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Simulated Effects of Groundwater Withdrawals from 
the Kirkwood-Cohansey Aquifer System and Piney Point 
Aquifer, Maurice and Cohansey River Basins, Cumberland 
County and vicinity, New Jersey

By Alison D. Gordon and Debra E. Buxton

Abstract
The U.S. Geological Survey, in cooperation with the New 

Jersey Department of Environmental Protection, conducted 
a study to simulate the effects of withdrawals from the Kirk-
wood-Cohansey aquifer system on streamflow and ground-
water flow and from the Piney Point aquifer on water levels 
in the Cohansey and Maurice River Basins in Cumberland 
County and surrounding areas. The aquifer system consists of 
gravel, sand, silt, and clay sediments of the Cohansey Sand and 
Kirkwood Formation that dip and thicken to the southeast. The 
aquifer system is generally an unconfined aquifer, but semi-
confined and confined conditions exist within the Cumberland 
County study area. The Kirkwood-Cohansey aquifer system 
is present throughout Cumberland County and is the principal 
source of groundwater for public, domestic, agricultural-irriga-
tion, industrial, and commercial water uses. In 2008, reported 
groundwater withdrawals from the Kirkwood-Cohansey aquifer 
system in the study area totaled about 21,700 million gal-
lons—about 36 percent for public supply; about 49 percent 
for agricultural irrigation; and about 15 percent for industrial, 
commercial, mining by sand and gravel companies, and non-
agricultural irrigation uses. A transient numerical groundwater-
flow model of the Kirkwood-Cohansey aquifer system was 
developed and calibrated by incorporating monthly recharge, 
base-flow estimates, water-level data, surface-water diversions 
and discharges, and groundwater withdrawals from 1998 to 
2008.

The groundwater-flow model was used to simulate five 
withdrawal scenarios to observe the effects of additional 
groundwater withdrawals on the Kirkwood-Cohansey aquifer 
system and streams. These scenarios include (1) average 1998 
to 2008 monthly groundwater withdrawals (baseline scenario); 
(2) monthly full-allocation groundwater withdrawals, but 
agricultural-irrigation withdrawals were decreased for October 
through March; (3) monthly full-allocation groundwater with-
drawals; (4) estimated monthly groundwater demand in 2050 at 
municipal public-supply wells; and (5) estimated 2050 monthly 
groundwater demand at municipal public-supply wells for 
which pumping of selected municipal public-supply wells was 

moved to a deeper part of the Kirkwood-Cohansey aquifer 
system. The results of the baseline scenario (scenario 1) were 
used for comparison with the results of scenarios 2‒5.

The results of scenarios 2‒3 indicate that simulated 
water-level declines occurred in the Cohansey River Basin 
when full-allocation groundwater withdrawals were incorpo-
rated (scenarios 2 and 3). In scenarios 2 and 3, full-allocation 
withdrawals in the Cohansey River Basin were approximately 
266 and 407 percent greater, respectively, than in the baseline 
scenario. In scenario 2, the largest decline in simulated water 
levels was more than 67 ft in June and September of scenario 
year 11, whereas in scenario 3, simulated water levels declined 
as much as 90 ft in June and more than 100 ft in September 
of scenario year 11. These simulated declines occurred in a 
small area around one pumped well in the Cohansey River 
Basin. The average decline in simulated water levels for this 
basin was less than 10 ft for scenario 2 and less than 20 ft for 
scenario 3. In scenario 2, the Menantico Creek subbasin in the 
Maurice River Basin had a decrease in base flow during about 
29 percent of the 11-year simulation period, and in scenario 3, 
the decrease occurred during about 71 percent of the 11-year 
simulation period. In scenario 3, base flow in the Cohansey 
River Basin was less than the 7-day 10-year low flow in all 
months of simulation years 7 through 11. Several agricultural-
irrigation wells and a number of public-supply wells are 
within the Cohansey River Basin and the Menantico Creek 
subbasin.

 Three additional scenarios were simulated to evaluate 
the possible use of the Piney Point aquifer in the Cumberland 
County study area using the New Jersey Regional Aquifer-
System Analysis model, which incorporates all aquifers in the 
New Jersey Coastal Plain. Various groundwater-withdrawal 
rates were input to the steady-state New Jersey Regional 
Aquifer-System Analysis model to assess changes in water 
levels in the Piney Point aquifer.

The three steady-state scenarios for the New Jersey 
Regional Aquifer-System Analysis model included the annual 
average 2004‒08 withdrawals for each well in the groundwa-
ter-flow model. The results of scenario 6 were used for com-
parison to the results of scenarios 7 and 8. The groundwater 
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withdrawals in scenario 7 are the same as in scenario 6, except 
withdrawals from 50 municipal public-supply wells in the 
Kirkwood-Cohansey aquifer system that are within the bound-
ary of the Cumberland County study area were increased to 
estimated 2050 withdrawals. In addition, a municipal public-
supply well from nine municipalities in the study area pump-
ing from the Kirkwood-Cohansey aquifer system was assigned 
the estimated 2050 demand for the Piney Point aquifer instead. 
The groundwater withdrawals in scenario 8 are the same as in 
scenario 6, except withdrawals from the municipal public-sup-
ply wells in the municipalities of Vineland City, Millville City, 
and Monroe Township were assigned the full-allocation with-
drawals. In addition, the full-allocation withdrawals pumped 
from one existing municipal public-supply well in each of the 
three municipalities pumping from the Kirkwood-Cohansey 
aquifer system were assigned to pump from the Piney Point 
aquifer instead. The results of the scenarios indicate that the 
Piney Point aquifer could provide a limited option for public 
supply in the southeastern part of Cumberland County with 
constraints on withdrawal rates and the number and proximity 
of wells additional to those already pumping from the Piney 
Point aquifer in Bridgeton City and Buena Borough. The 
transmissivity of the Piney Point aquifer in the Cumberland 
County study area is about an order of magnitude lower than 
the average transmissivity of the Kirkwood-Cohansey aquifer 
system in the study area. This difference in transmissivity may 
result in deeper cones of depression around the pumped wells 
in the Piney Point aquifer.

Introduction
The major source of groundwater withdrawals for public, 

domestic, commercial, industrial, and agricultural uses in the 
Maurice and Cohansey River Basins is the Kirkwood-Cohan-
sey aquifer system (fig. 1). The Piney Point aquifer underlies 
the Kirkwood-Cohansey aquifer system throughout most of 
the study area, but the groundwater withdrawals from this 
aquifer are substantially less than from the Kirkwood-Cohan-
sey aquifer system.

About 80 percent of annual streamflow in the Cohansey 
River at Seeley was base flow during water years1 1977‒88; 
during water years 1932‒94, about 87 percent of annual 
streamflow was base flow for the Maurice River at Norma 
streamflow-gaging station (fig. 2) (Charles and others, 2001). 
Groundwater withdrawals can reduce base flow to streams 
(Barlow and Leake, 2012). Increasing groundwater withdraw-
als from the Kirkwood-Cohansey aquifer system is a concern 
because of potential streamflow depletion and the resulting 
ecological effects on wetlands and stream habitats. The future 
water demand for public-supply and irrigation use in the 
Maurice and Cohansey River Basins can increasingly stress 

1 A water year is the 12-month period from October 1 to September 30 and 
is designated by the year in which it ends. 

the groundwater and surface-water systems. Annual water use 
from the Kirkwood-Cohansey aquifer system in the Cohansey 
and Maurice River Basins in Cumberland County and sur-
rounding areas increased from 10,646 million gallons (Mgal) 
in 1988 (Charles and others, 2001) to more than 24,000 Mgal 
in 2008.

The U.S. Geological Survey (USGS), in cooperation 
with the New Jersey Department of Environmental Protection 
(NJDEP), conducted a study to assess the effects of withdraw-
als from the Kirkwood-Cohansey aquifer system on stream-
flow and groundwater flow and on water levels in the Piney 
Point aquifer. The study includes the surface-water drainage 
basins of the Cohansey and Maurice Rivers in the Coastal 
Plain of New Jersey in Cumberland County and parts of west-
ern Atlantic, northwestern Cape May, southern Gloucester and 
Salem Counties, and a small part of western Camden County 
(referred to as the “Cumberland County study area”) (fig. 1).

