (standard deviation, scale), and γ (skew, shape), but
expressed with alternative parameters ξ (location), β (scale, β > 0), and α (shape, α > 0) are

f (x) =




β−α(x−ξ )α−1 exp(−Y1)/Γ (α) if γ > 0,

β−α(ξ − x)α−1 exp(−Y2)/Γ (α) if γ < 0, and

ϕ((x−µ)/σ)/σ if γ = 0,

(5.5.1)

F(x) =




G(α,Y1)/Γ (α) if γ > 0,

1−G(α,Y2)/Γ (α) if γ < 0, and

Φ((x−µ)/σ) if γ = 0,

(5.5.2)

x(F) has no explicit analytical form,

where

Y1 = (x−ξ )/β and Y2 = (ξ − x)/β , (5.5.3)

and where G(a,b) is the incomplete gamma function, Γ (a) is the complete gamma function, ϕ(a) is the
probability density function of the standard normal distribution (mean of zero and standard deviation of
unity), Φ(a) is the cumulative distribution function of the standard normal distribution. The relations
between the product moments and the three alternative parameters for γ �= 0 are

α = 4/γ 2 and β = σ |γ|/2 and ξ = µ −2σ/γ . (5.5.4)

The incomplete gamma function G(a,b) is G(a,b) =
∫ b

0 ta−1 exp(−t) dt and the complete gamma function
Γ (a) is Γ (a) =

∫ ∞
0 ta−1 exp(−t) dt.

The ranges of the distribution are

ξ ≤ x < ∞ if γ > 0, (5.5.5)
−∞ < x < ∞ if γ = 0 (normal distribution), and (5.5.6)
−∞ < x ≤ ξ if γ < 0. (5.5.7)

The L-moments are

λ1 = ξ +αβ and λ2 = π−1/2β Γ (α +1/2)/Γ (α), and (5.5.8)
τ3 = 6 I1/3(α,2α)−3, (5.5.9)

where Ix(p,q) denotes the incomplete beta function ratio

Ix(p,q) =
Γ (p+q)

Γ (p)Γ (q)

∫ x

0
t p−1(1− t)q−1 dt, (5.5.10)

which also is the same as the cumulative distribution function of the Beta distribution.

Fitted Distribution Nomenclature for this Report
A PE3 distribution has three parameters. In the same ordering as described above, a PE3 having arbitrary
parameters µ = 4.6, σ = 0.18, and γ = 0.60 is written as “PE3(4.6, 0.18, 0.60)” for precision.

Figure 5–5.  Mathematical definitions and related details for the three-parameter Pearson type III distribution after 
Asquith (2011a,b; 2016) and Hosking and Wallis (1997) and references therein.
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Weibull Distribution

The Weibull (WEI) distribution is a three-parameter version for this investigation, whereas, some authors
implement only a two-parameter version. The distribution functions for parameters ζ (location), β (scale),
and δ (shape) are

f (x) = δY δ−1 exp(−Y δ )/β , (5.6.1)

F(x) = 1− exp(−Y δ ), and (5.6.2)

x(F) = β [− log(1−F)]1/δ −ζ , (5.6.3)

where

Y = (x−ζ )/β . (5.6.4)

The range of the distribution is

ζ ≤ x < ∞. (5.6.5)

The distribution is a reverse generalized extreme value (GEV) distribution. As result, algorithms for a GEV
can be used implementation of the Weibull. The relations between the GEV parameters (ξ , α , κ) are

κ = 1/δ , (5.6.6)
α = β/δ , and (5.6.7)
ξ = ζ −β . (5.6.8)

Fitted Distribution Nomenclature for this Report
A WEI distribution has three parameters. In the same ordering as described above, a WEI having arbitrary
parameters ζ =−3.9, β = 0.40, and δ = 2.1 is written as “WEI(−3.9, 0.40, 2.1)” for precision.

