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Three-Dimensional Hydrogeologic Framework Model 
of the Rio Grande Transboundary Region of New Mexico 
and Texas, USA, and Northern Chihuahua, Mexico

By Donald S. Sweetkind

Abstract
As part of a U.S. Geological Survey study in cooperation 

with the Bureau of Reclamation, a digital three-dimensional 
hydrogeologic framework model was constructed for the Rio 
Grande transboundary region of New Mexico and Texas, 
USA, and northern Chihuahua, Mexico. This model was con-
structed to define the aquifer system geometry and subsurface 
lithologic characteristics and distribution for use in a regional 
numerical hydrologic model. The model includes five hydro-
stratigraphic units: river channel alluvium, three informal 
subdivisions of Santa Fe Group basin fill, and an undivided 
pre-Santa Fe Group bedrock unit. Model input data were 
compiled from published cross sections, well data, structure 
contour maps, selected geophysical data, and contiguous 
compilations of surficial geology and structural features in the 
study area. These data were used to construct faulted surfaces 
that represent the upper and lower subsurface hydrostrati-
graphic unit boundaries. The digital three-dimensional hydro-
geologic framework model is constructed through combining 
faults, the elevation of the tops of each hydrostratigraphic unit, 
and boundary lines depicting the subsurface extent of each 
hydrostratigraphic unit. The framework also compiles a digital 
representation of the distribution of sedimentary facies within 
each hydrostratigraphic unit. The digital three-dimensional 
hydrogeologic model reproduces with reasonable accuracy 
the previously published subsurface hydrogeologic conceptu-
alization of the aquifer system and represents the large-scale 
geometry of the subsurface aquifers. The model is at a scale 
and resolution appropriate for use as the foundation for a 
numerical hydrologic model of the study area.

Introduction
The region surrounding the Rio Grande between Caballo 

Reservoir, New Mexico, and El Paso, Texas, (fig. 1) lies within 
the lower Rio Grande surface-water and groundwater basins 
(New Mexico Office of the State Engineer/Interstate Stream 
Commission, 2017). Groundwater and instream flows supply 

water for urban, agricultural, and industrial uses and support 
recreational and environmental interests (Hanson and others, 
2013). The conjunctive use of surface water and groundwa-
ter occurs under numerous legal and operational constraints 
including the Rio Grande Compact (an international treaty) 
and the Rio Grande Project of the Bureau of Reclamation 
(Hanson and others, 2013). As in many arid regions, the water 
supply is limited in quantity and there is substantial annual 
variability in rainfall, yet increasing demands from both 
agricultural and urban users are being placed on the intercon-
nected surface and groundwater system.

Analysis of the complex relations between the use and 
movement of water in the groundwater basins requires an 
integrated hydrologic model capable of tracking the three-
dimensional movement of groundwater and the impacts of 
surface-water and groundwater use on water availability in the 
context of changing land use, irrigation practices, and climate 
(Hanson and others, 2013). The U.S. Geological Survey 
(USGS), in cooperation with the Bureau of Reclamation, is 
building on previous hydrologic modeling efforts to develop 
a regional integrated hydrologic model of the transboundary 
aquifers and interconnected surface waters of Rincon Valley, the 
informally named Mesilla groundwater basin in New Mexico 
and Texas, and the informally named Conejos-Medanos basin 
of northern Mexico (fig. 1). The hydrologic model will be used 
to evaluate and test the conceptual model of the system and may 
be used as a management tool for surface-water flows and to 
evaluate groundwater availability under alternative development 
and climate scenarios. The hydrogeologic framework model 
described in this report is the geologic foundation for numerical 
simulation of the hydrologic system.

Management of surface-water and groundwater resources 
in the region requires a knowledge of the groundwater system, 
which in turn requires an understanding of the configuration 
and properties of aquifers. Previous hydrogeologic frame-
work studies of the shallow alluvial and deep-basin aquifer 
system have been developed for the region (King and others, 
1971; Hawley, 1984; Hawley and Lozinsky, 1992; Nicker-
son and Myers, 1993; Hawley and Kennedy, 2004). These 
reports include a series of geologic maps, cross sections, and 
well data (Hawley and Kennedy, 2004; Hawley and others, 
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Figure 1.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing location of study area.
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2009), but these data have never been combined digitally in 
three dimensions. Published numerical groundwater models 
generalize aquifer geometry and properties within three model 
layers above a basement rock layer (Frenzel, 1992; Hamilton, 
1993; Lang and Maddock, 1995; Weeden and Maddock, 1999; 
Boyle Engineering and Parsons Engineering Science, 2000). 
Recent numerical models use additional layering and focus on 
specific aquifer horizons, such as the base of shallow uncon-
solidated alluvial deposits and the top of deep, fine-grained 
clay-rich deposits (S.S. Papadopulos & Associates, Inc., 2007; 
Hanson and others, 2013), but do not incorporate a fully three-
dimensional hydrogeologic framework model as the basis for 
numerical simulation. 

Purpose and Scope

This report describes the development of a digital three-
dimensional hydrogeologic framework model (3D HFM) of 
the study area (fig. 1), which defines the extent and geometry 
of the basin-filling deposits and older bedrock units that serve 
as the geohydrologic layering for the framework model. The 
3D HFM also describes the spatial distribution of sedimen-
tary facies, which provides an initial condition for defining 
hydraulic properties of the aquifer layers, and includes the 
location of faults and igneous dikes, both of which could 
potentially be used as horizontal-flow barriers within a 
numerical hydrologic model.

The study area modeled by the 3D HFM covers approxi-
mately 4,660 square miles (mi2) within New Mexico and Texas, 
USA, and northern Chihuahua, Mexico (fig. 1). The study area 
is centered on two adjacent structural basins, the Palomas and 
Mesilla basins, which are connected by Selden Canyon (fig. 1). 
Parts of two adjacent structural basins, the Jornada del Muerto 
basin, hereafter called the Jornada basin, in the northeast part 
of the study area and the Hueco Bolson to the southeast of El 
Paso, Texas, are included in the 3D HFM to provide con-
trol on grid elevations and fault offsets near the edges of the 
model, but they are not part of the region that will actively 
participate in the numerical hydrologic model (fig. 1; Randall 
Hanson, USGS, written commun., 2015). The digital 3D HFM 
described in this report captures the hydrogeologic conceptu-
alization of Hawley and Kennedy (2004) and additional data 
developed in conjunction with the USGS during the Trans-
boundary Aquifer Assessment Program (Alley, 2013). 

Description of Study Area

The study area includes parts of south-central New 
Mexico, El Paso County, Texas, and northwestern Chihuahua, 
Mexico, and surrounds the Rio Grande from Caballo Reser-
voir, New Mexico, for approximately 80 miles (mi) southeast-
ward, south of El Paso, Texas (fig. 1). The study area includes 
two generally northwest-southeast-trending topographic 
valleys that form the floodplain adjacent to the Rio Grande: 
Rincon Valley between Caballo Reservoir and Selden Canyon, 

and to the south Mesilla Valley between Leasburg, New 
Mexico, and the El Paso narrows to the west of El Paso, Texas. 
Rincon and Mesilla Valleys are linked by Selden Canyon, a 
narrow valley incised into the Selden Hills uplift (fig. 1). 

The Palomas structural basin in the northwestern part 
of the study area is bounded on the west and south by the 
Black Range and the Sierra de las Uvas and on the east by the 
Caballo Mountains. In this report, the Palomas basin includes 
the east-west-trending Hatch-Rincon basin as used by Mack 
and others (2006). The large intermontane Jornada basin lies 
between the Caballo Mountains on the west and the San Andres 
Mountains on the east and occupies the northeast part of the 
study area (fig. 1). The Mesilla structural basin occupies most 
of the southern half of the study area between Selden Canyon 
on the north and the El Paso narrows on the southeast. The 
Mesilla basin is bounded on the northeast by the Doña Ana 
Mountains; on the east by the Organ Mountains, Franklin 
Mountains, and Sierra de Juarez; and on the west by the East 
Potrillo, West Potrillo, and Robledo Mountains (fig. 1). The Rio 
Grande exits Mesilla Valley and the Mesilla basin through the 
El Paso narrows between the Franklin Mountains and Sierra de 
Juarez uplifts and flows southeastward down the Hueco Bolson 
toward the Big Bend area of Trans-Pecos Texas (fig. 1).

Stratigraphic and Structural Setting
The study area is located in the southern part of the 

Rio Grande rift, a tectonic feature that is characterized by 
generally north-south-trending structural basins bounded by 
volcanic highlands and fault-block ranges that expose tilted 
pre-Cenozoic rocks (Chapin and Seager, 1975; Hawley, 1978; 
Chapin and Cather, 1994). The Rio Grande flows through a 
series of extensional basins filled with up to 12,000 feet (ft) of 
Paleogene volcanic rocks and Neogene alluvial, fluvial, playa, 
and lacustrine sediments (Chapin and Cather, 1994). 

Stratigraphy

The stratigraphic framework of the study area consists, 
from oldest to youngest, of a 

•	 thick sequence of pre-Cenozoic rocks, 

•	 Paleogene sedimentary and volcanic rocks, 

•	 locally thick sequence of Neogene basin-fill deposits, 

•	 late Pliocene to Pleistocene alluvial fan and fluvial 
deposits and local Pleistocene basalt flows, and 

•	 local Pleistocene and Holocene deposits (figs. 2 and 3). 
Pre-Cenozoic rocks include Precambrian granitic and 

metamorphic rocks overlain by about 1,600 meters (m) of 
Paleozoic rocks including dolomite, limestone, and sandstone, 
with interbedded shale and local gypsum beds. Paleozoic 
strata are unconformably overlain by as much as 2,500 ft of 
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Upper Cretaceous marine and nonmarine sandstone and shale. 
Rocks of Paleozoic and Lower Cretaceous age are exposed in 
the Caballo, Franklin, East Potrillo, and Robledo Mountains 
and Sierra de Juarez (fig. 3; Harbour, 1972; Seager and oth-
ers, 1987, 2008). Intrusive rocks of intermediate composition 
and probable Paleogene age crop out in the El Paso narrows 
between the Franklin Mountains and Sierra de Juárez (fig. 3; 
Hoffer, 1969).

Basal Cenozoic strata are pre-rift siliciclastic strata asso-
ciated with the erosion of Laramide uplifts (Epis and Chapin, 
1975). These strata are overlain by a 3,000-ft sequence of 
Neogene intermediate-composition lavas and associated 
volcaniclastic rocks capped with silicic ash-flow tuffs and 
basaltic andesite erupted from multiple volcanic centers (Sea-
ger and others, 1984) (fig. 2). Tertiary igneous intrusive rocks, 
primarily granite to monzonite in composition, are the domi-
nant rocks exposed in the Doña Ana Mountains and southern 
part of the Organ Mountains (fig. 3; Seager and others, 1976; 
Seager, 1981).