The numerical groundwater-flow model was used to 
simulate groundwater flow for five scenarios. Withdraw-
als scenarios using this groundwater-flow model are used to 
assess changes in stream base flow and water levels in the 
aquifer system. Withdrawal scenarios include (1) monthly 
groundwater withdrawals averaged from 1998 to 2008; (2) 
monthly full-allocation withdrawals with decreased agricul-
tural-irrigation withdrawals during October to March; (3) 
monthly full-allocation groundwater withdrawals; (4) esti-
mated monthly 2050 municipal public-supply demand; and (5) 
an estimated 2050 municipal public-supply demand alternative 
that moves withdrawals to a deeper part of the Kirkwood-
Cohansey aquifer system.

Purpose and Scope

The purpose of this report is to document the develop-
ment and application of a numerical groundwater-flow model 
of the Kirkwood-Cohansey aquifer system of the New Jersey 
Coastal Plain in the Maurice and Cohansey River Basins in 
Cumberland County and adjacent counties. Groundwater-
withdrawal data and estimated base flow and recharge for the 
period from 1997 to 2008 were used to calibrate the ground-
water-flow model.

Results of the Kirkwood-Cohansey groundwater-flow 
model were used to evaluate the effects of groundwater 
withdrawals on the aquifer system. Recharge for the period 
from 1997 to 2008 was used to simulate future groundwater-
withdrawal scenarios. The effects of potential future ground-
water withdrawals were assessed by simulating five scenarios 
incorporating full-allocation (maximum permitted withdraw-
als) or estimated 2050 demand. The effects on water levels and 
on stream base flow were evaluated.

A regional model of the Coastal Plain aquifer in New Jer-
sey was used to assess the future use of the Piney Point aquifer 
in Cumberland County and adjacent counties by simulating 
three scenarios. The effects on water levels in this aquifer were 
evaluated.
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Description of Study Area

The study area lies within the Coastal Plain Physio-
graphic Province and encompasses Cumberland, western 
Atlantic, and southern Gloucester and Salem Counties (fig. 1). 
Small parts of western Camden and northwestern Cape May 
Counties are also included. Most streams in the study area 
flow into the Delaware River or Delaware Bay; however, the 
Tuckahoe and Great Egg Harbor Rivers flow to the Great Egg 
Harbor Bay (fig. 2). In the northern part of the study area, land 
surface reaches 140 feet above the National Geodetic Vertical 
Datum of 1929 (NGVD 29). In the southern and western parts 
of the study area along the Delaware and Great Egg Harbor 
Bays, the area is tidal, and altitudes are 5 feet (ft) or less above 
NGVD 29.

Cumberland County has a substantial agricultural 
economy and has one of the most progressive nursery and flo-
riculture industries in the United States (Cumberland County 
New Jersey, 2014). According to the NJDEP land-cover data 
from 2002, wetlands cover about 30 percent of Cumberland 
County; about 32 percent is forest, about 12 percent urban 
or developed, about 19 percent agriculture, and the remain-
ing 7 percent barren land or water (Delaware Valley Regional 
Planning Commission, 2009). By 2008, about 18 percent of 
the land of Cumberland County was classified as agricultural 
(Delaware Valley Regional Planning Commission, 2009).

 Previous Investigations

Zapecza (1989) defines the hydrologic units of the New 
Jersey Coastal Plain, including the Kirkwood-Cohansey aqui-
fer system and describes the subsurface occurrence and config-
uration of the aquifers and confining units. Sugarman (2001) 
describes the hydrostratigraphy of the Kirkwood Formation 
and Cohansey Sand.

Martin (1998) developed a numerical groundwater-flow 
model of the New Jersey Coastal Plain for the USGS Regional 
Aquifer-System Analysis (RASA) program. The New Jer-
sey Coastal Plain RASA model was updated by Voronin 
(2004) by rediscretizing the model grid to a finer cell size 
and by incorporating a spatially variable recharge rate and 
updated groundwater-withdrawal data. Cauller and Carleton 
(2005) developed a numerical groundwater-flow model of 
the Kirkwood-Cohansey aquifer system, which was used to 
examine water-management alternatives in the upper Maurice 
River Basin. Pope and others (2012) developed a numerical 
groundwater-flow model of the Kirkwood-Cohansey aquifer 
system and the underlying confined aquifers in the Great Egg 
Harbor and Mullica River Basins, which was used to examine 
water-management alternatives in that area.

 Rooney (1971) evaluates the groundwater resources 
of Cumberland County. Studies of the Kirkwood-Cohansey 
aquifer systems in the Cohansey and Maurice River (Charles 
and others, 2001), Great Egg Harbor River (Watt and Johnson, 
1992), upper Maurice River (Lacombe and Rosman, 1995), 

and Salem River (Johnson and Charles, 1997) Basins provide 
information on hydrogeology, water levels, and water quality, 
along with a surface-water and water-budget analysis.

Well-Numbering System

The well-numbering system used in this report has been 
used by the USGS in New Jersey since 1978. The well number 
consists of a county code number and a sequence number 
assigned to the well in the county. County code numbers used 
in this report are 01‒Atlantic, 07‒Cape May, 11‒Cumberland, 
15‒Gloucester, and 33‒Salem. For example, well 01-578 is the 
578th well inventoried by the USGS in Atlantic County.

Hydrogeology
The following sections describe the hydrogeologic frame-

work of the study area and the hydraulic properties that define 
groundwater flow in the Kirkwood-Cohansey aquifer system.

Hydrogeologic Framework

The model framework for this study is based on the 
hydrogeologic framework of the New Jersey Coastal Plain 
presented in Zapecza (1989). The New Jersey Coastal Plain 
is a seaward-dipping wedge of unconsolidated sediments that 
range from Cretaceous to Holocene age (Zapecza, 1989). 
These sediments consist of alternating layers of sand, gravel, 
silt, and clay that dip and thicken to the southeast and overlie 
crystalline bedrock. The sand and gravels compose the aqui-
fers of the New Jersey Coastal Plain, and the clays compose 
the confining units. A generalized hydrogeologic section of 
aquifers and confining units in the Coastal Plain of New Jersey 
that runs from northwest to southeast is shown in figure 3. The 
geologic and hydrogeologic units of the New Jersey Coastal 
Plain for this study area are listed in table 1. This study also 
used stratigraphic data accumulated during the Great Egg Har-
bor and Mullica River Basins study (Pope and others, 2012).

The Kirkwood-Cohansey aquifer system is present 
throughout the study area. The aquifer system consists primar-
ily of gravel, sand, silt, and clay sediment of the Cohansey 
Sand and Kirkwood Formation. In the study area, the aquifer 
system is composed of the hydraulically connected sediments 
of the Kirkwood and Cohansey Formations and, depending 
on location, can include overlying deposits of the Bridgeton 
Formation, Cape May Formation, and younger Holocene 
deposits. The Kirkwood-Cohansey aquifer system functions 
predominantly as an unconfined (water-table) aquifer; how-
ever, discontinuous clay units within the aquifer system may 
create semiconfined to confined conditions locally. Flowing 
wells have been reported in various locations in Commercial, 
Downe, Fairfield, and Maurice River Townships and in Mill-
ville City (Rooney, 1971).
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Figure 3. Generalized schematic hydrogeologic section of the New Jersey Coastal Plain. (modified from Martin, 1998) (Line of section 
shown in figure 2)

Table 1. Geologic and hydrogeologic units of the New Jersey Coastal Plain, Cumberland County study area, New Jersey.

 [Modified from Zapecza, 1989, table 2]

System Series Geologic unit Hydrogeologic unit, updip
Hydrogeologic unit, southeastern 

downdip

Q
ua

te
rn

ar
y

Holocene
Alluvial deposits

Kirkwood-Cohansey aquifer system

 
Kirkwood-Cohansey aquifer system
 

Beach sand and swamp deposits

Pleistocene Cape May Formation

Te
rti

ar
y Miocene

Bridgeton Formation

Cohansey Sand

Kirkwood Formation

Confining unit

Rio Grande water-bearing zone

Confining unit

Atlantic City 800-foot sand

Composite confining unit Composite confining unit

Oligocene Piney Point Formation Piney Point aquifer
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The Kirkwood Formation, lower to middle Miocene in 
age, is a marine unit that forms the basal part of the Kirkwood-
Cohansey aquifer system. In the subsurface, in the easternmost
part of the model area, thick diatomaceous clay beds with 
interbedded zones of sand and gravel are dominant; in updip 
areas, the lithology of the Kirkwood Formation changes to 
fine- to medium-grained quartz sand and silty sand. Regionally
extensive clay beds are present only in the basal part of the 
formation (Zapecza, 1989). The Cohansey Formation, middle 
Miocene in age, is a marginal marine deposit composed 
predominantly of light-colored, medium- to coarse-grained 
quartz sand with some gravel and silt. Thin interbedded clay 
layers are common locally. Clay layers as much as 25 ft thick 
are known to be present within the Cohansey Sand (Hardt 
and Hilton, 1969; Rosenau and others, 1969); however, these 
relatively thick clay layers are local in extent (Zapecza, 1989). 
The Bridgeton Formation of Miocene age is arkosic sand with 
lenses of fine gravel that were deposited in a fluvial environ-
ment. The Bridgeton Formation crops out discontinuously 
throughout most of the study area, typically at topographic 
highs. Surficial deposits of the Bridgeton Formation can be 
as much as 30 to 50 ft thick in parts of Cumberland County 
(Owens and Minard, 1979). The Kirkwood-Cohansey aquifer 
system thickens downdip from less than 50 ft near the Kirk-
wood Formation outcrop area in western Cumberland County 
to more than 500 ft in eastern Cumberland County. In the 
extreme eastern part of the Cumberland County, the Kirk-
wood-Cohansey aquifer system overlies and transitions into 
the confined aquifers of the Kirkwood Formation, namely the 
Atlantic City 800-foot sand and the Rio Grande water-bearing 
zone. Drillers’ and geophysical logs of deep wells are not 
available to define this transition in better detail. The thick-
ness of the Kirkwood-Cohansey aquifer system in this area is 