Figure 5–6.  Mathematical definitions and related details for the three-parameter Weibull distribution after Asquith 
(2011a,b; 2016) and Hosking and Wallis (1997) and references therein.
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Asymmetrical Exponential Power Distribution

The four-parameter asymmetric exponential power (AEP4) distribution was introduced by others to obtain a
flexible distribution with potential applications in stochastic modeling. The distribution functions for parame-
ters ξ (location), α (scale, α > 0), κ (shape1, κ > 0), h (shape2, h > 0) are

f (x) =
κ h

α(1+κ2)Γ (1/h)
exp[−(κsign(x−ξ ) ( |x−ξ |/α))h], (5.7.1)

F(x) =




[κ2/(1+κ2)] G([(ξ − x)/(ακ)]h, 1/h) for x < ξ ,

1− [1/(1+κ2)] G([κ(x−ξ )/α]h, 1/h) for x ≥ ξ , and
(5.7.2)

x(F) =




ξ −ακ[G(−1)([1+κ2]F/κ2, 1/h)]1/h for F < F(ξ ), and

ξ +(α/κ)[G(−1)([1+κ2](1−F), 1/h)]1/h for F ≥ F(ξ ) ,
(5.7.3)

where Γ (a) is the complete gamma function and is Γ (a) =
∫ ∞

0 ta−1 exp(−t) dt, G(Z,a) is the upper tail of the
incomplete gamma function and is G(a,b) =

∫ b
0 ta−1 exp(−t) dt, and G(−1)(Z,a) is the inverse of the upper

tail of the incomplete gamma function. The AEP4 subsumes the normal distribution at κ = 1 and h = 2, and
the range of the distribution is −∞ < x < ∞.
Only the first three L-moments are shown here for brevity. The first two L-moments are

λ1 = ξ +α(1/κ −κ)
Γ (2/h)
Γ (1/h)

, and (5.7.4)

λ2 =−ακ(1/κ −κ)2 Γ (2/h)
(1+κ2)Γ (1/h)

+2
ακ2(1/κ3 +κ3)Γ (2/h) I1/2(1/h,2/h)

(1+κ2)2 Γ (1/h)
, (5.7.5)

where I1/2(1/h,2/h) is the cumulative distribution of the Beta distribution Im(a,b), this function is also the
normalized incomplete beta function and is

Im(a,b) =
∫ m

0
ta−1(1− t)b−1 dt × [1/β (a,b)], (5.7.6)

where β (a,b) is the complete beta function and is β (a,b) =
∫ 1

0 ta−1(1− t)b−1 dt. The third L-moment is
λ3 = A1 +A2 +A3 where the Ai are

A1 =
α(1/κ −κ)(κ4 −4κ2 +1)Γ (2/h)

(1+κ2)2 Γ (1/h)
, (5.7.7)

A2 =−6
ακ3(1/κ −κ)(1/κ3 +κ3)Γ (2/h) I1/2(1/h,2/h)

(1+κ2)3 Γ (1/h)
, and (5.7.8)

A3 = 6
α(1+κ4)(1/κ −κ)Γ (2/h)∆

(1+κ2)2 Γ (1/h)
, (5.7.9)

where ∆ is

∆ =
1

β (1/h,2/h)

∫ 1/2

0
t1/h−1(1− t)2/h−1I(1−t)/(2−t)(1/h,3/h) dt. (5.7.10)

Fitted Distribution Nomenclature for this Report
An AEP4 distribution has four parameters. In the same ordering as described above, a AEP4 having arbi-
trary parameters ξ = 4.2, α = 0.18, κ = 0.75, and h = 1.15 is written as “AEP4(4.2, 0.18, 0.75, 1.25)” for
precision.

Figure 5–7.  Mathematical definitions and related details for the four-parameter asymmetric exponential power 
distribution after Asquith (2011a,b; 2014; 2016) and references therein.
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Kappa Distribution

The Kappa (KAP) distribution is of particular interest to L-moments, because if h =−1, the distribution is the
generalized logistic distribution (GLO); if h = 0, it is the generalized extreme value (GEV); and if h = 1, it is
the generalized Pareto (GPA). The distribution functions for parameters ξ (location), α (scale), κ (shape1), h
(shape2) subject to the constraints that h ≥ 0 and κ >−1 or if h < 0 and −1 < κ <−1/h are

f (x) = α−1[1−κ(x−ξ )/α]1/κ−1 ×F1−h, (5.8.1)

F(x) = [1−h(1−κ(x−ξ )/α)1/κ ]1/h, and (5.8.2)

x(F) = ξ +
α
κ

[
1−

(
1−Fh

h

)κ]
. (5.8.3)