Neogene and earliest Pleistocene strata that record synrift 
basin filling are included in the Santa Fe Group (Spiegel and 
Baldwin, 1963; Hawley and others, 1969; Mack, 2004). Santa 
Fe Group strata correspond to at least four formations mapped 
in the study area: 

•	 Hayner Ranch Formation, early to middle Miocene 
fanglomerate and sandstone; 

•	 Rincon Valley Formation, middle to late Miocene fan-
glomerate, alluvial basin and playa deposits; and 

•	 Palomas and Camp Rice Formations, late Pliocene to 
Pleistocene coarse-grained sand and gravel deposits 
that represent alluvial fan and fluvial deposits associ-
ated with the ancestral Rio Grande 

(fig. 2; Lozinsky and Hawley, 1986; Mack and others, 
1993; Hawley and others, 2001; Hawley and Kennedy, 2004). 

The Santa Fe Group is subdivided into informal upper 
Santa Fe (USF), middle Santa Fe (MSF), and lower Santa Fe 
(LSF) hydrostratigraphic units (HSUs) on the basis of genesis, 
age, and stratigraphic position (fig. 2; Hawley and Lozinsky, 
1992; Hawley and others, 2001; Hawley and Kennedy, 2004). 
The Santa Fe Group sediments record deposition in pre-, syn-, 
and post-extensional settings and the transition from a closed-
basin deposition in early to middle Miocene to an open-basin, 
fluvial system in the Pleistocene (Seager, 1975; Seager and 
others, 1984; Mack and Seager, 1990; Mack and others, 2006). 
Quaternary deposits include fluvial deposits of the entrenched 
Rio Grande channel, eolian deposits, and alluvial channel fill 
(figs. 2 and 3; Hawley and Kennedy, 2004). 

Structural Setting

Older, pre-rift structures in the study area include 
Laramide foreland contractile structures (Seager and others, 
1997; Seager, 2004) and late Paleozoic to Mesozoic structures 
potentially related to reactivation of original passive-margin 

normal faults (Muehlberger, 1980; Dickinson and Lawton, 
2001; Lawton, 2004). Laramide structures are only intermit-
tently exposed as a result of burial by Cenozoic deposits and 
segmentation by faults of the Rio Grande rift. A Laramide 
uplift and associated syntectonic basin were identified in the 
Caballo Mountains (Seager and others, 1997). These older, pre-
rift structures appear unrelated to evolution of Neogene basins 
and fault patterns and are not considered in the 3D HFM. 

The Texas lineament (fig. 4) is described as a broad, 
northwest-trending regional structural zone that serves as a 
boundary between regional geologic and geomorphic terranes 
(DeFord, 1969; Hildebrand, 2015). The lineament is believed 
to have been most active during the Precambrian but may have 
had repeated periods of offset (Muehlberger, 1980). Northwest-
striking, graben-bounding normal faults in the Hueco Bolson of 
the border region of Texas may be controlled by the Texas lin-
eament (Muehlberger, 1980; Collins and Raney, 1994). Muehl-
berger (1980) inferred the lineament to be a broad distributed 
zone of shear tens of kilometers wide. In the study area, the 
north boundary of the lineament is in the El Paso narrows and 
projects northwestward to the north of the East Portillo Moun-
tains; areas to the southwest of this line could be affected by 
lineament-associated structures (fig. 4). Within the study area, 
the lineament has no surface expression and appears unrelated 
to the location of Neogene basins and fault patterns; however, 
the presence of the lineament may explain the abrupt bedrock 
discontinuity between the west-tilted Paleozoic rock section in 
the Franklin Mountains and the highly folded Cretaceous rocks 
exposed to the south in the Sierra de Juarez (fig. 3). 

The study area lies at the south end of a series of gen-
erally north-south-trending structural basins and flanking 
mountain uplifts that compose the Rio Grande rift (Chapin 
and Seager, 1975; Seager and Morgan, 1979). The rift extends 
from the San Luis basin of south-central Colorado through 
New Mexico to the Hueco Bolson area of west Texas and 
northern Chihuahua, Mexico (Hawley, 1978). In the study 
area, intermontane structural basins, or bolsons, are flanked 
by fault-bounded mountain-block uplifts of late Cenozoic 
age (fig. 4). In the northwestern part of the study area, the 
Palomas basin is an east-tilted half-graben where the thickest 
basin fill is adjacent to the Caballo Mountains and the basin-
bounding west-side-down Red Hills and Derry faults (figs. 3 
and 4; Hawley and Kennedy, 2004, plate R4). At the end of the 
Rincon Valley, the Rio Grande exits the Palomas basin through 
Selden Canyon, a narrow bedrock-floored canyon incised 
into uplifted pre-Santa Fe Group volcanic rocks (figs. 3 and 
4). In the northeastern part of the study area is the Jornada 
basin, a complexly faulted basin flanked on the east by the San 
Andres Mountains, which are bounded on the west side by 
west-side-down faults (Hawley and Kennedy, 2004, plate R4). 
The Jornada basin is bounded on the southwest by the Jornada 
fault (fig. 4; Seager and others, 1976, 1987). The Jornada fault 
is the northern structural boundary of a partly buried bedrock 
ridge that forms the boundary between the Mesilla and Jor-
nada structural basins; the Doña Ana Mountains are the largest 
surface expression of the bedrock ridge (figs. 3 and 4).
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Figure 4.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing structural features of study area.
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The southern half of the study area is dominated by 
the Mesilla structural basin, which covers an area of about 
1,100 mi2 (2,590 square kilometers [km2]), and extends south-
ward about 60 mi (100 km) from the Robledo and Doña Ana 
Mountains to west of Ciudad Juarez in northern Chihuahua, 
Mexico (fig. 1). Basin width varies from about 5 mi (8 km) 
in the north to about 25 mi (40 km) near its center (figs. 3 
and 4). The northeastern structural boundary of the basin is 
formed by the partly buried bedrock ridge that includes the 
Doña Ana Mountains; the ridge is bounded on its southwest 
side by the Mesilla Valley fault zone, which is known in the 
subsurface along the entire eastern edge of the Mesilla basin 
(Lovejoy, 1976; Hawley and Kennedy, 2004, plates 3 and 4). 
The Mesilla basin is bounded on the west by the East Robledo 
fault to the northwest and the East Potrillo fault to the south-
west (fig. 4; Hawley and Kennedy, 2004, plates 3 and 4). The 
Mesilla basin is internally faulted; a buried mid-basin uplift 
separates an eastern subbasin, the La Union-Mesquite sub-
basin of Hawley and others (2001), from a western subbasin 
that includes the southwestern and northwestern subbasins of 
Hawley and others (2001) (fig. 4). 

Hawley and Kennedy (2004) interpret almost all basin-
bounding and intrabasinal faults as nearly vertical normal 
faults, in part based on interpreted gentle dips of strata in the 
central basin areas. Other interpretive geologic cross sections 
of parts of the study area show gently listric fault geometry 
(Seager and others, 1975, 1982, 1987) or complex geometries 
within fault transfer zones (Mack and Seager, 1995). The 3D 
HFM presented in this report depicts faults as vertical, in order 
to maintain consistency with input geologic data and to meet 
the needs of the anticipated numerical hydrologic model. 

Tectonic Setting and Basin Evolution

Extension, fault-block uplift, and basin subsid-
ence have occurred in the study area in multiple pulses of 
deformation over a prolonged period from Oligocene to 
Pleistocene time (Seager, 1975; Mack, 2004). The tectonic 
evolution of the region is documented in Santa Fe Group 
rocks, aided by local interbedded volcanic rocks that serve 
as time-stratigraphic markers. Block faulting, uplift, basin 
subsidence, and sedimentation were initiated in late Eocene 
to early Oligocene time, contemporaneous with volcanism 
in other parts of the southern Rio Grande rift (Seager and 
others, 1984; Mack and others, 1994). A major phase of rift-
related extensional faulting and basin subsidence occurred 
throughout most of the Miocene, resulting in deposition of 
about 6,500 ft of basin-fill sediments of the Hayner Ranch 
and Rincon Valley Formations deposited in a number of 
separate subbasins (Mack and others, 1994; Mack, 2004). 
By late Miocene time, basin aggradation occurred and 
intrabasin uplifts were buried by lower and middle Santa Fe 
Group deposits, resulting in larger, less segmented deposi-
tional basins (Mack and others, 1994). A second major pulse 
of deformation in the southern Rio Grande rift began near 
the Miocene-Pliocene boundary, resulting in the maximum 

differential displacement between the major basin and range 
structural blocks (Chapin and Seager, 1975). During this 
period, the older deposits were deformed and tilted and new 
faults developed, many of which uplifted parts of earlier 
Miocene basins. Following this faulting, basin aggradation 
formed a single broad depositional basin throughout middle 
Pliocene to early Pleistocene time (Mack and Seager, 1990; 
Mack and others, 1993, 2006). The Camp Rice and Palomas 
Formations represent this pulse of basin filling; these 
deposits have a maximum thickness of about 500 ft (Mack 
and Seager, 1990; Mack and others, 2006). 

Within the study area, evidence for multiple phases of 
rift-related faulting and basin-filling episodes is observed in 
uplifted outcrops of lower and middle Santa Fe Group rocks 
in the Robledo Mountains, Caballo Mountains, and Sierra 
de las Uvas (fig. 3). In these areas, late Miocene to Pliocene 
uplifts expose sediments that were deposited in older Mio-
cene basins, showing that patterns of late Cenozoic basins 
and uplifts differ from the extent of the earlier formed basins 
(Chapin and Seager, 1975; Mack and others, 2006). Subsur-
face distribution of the lower, middle, and upper Santa Fe 
Group rocks help to constrain the timing of motion on basin-
bounding faults. The regions of greatest thickness of Santa 
Fe Group rocks in the Mesilla basin and southern part of the 
Jornada basin are adjacent to the most active fault segments 
within the Mesilla Valley, East Potrillo, East Robledo, and 
Jornada fault zones (Hawley and Kennedy, 2004). However, 
not all faults cut the Pliocene-Pleistocene Camp Rice and 
Palomas Formations, and some faults cut only older units and 
were apparently inactive during Pliocene and younger time 
(fig. 4; Seager, 1975; Hawley and Kennedy, 2004, plates 3 
and 4; Mack and others, 2006).