 

 

determined by the western extent of the confining unit overly-
ing the Atlantic City 800-foot sand. Here the aquifer thickness 
ranges from less than 200 feet along the western extent of the 
confining unit to more than 350 feet along the Atlantic Coast. 
A regional confining unit in the basal part of the Kirkwood 
Formation averages about 100 feet in thickness throughout 
the study area and separates the Kirkwood-Cohansey aquifer 
system and the Atlantic City 800-foot sand from the underly-
ing Piney Point aquifer (Zapecza, 1989).

Aquifer Properties

Values of horizontal hydraulic conductivity from aqui-
fer tests conducted for large water-supply wells screened in 
the Kirkwood-Cohansey aquifer system in the Cumberland 
County study area were obtained from the New Jersey Geo-
logical and Water Survey (NJGWS) hydroparameters database 
(NJGS DGS02-1) (New Jersey Geological Survey, 2008). The 
eight aquifer test locations are shown in figure 4. The hydrau-
lic properties of the Kirkwood-Cohansey aquifer system 
compiled from these aquifer tests conducted between1989 
and 1999 indicate that transmissivity values range from about 
4,000 to more than 38,000 square feet per day (ft2/d), and 
hydraulic conductivity values (transmissivity divided by aqui-
fer thickness) range from 80 to 420 feet per day (ft/d) (New 
Jersey Geological Survey, 2008). The horizontal hydraulic 
conductivity data are summarized in table 2 for the eight 
wells.

Horizontal hydraulic conductivity was also determined 
from analysis of specific-capacity data from well-acceptance 
tests that have a well record on file at the USGS New Jersey 
Water Science Center (fig. 5). Specific capacity is a measure 

Table 2. Horizonal hydraulic conductivity of the Kirkwood-Cohansey aquifer system determined from aquifer test data, Cumberland 
County study area, New Jersey.

[All wells are in Kirkwood-Cohansey aquifer system; ft/d, feet per day; gal/min, gallons per minute; NJDEP, New Jersey Department of Environmental  
Protection]

U.S.
Geological
Survey well 

number

NJDEP
well permit 

number

Well depth 
(feet below 

land surface)
Test date

Pumping rate  
(gal/min)

Test length 
(hours)

Hydraulic
conductivity

(ft/d)

Model 
layer

11-437 3500001277 150 07/21/1993 538 72 117 3

11-708 3500007632 163 06/22/1988 1001 47 98 4

11-712 3500012630 217 04/20/1992 1022 72 185 5

11-934 3500017509 128 04/07/1992 1200 72 154 3

11-976 3400004438 148 12/12/1993 1170 154 250 3

11-1225 3500020016 270 11/29/1999 1300 72 80 5

15-1361 3100042387 90 11/01/1993 840 72 115 2

15-1385 3100047569 70 03/26/1996 460 72 420 2
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Figure 4. Locations of wells with horizontal hydraulic conductivity determined from aquifer tests conducted on the Kirkwood-Cohansey 
aquifer system, Cumberland County study area, New Jersey.
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Figure 5. Locations of wells with horizontal hydraulic conductivity estimated from specific-capacity data, Cumberland County study 
area, New Jersey.
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of the productivity of a well and is calculated as the pump-
ing rate divided by the resulting drawdown after the well is 
pumped at the same rate for some period of time (Freeze and 
Cherry, 1979). Reported specific-capacity data and ancil-
lary information (well diameter, pumping rate and duration, 
drawdown, and screen lengths) for wells in the study area 
were retrieved from the USGS Groundwater Site Inventory 
(GWSI) database in order to estimate values of hydraulic 
conductivity. The hydraulic conductivity was estimated using 
a simplified version of the Theis equation derived for the 
determination of transmissivity from specific capacity; it is 
given in Heath (1983, p. 61) as

 K = 308 Q/sL  (1)

where K is the hydraulic conductivity, and the factor Q/sL is 
the specific capacity (Q/s) of the well per foot of well screen 
(L). The Q/sL factor is given in the well record and it takes 
into account the length of the well screen. Hydraulic conduc-
tivity estimated from the specific-capacity method ranged 
from about 21 to 770 ft/d at 393 wells in the study area that 
were pumped at a rate of at least 50 gallons per minute for 
at least 2 hours. The average horizontal hydraulic conduc-
tivity for these wells is about 187 ft/d, although more than 
62 percent of these wells have horizontal hydraulic conduc-
tivities less than this average. The median horizontal hydrau-
lic conductivity is about 144 ft/d. The distribution of the 
horizontal hydraulic conductivity values indicates the values 
are spatially variable.

Some estimates of storage properties in the study area 
are reported in the literature. Rooney (1971) reports a specific 
yield of 0.3 from an aquifer test in Deerfield Township in 
Cumberland County and a storage coefficient of 0.0003 in 
Elmer Borough in southern Salem County, indicating artesian 
or semi-artesian conditions. Rhodehamel (1973) and Charles 
and others (2001) report storage coefficients that range from 
0.044 to 0.0001 for seven aquifer tests in the study area. 

Groundwater-Flow System
In general, the Kirkwood-Cohansey aquifer system is 

recharged by precipitation on the outcrop area of the Kirk-
wood Formation (fig. 5) and the Cohansey Sand that lies 
southeast of the outcrop area of the Kirkwood Formation. 
Discharge is to streams, tidal areas along the Delaware Bay, 
Delaware River and Bay, Great Egg Harbor Bay, pumped 
wells, and the underlying aquifers, such as the Piney 
Point aquifer.

Base Flow

Base-flow sites are locations along a stream where discrete 
measurements were made during low-flow conditions over a 
period of several years. These discrete data were used with data 
from nearby long-term streamflow-gaging stations to estimate 
correlation statistics for the low-flow stations. Monthly base 
flows from January 1998 to December 2008 were estimated for 
four streamflow-gaging stations with continuous records using 
the streamflow partitioning program PART (Rutledge, 1998). 
The continuous-record streamflow-gaging stations include 
the Maurice River at Norma (01411500); the Tuckahoe River 
at Head of River (01411300); and Little Ease (01411456), a 
tributary of the Maurice River (fig. 6). The Cohansey River at 
Seeley streamflow-gaging station (01412800) was used as a 
continuous-record streamflow-gaging station starting August 
2003, so this station is also a low-flow partial-record station.

The Maintenance of Variance Extension Type 1 (MOVE1) 
program was used to estimate the low-flow statistics at partial-
record stations (Hirsch, 1982). Three or more streamflow-gag-
ing stations with similar hydrologic characteristics were used as 
index stations for each partial-record station analysis. Base-
flow estimates for the index stations with continuous records 
of instantaneous streamflow were used to compute low-flow 
statistics for the low-flow partial-record stations. Daily mean 
base flows at the index stations were correlated with mea-
sured instantaneous base flows at the partial-record stations to 
produce monthly base flows at the partial-record stations. The 
correlations between base flows at the index stations and those 
at the low-flow partial-record stations were used to compute 
monthly base flows at the 14 low-flow sites. Locations of the 
continuous-record streamflow-gaging and low-flow partial-
record stations are shown in figure 6. The MOVE1 correla-
tion statistics used to compute base flows are listed in table 3. 
The low-flow correlation equation is used to predict specific 
discharge statistics for the low-flow partial-record station on 
the basis of the same discharge statistics measured at the index 
station. The correlation coefficient is an indication of the accu-
racy of the predicted discharge. The correlation coefficient is a 
number from -1.0 to 1.0 that measures the strength of the linear 
relation between the logarithm (base 10) of the discharge at the 
low-flow partial-record station and that at the index station. The 
nearer the correlation coefficient is to 1.0, the more reliable the 
predicted discharge. The data for equations with a correlation 
coefficient of 0.75 or greater for a low-flow partial-record sta-
tion using an index station are listed in table 3.