The ranges of the distribution xL ≤ x ≤ xU are

xL =




ξ +α(1−h−κ)/κ if h > 0,

ξ +α/κ if h ≤ 0 and κ < 0, and

−∞ if h ≤ 0 and κ ≥ 0,

(5.8.4)

xU =




ξ +α/κ if κ > 0, and

∞ if κ ≤ 0.
(5.8.5)

The L-moments are

λ1 = ξ +α(1−g1)/κ , (5.8.6)
λ2 = α(g1 −g2)/κ , (5.8.7)
τ3 = (−g1 +3g2 − 2g3)/(g1 −g2), and (5.8.8)
τ4 = (−g1 +6g2 −10g3 +5g4)/(g1 −g2), (5.8.9)

where the gr for r ∈ 1,2,3,4 is

gr =




rΓ (1+κ)Γ (r/h)/[h1+κ Γ (1+κ + r/h)] if h > 0, and

rΓ (1+κ)Γ (−κ − r/h)/[(−h)1+κ Γ (1− r/h)] if h < 0,
(5.8.10)

where Γ (a) is the complete gamma function and is

Γ (a) =
∫ ∞

0
ta−1 exp(−t) dt. (5.8.11)

Fitted Distribution Nomenclature for this Report
A KAP distribution has four parameters. In the same ordering as described above, a KAP having arbitrary
parameters ξ = 4.2, α = 0.13, κ = 0.32, and h = −0.27 is written as “KAP(4.2, 0.13, 0.32, −0.27)” for
precision. However, the KAP could not be fit to the data used (tables 1–2 and 1–3), and this notation thus is
absent in (unneeded for) this report.

Figure 5–8.  Mathematical definitions and related details for the four-parameter Kappa distribution after Asquith (2007; 
2011a,b; 2016) and Hosking and Wallis (1997) and references therein.
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Wakeby Distribution

The Wakeby (WAK) distribution is a wildly flexible distribution because it has five parameters. The dis-
tribution is attractive because it is fit to four or five L-moments depending on whether ξ is either known
or unknown. The distribution functions for parameters ξ (location), α (scale1), γ (scale2), β (shape1),
δ (shape2) are

f (x) = α(1−F)β−1 + γ(1−F)−δ−1, (5.9.1)
F(x) has no explicit analytical form, and

x(F) = ξ +
α
β
[1− (1−F)β ]− γ

δ
[1− (1−F)−δ ], (5.9.2)

where constraints of the parameters are

β +δ > 0 or β = γ = δ = 0,
if α = 0 then β = 0,

if γ = 0 then δ = 0, and
γ ≥ 0 and α + γ ≥ 0.

The range of the distribution is ξ ≤ x ≤ xU where the upper limit is

xU =




∞ if δ ≥ 0 and γ > 0, and

ξ +α/β − γ/δ if δ < 0 or γ = 0.
(5.9.3)

The L-moments of moment order r for r ≤ 3 are defined for δ < 1

λ1 = ξ +
α

(1+β )
+

γ
(1−δ )

, (5.9.4)

λ2 =
α

(1+β )(2+β )
+

γ
(1−δ )(2−δ )

, and (5.9.5)

λ3 =
α(1−β )

(1+β )(2+β )(3+β )
+

γ(1+δ )
(1−δ )(2−δ )(3−δ )

. (5.9.6)

and the L-moments for r > 3 are

λ4 =
α(1−β )(2−β )

(1+β )(2+β )(3+β )(4+β )
+

γ(1+δ )(2+δ )
(1−δ )(2−δ )(3−δ )(4−δ )

, and (5.9.7)

λ5 =
α(1−β )(2−β )(3−β )

(1+β )(2+β )(3+β )(4+β )(5+β )
+

γ(1+δ )(2+δ )(3+δ )
(1−δ )(2−δ )(3−δ )(4−δ )(5−δ )

. (5.9.8)

Parameter estimation requires complex numerical routines.

Fitted Distribution Nomenclature for this Report
A WAK distribution has five parameters. In the same ordering as described above, a WAK having arbitrary
parameters ξ = 3.9, α = 1.9, γ = 7.5, β = 0.15, and δ =−0.05 is written as
“WAK(3.9, 1.9, 7.5, 0.15, −0.05)” for precision.

Figure 5–9.  Mathematical definitions and related details for the five-parameter Wakeby distribution after Asquith 
(2007; 2011a,b; 2016) and Hosking and Wallis (1997) and references therein.
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