Widespread basin filling ceased in middle Pleistocene 
time because of regional entrenchment of the present Rio 
Grande (Mack and others, 2006). Incision and subsequent 
aggradation by the ancestral Rio Grande and its tributaries 
during the past 0.78 million years (m.y.) deposited a few 
tens of meters of coarse channel fill, and dissection locally 
exposed all or part of the Camp Rice and Palomas Forma-
tions, as well as some older Santa Fe Group strata (Mack and 
others, 1993, 2006). In the Palomas basin, the Rio Grande 
flows in the deeply entrenched Rincon Valley, incised into 
broad mesas capped by upper Santa Fe Group rocks in the 
west-central part of the Palomas basin (fig. 3). The mesas are 
remnants of piedmont slopes graded to ancestral Rio Grande 
base levels as much as 400 to 500 ft above the present Rincon 
Valley floor (Hawley and Kottlowski, 1969). The Mesilla 
basin features the broadly incised recent floodplain of the Rio 
Grande in the Mesilla Valley on the east side of the basin (fig. 
3). A broad geomorphic surface known locally as West Mesa 
or La Mesa lies to the west of and above the level of the Rio 
Grande channel (fig. 3; Myers and Orr, 1985). This surface 
is a remnant of an extensive basin floor preserved between 
Mesilla Valley and the East Potrillo and Robledo uplifts that 
predates river-valley incision (Gile and others, 1981; Mack 
and others, 2006).
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Hydrostratigraphic Units For 3D 
Hydrogeologic Framework Model

The main water-bearing units in the study area are 
Quaternary fluvial deposits of the inner Rio Grande Valley 
and the Neogene sedimentary basin-fill deposits of the Santa 
Fe Group (King and others, 1971; Hawley, 1984; Hawley and 
Lozinsky, 1992; Hawley and Kennedy, 2004). These units 
and the underlying bedrock are subdivided into five informal 
hydrostratigraphic units (HSUs; fig. 2), defined as a strati-
graphic unit, a part of a stratigraphic unit, or a combination of 
adjacent stratigraphic units with consistent hydraulic proper-
ties (Maxey, 1964; American Nuclear Society, 1980; Seaber, 
1988). A basement (BSMT) HSU consists of all pre-Santa Fe 
Group rocks, including Paleogene sedimentary and volcanic 
rocks; Paleozoic carbonate, siliciclastic, and igneous rocks; 
and Precambrian crystalline rocks (fig. 2). The informal HSUs, 
described below, serve to group rocks in the study area accord-
ing to age, lithology, and general water-transmitting properties 
(fig. 2; Hawley, 1984; Hawley and Lozinsky, 1992; Hawley 
and others, 2001, 2009; Hawley and Kennedy, 2004). 

River channel (RC): The RC HSU (fig. 2) is the 
Quaternary alluvium of the Rio Grande floodplain, including 
river channel, overbank deposits, and interfingered alluvial-
fan deposits along the margin of the floodplain (Hawley and 
Kennedy, 2004). The approximately 80-ft-thick channel gravel 
and sand deposits were deposited in the past 0.8 Ma during a 
period of incision and partial backfilling by the Rio Grande 
and its tributaries, forming the relatively narrow floodplain of 
the current river (Mack and others, 2006). In the Palomas and 
Mesilla basins, the RC HSU unconformably overlies Santa Fe 
Group basin fill; in the El Paso narrows and Selden Canyon 
areas, the channel incision was in pre-Santa Fe Group rocks 
and the coarse deposits of the RC HSU were deposited above 
these older units (King and others, 1969; Hawley and Ken-
nedy, 2004). 

Upper Santa Fe (USF): The USF HSU (fig. 2) roughly 
corresponds to the Pliocene-Pleistocene Camp Rice Formation 
in the Mesilla basin and the Palomas Formation in the Palomas 
basin (Hawley and others, 2001; Hawley and Kennedy, 2004). 
This HSU is dominated by fluvial sediments of the ancestral 
Rio Grande and coeval alluvial-fan detritus (Hawley and Ken-
nedy, 2004; Mack and others, 2006). These deposits are 50 
to 450 ft thick and consist of pebbly, medium to coarse sands 
of braided-stream channel deposits and various finer-grained 
floodplain deposits. Piedmont-slope deposits are composed of 
fan alluvium and associated debris-flow deposits (Lozinsky 
and Hawley, 1986). 

Middle Santa Fe (MSF): The MSF HSU generally cor-
responds to the Rincon Valley Formation (fig. 2). Rocks of 
this HSU were deposited about 10 to 4 Ma when rift tectonism 
was most active and basin aggradation adjacent to the major 
basin-boundary fault zones was accelerated (Mack and others, 
1994; Mack, 2004). Rift tectonism resulted in depositional 
environments that ranged from broad, rapidly aggrading basin 

floors to alluvial flats that terminated in extensive playa-lake 
plains (Hawley and Kennedy, 2004; Mack and others, 2006). 
Sediment lithofacies include alternating beds of clean sand, 
silty sand, and silt-clay mixtures in much of the central basin 
areas (Hawley and Lozinsky, 1992; Hawley and Kennedy, 
2004). In the southern parts of the Jornada and Mesilla basins, 
basin-floor facies include extensive and thick playa-lacustrine 
deposits that are clay rich and can be confining units (Hawley 
and Kennedy, 2004; Mack and others, 2006). 

Lower Santa Fe (LSF): The LSF HSU generally corre-
sponds to the Hayner Ranch Formation of the Santa Fe Group 
(fig. 2). Rocks of this HSU were mostly deposited in closed 
basins and are dominated by fine-grained, clay-rich basin-floor 
sediments that interfinger with distal-facies alluvial fan depos-
its from bordering piedmont slopes. In the southern parts of 
the Jornada del Muerto and Mesilla basins, basin-floor facies 
include thick, extensive playa-lacustrine deposits (Hawley and 
Kennedy, 2004; Mack and others, 2006). Locally, thick sheets 
and lenticular bodies of sandy eolian sediments are interbed-
ded with both basin-floor and piedmont-slope deposits in the 
southern part of the Mesilla basin (Leggat and others, 1962; 
Nickerson, 1989; Hawley and others, 2001). 

Basement (BSMT): The basement HSU includes all 
rocks that predate Santa Fe Group rocks. This HSU contains a 
wide variety of rock types, including Precambrian crystalline 
rocks; Paleozoic and Mesozoic dolomite, limestone, and sand-
stone; intrusive rocks; and Paleogene sedimentary and volca-
nic rocks. These units form the hydrologic basement beneath 
the basin-fill aquifer system (Hawley and Kennedy, 2004).

Published hydrogeologic cross sections in the study area 
(Hawley and Kennedy, 2004, plates 3, 4, R4, and R5; Hawley 
and others, 2009, plate 2) show the HSUs for the Santa Fe 
Group rocks subdivided into upper and lower parts (red 
dashed lines in fig. 5A). The subdivisions designate lithofacies 
changes during deposition of a specific HSU. In this report, 
HSUs for the Santa Fe Group rocks were split into two 
subunits within the 3D HFM in order to maintain consistency 
with the published sections and to provide flexibility in the 
assignment of hydraulic properties to HSUs within the numeri-
cal hydrologic model. For the 3D HFM, subdivisions shown 
on published hydrogeologic cross sections were captured by 
splitting the USF, MSF, and LSF HSUs in half; each subunit 
represents half the total thickness of the unit. In each case, the 
upper subunit is designated with the number 1 appended to 
the HSU name, for example USF1, and the lower subunit is 
designated with the number 2 appended to the HSU name, for 
example USF2 (Sweetkind and others, 2017). The RC HSU 
was also split: the upper unit (RC1) was assigned as five-
eighths of the total HSU thickness and the lower unit (RC2) is 
three-eighths of the total HSU thickness.

Each of the HSUs is lithologically heterogeneous, result-
ing in highly variable hydraulic properties (Nickerson, 1989; 
Haase and Lozinsky, 1992; Hawley and Kennedy, 2004). 
The published cross sections show the HSUs for the Santa Fe 
Group rocks divided into a series of lithofacies assemblages 
defined to represent geologic materials that likely have fairly 
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Figure 5.  Example cross section within the model domain. A, Example of published geologic cross section showing hydrostratigraphic 
units and lithofacies designations. B, Profile cut through three-dimensional hydrogeologic framework model along same line of section. 
(a.s.l., above sea level)
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uniform hydraulic properties (fig. 5A; Hawley and Lozinsky, 
1992; Hawley and others, 2001, 2009; Hawley and Kennedy, 
2004). The lithofacies assemblages were defined on the basis 
of grain size and sorting, degree of compaction, rock lithol-
ogy and competency, degree of post-depositional alteration, 
and inferred environments of deposition (Hawley and oth-
ers, 2001). Lithofacies-based zones within the 3D HFM 
are defined for the basin-fill deposits RC, USF, MSF, and 
LSF (table 1) and for BSMT, the pre-Santa Fe Group rocks 
(table 2). Zone definitions in the 3D HFM are based on the 
lithofacies assemblages of Hawley and others (2001), with 
slight changes in nomenclature to facilitate use within the 
numerical hydrologic model (tables 1 and 2). 

Data Sources
Multiple sources of data were used to construct the 3D 

HFM in this report. Surface and subsurface data were used to 
define the top surface, thickness, and spatial distribution of 
each HSU. Data used as input to the 3D HFM included

•	 topographic data, 

•	 geologic maps, 

•	 cross sections, 

•	 stratigraphic tops interpreted from borehole data, 

•	 structure contour maps, and 

•	 geophysical data. 
Textural properties of the basin-fill deposits were derived 

from previously published cross-section interpretations (Haw-
ley and Kennedy, 2004; Hawley and others, 2009).

Geologic Maps

Published geologic maps of the Mesilla basin (Hawley 
and Kennedy, 2004, plate 1), the Palomas and Jornada basins 
(Hawley and Kennedy, 2004, plate R1), and Hueco Bolson 
(Hawley and others, 2009, plate 1) were digitized within a 
geographic information system (GIS) and edge matched by the 
USGS during the Transboundary Aquifer Assessment Program 
(Alley, 2013). Larger-scale, nondigital geologic maps of parts 
of the study area (Seager, 1981, 1995; Seager and others, 
1976, 1987, 2008; Servicio Geologico Mexicano, 2011) were 
consulted but were not included in the digital compilation. 
A generalized geologic map of the study area (fig. 3) shows 
the results of this digital compilation, although in this figure 
numerous geologic units are grouped into broad age ranges. 