Summary flow statistics for the 17 streamflow-gaging 
stations are shown in table 4. The flow statistics in table 4 were 
determined from the long-term data and from the hydrograph 
separation program (Rutledge, 1998); the flow statistics for the 
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Figure 6. Continuous-record streamflow-gaging and low-flow partial-record stations, Cumberland County study area, New Jersey.
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Table 4. Streamflow statistics for continuous-record streamflow-gaging and low-flow partial-record stations, Cumberland County 
study area, New Jersey.

[ft3/s, cubic feet per second; Type: C, continuous-record streamflow-gaging station; LF, low-flow partial-record station; 7Q10, 7-day average low flow that has 
10-precent chance of occurring in a given year (Gillespie and Schopp, 1982)]

Station 
number

Station 
name

Drain-
age area 
(square 
miles)

Type1 

Mean
streamflow
from 1998 

to 2008
(ft3/s)

7Q10 
stream-

flow2 
(ft3/s)

Mean
base flow
from 1998 

to 2008
(ft3/s)

Base 
flow as a 
percent-

age of 
stream-

flow

Mean 
annual 

streamflow 
per square 

mile
(ft3/s)

01411300

01411456

01411500

01411442

01411445

01411680

01411800

01411850

01411955

01412005

01412405

01412500

01412800

01413050

01413060

01482950

01483010

Tuckahoe River at Head of River, NJ 

Little Ease Run near Clayton, NJ

Maurice River at Norma, NJ

East Creek near Eldora, NJ

West Creek near Eldora, NJ

Palatine Branch at Palatine, NJ

Maurice River near Millville, NJ

Mill Creek near Millville, NJ

Gravelly Run at Laurel Lake, NJ

Menantico Creek at Route 49 at Millville, 
NJ

Cohansey River near Beals Mill, NJ

West Branch Cohansey River at Seeley, NJ

Cohansey River at Seeley, NJ3

Stow Creek at Jericho, NJ

Canton Drain near Canton, NJ

Cedar Brook near Alloway, NJ

Deep Run near Alloway, NJ

30.8

9.77

112

8.1

11.9

5.39

191

15.1

3.19

26.3

9.44

2.58

28

8.07

2.5

3.76

5.3

C

C

C

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

36.7

10.1

152.2

10.3

17.4

3.3

259.6

13.6

1.7

38.3

8.2

1.3

20.9

18.8

4.0

8.4

4.0

7.2

0.5

38

0.5

0.3

1

57

2.8

0.2

11

2.5

0.4

10

1.3

0.5

0.3

1.9

31

7.9

140

7

12

2.6

231

12

1.5

33

7.4

1.1

18

12

3.1

6.4

3.3

85

78

92

69

68

81

89

87

83

86

91

85

86

64

77

56

80

1.2

1

1.4

1.3

1.5

0.6

1.4

0.9

0.6

1.5

0.9

0.5

0.8

2.3

1.6

3.1

0.8

1For type C, streamflow and base flow estimated from PART program (Rutledge, 1998); for type LF, estimated from MOVE1 program (Hirsch, 1982). 
2Streamflow from Watson and others, 2005. FlowStat.data online at http://pubs.usgs.gov/sir/2005/5105/pdf/FlowStat-data.pdf.
3Station number 01412800, Cohansey River at Seeley, NJ, is also a continuous-record streamflow-gaging station starting August 2003.

http://pubs.usgs.gov/sir/2005/5105/pdf/FlowStat-data.pdf
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partial-record stations were estimated using low-flow cor-
relation. General information about the continuous-record 
streamflow-gaging and low-flow partial-record stations used 
in the model calibration and in the analysis of the effects of 
groundwater withdrawals in the surface-water drainage basins 
is included in table 4.

Groundwater Withdrawals

The NJDEP Bureau of Water Allocation (BWA) and 
Well Permitting manages water-allocation permits for with-
drawals in New Jersey for users diverting 100,000 gallons 
per day (gal/d) of water for a period of more than 30 days in 
a 365 consecutive day period for nonagricultural purposes 
(New Jersey Department of Environmental Protection, 2015). 
Water-allocation permits are required for public-supply wells 
and commercial/industrial wells (5000 and 2000P series, 
respectively) that divert more than 100,000 gal/d of water. 
Water-use registrations are required for users who have the 
capacity to divert more than 100,000 gal/d but divert less than 
this quantity (10000W series). Diversion limits of 3.1 million 
gallons per month are assigned for users who divert less than 
100,000 gal/d. Agricultural water-usage certifications are 
required for agricultural users having the capability to divert 
groundwater and (or) surface water in excess of 100,000 gal/d; 
agricultural water-usage registrations are required for agri-
cultural users having the capability to divert more than 
100,000 gal/d but divert less than this amount (New Jersey 
Department of Environmental Protection, 2015). For the agri-
cultural users, the series is designated as the first two letters of 
the New Jersey county followed by a number. The USGS veri-
fies water-use data using a routine of quality-assurance checks, 
including a comparison of reported annual and monthly with-
drawals with the withdrawals allowed by the NJDEP for each 
permit and a comparison of annual withdrawals with recent 
yearly average withdrawals for each well. Additional quality-
assurance procedures for agricultural withdrawal data were 

used for this study because of the large volume of agricultural 
withdrawals within the study area. Paper copies of the agri-
cultural data were collected from NJDEP and checked against 
the electronic data for the period 1997‒2008. For agricultural 
withdrawal data that were missing or when paper copies were 
not available, the withdrawals were assigned the value of the 
most recent year with a reported withdrawal value.

Groundwater withdrawals reported in the Cumberland 
County study area were primarily used for public supply and 
agricultural irrigation. Domestic use is not reported to the 
NJDEP. Domestic groundwater withdrawals are primarily 
non-consumptive because most of the water is returned to the 
shallow aquifer.

 Monthly groundwater withdrawals in the Cumberland 
County study area during 1998‒2008 are shown in figure 7, 
which indicates that groundwater withdrawals increased from 
1998 to 2008. Over the 11-year period, annual groundwater 
withdrawals were lowest in 1999 (13,067 Mgal) and were 
greatest in 2007 (24,641 Mgal). Groundwater withdrawals 
vary seasonally with greater withdrawals during the sum-
mer months, as shown by variations in the average monthly 
groundwater withdrawals from 1998 to 2008 in figure 8. Mean 
monthly groundwater use from 1998 to 2008 can be more than 
4 times greater for summer (June through August) than for 
winter (December through February) because of agricultural 
water use. Groundwater use increased in the spring and sum-
mer months and declined steadily through the fall months. The 
locations of groundwater withdrawals by water-use alloca-
tion series from 1997 to 2008 are shown in figure 9. Monthly 
groundwater withdrawals are not shown in figure 7 for 1997 
because when the groundwater-flow model was constructed, 
the data for 1997 were input for quarterly periods.

 Groundwater withdrawals totaled about 21,700 Mgal in 
2008. Groundwater withdrawals for public supply accounted 
for about 36 percent; agricultural irrigation accounted for about 
49 percent; and industrial use, commercial use, and non-agri-
cultural irrigation accounted for the remaining 15 percent. 
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Figure 7. Monthly groundwater withdrawals from the Kirkwood-Cohansey aquifer system, Cumberland County study area, New 
Jersey, 1998–2008.
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Figure 8. Average monthly groundwater withdrawals from the Kirkwood-Cohansey aquifer system, Cumberland County study area, 
New Jersey, 1998–2008.

Water-Level Fluctuations and Trends

A map of composite water-table contours is shown in 
figure 10. The map was created by using water levels measured 
during several studies of drainage basins where the surficial 
aquifer is the Kirkwood-Cohansey aquifer system. The water-
table map was produced from 741 wells or stream sites located 
over the drainage basins located within the Cumberland County 
study area. This composite water table consists of water levels 
measured April through May 1995 in the Cumberland County 
area (Charles and others, 2001); fall 1986 in the upper Maurice 
River Basin (Lacombe and Rosman, 1995); October, November,
and December 1993 in the Salem River, and Stow and Alloway 
Creek Basins (Johnson and Charles, 1997); and April and May 
1989 in the Great Egg Harbor River Basin (Watt and Johnson, 
1992). The water-level contours produced from each study were 
matched at each study boundary to produce a seamless water-
table map. The drainage basins are shown in figure 1.

The differences between water levels in 35 wells measured 
in April through May 1995 in the study area (Charles and oth-
ers, 2001) and water levels in the same wells measured in May 
or June 2008 are shown in figure 10. A negative difference indi-
cates the 2008 water level is lower than the 1995 water level. 
Although the water levels were measured during different years,
the difference for each well typically is about 1 ft. However, 
a water level was 9 ft lower in May 2008 compared to April 
1995 for a 104-deep agricultural-irrigation well in Deerfield 
Township (well number 11-283). Total precipitation for April 
1995 for the Seabrook Farms weather station near this well was 
1.7 inches (in.), and in 2008, the total precipitation was 4.7 in., 
a difference in precipitation of 3 in. Total precipitation for Janu-
ary through April 1995 for the Seabrook Farms weather station 
was 9.2 inches (in.), and in 2008, the total precipitation for the 
same months was 11.9 in., a difference in precipitation of 2.7 in.
In addition, daily pumpage is not available for this well or for 
well number 11-789 (8 ft difference), which is located near 
a Vineland City supply well.

Hydrographs for six wells in the Maurice and Cohansey 
River Basins demonstrate the fluctuation in the water levels in 

 

 

 

these wells over the measurement period (fig. 11). Water levels 
in the six wells were measured on a periodic basis from January 
1998 to December 2008. The water levels indicate that fluctua-
tions of as much as 8.2 ft occurred in well number 15-1054, but 
typically, monthly fluctuations varied about 4 ft or less (fig. 11). 
The wells range in depth from 33 ft to 54 ft, except for well 
15-372, which is 154 ft deep. Locations of the six wells are 
shown in figure 12.

Some of these fluctuations may occur because of fluctua-
tions in precipitation during 1998‒2008. A detailed analysis of 
withdrawals from wells near the wells shown in figure 11 and 
of the precipitation at the Seabrook Farms and Millville Munic-
ipal Airport weather stations (fig. 2) was not done; therefore, 
only general observations about the monthly precipitation and 
water-level fluctuations at these wells are made. Mean annual 
precipitation at the Seabrook Farms weather station from 1998 
to 2008 was 44.4 inches per year (in/yr) and at the Millville 
Municipal Airport weather station, 39.1 in/yr. During 1998, pre-
cipitation recorded at the Seabrook Farms weather station was 
6.6 in/yr less than the 1998‒2008 average, and precipitation at 
the Millville Municipal Airport station was 2.5 in/yr less than 
the 1998‒2008 average. During 2001, precipitation recorded at 
the Seabrook Farms weather station was 8.3 in/yr less than the 
1998‒2008 average, and precipitation at the Millville Munici-
pal Airport station was 11.6 in/yr less than the 1998‒2008 
average. The below average precipitation in 1998 and 2001 is 
interpreted to be, in part, responsible for the lower water levels 
during these years. During August 2001‒August 2002, pre-
cipitation recorded at the Seabrook Farms weather station was 
9.2 in/yr less than the 1998‒2008 average, and precipitation at 
the Millville Municipal Airport station was 6.9 in/yr less than 
the 1998‒2008 average. The below average precipitation from 
August 2001 to August 2002 probably is related to the lower 
water levels observed during these years (fig. 10). During June 
2006‒June 2007, precipitation recorded at the Seabrook Farms 
weather station was 16.2 in/yr more than the 1998‒2008 aver-
age, and precipitation at the Millville Municipal Airport station 
was 14.3 in/yr more than the 1998‒2008 average. The above 
average precipitation from June 2006 to June 2007 probably is 
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Figure 10. Water table for the Kirkwood-Cohansey aquifer system composited from water-level measurements in 1986, 1989, 1993, and 
1995, location of wells, and difference between water levels, Cumberland County study area, New Jersey, 1995 and 2008.
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Figure 12. Locations of wells with periodic water-level measurements, Cumberland County study area, New Jersey, 1998–2008.
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related to the higher water levels during these years shown in 
figure 11.

Rooney (1971) reports 85 percent of evapotranspiration 
occurs during the growing season from mid-April through 
mid-October. Rooney (1971) computed evapotranspiration for 
Shiloh Borough (fig. 2) for 1931 to 1960, using the Thorn-
thwaite and Mather (1955) method. For most years during 
1998‒2008, water levels were declining during those months 
(fig. 11). The months from June to September are shaded in 
figure 11.

Simulation of Groundwater Flow in the 
Kirkwood-Cohansey Aquifer System

A transient numerical groundwater-flow model was 
developed to simulate flow in the Kirkwood-Cohansey aquifer 
system during 1998‒2008. The model code used is the USGS 
modular model MODFLOW-2005 (Harbaugh, 2005). The 
model is calibrated to water levels and estimated base-flow 
data for the period 1998‒2008. Hydraulic properties and 
recharge input into the groundwater-flow model were modified
during calibration in order to obtain a good fit to the measured 
water levels and estimated base-flow data. The groundwater-
flow model was used to evaluate changes resulting from an 
increase in groundwater withdrawals under various condi-
tions. Despite the unconfined and semi-confined nature of the 
Kirkwood-Cohansey aquifer system, significant numerical 
instabilities associated with solving the nonlinear equations 
for the unconfined groundwater-flow system made it necessary
to model the aquifer system as a specified saturated thickness 
(Sheets and others, 2015).

Spatial Discretization and Layering

The finite-difference model grid used to represent the 
Kirkwood-Cohansey aquifer system in the New Jersey Coastal
Plain is shown in figure 13A. The model area lies almost com-
pletely within the study area and encompasses approximately 
1,115 square miles (mi2). The model area is bounded to the 
north by the outcrop of the Kirkwood Formation, to the west 
by Delaware Bay, to the east by Big Timber Creek and Great 
Egg Harbor River, and to the south by surface-water drain-
age divides. The finite-difference grid consists of 297 rows, 
259 columns, and 6 layers. The model grid is aligned to the 
RASA model (Voronin, 2004), such that boundary conditions 
for the Kirkwood-Cohansey aquifer system could be easily 
imported. (The New Jersey RASA model is a finite-difference 
numerical flow model that simulates groundwater flow in the 
New Jersey Coastal Plain, and the Cumberland County study 
area groundwater-flow model nests within the RASA model). 
The model grid size is variable with the smallest grid spac-
ing of 500 ft by 500 ft in the central area of the model grid, 
encompassing Cumberland County (fig. 13A). The cell size 

 

 

 

transitions to a maximum height of 3,300 ft with a varying 
cell width to the southern part of the study area in Atlantic and 
Cape May Counties and the Delaware Bay, and to a maximum 
width of 3,960 ft with a varying cell height in the Delaware 
Bay (fig. 13A). 

Although the Kirkwood-Cohansey aquifer system is one 
hydrogeologic unit, dipping and thickening to the southeast in 
the study area, the aquifer system was separated into layers to 
evaluate the streams in the top layer and the effect of pumping 
at different depths in the aquifer system. Most pumped wells 
are in layers 2 to 4. For the active cells in the model, layer 1 
has a thickness of greater than 16 ft to 50 ft. Layers 2, 3, and 
4 have a thickness of 50 ft or less, depending on the thick-
ness of the aquifer system in those model cells. Layer 5 has a 
thickness of 100 ft or less, depending on the thickness of the 
aquifer system in those model cells. Layer 6 has a thickness of 
250 ft or less, depending on the thickness of the aquifer system 
in those model cells. Although many areas of local clay units 
are present, the aquifer system is vertically connected because 
an extensive confining unit is not present in most of Cum-
berland County. This vertical connection may not be present 
in the deeper part of the Kirkwood Cohansey aquifer system 
where it transitions to the confined Kirkwood Formation in the 
southeastern part of the study area, but this area has not been 
well defined. 

Temporal Discretization 

The simulation period for the model is January 1997 
through December 2008, and the model has 137 stress periods. 
Stress period 1 is simulated as steady state to represent Janu-
ary to March (first quarter) conditions in 1997. Stress period 1 
was repeated as a transient stress period (stress period 2). 
Stress periods 2‒5 are quarterly 1997 transient stress periods. 
Stress periods 1‒5 provide a reasonable transition period from 
initial conditions to the monthly transient period. Stress peri-
ods 6‒137 are transient monthly stress periods that represent 
January 1998 through December 2008. In the model, distance 
is in units of feet, and time is in units of seconds.