A hydrogeologic map was created from the digital geo-
logic map by using a GIS to merge the mapped stratigraphic 
units into the five HSUs described above. Digital datasets 
of HSU extent and top elevation were created by merging 
map polygons from the hydrogeologic map with topographic 

information. Outcrop areas for each HSU were sampled at reg-
ularly spaced points within a GIS. These points were assigned 
coordinate locations from the map base and elevations from a 
1 arc-second (approximately 30-m resolution) digital elevation 
model (DEM) and exported as a series of files, one for each 
stratigraphic unit, containing x, y, and z coordinates, which 
were subsequently used in gridding the stratigraphic unit tops.

Cross Sections

Published hydrogeologic cross sections (fig. 6) depicting 
interpreted subsurface relations in the Mesilla basin (Hawley 
and Kennedy, 2004, plates 3 and 4), Palomas and Jornada 
basins (Hawley and Kennedy, 2004, plates R4 and R5), and 
Hueco Bolson (Hawley and others, 2009, plate 2) were funda-
mental as data input to the 3D HFM. Figure 5A is an example 
of a published cross section (Hawley and Kennedy, 2004, sec-
tion G-G') showing the typical level of geologic detail present 
on these sections. Each published section shows the elevation 
and thickness of each HSU; the interpreted lithologic facies 
patterns (shown on the sections as lithofacies codes); and the 
location, sense, and magnitude of fault offset (fig. 5A). A cross 
section cut through the digital 3D HFM at the same location 
(fig. 5B) is discussed later in this report.

The elevation of the tops of HSUs shown on all published 
cross sections were extracted as horizontal (x, y) and eleva-
tion (z) coordinates at selected points along each section trace. 
A scanned image of each published cross section was scaled 
and georeferenced in a GIS along the cross-section trace 
(fig. 6). Points were digitized along each section trace, and the 
elevation of the top surface of each HSU represented in cross 
section was interpolated from the cross-section vertical scale. 
A series of files containing x, y, and z coordinates for each 
HSU horizon was exported.

Faults

Faults in the 3D HFM (fig. 4) were compiled from the 
following published sources: Figuers (1987), Imana (2002), 
Khatun (2003), Hawley and Kennedy (2004), Khatun and oth-
ers (2007), Hawley and others (2009), and Servicio Geologico 
Mexicano (2011). 

Cross sections in the Mesilla basin (Hawley and Ken-
nedy, 2004, plates 3 and 4), Palomas and Jornada basins 
(Hawley and Kennedy, 2004, plate R4 and R5), and Hueco 
Bolson (Hawley and others, 2009, plate 2) provide fault loca-
tion, sense, magnitude, and units offset (fig. 5A). Structure 
contour maps showing the elevation of the base of the Santa 
Fe Group (the top of pre-Santa Fe Group basement rocks) por-
tray the traces of faults within the basin, including faults that 
do not cut surficial units (Hawley and Kennedy, 2004, plates 7 
and R3; Alley, 2013). Fault locations were compared to the 
Quaternary fault and fold database of the United States (U.S. 
Geological Survey and New Mexico Bureau of Mines and 
Mineral Resources, 2006) and adjusted where necessary. 
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Table 1.  Zone definitions for river channel (RC), lower Santa Fe (LSF), middle Santa Fe (MSF), and upper Santa Fe (USF) Group 
hydrostratigraphic units used in three-dimensional hydrogeologic framework model.

Equivalent 
Zone Lithofacies; dominant Hawley 

Lithology, sediment texture Occurrence
code depositional setting facies 

designation
10 River-valley, fluvial— 

basal channel deposits
Pebble to cobble gravel  

and sand
Axial parts of RC unit a1

15 Basin-floor fluvial plain Sand and pebble gravel, 
lenses of silty clay

Common in USF 1

20 River-valley, fluvial—
Braided plain, channel 
deposits

Sand and pebbly sand Adjacent to axis of RC unit a2

25 Basin-floor fluvial, locally 
eolian

Sand; lenses of pebble sand, 
and silty clay

Common in USF 2

30 River-valley, fluvial—
Overbank, meander-
belt, oxbow deposits

Silty clay, clay, and sand Adjacent to axis of RC unit a3

35 Basin-floor, fluvial- 
overbank fluvial-deltaic 
and playa-lake; eolian

Interbedded sand and silty 
clay; lenses of pebbly sand

Major component of middle Santa Fe hydrostratigraphic 
unit, and minor constituent of unit upper Santa Fe: sand, 
pebbly sand and silty sand beds form a major part of the 
medial aquifer system

3

40 Eolian, basin-floor alluvial Sand and sandstone; lenses 
of silty sand to clay

Major component of lower Santa Fe hydrostratigraphic 
unit; sand and silty sand beds form a large part of deep 
aquifer system in LSF

4

50 Distal to medial piedmont-
slope, alluvial fan

Gravel, sand, silt, and clay; 
common loamy (sand- 
silt-clay)

Component of both the USF and MSF  hydrostratigraphic 
units; clean to loamy sand and gravel lenses form parts 
of the medial and upper aquifer system

5

51 River-valley, fluvial— 
terrace deposits, arroyo 
channels, reworked 
distal alluvial fan

Sand, gravel, silt, and clay Margins of RC deposit and in small upland drainages b

55 Distal to medial piedmont-
slope, alluvial fan

Partly indurated gravel, 
sand, silt, and clay;  
common loamy (sand- 
silt-clay)

Major component of LSF hydrostratigraphic unit; weakly-
cemented sand and gravel beds form part of the deep 
aquifer system

7

60 Proximal to medial  
piedmont-slope, 
alluvial-fan

Coarse gravelly, loamy sand 
and sandy loam; lenses 
of sand and cobble to 
boulder gravel

Component of both the USF and MSF  hydrostratigraphic 
units; clean to loamy sand and gravel lenses form parts 
of the medial and upper aquifer system

6

65 Proximal to medial  
piedmont-slope, 
alluvial-fan

Partly indurated coarse 
gravelly, loamy sand  
and sandy loam; lenses  
of sand and cobble to  
boulder gravel

Minor component of all thee SF Group hydrostratigraphic 
units; weakly-cemented sand and gravel beds form part 
of the upper, medial, and deep aquifer systems

8

90 Basin-floor—alluvial flat, 
playa, lake, and fluvial-
lacustrine; distal- 
piedmaont alluvial

Silty clay interbedded with 
sand, silty sand and clay

Makes up fine-grained part of MSF hydrostratigraphic 
unit; sand and silty beds form very minor to negligible 
component of the medial aquifer system.

9

100 Basin-floor—alluvial  
flat, playa, lake, with 
evaporite processes

Silty clay interbedded with 
sand, silty sand and clay 
with gypsiferous and 
alkali-impregnated zones

Major component of LSF hydrostratigraphic unit; weakly-
cemented sand and gravel beds form a very minor to 
negligible component of the  deep aquifer system

10

0 This code is used for units that have been eroded at the upper surface of the model and are absent, with a normal stratigraphic 
sequence of older units present

999 This code is used where a unit is absent within the stratigraphic stack and was given an arbitary thickness of 5 feet. Zone code is 
intended to be a pass-through; no lithologic significance is implied.
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For use within a numerical hydrologic model, faults were 
classified according to their recency and the stratigraphic units 
that each fault offsets (fig. 4; Sweetkind and others, 2017). 
Fault recency describes the youngest HSU that the fault cuts 
completely. Fault recency was determined through compari-
son with the Quaternary fault and fold database of the United 
States (U.S. Geological Survey and New Mexico Bureau of 
Mines and Mineral Resources, 2006) and through inspection 
of the structural offset of each fault as shown on geologic 
cross sections (Hawley and Kennedy, 2004). 

Fault lines were converted to a series of regularly 
spaced points which were assigned x and y coordinates and 
exported as a series of files. These files were used within 
horizon-gridding software to incorporate offsets in HSUs 
during the gridding process. For computational convenience 
and to maintain consistency with published interpretations 
(Hawley and Kennedy, 2004; Hawley and others, 2009), 
all faults in the study area were generalized as vertical 
boundaries.

Structure Contour Maps

Hawley and Kennedy (2004) published structure con-
tour maps showing the elevation of the base of the Santa Fe 
Group (top of pre-Santa Fe Group basement rocks) for the 
Mesilla, Palomas, and Jornada structural basins. Structure 
contour maps showing the elevation of the base of the USF 
and MSF HSUs were created for the Mesilla basin in con-
junction with the USGS during the Transboundary Aquifer 
Assessment Program (J.W. Hawley, HAWLEY GEOMAT-
TERS, written commun., 2011; Alley, 2013) and southern 
Palomas basin (this study) based on available surface and 
subsurface data. 

Structure contour lines were digitized in a GIS and 
converted to a series of regularly spaced points, which were 
assigned horizontal coordinate locations from the map base 
and elevations from the contour elevation. A series of files 
that contained x, y, and z coordinates for each HSU horizon 
was exported.

Well Data

Hawley and Kennedy (2004) compiled well data from 
numerous sources that include subsurface intercepts of HSU 
tops for the Mesilla, Palomas, and Jornada basins. Well data 
from the Chihuahan part of the Mesilla basin are from Servicio 
Geologico Mexicano (2011) and from well data compiled dur-
ing the Transboundary Aquifer Assessment Program (Alley, 
2013). Well data were incorporated during the drafting of the 
structure-contour maps for each HSU rather than used explic-
itly during horizon gridding. Well data were used as a check of 
the resultant gridded horizons.

Geophysical Data

Servicio Geologico Mexicano (2011) published the 
results of a high-resolution aeromagnetic survey and profiles 
based upon time-domain electromagnetic (TEM) soundings 
for the Chihuahan part of the Mesilla basin. The aeromagnetic 
data were used in refining and interpreting the locations of 
faults in the southern part of the Mesilla basin; profiles from 
the TEM soundings were used to define the elevation of HSU 
tops along the line of profile. The locations of three faults 
near the west flank of the Franklin Mountains were based on 
modeling results of detailed gravity data (Imana, 2002; Kha-
tun, 2003; Khatun and others, 2007) and an east-west seismic 
profile (Figuers, 1987). 

Table 2.  Zone definitions for pre-Santa Fe Group basement 
(BSMT) hydrostratigraphic unit used in three-dimensional 
hydrogeologic framework model.