Hydrologic Boundaries

The boundaries in the model represent lateral flow, 
recharge, surface-water features, and withdrawals. The 
boundary that represents the northern limit of the outcrop of 
the Kirkwood Formation is a no-flow boundary (fig. 13B). 
Delaware and Great Egg Harbor Bays are represented as con-
stant heads in layer 1 with a value of 0.0 to represent sea level 
(fig. 13B). Wetland areas adjacent to Delaware Bay in layer 1 
are represented by a constant-head boundary. The wetlands 
area was obtained from geographic information system (GIS) 
shapefiles from the NJDEP Office of Information Resources 
Management Bureau of Geographic Information Systems 2002 
Land Use/Land Cover (New Jersey Department of Environ-
mental Protection, 2007). A water level of 0.5 ft was used for 
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the constant heads in wetland areas, which is a value greater 
than that of sea level at the coastline. The wetland areas and 
the area of Delaware Bay constitute about 10 percent of the 
modeled area.

The lateral boundary that represents the connection 
between the Kirkwood-Cohansey aquifer system in the model 
and the aquifer system outside the model at the eastern bound-
ary and the confined aquifers at the southeastern boundary 
in the lower layers is a specified-flow boundary using the 
Flow and Head Boundary package (FHB) of MODFLOW 
(Leake and Lilly, 1997; fig. 13B). The bottom boundary is 
also a specified-flow boundary that represents the flow from 
an underlying confined aquifer. The New Jersey Coastal Plain 
RASA model (Voronin, 2004) was used to provide the lateral 
and bottom boundary flows.

Monthly groundwater-withdrawal data from 1998 to 2008 
were input into the model for stress periods 6‒137 using the 
MODFLOW-2005 WEL package (Harbaugh, 2005). Quarterly 
withdrawal data for 1997 were input for stress periods 1‒5. 
Monthly and quarterly withdrawal data in million gallons per 
month were converted to cubic feet per second (ft3/s) for input 
into the groundwater-flow model.

Recharge 
The Recharge package of MODFLOW-2005 (Harbaugh, 

2005) was used to simulate recharge at cells in the topmost 
layer of the model (layer 1) that represent the outcrop area 
of the Kirkwood-Cohansey aquifer system in the study area. 
Recharge data were not input into the model cells in wet-
land areas or bays. Recharge for 1997–2008 was estimated 
using a soil-water balance equation that represents long-term 
precipitation minus long-term evaporation and surface-water 
runoff. A monthly recharge rate was calculated for January 
1998‒December 2008 for the model area. For 1997, the same 
procedure was used, but a quarterly average recharge rate was 
calculated and input into the model for each quarter of 1997.

The water balance method described in Nicholson and 
Watt (1997) is used in this study to calculate daily recharge 
and sum it by month. This indirect approach to recharge 
estimation is a common method used to account for all water 
that reaches the land surface as precipitation. A similar method 
was used to calculate monthly recharge for Ocean County, also 
located in the New Jersey Coastal Plain east of the study area 
(Cauller and others, 2016). Equation 2 was used to estimate 
the daily surplus precipitation (Daily Surplus PPT) or the 
amount of precipitation available for groundwater recharge.

 Daily Surplus PPT = Daily PPT –  (2)
  Daily PET – Daily SMD (d – 1)    

where
Daily PPT  is  the daily value of measured  

precipitation, in inches;
Daily PET  is  the daily value of estimated potential 

evapotranspiration, in inches; and

Daily SMD is  the daily value of soil moisture 
(d – 1) deficit from the previous day (d – 1), in  

 inches.
Estimates of monthly groundwater recharge (Monthly GW 
Recharge) were derived by summing the daily surplus pre-
cipitation for each month and subtracting the monthly direct 
runoff for the same month (equation 3).

	 Monthly GW Recharge = Monthly Surplus (3)
   PPT – Monthly DRO    

where
	Monthly Surplus is the monthly total of daily values of 

PPT remaining precipitation, in inches, and
Monthly DRO  is the monthly total of direct runoff, in   

 inches.
	

Daily precipitation data for each month from 1997 to 
2008 were obtained from two weather stations located in the 
study area, Seabrook Farms and Millville Municipal Airport 
weather stations (National Oceanic and Atmospheric Admin-
istration, 2009). Supplemental data from the Glassboro, Mays 
Landing, and Woodstown weather stations, which are out-
side or near the boundary of the study area, were used when 
data were not available for the Seabrook Farms and Millville 
Municipal Airport weather stations (National Oceanic and 
Atmospheric Administration, 2009). All weather stations are 
shown in figure 2. Average annual precipitation in the study 
area measured at the Seabrook Farms weather station from 
1997 to 2008 was 44.2 in/yr (National Oceanic and Atmo-
spheric Administration, 2009). Average annual precipitation 
measured at the Millville Municipal Airport weather station 
from 1997 to 2008, 39.4 in/yr, was lower than that at the 
Seabrook Farms weather station (National Oceanic and Atmo-
spheric Administration, 2009).

Daily evapotranspiration was interpolated from monthly 
mean potential evapotranspiration estimated for the Seabrook 
Farms and Millville Municipal Airport weather stations using 
the Thornthwaite method (Thornthwaite and Mather, 1957). 
The soil-moisture deficit was calculated using the daily poten-
tial evapotranspiration and the precipitation from the Seabrook 
Farms or the Millville Municipal Airport weather stations. 
When soil moisture is less than the maximum soil-moisture 
capacity, then a soil-moisture deficit exists. Recharge occurs 
when the deficit is alleviated. In the calculation of monthly 
recharge, the recharge rate could be underestimated when the 
sum of total monthly evapotranspiration and the soil-moisture 
deficit exceeds total monthly precipitation, especially during 
summer months. To compensate for this situation, recharge 
must be estimated on a daily basis to account for separate 
storm events that could produce high rates of infiltration that 
exceed the sum of evaporation and the soil-moisture deficit 
for that same period. An initial soil-moisture deficit of zero 
was assumed for January 1997, and an initial maximum daily 
soil-moisture deficit of 0.75 inches was assumed, which is 
the value used in the recharge calculation for the adjacent 
Great Egg Harbor River and Mullica River Basins by Pope 
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and others (2012). Monthly surplus precipitation values were 
calculated using for daily precipitation data and the daily poten-
tial evapotranspiration and soil moisture deficit (SMD) values 
determined for the Seabrook Farms and Millville Municipal 
Airport weather stations.

Daily recharge was calculated and summed for each month
from January 1997 through December 2008 using equation 3 to 
obtain a monthly recharge value for the Cohansey and Maurice 
River Basins. Monthly direct runoff (DRO) was estimated for 
the two major drainage basins in the Cumberland County study 
area, the Maurice and Cohansey River Basins. Direct runoff was
calculated by subtracting base flow from the total flow in the 
stream using the base flow generated by the PART (Rutledge, 
1998) program for the Maurice River Basin and by MOVE1 
(Hirsch, 1982) for the Cohansey River Basin. Monthly direct 
runoff was estimated for the Cohansey River at Seeley stream-
flow-gaging station (014128000 and for the Maurice River at 
Norma gaging station (01411500) (fig. 6). The Seabrook Farms 
weather station is located on the Cohansey River near the 
Cohansey River at Seeley streamflow-gaging station (fig. 2). 
The Millville Municipal Airport weather station is located in the
Maurice River Basin downstream from the Norma streamflow-
gaging station (fig. 2).

For the years 1997 through 2008, the annual recharge 
calculated using precipitation data from Seabrook Farms 
weather station in the Cohansey River Basin and direct runoff 
from the Cohansey River at Seeley streamflow-gaging station 
ranges from a low of 16.7 in/yr in 2001 to a high of 27.6 in/yr 
in 1999 with an average of 22.8 in/yr. For the years 1997‒2008, 
the annual recharge calculated using precipitation data from 
Millville Municipal Airport weather station in the Maurice 
River Basin and direct runoff from the Maurice River at Norma 
streamflow-gaging station ranges from 11.8 in/yr in 1998 to 
27.4 in/yr in 1997 with an average of 21.8 in/yr. For the years 
1997‒2008, the average recharge for both sites is 22.3 in/yr. 
For comparison, monthly groundwater recharge rates used in a 
groundwater-flow model of the Great Egg Harbor and Mullica 
River Basins, adjacent to the Cumberland County study area, 
ranged from 10–15 in/yr in 2001 to 20–25 in/yr in 2005.

Streams 
The streamflow-routing package (SFR2) (Niswonger and 

Prudic, 2009) was used to simulate the interaction between the 
aquifer and adjoining streams; SFR2 tracks the amount of water 
within each simulated stream. All streams were simulated in 
layer 1 of the model. Streams that flow through ponds and lakes 
that are in hydraulic connection with the aquifer were simu-
lated with SFR2. Streams in the SFR2 package are divided into 
reaches and segments. A stream reach is a section of stream, and
a segment is a group of streams. The model has 1,123 stream 
segments and 12,581 reaches. The locations of these cells are 
shown in figure 13.

Stream locations were obtained from the 1:24,000 National
Hydrography Dataset (NHD) (U.S. Geological Survey, 2004). 

The model grid was overlain on the NHD geospatial dataset 
to identify the location of the streams on the model grid 
within each appropriate cell. Some smaller tributaries in the 
outcrop area of the Kirkwood Formation that flow to the 
Delaware River and some smaller tributaries along the Dela-

 ware Bay area were not modeled. The interaction between 
the groundwater and surface-water systems is controlled by 
the differences between water levels and stream elevation, 
or stage, and the hydraulic conductance and thickness of the 
streambed. The stream elevation in each cell was assigned 

 using digital elevation maps obtained from the National 
Elevation Database (U.S. Geological Survey, 2006).

Stream depth was calculated using Manning’s equation 
and assuming a rectangular channel. The average widths for 
the mainstem of the Cohansey and Maurice Rivers and their 
tributaries and the other streams in the model were retrieved 
from the USGS National Water Information System data-
base. Stream-channel widths ranged from 5 ft for smaller 
tributaries up to 80 ft for the lower part of the mainstem of 
the Maurice River. Stream-channel width was 35 ft for the 

 lower part of the Cohansey River and 50 ft for the lower part 
of the Great Egg Harbor River (fig. 14). Streambed thick-
ness was set at 2 ft for the mainstem of the upper part of the 
Cohansey River, the lower part of the Maurice River, and the 
lower part of Menantico Creek (fig. 6). For all other smaller 
reaches, a 1-ft streambed thickness was used, except in Stow 
Creek Basin where a thickness of 0.5 ft was used. The initial 
hydraulic conductivity of the streambed sediments was 
0.1 ft/d on the basis of an initial value similar to that used for 
a groundwater-flow model of the adjacent Great Egg Harbor 
River Basin of 0.2 ft/d (Pope and others, 2012). 

Start of Flow 
Because groundwater withdrawals or surface-water 

diversions and periods of no precipitation occur, the start of 
flow of tributaries and streams may be located farther down-
stream than the mapped location on the topographic maps or 
shown in the NHD. During April‒May and September 2008, 
observations of start of flow in many tributaries in the study 
area were recorded and compared with the representation on 
a USGS topographic map and the NHD. These observations 
were indicated by following the location of the stream on a 
topographic map until the streambed became dry. Similar 
locations were identified as part of a surficial aquifer study 
conducted in May 1995 and used to contour the water table 
(Charles and others, 2001). In addition, many of the head-
waters of the tributaries can be intermittent but not mapped 
as such. The information collected during this study and 
the previous study (Charles and others, 2001) was used 

 to estimate the start of streamflow for some of the smaller 
streams and tributaries for the SFR2 package. Locations of 
the May 1995 dry streambed sites from the surficial aquifer 
study (Charles and others, 2001) and the April/May 2009 

 and September 2009 dry streambed sites from this study are 
shown in figure 14.
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Surface-Water Diversions and Discharges
Monthly discharges to streams (inflows) from 1998 to 

2008 were estimated from New Jersey Pollutant Discharge 
Elimination System (NJPDES) permit data and, in the model, 
were input into the stream segment and reach on which 
that point was located. Monthly agricultural surface-water 
diversions (outflows) from streams from 1998 to 2008 were 
estimated from a USGS water-use database and input into the 
segment and reach on which the diversion was located. Sur-
face-water diversions from streams and NJPDES discharges 
to streams for 1997 were input as estimated average quarterly 
values. The locations of the surface-water diversions and dis-
charges input into the SFR2 package are shown in figure 15. If 
simulated streamflow in a reach was insufficient to supply the 
diversion rate, then the diversion was reduced to the available 
amount of flow. Total monthly surface-water discharges varied 
across the study area during the period of the simulation from 
a low of 7.9 ft3/s in April 2002 to as much as 18.4 ft3/s in June 
2001. Total monthly surface-water diversions from intakes 
varied across the study area during the period of the simulation 
from 0 ft3/s to as much as 3.5 ft3/s in July 2007.

There are a few sand-mining operations in the south-
western part of the study area. For these operations, water 
is pumped to a staging area where the sand settles out, after 
which the water is returned to the pond. These ponds were not 
input into the SFR2 package because most of the water used in 
the mining operation is recycled, and very little is consumed. 

Model Input 

The Layer-Property Flow package of MODFLOW-2005 
(Harbaugh, 2005) was used to input hydraulic parameter 
values for horizontal hydraulic conductivity, vertical hydraulic 
conductivity, and storage coefficient. An initial value of hori-
zontal hydraulic conductivity was estimated from the specific-
capacity and aquifer-test data. An average value of 150 ft/d 
was used as the initial value of horizontal hydraulic conductiv-
ity for the model. This value was about equal to the median of 
147 ft/d determined from the aquifer-test and specific-capacity 
data. From the initial values, zones of different hydraulic con-
ductivity were determined during the model calibration.

The flow between model cells was simulated in vertical 
and in horizontal components. In the study area, clay stringers 
and silty sediments are present locally within the Kirkwood-
Cohansey aquifer system and affect the vertical and horizontal 
movement of groundwater. Small-scale variations in the local 
geologic framework cannot be represented in the model. The 
ratio of horizontal to vertical hydraulic conductivity between 
model layers controls the vertical and horizontal movement of 
groundwater over large zones. This ratio initially was assumed 
to be 10:1. Zones of different vertical hydraulic conductivity 
within the model layers were defined during model calibration 
to represent differences in the hydrogeologic framework that 
affect groundwater flow.

There is a lack of information to estimate aquifer storage 
properties in the study area. An initial storage coefficient value 
of 0.001 was used and was adjusted during model calibration. 
This value was based on published values of storage coef-
ficients that ranged from 0.044 to 0.0001 for aquifer tests in 
the Kirkwood-Cohansey aquifer system near the study area 
(Rhodehamel, 1973; Charles and others, 2001). Zones for the 
storage coefficient for the model layers were determined dur-
ing model calibration. To obtain a specific storage value, the 
storage coefficient is divided by the layer thickness. 

Model Calibration 

Model calibration mainly was achieved by a trial-and-
error approach. Simulations using UCODE-2005 (Poeter 
and others, 2005), a universal parameter estimation code, 
yielded information for identifying sensitive and insensitive 
parameters during model development. Final calibration was 
accomplished using the UCODE-2005 parameter sensitivities 
and manual adjustment of those parameters. During calibra-
tion, parameters representing horizontal and vertical hydraulic 
conductivity, recharge, streambed hydraulic conductivity and 
storage were modified to best simulate measured water levels 
and estimated base flows.

Model calibration criteria consisted of matching (1) 
measured water levels to within less than 10 ft, (2) long-term 
water-level fluctuations, and (3) estimated base-flow fluctua-
tions and trends. The model calibration was evaluated by 
comparing differences between simulated and measured or 
estimated values. The hydrologic parameters in the model 
were adjusted during model calibration to minimize the dif-
ferences between simulated and measured or estimated values 
of (1) water levels in May and June 2008 for 84 wells and 
in September 2008 for 77 wells, (2) long-term water levels 
from 1998 to 2008 for 16 wells, and (3) long-term base flows 
estimated from hydrograph separation or low-flow correlation 
techniques for 17 streamflow-gaging stations. The wells and 
surface-water sites were spatially distributed throughout the 
model area.

Water Levels
Water levels for this study were measured during two 

synoptic periods—late May and early June 2008, and in Sep-
tember 2008. Water levels in 84 wells were measured in late 
May and early June, but only 77 of these wells were measured 
in September. The residuals (simulated minus measured water 
levels) and water levels for May‒June and September 2008 are 
listed in table 5 (table 5 in back of report). For the May‒June 
residuals, 71 percent of the simulated water levels were within 
5 ft of the measured water levels, and 98 percent were within 
10 ft. For the September residuals, 66 percent were within 5 ft 
of the measured water levels, and 91 percent were within 10 ft. 
Plots of measured water levels in relation to simulated water 
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levels are shown in figure 16. The plots show two symbols 
signifying wells that were surveyed for land-surface altitude 
and, therefore, have more accurate water-level altitudes and 
wells that were not surveyed and, therefore, have water-level 
altitudes that are less accurate. The mean error for the wells 
in figure 16 is given in table 5; it is less than 2 ft for the June 
2008 residuals and less than 0.1 ft for the September 2008 
residuals. Spatial clustering of water-level measurements was 
minimized in this model by using selected wells in such areas.