Zone 
code

Rock 
unit

Bedrock units

10 Precambrian rocks, undivided

20 Lower and middle Paleozoic, primarily carbonate rocks

30 Pennsylvanian and Permian rocks

40 Cretaceous rocks

Teriary sediments

50 Lower Eocene-Paleocene sedimentary rocks
55 Lower Tertiary volcaniclastic sedimentary rocks and 

andesite flows
Intrusive rocks

60 Oligocene intermediate to silicic plutonic rocks 

65 Lower Tertiary intermediate-composition volcanic rocks

Volcanic rocks

70 Middle Tertiary silicic to intermediate composition lavas

73 Middle Tertiary silicic pyroclastic and volcaniclastic rocks

76 Middle to upper Tertiary basaltic-andesite lava flows
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Figure 6.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing study area and locations of published geologic cross sections used as input data for three-
dimensional hydrogeologic framework model.
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Modeling Methodology

A 3D HFM was constructed to represent the subsurface 
geometry, thickness, and structure of the hydrostratigraphic 
units RC, USF, MSF, LSF, and BSMT. This digital model pro-
vides the fundamental geologic framework for the subsequent 
development of a transient numerical hydrologic model of the 
study area (Randall Hanson, USGS, written commun., 2015). 
The 3D HFM is constructed through combining four digital 
framework elements: 

•	 faults, 

•	 elevation of the tops of each hydrostratigraphic unit, 

•	 boundary lines depicting the subsurface extent of each 
HSU, and 

•	 a digital representation of the distribution of 
sedimentary facies within each HSU. 

The comprehensive hydrogeologic conceptualization of 
Hawley and Kennedy (2004) is the primary dataset used in the 
subsurface interpretations for the digital 3D HFM presented in 
this report. 

The initial step in constructing the 3D HFM was extracting 
digital information from a variety of datasets, such as elevation 
models, geologic maps, borehole data, cross sections, and struc-
ture contour maps and combining them in a centralized geospa-
tial database (fig. 7). Geologic data described in the previous 
sections and used as input to the 3D HFM were compiled using 
Environmental Science Research Institute (ESRI) ArcGISTM 
software (fig. 7). Surfaces, or horizons, representing the eleva-
tion of the top of each HSU were created through interpolation 
of input data points into grids using Golden Software SurferTM 
two-dimensional (2D) horizon gridding software (fig. 7). For 
efficient translation to the numerical hydrologic model, resultant 
gridded horizons representing the HSU tops were mapped to 
an x, y array of nodes representing the centroids of cells in the 
anticipated numerical hydrologic model (Sweetkind and others, 
2017). The array of nodes is skewed to the northwest to support 
the anticipated focus of the numerical hydrologic model on the 
Mesilla and Palomas basins. The array of nodes for the entire 
study area represents almost 330,000 square grid cells that are 
656 ft (200 m) in both x and y dimensions. Resultant dimen-
sions of the array for the entire study area are 40.8 mi (328 grid 
cells) in the northeast-southwest direction and 113.3 mi (912 
cells) in the northwest-southeast direction; the region of cells 
that will actively participate in the numerical hydrologic model 
occupy a much smaller region within the study area (fig. 1; 
Randall Hanson, USGS, written commun., 2015). Each node 
within the array is assigned multiple attributes representing the 
elevation of the top, thickness, and facies zone assignment for 
each HSU (Sweetkind and others, 2017). 

The final 3D HFM was compiled from the gridded sur-
faces of HSU tops by stacking the individual gridded surfaces 
in stratigraphic order using Rockware Rockworks17TM three-
dimensional (3D) modeling software (fig. 7). Unit thickness is 
represented by the difference between elevations of successive 

stratigraphic tops, such that the elevation of the base of a unit 
is always equal to the elevation of the top of the unit directly 
below it in the stacking order. The 3D HFM is calculated as a 
cell-based solid model where the 3D volume is populated by 
volume elements, called voxels, that completely define each 
model-generated HSU at all points in space, filling the volume 
defined by the HSUs extent, top, and base. Each voxel has a 
defined x, y, z location at its center and is assigned an attribute 
that corresponds to a HSU name based upon the location of 
each voxel with respect to the gridded HSU surfaces. 

Creation of Top Surfaces of the Major 
Hydrostratigraphic Units

Construction of the 3D HFM began with the stacking of 
gridded surfaces representing the elevation of the top of each 
HSU. Because of the requirement for grids to be continuous, 
in some x, y locations stratigraphically lower units are exposed 
at land surface, and corresponding grid cells in all overlying 
units are forced to have the same land-surface elevation and 
zero thickness at those x, y locations. Elevation and thickness 
for each HSU with respect to the elevations of other HSUs 
in the geologic framework model may be described by four 
general geometric cases (fig. 8):
1.	 The HSU of interest is present in the subsurface beneath 

other HSUs, such that the elevation of the HSU top 
is defined by geologic data or by the thickness of the 
overlying HSU and the thickness of the unit is defined 
by geologic data. 

2.	 The HSU of interest crops out at land surface, such 
that the eroded top of the unit is defined by the digital 
elevation model and the thickness of the unit is defined 
by geologic data or, in the case of BSMT, as an arbitrary 
thickness.

3.	 The HSU of interest has been removed by erosion where 
an older HSU crops out at land surface. In this case, the 
grid representing the elevation of the top of the HSU of 
interest is assigned the land-surface elevation from the 
digital elevation model and assigned zero thickness.

4.	 The HSU of interest is absent in the subsurface because 
of the presence of an unconformity; for example, where 
HSU USF might directly overlie HSU BSMT with no 
intervening MSF or LSF HSUs. Within the subsurface 
modeling domain, computational requirements of the 
anticipated numerical hydrologic model require a non-
zero thickness for every HSU. Therefore, in this special 
case, the HSU of interest is assigned an arbitrary thick-
ness of 5 ft and the top of the underlying HSU is forced 
downward by 5 ft at those x, y locations (fig. 8). 

Using the geometric rules described above, the eleva-
tions of the tops of the RC and USF HSUs were constructed 
using the digital elevation model and the digital geologic 
map, without gridding of geologic input data. Where RC 
exists within the incised floodplain of the Rio Grande, the top 
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Figure 8.  Diagrammatic cross section showing relative elevation of hydrostratigraphic unit tops and resultant thickness 
within the three-dimensional hydrogeologic framework model.
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of RC is defined by land surface. Grid nodes within the unit 
extent of RC were assigned z values by sampling the digital 
elevation model at each cell centroid location. Outside the 
RC unit extent boundary, cells were assigned an arbitrary 
null value of –99999. The base of the fluvial deposits of RC 
is interpreted to be about 80 ft below the inner-valley floor, 
based on analyses of well driller’s logs and borehole geophys-
ical logs (Nickerson, 1986, 1989). In the 3D HFM, RC was 
assigned a thickness of 80 ft and the base of RC was defined 
as 80 ft below land surface.

For the upper surface of USF, the elevation of the HSU 
top is everywhere defined by the digital elevation model except 
where the unit is overlain by RC, such that the top of USF is 
dependent on the thickness of RC. For those areas where USF 
crops out at land surface—identified by querying the digital 
geologic map—grid nodes were assigned z values by sampling 
the digital elevation model at each cell centroid location. For 
areas where HSUs that underlie USF crop out at land surface 
and USF is absent because of erosion, grid nodes were assigned 
z values by sampling the digital elevation model at each cell 
centroid location but the thickness of USF was set to zero 
(fig. 8). Where inferred to be present beneath RC, the top of 
USF was assigned as 80 ft below land surface elevation.

The upper surfaces of HSUs MSF, LSF, and BSMT were 
defined by gridding geologic data (fig. 9). Structure contour 
maps that were constructed from cross section and well data and 
depict the elevation of each HSU top (Hawley and Kennedy, 
2004; Alley, 2013) were digitized in a GIS. Structure contour 
lines were digitized and then converted to a series of regularly 
spaced points which were assigned coordinate locations from 
the map base and elevations from the contour elevation (fig. 9). 
Outcrop areas of each HSU were sampled from the digital geo-
logic map with points at a 500-ft x, y spacing, and points were 
assigned an elevation from a digital elevation model (fig. 9). For 
each HSU, data from structure contour lines and outcrops were 
combined and gridded using a minimum curvature contouring 
algorithm with square grid cells of 250-ft dimension in both the 
x- and y-direction, with no preprocessing to filter or decluster 
the data. Data were contoured using faults as two-dimensional 
boundaries that acted as a barrier to information flow during 
horizon gridding. Only those faults inferred to completely cut 
the HSU of interest were included during gridding. For exam-
ple, in gridding HSU MSF, only those faults interpreted to cut 
USF or MSF were used; faults interpreted to cut only LSF or 
BSMT were not used. The resulting grids were clipped to a unit 
extent boundary interpreted from the geologic data. Where an 
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Figure 9.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing the location and types of input geologic datasets used for gridding of top of lower Santa Fe 
(LSF) hydrostratigraphic unit in the three-dimensional hydrogeologic framework model.
sweetkind_den17-0044_IP-074910_figure_09
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HSU is present (model cell lies within the unit extent), the HSU 
has a defined elevation and thickness; where an HSU is absent 
in the 3D HFM (model cell lies outside of the unit extent poly-
gon), thickness is zero and a null value of –99999 is used for the 
elevation of the unit and subunit tops for that cell.

Final gridded surfaces representing the tops of HSUs 
MSF, LSF, and BSMT were derived through an iterative 
process involving multiple cycles of grid creation, evaluation, 
and editing (fig. 7). Data control points were locally added to 
control gridding behavior in data-poor areas, at the margins 
of the grid domain, and adjacent to large-displacement faults 
where the absolute elevation change of the surface across a 
fault presented difficulties for the minimum curvature contour-
ing routine (fig. 9). Locally, specific grid nodes were hand 
edited to remove gridding artifacts, grid overextrapolation, and 
to explicitly honor fault locations. Grids were edited or clipped 
to force HSU tops to be at or below land surface elevation and 
to ensure that the elevation of the top of each HSU was not 
higher than the bottom of an overlying HSU grid nor lower 
than the tops of underlying HSUs.

Modeling of Facies Variations for HSUs

The spatial variability of material properties for each 
HSU is represented using a number of hydrogeologic zones 
(tables 1 and 2). Zones were defined to represent geologic 
materials that likely have fairly uniform hydraulic properties 
and were derived from previously published interpretations of 
lithofacies assemblages (Hawley and Lozinsky, 1992; Hawley 
and others, 2001, 2009; Hawley and Kennedy, 2004). The 
hydrogeologic zonation presented for each HSU is intended as 
a starting point for assignment of horizontal hydraulic con-
ductivity values to an HSU within the numerical hydrologic 
model (Randall Hanson, USGS, oral commun., 2015). 

For the HSUs that represent Santa Fe Group rocks, 
lithofacies-based zones (table 1) were derived from lithofacies 
assemblages shown on previously published cross sections of 
the study area (Hawley and Kennedy, 2004, plates 3, 4, R4, and 
R5; Hawley and others, 2009, plate 2). A scanned image of each 
cross section was scaled and georeferenced in a GIS along the 
cross-section trace of the digital source map. In a GIS, polygons 
were drawn in map view that corresponded to lithofacies assem-
blages shown on each cross section, surface-mapped outcrops 
and faults were used as guides in the construction of polygons. 
The network of published sections (fig. 6) allowed for internal 
consistency checks between adjacent and crossing sections. 
The configuration of hydrogeologic zones for each HSU was 
also checked against published facies interpretations of Santa 
Fe Group rocks (Mack and others, 1994, 2006; Mack, 2004). 
The resultant hydrogeologic zones within the 3D HFM (table 1) 
are based on the previously defined lithofacies assemblages 
(Hawley and others, 2001), with slight changes in nomenclature 
to facilitate use within the numerical hydrologic model.

For RC, zonation (table 1) was based on interpretation 
of soil survey data from the Natural Resources Conservation 
Service for Doña Ana, Grant, and Luna Counties, New Mexico, 

and El Paso County, Texas (U.S. Department of Agriculture, 
2017). Reported soil textural classes were ranked by grain size 
and presence of clay into four general hydrogeologic categories 
(table 1) that are similar to previously published lithofacies 
zones (Hawley and others, 2001; Hawley and Kennedy, 2004): 

•	 active river channel (gravels and sands of the river 
channel), 

•	 braided plain (sands, gravels, and silts),

•	 overbank (clay dominated deposits), and

•	 reworked alluvial fan. 
In a GIS, numerous small polygons from the original soil 

surveys were generalized into hydrogeologic zones based on 
dominant textural type and location (Sweetkind and others, 
2017). Zonation was applied to only the upper subdivision 
RC1; RC2 was left unzoned because surficial soils data were 
not appropriate to use for the lower part of the unit and pub-
lished cross sections do not include textural data for RC. 

BSMT was subdivided into hydrogeologic zones based 
on lithology (table 2). In a GIS, polygons representing out-
crops of all pre-Santa Fe Group rocks were displayed and 
classified. A scanned image of each published cross section 
was scaled and georeferenced in a GIS along the cross-section 
trace of the digital source map. In a GIS, basement lithol-
ogy polygons were drawn in map view to be consistent with 
interpreted lithology shown on the cross sections and surface-
mapped outcrops (table 2).

Elevation, Thickness, Unit Extent, and 
Facies Patterns of Hydrostratigraphic 
Units

This section presents the results of the construction of 
the subsurface geometry, including unit extent, elevation, 
and thickness, for each hydrostratigraphic unit. The spatial 
variability of interpreted depositional facies for each HSU is 
represented using hydrogeologic zones. The results presented 
here are available as a digital GIS dataset accessible at https://
doi.org/10.5066/F7JM27T6.

River Channel (RC)

RC underlies the river-valley floor across the entire study 
area and fills the incised inner valley floodplain, which in places 
is as much as 5 mi wide (fig. 10). The floodplain alluvial depos-
its of RC range in thickness from 60 to 100 ft (Wilson and oth-
ers, 1981; Nickerson, 1986, 1989); in the 3D HFM, the base of 
RC was defined as 80 ft below land surface (fig. 8). Throughout 
most of the study area, deposits of RC are incised into USF or, 
in the Palomas basin, into MSF. In Selden Canyon and El Paso 
narrows, the RC deposits are incised into pre-Santa Fe Group 
bedrock units with no intervening alluvial basin fill (fig. 3).

https://doi.org/10.5066/F7JM27T6
https://doi.org/10.5066/F7JM27T6
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Figure 10.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing elevation of base of river channel (RC) hydrostratigraphic unit used in the three-dimensional 
hydrogeologic framework model. (NAVD 88, North American Vertical Datum of 1988)
sweetkind_den17-0044_IP-074910_figure_10
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RC includes river-channel and overbank deposits consisting 
of poorly sorted gravel and coarse- to medium-grained sand with 
lenses of silt and clay (Wilson and others, 1981; Hawley and 
Kennedy, 2004). RC1 is divided into hydrogeologic zones on the 
basis of surficial soils data (fig. 11); the lower zone RC2 is undi-
vided. Wilson and others (1981) report that the basal part of the 
floodplain alluvium is generally a layer of well-rounded siliceous 
gravel ranging from 20 to 40 ft in thickness.

Upper Santa Fe (USF)

The top of USF is at land surface except where overlain by 
RC (fig. 12). In the Palomas basin, USF is generally less than 
250 ft thick and is absent where the Rio Grande has incised 
into MSF units (fig. 13). USF ranges in thickness in the Mesilla 
basin from less than 250 ft to as much as 1,250 ft east of the 
mid-basin high (fig. 13). USF thickness in the Mesilla basin 
and much of the Jornada basin is relatively thin when compared 
to USF in the adjacent Hueco Bolson, where it is greater than 
1,500 ft thick (fig. 13; Hawley and others, 2009). 

The pattern of facies zones in the upper part of USF 
(USF1, fig. 14) corresponds to the modern depositional set-
ting of coarse-grained deposits along the Rio Grande, flanked 
by sandy basin floor fluvial plain deposits, both of which are 
inset into broad, distal to medial facies piedmont-slope and 
alluvial fan deposits. During the time period equivalent to the 
lower part of USF (fig. 15, USF2), the ancestral Rio Grande 
occupied a broad fluvial plain wider than the present topo-
graphic Mesilla Valley (Mack and others, 2006), resulting in 
thick sequences of medium-grained fluvial deposits that grade 
southward into finer-grained basin floor and lacustrine facies, 
flanked by narrow bands of piedmont-slope alluvium (fig. 15). 

Middle Santa Fe (MSF)

MSF lies at very shallow depths beneath much of the Palo-
mas and Jornada basins (fig. 16). MSF is deeper in the Mesilla 
basin, particularly to the east and west of the mid-basin high 
and along the Mesilla Valley fault zone (fig. 16). In the Mesilla 
basin, MSF ranges in thickness from less than 250 ft to about 
1,000 ft, being thickest to the east and west of the mid-basin 
high, and thinning south of the international border (fig. 17). In 
contrast, both the Jornada and Palomas basins feature regions 
where MSF is 1,500 ft thick or more, providing evidence for 
a northwest-trending depositional trough present during MSF 
time (Mack and others, 1994; Mack, 2004). In the Jornada and 
Palomas basins, MSF is thickest against basin-bounding normal 
faults including the Jornada, Red Hills, and Derry faults (fig. 17) 
as a result of syntectonic deposition of MSF sediment (Mack 
and others, 1994; Mack, 2004)

In the Mesilla basin, MSF1 and MSF2 are dominated by 
basin-floor, fluvial-overbank, fluvial-deltaic, and playa-lake 
lithofacies (figs. 18 and 19, zones 35 and 90) consisting of 
fine-grained, interbedded sand and silt-clay beds up to 1,000 ft 
thick (Leggat and others, 1962). This sequence interfingers with 

piedmont-slope alluvium within narrow bands on the east, west, 
and southern margins of the basin (figs. 18 and 19, zones 50 and 
55). In Palomas basin, MSF1 is dominated by a thick sequence 
of fine-grained basin-floor sediments, including silty clay beds 
interbedded with evaporites (figs. 18 and 19, zones 90 and 100). 
These sediments represent deposition in restricted, closed-basin 
environments as a result of active uplift of surrounding mountain 
blocks (Mack and others, 1994; Mack, 2004). 

Lower Santa Fe (LSF)
The elevation of the top of LSF (fig. 20) shows the 

Palomas basin as a half graben that dips eastward into the 
basin-bounding Derry and Red Hills faults, the Jornada 
basin dipping southwestward into the Jornada fault, and two 
subbasins within the Mesilla basin separated by the mid-
basin high (fig. 20). LSF is thickest in the southern part of the 
Jornada basin and is as much as 1,000 ft thick on the eastern 
side of the Palomas basin and within the two subbasins of the 
Mesilla basin that flank the mid-basin high (fig. 21).

Lithofacies zones for LSF differ markedly between the 
Palomas and Mesilla basins (figs. 22 and 23). Active uplift of 
the Caballo Mountains resulted in the deposition of relatively 
coarse-grained piedmont-slope and alluvial fan deposits in the 
Palomas basin (figs. 22 and 23, zone 55; Mack and others, 1994; 
Mack, 2004). In contrast, uplifts bounding the Mesilla basin 
were distant, resulting in deposition of fine- to medium-grained 
fluvial-deltaic and playa-lake deposits (figs. 22 and 23, zones 
90 and 100; Hawley and others, 2001; Hawley and Kennedy, 
2004). On the east side of Mesilla basin, LSF includes a distinc-
tive eolian sand facies (figs. 22 and 23, zone 40) that consists 
of as much as 600 ft of clean, fine to medium sand interpreted 
as paleo-dune deposits (Hawley and others, 2001; Hawley and 
Kennedy, 2004). These deposits form a productive aquifer zone 
at 1,000 to 1,500 ft depth in the Anthony-Cañutillo area (Leggat 
and others, 1962; Nickerson, 1989; Hawley and Kennedy, 
2004). Similar deposits are present on the west flank of the 
Mesilla basin where eolian sands may be as thick as 1,000 ft 
(Hawley and Kennedy, 2004).

Basement (BSMT)
The elevation of the top of BSMT shows the three main 

structural basins (Palomas, Jornada, and Mesilla) between 
uplifts of pre-Santa Fe Group rocks (fig. 24). The zonation of 
BSMT (fig. 25) is based on published cross sections (Hawley 
and Kennedy, 2004; Hawley and others, 2009) and include data 
from deep drill holes (Gross and Icerman, 1983; Seager and 
others, 1987; Woodward and Myers, 1997). Drill hole data from 
the center part of the Mesilla basin support the interpretation 
that Neogene volcanic and volcaniclastic rocks underlie Santa 
Fe Group rocks beneath most of the basin (Seager and others, 
1987; Hawley and Kennedy, 2004). Santa Fe Group HSUs are 
interpreted to overlie Precambrian, Paleozoic, and Cretaceous 
rocks adjacent to the Caballo, Robledo, East Potrillo, and 
Franklin Mountains and Sierra de Juarez (fig. 25; Hawley and 
Kennedy, 2004).
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Figure 11.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for upper part of river channel (RC1) hydrostratigraphic unit used in the three-
dimensional hydrogeologic framework model.
sweetkind_den17-0044_IP-074910_figure_11

106°30'107°00'107°30'

33°00'

32°30'

32°00'

31°30'

0 30 MILES15

0 30 KILOMETERS15

San Andres  M
ountains

Jornada basin

Caballo   M
ountains

Boundary of active
cells in numerical model

Palom
as basin

SIERRA COUNTY

Truth or Consequences

Caballo
Reservoir

LUNA COUNTY

SIERRA
COUNTY

Sierra de las Uvas

Organ M
ountains

Mesilla basin

Franklin
M

ountains

M
esilla Valley

MEXICO
USA

El Paso
narrows

NEW MEXICO
TEXAS

EL PASO
COUNTY

Rio Grande

Study area
boundary

CañutilloCañutillo

Las Cruces

El Paso

Hueco          BolsonCiudad
Juárez

Sierra
de

Juárez

M
EXICO

USA

JUÁREZ
MUNICIPIO

ASCENSIÓN
MUNICIPIO

Doña Ana

M
ountainsRobledo

M
ountains

G
R

A
N

T C
O

U
N

TY

O
TER

O
 C

O
U

N
TY

D
O

Ñ
A

 A
N

A
 C

O
U

N
TY

Valley

Rincon

Lorem ipsum

Selden
Canyon

Hillshade from USGS 10-meter National Elevation Dataset
Base from USGS 1:24,000-scale digital data, 2016
Transverse Mercator Projection, UTM Zone 13N
North American Datum 1983 (NAD 83)

EXPLANATION
Hydrogeologic zones for upper river 
    channel 1 (RC1) hydrostatic unit—
    Number represents zone codes in 
    table 1

River-valley, fluvial—Overbank, 
    meander-belt, oxbow deposits, 30
River-valley, fluvial—Terrace deposits, 
    arroyo channels, reworked distal 
    alluvial fan, 51

RC1 not present

River-valley, fluvial—Braided plain, 
    channel deposits, 20

River-valley, fluvial—Basal channel 
    deposits, 10



Elevation, Thickness, Unit Extent, and Facies Patterns of Hydrostratigraphic Units    23

Figure 12.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing gridded elevation of top of upper Santa Fe (USF) hydrostratigraphic unit as used in the three-
dimensional hydrogeologic framework model. (NAVD 88, North American Vertical Datum of 1988)sweetkind_den17-0044_IP-074910_figure_12
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Figure 13.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing gridded thickness of upper Santa Fe (USF) hydrostratigraphic unit as used in the three-
dimensional hydrogeologic framework model. (NW, northwest; SW, southwest)
sweetkind_den17-0044_IP-074910_figure_13
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Figure 14.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for upper part of upper Santa Fe hydrostratigraphic unit (USF1) as used in the three-
dimensional hydrogeologic framework model.
sweetkind_den17-0044_IP-074910_figure_14
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Figure 15.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for lower part of upper Santa Fe hydrostratigraphic unit (USF2) as used in the three-
dimensional hydrogeologic framework model.sweetkind_den17-0044_IP-074910_figure_15
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Figure 16.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing gridded elevation of top of middle Santa Fe (MSF) hydrostratigraphic unit as used in the three-
dimensional hydrogeologic framework model. (NAVD 88, North American Vertical Datum of 1988)
sweetkind_den17-0044_IP-074910_figure_16
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Figure 17.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing gridded thickness of middle Santa Fe (MSF) hydrostratigraphic unit as used in the three-dimensional 
hydrogeologic framework model.
sweetkind_den17-0044_IP-074910_figure_17
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Figure 18.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for upper part of middle Santa Fe hydrostratigraphic unit (MSF1) as used in the three-
dimensional hydrogeologic framework model.sweetkind_den17-0044_IP-074910_figure_18
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Figure 19.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for lower part of middle Santa Fe hydrostratigraphic unit (MSF2) as used in the three-
dimensional hydrogeologic framework model.sweetkind_den17-0044_IP-074910_figure_19
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Figure 20.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing gridded elevation of top of lower Santa Fe (LSF) hydrostratigraphic unit as used in the three-
dimensional hydrogeologic framework model. (NAVD 88, North American Vertical Datum of 1988)
sweetkind_den17-0044_IP-074910_figure_20
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Figure 21.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing gridded thickness of lower Santa Fe (LSF) hydrostratigraphic unit as used in the three-
dimensional hydrogeologic framework model.sweetkind_den17-0044_IP-074910_figure_21
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Figure 22.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for upper part of lower Santa Fe hydrostratigraphic unit (LSF1) as used in the three-
dimensional hydrogeologic framework model.
sweetkind_den17-0044_IP-074910_figure_22
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Figure 23.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for lower part of lower Santa Fe hydrostratigraphic unit (LSF2) as used in the three-
dimensional dydrogeologic framework model.
sweetkind_den17-0044_IP-074910_figure_23
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Figure 24.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing gridded elevation of top of basement hydrostratigraphic unit (BSMT) as used in the three-
dimensional hydrogeologic framework model. (NAVD 88, North American Vertical Datum of 1988)
sweetkind_den17-0044_IP-074910_figure_24
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Figure 25.  Map of Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, 
Mexico, showing zone codes for basement hydrostratigraphic unit (BSMT) as used in the three-dimensional 
hydrogeologic framework model. (NAVD 88, North American Vertical Datum of 1988)
sweetkind_den17-0044_IP-074910_figure_25
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Middle to upper Tertiary basaltic 
    andesite lava flows, 76

Middle Tertiary silicic pyroclastic and 
    volcanisclastic rocks, 73

Volcanic rocks

Lower Eocene-Paleocene 
    sedimentary rocks, 50
Lower Tertiary volcaniclastic 
    sedimentary rocks and andesite 
    flows, 55

Tertiary sedimentary rocks

Oligocene intermediate to silicic 
    plutonic rocks, 60
Lower Tertiary intermediate-
    composition volcanic rocks, 65

Intrusive rocks
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Visualization of the 3D Hydrogeologic 
Framework Model

A perspective view of the 3D HFM shows the upper 
surface of the model and subsurface geology in the south-
eastern part of the model (fig. 26). In this view, the solid 
volume of the 3D HFM fills the skewed northwest-trending 
rectangular polygon of the study area boundary; the solid 
model has been cut away at its southeast corner so that some 
of the interior of the model volume can be viewed. Faults in 
the subsurface are modeled as curved vertical panels and are 
visible in the cutaway view. In this perspective view, model 
cells or voxels representing the five HSUs are symbolized and 
labeled RC, USF, MSF, LSF, and BSMT (fig. 26). The upper 
surface of the 3D HFM is limited by a digital elevation model 
and represents a map of the hydrostratigraphic units predicted 
by the model to be present at land surface. The patterns of 
the hydrostratigraphic units at the upper surface of the 3D 
HFM generally correspond to outcrops shown in the geologic 
map of the basin (fig. 3), providing a first-order check on the 
model’s validity.

In the perspective view of the 3D HFM, modeled 
bedrock highs of HSU BSMT are evident in the Sierra de 
las Uvas and the Caballo, Robledo, Doña Ana, and Organ 
Mountains (fig. 26). BSMT units are dotted with isolated 
voxels of USF as a result of differences in x, y resolution and 
orientation of the input grids for USF and BSMT and the x, 
y voxel resolution chosen for solid model. Outcrops of MSF 
are simulated along the incised inner valley of the Rio Grande 
in the Palomas basin where RC has incised through USF 
(fig. 26, location 1). The 3D HFM correctly simulates the 
geologic relations in Selden Canyon where the Rio Grande, 
underlain by RC, is confined to a narrow canyon through 
uplifted MSF and BSMT HSUs (fig. 26, location 2). Surface 
exposures of LSF are limited to localized outcrops in the 
study area (fig. 3), which are visible on the upper surface of 
the 3D HFM as bright red voxels in the southern part of the 
Caballo Mountains and to the north of the Robledo Mountains 
(fig. 26, location 3). 

HSUs in the subsurface are shown on the east edge of the 
solid block and in the cutaway in the southeast corner of the 
model (fig. 26). In the cutaway view, BSMT at the north end 
of the Franklin Mountains are shown along the vertical profile 
(fig. 26, location 4), but most of the Franklin Mountains block 
is higher in elevation than the base of the cutout and is not 
visible within the cutaway view. The cutaway displays the 
subsurface geology of the Mesilla basin and the stratigraphic 
stack of USF, MSF, and LSF. RC is not apparent in section 
view because it is only 80 ft (24 m) thick. Offset across faults 
is visible in the cutout as changes of elevation of the HSU 
top; the actual offset at the fault is obscured by the 3D fault 
panel (fig. 26, location 5). The horizontal floor of the cutout 
shows the subsurface geology in plan view at an elevation of 
400 m above sea level. On this plane in the southeast corner 
of the model, USF is preserved in the deep basin of the Hueco 

Bolson to the east of the Franklin Mountains uplift (fig. 26, 
location 6). Near the west edge of the cutout, the mid-basin 
high appears as an area of BSMT flanked to the east and west 
by down-dropped sections of LSF (fig. 26, location 7). 

An auxiliary animation (appendix 1) shows this same 
perspective view, but instead of a single cutout, the interior of 
the solid model is revealed from south to north by a succession 
of cross sections that display the interior volume of the model. 

Multiple vertical cross sections cut through the 3D HFM 
are another way to analyze and better understand the geom-
etry and structure of the basin-fill aquifers as portrayed by 
the 3D HFM (fig. 27). Vertical cross sections cut through the 
3D HFM are symbolized with colors representing the HSUs 
RC, USF, MSF, LSF, and BSMT. Cross sections extend to 
a depth of 1,640 ft (500 m) above sea level; the top edge 
of each section represents the topographic profile at land 
surface. Cross sections can be cut through the 3D HFM in 
any orientation. In figure 27, model cross sections are shown 
in similar orientations to some of the input sections (fig. 6; 
Hawley and Kennedy, 2004), but the length and location of 
the model sections differ from input sections for illustration 
clarity. A select number of the faults from the 3D HFM are 
shown in figure 27 for reference; faults are shown as curving 
3D panels. The offset created by faults that are not depicted 
is readily seen in the vertical profiles as abrupt changes in 
elevation of the hydrostratigraphic unit tops. For reference, an 
index map similar to figure 1 is included as a base. The index 
map is hung at an arbitrary elevation of 820 ft (250 m) above 
sea level, so that the sections appear to be extruded above the 
surface of the map.

Cross sections through the Mesilla basin dominate the 
lower half of figure 27; sections cut through the Palomas basin 
are in the upper part of the figure. BSMT uplifts bounding 
the east side of Mesilla basin include the Sierra de Juarez and 
the Franklin and Organ Mountains, and on the west side, the 
Robledo and East Potrillo Mountains (fig. 27). Palomas basin 
in bounded on the east by the BSMT uplift of the Caballo 
Mountains and on the south by the Sierra de las Uvas. The 
simulated uplifted block of the mid-basin high is apparent 
near the center of Mesilla basin (fig. 27, location 1). On the 
east flank of the Mesilla basin, fault offsets of LSF and MSF 
along the Mesilla Valley fault zone are buried by generally 
post-faulting USF (fig. 27, location 2). In the northeast part of 
the 3D HFM, the Jornada fault separates the BSMT uplift of 
the Doña Ana Mountains on the south from the thick package 
of basin fill in the southern part of the Jornada basin to the 
north (fig. 27, location 3). The most striking difference within 
the 3D HFM between the Mesilla and Palomas basins is the 
relative absence of USF in Palomas basin. The cross section in 
the Palomas basin that generally follows the course of the Rio 
Grande shows relatively thick sections of MSF that directly 
underlie the inner valley of the Rio Grande and RC in this area 
(fig. 27, location 4). 

In the associated animation (appendix 2), these same 
cross sections are rotated in 3D space so that the model results 
may be explored from different viewpoints.
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Figure 27.  Perspective view of vertical cross sections cut through three-dimensional hydrogeologic framework 
solid model.
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Model Evaluation, Use, and Limitations
The 3D HFM was evaluated for accuracy by visual 

inspection and by mathematical manipulations of the gridded 
surfaces to evaluate the elevation and thickness of the HSUs. 
The 3D HFM was compared to the known extent of HSUs, 
input cross sections, and geologic maps. 

Evaluation of Fit—Comparison to Input Data

Gridded surfaces of the HSU horizons were compared 
to the input data used to construct the surfaces to assess the 
accuracy of the gridding processes. A qualitative comparison 
of the modeled HSU tops generated by the 3D HFM (fig. 5B) 
and the published hydrogeologic cross section along the same 
line of section are shown in figure 5A (Hawley and Kennedy, 
2004, section G-G'). Model HSU tops closely match the fault 
locations and changes of HSU surface elevations from the 
published cross section, showing that model representation of 
the HSUs is a good match to the input data. 

Visually comparing in three dimensions the modeled tops 
of the HSUs with several hydrogeologic cross sections used 
as input to the 3D HFM provided another method of evaluat-
ing the model accuracy and representation (fig. 28). In this 
example, the modeled top of LSF is shown in perspective view 
with faults from the 3D HFM and some of the input hydrogeo-
logic sections referenced in 3D space. On the basis of gross 
morphology, the modeled top of LSF retains the geometric 
characteristics from the input cross sections, in all but a few 
places closely matching the interpreted top of LSF on the 
sections (fig. 28). No discrepancies of geologic or hydrologic 
significance were recognized between the input data and the 
modeled surfaces from the 3D HFM.

The modeled top of MSF from the 3D HFM was evalu-
ated in a quantitative manner by calculating the elevation 
value of the top MSF in the 3D HFM at every x, y location of 
input data used to create the top MSF surface. The z value in 
the 3D HFM was subtracted from the z value of the input data 
at each location, creating a z-residual value, which was posted 
on a base map (fig. 29A). Z-residual values are generally 
less than 50 ft throughout most of the active model domain 
(fig. 29A); the mean difference in elevation of top MSF 
between input data and the 3D HFM is 19.3 ft (fig. 29B). This 
difference was calculated as a percentage of the z-value range 
of the input data; mean z-residuals are 1 percent of the total 
range in elevation of the input data. Z-residuals are high in 
one fault block at the southwest edge of the model, adjacent to 
some faults, such as the Mesilla Valley fault zone on the east 
edge of the active model, and near Selden Canyon where close 
spacing between surface outcrops and subsurface locations of 
MSF produce gridding instabilities. The elevation value of the 

top MSF in the 3D HFM was similarly compared to selected 
wells from the Palomas basin (figs. 29A and C). Z-residuals 
are higher for these wells than for the input dataset, averag-
ing -34.6 ft, meaning that on average, 3D HFM elevations 
are lower than the input data. Most of the largest values of 
z-residual are for wells that are south of the active model cells, 
where 3D HFM grids were less rigorously edited (fig. 29A). 
For the well data, mean z-residuals are 5.7 percent of the total 
range in elevation of the input well data.

Applicability and Limitations

The intended use of the digital 3D HFM is to provide 
the hydrogeologic framework input to numerical hydrologic 
models used for evaluation of the availability and sustain-
ability of surface and groundwater resources. The 3D HFM 
reproduces with reasonable accuracy the previously published 
subsurface hydrogeologic conceptualization of the aquifer 
system and represents the large-scale geometry and structure 
of the aquifer systems.

Limitations of the 3D HFM include the following:

•	 The digital 3D HFM described in this report captures 
the hydrogeologic conceptualization of Hawley and 
Kennedy (2004), data developed in conjunction with 
the U.S. Geological Survey during the Transbound-
ary Aquifer Assessment Program (Alley, 2013), and 
selected other published data. Any more recent data 
and subsurface interpretations were beyond the scope 
of this model construction.

•	 The goal in construction of this 3D HFM was to repre-
sent, in digital form, the hydrogeologic conceptualiza-
tion embodied in the input datasets. Thus, any errors 
inherent in these input datasets may be propagated into 
the digital framework.

•	 Framework model error increases with distance from 
data. Although uncertainty is unquantified within the 
framework, it is reasonable to assume that the model 
is less certain where fewer input data were available to 
constrain fault locations and the elevation of hydro-
stratigraphic units. This is the case in the southwestern 
part of the study area and to the south of the Interna-
tional border, which is beyond the limits of geologic 
sections; few well data are available, and there is little 
outcrop control to guide subsurface interpretation. The 
Palomas basin has a lower density of input geologic 
sections than the Mesilla basin, but geologic outcrops 
on both sides of the basin and outcrops of Santa Fe 
Group rocks within the basin help to constrain the 
subsurface interpretation.
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Figure 28.  Perspective view of input hydrogeologic cross sections and three-dimensional hydrogeologic framework modeled 
top of lower Santa Fe (LSF) hydrostratigraphic unit.
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Summary and Conclusions
A digital three-dimensional framework model of the major 

hydrostratigraphic units (HSUs) of the lower Rio Grande basin 
in New Mexico and Texas and the Conejos-Medanos basin of 
northern Mexico was developed from existing geologic data. 
Top surfaces were created for five hydrostratigraphic units 
and then stacked in three dimensions to create a solid-volume 
digital model. The solid-volume model is internally consistent 
in that the calculated base of each HSU is coincident with the 
top of the underlying HSU, and the thickness of each unit is the 
difference between the unit top and unit bottom. Major struc-
tures and hydrogeologic unit outcrop patterns of this model are 
generally consistent with published geologic maps and subsur-
face interpretations (Hawley and Kennedy, 2004; Mack, 2004; 
Hawley and others, 2009).

The model shows the overall geometry of the Palomas 
basin, an east-tilted half graben, and the Mesilla basin, a broad 
graben with complex internal faulting. The model illustrates 
the spatial extent, elevation, and thickness of alluvium 
along the Rio Grande and three informal hydrostratigraphic 
subdivisions of the Santa Fe Group rocks which form the 
important groundwater aquifer units in these basins. Included 
in the model are numerous faults which control the overall 
configuration of the basins and offset the HSUs at basin 
boundaries and in intrabasin locations. The model is at a scale 
and resolution appropriate for use as the foundation for a 
numerical hydrologic model of the study area. 
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Appendix 1.  Animation—Solid Model Reveal
To view the MP4 file for appendix 1, return to https://doi.org/10.3133/sir20175060.

The associated file is an animation of a perspective 
view of the three-dimensional hydrogeologic framework 
model (3D HFM); it is an animated version of static figure 
26 of the report. In this animation, the solid model volume is 
successively cut from front (south) to back (north) by remov-
ing voxel layers in a sequential fashion so that successive 
panels within the solid model are revealed in each step. Cells 
within the solid volume are symbolized with colors represent-
ing the river channel (RC), upper Santa Fe Group (USF), 
middle Santa Fe Group (MSF), lower Santa Fe Group (LSF), 
and basement (BSMT) hydrostratigraphic units. Faults used to 
build the solid model are shown as curving 3D panels; selected 
faults are not shown in order to make the simulated subsurface 

geology more visible. In this animation, the faults within the 
3D model volume are not removed along with the model voxel 
layers and they remain as vertical 3D panels as the geologic 
model is successively sliced away. The upper surface of the 
solid model approximates land surface.

In the animation, the viewpoint is from the southeast 
at 50° above the horizon, and vertical exaggeration is 10x. 
Horizontal and vertical scale is variable due to the effects of 
perspective view. Colors appear variable owing to the effects 
of illumination from above and the southeast. 3D modeling 
software requires the vertical dimensions be reported in meters 
to be consistent with the x, y dimensions of the dimensions of 
the Universal Transverse Mercator (UTM) coordinates.

https://doi.org/10.3133/sir20175060
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Appendix 2.  Animation—Cross Section Panels
To view the MP4 file for appendix 2, return to https://doi.org/10.3133/sir20175060.

The associated file is an animation of a perspective 
view of vertical cross section panels cut through the three-
dimensional hydrogeologic framework model (3D HFM); it 
is an animated version of static figure 27 of the report. In this 
animation, multiple vertical cross section panels cut through 
the 3D HFM are symbolized with colors representing the river 
channel (RC), upper Santa Fe Group (USF), middle Santa Fe 
Group (MSF), lower Santa Fe Group (LSF), and basement 
(BSMT) hydrostratigraphic units. Hydrostratigraphic unit RC 
is only 80 feet (24 meters) thick and is nearly invisible in this 
view. A select number of the faults that were used to build 
the 3D HFM are shown here for reference; faults are shown 
as curving 3D panels. The offset created by faults that are 
not depicted is readily seen in the vertical profiles as abrupt 
changes in elevation of the hydrostratigraphic unit tops. For 

reference, an index map similar to report figure 1 is included. 
The index map is hung at an arbitrary elevation of 820 feet 
(250 meters) above sea level, such that the sections appear to 
be extruded above the surface of the map. 

In the animation, vertical exaggeration is 8x. The 
viewpoint is a constant 40° above the horizon. The animation 
begins with the viewpoint from due south looking to the north, 
the same view as report figure 27. The view direction changes 
sequentially in 1-degree increments in a clockwise manner. 
Lighting direction remains constant during the animation; 
the sections are lit from above by a light from due south at 
60° above the horizon and from below by a light from the 
northeast and 15° below the horizon. The effect of lighting 
results in shadowing and variable colors of the hydrostrati-
graphic units shown on the sections as the scene rotates.

https://doi.org/10.3133/sir20175060
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