The simulated water-level contours and residuals for 
model layer 1 for May through June 2008 are shown in 
figure 17A and for September 2008 in figure 17B. The simu-
lated water levels in layers 2‒6 are very similar to those for 
layer 1, so only the simulated water levels in layer 1 are 
shown. The average residual from the water levels in layer 1 to 
layers 2 through 5 is 0.1 or less and in layer 6 is less than 0.2. 
Monthly hydrographs of water levels are plotted for 16 wells 
in the Kirkwood-Cohansey aquifer system (fig. 18A–C). The 
locations of these wells are shown in figure 12. The hydro-
graphs indicate that the simulated water levels match the 
measured water levels in magnitude and seasonally. The simu-
lated water levels were most affected by horizontal hydraulic 
conductivity and recharge and, in some of the deeper wells, by 
vertical hydraulic conductivity.

Base Flows
Groundwater discharge (base flow) is the most significant 

component of the flow to streams in the Cumberland County 
study area. Monthly base-flow estimates were used as targets 
for model calibration and to evaluate the effects of changes in 
base flow resulting from changes in groundwater withdraw-
als. A plot of estimated monthly base flow for January 1998‒
December 2008 in relation to simulated base flow is shown in 
figure 19. The four symbols in this figure indicate the magni-
tude of the base flow as (1) greater than 0 to 1 ft3/s, (2) greater 
than 1 to 10 ft3/s, (3) greater than 10 to 100 ft3/s, and (4) 
greater than 100 ft3/s to 450 ft3/s. Streamflow-gaging stations 
in wetland areas were not used in the analysis. The wetland 
area is designated in figure 1 by showing the boundary of its 
upmost extent.

Simulated base flow matched estimated base flow reason-
ably well, although the base flows input to the groundwater-
flow model are estimates obtained by using hydrograph 
separation and low-flow correlation techniques. The estimated 
base flow in the Maurice and Cohansey Rivers and some of 
the smaller tributaries is variable. Base-flow hydrographs for 
17 streamflow-gaging stations are shown in figure 20. The 
locations of the stations are shown in figure 6. For some of the 
smaller tributaries, the simulated base flow does not achieve 
the variability that the estimated base flow shows, for exam-
ple, simulated base flows in East and West Creeks (stream-
flow-gaging stations 01411442 and 01411445, respectively) in 
Cape May County. However, the magnitude of the estimated 
base flow is generally similar to the simulated base flow. 
The model did not reproduce some of the higher base flows; 

however, the trends and fluctuations in the monthly base flow 
were similar. Because of the variability in estimated base 
flow, a 3-month average was used at some streamflow-gaging 
stations to compare the estimated base flow to the simulated 
base flow to temper some of the variability (Claire Tiedeman, 
U.S. Geological Survey, oral commun., 2014). These stations 
include the Maurice River at Norma (01411500); the Tuckahoe 
River at Head of River (01411300); Little Ease (01411456), 
a tributary to the Maurice River; and the Cohansey River at 
Seeley (01412800), which was used as a continuous-record 
streamflow-gaging station starting August 2003 (fig. 6). A 
3-month average was also used for the Maurice River at Mill-
ville (01411800) streamflow-gaging station downstream from 
the Norma station (fig. 6).

Statistics for the monthly base-flow residuals for the con-
tinuous-record streamflow-gaging and low-flow partial-record 
stations with base-flow hydrographs are shown in table 6. The 
mean error and mean absolute error shown in table 6 for the 
stations give an indication of the mean difference between 
the simulated and estimated base flows. The root mean square 
(RMS) error is the square root of the average of the squared 
differences. The larger RMS errors are associated with the 
large flows that occur in the larger drainage basins. The area of 
the drainage basins is given in table 6.

The simulated base flow for the Cohansey River at See-
ley streamflow-gaging station (01412800) is lower than the 
estimated base flow using the PART program, and the mean 
error is 3.42 ft3/s less that the estimated base flow (table 6). 
However, the fluctuations observed in the simulated base flow 
follow the fluctuations observed in the estimated base flow, 
and the lower estimated base flows match the simulated base 
flows better. The Cohansey River at Seeley station is the only 
continuous-record streamflow-gaging station in the Cohansey 
River Basin. Because the period of record for the Seeley gag-
ing station was only 5 years, the base-flow estimates would 
not be considered a long-term mean base flow. The base-flow 
estimates for the Cohansey River at Seeley station were used 
as general estimates of base flow at that gaging station. The 
average 2004‒08 base flow estimated using the PART program 
is 27.7 ft3/s. 

The estimated and simulated base flows and residu-
als for June and September 2008 are listed in table 7 for 
17 streamflow-gaging stations. Base-flow hydrographs were 
most affected by recharge and streambed conductivity but also 
by the horizontal hydraulic conductivity in some areas.

Model Parameters
The Kirkwood-Cohansey aquifer system is represented 

in all model layers. Different zones of horizontal and vertical 
hydraulic conductivity and storage were established, differen-
tiating the properties of the aquifer system in each of the six 
model layers. Final parameter values used in the calibrated 
model are shown in table 8. Horizontal hydraulic conductiv-
ity for the six layers ranged from 40 to 160 ft/d. Zones for the 
horizontal hydraulic conductivity are shown in figure 21A–B 
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Figure 17. Simulated water-level contours for the Kirkwood-Cohansey aquifer system, differences between simulated and measured 
water levels, and differences between simulated and estimated base flows for A, June and B, September 2008, Cumberland County 
study area, New Jersey.



Simulation of Groundwater Flow in the Kirkwood-Cohansey Aquifer System    31

Figure 17. Simulated water-level contours for the Kirkwood-Cohansey aquifer system, differences between simulated and measured 
water levels, and differences between simulated and estimated base flows for A, June and B, September 2008, Cumberland County 
study area, New Jersey.—Continued
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Figure 19. Simulated base flow in relation to estimated base flow at low-flow partial-record stations and continuous-record 
streamflow-gaging stations, Cumberland County study area, New Jersey.

for model layers 1 and 2 and in figure 22A–D for model 
layers 3 through 6. The horizontal hydraulic conductivity 
for the zones in layers 1 and 2 ranged from 40 to 83 ft/d, in 
layers 3 and 4 from 40 to 100 ft/d, and in layers 5 and 6 from 
40 to 160 ft/d.

The vertical hydraulic conductivity allows for vertical 
connection between the model layers. The calibrated vertical 
hydraulic conductivity for the zones associated with layers 1‒6 
range from 1 x 10-1 to 3.11 ft/d. Zones of vertical hydraulic 
conductivity between layers 1 and 2 are shown in figure 23 
and between layers 3 and 4 in figure 24. The vertical hydraulic 
conductivity for layers 5 and 6 was not zoned, but was given 
one value (0.95 ft/d).

Simulation results were sensitive to storage properties 
in parts of the model, and adjustments were made to the three 
zones of storage coefficients for layers 1 and 2 on the basis of 
the response and fluctuations in water levels and streamflow. 
Storage coefficients for layers 1 and 2 ranged from 4.4 x 10-1 
to 6.4 x 10-1. Zones in layer 1 and 2 for the storage coeffi-
cients are shown in figure 25. A uniform storage coefficient of 
5.0 x 10-4 was specified for layers 3 and 4, and a uniform stor-
age coefficient of 5.7 x 10-3 was specified for layers 5 and 6. 
The storage coefficient values for layer 1 are less than typical 
specific yields.

The streams were initially grouped by Hydrologic Unit 
Code 11 (HUC11) drainage basins but were modified dur-
ing model calibration to achieve a good fit for estimated 
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Figure 20. Hydrographs of simulated and estimated base flows at continuous-record and low-flow partial-record streamflow-gaging 
stations used in model calibration, Cumberland County study area, New Jersey.
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Figure 20. Hydrographs of simulated and estimated base flows at continuous-record and low-flow partial-record streamflow-gaging 
stations used in model calibration, Cumberland County study area, New Jersey.—Continued
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Figure 20. Hydrographs of simulated and estimated base flows at continuous-record and low-flow partial-record streamflow-gaging 
stations used in model calibration, Cumberland County study area, New Jersey.—Continued
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Table 6. Statistics for base-flow residuals at streamflow-gaging stations, Cumberland County study area, New Jersey. 

[ft3/s, cubic foot per second; Type: C, continuous-record streamflow-gaging station; LF, low-flow partial-record station; RMS, Root mean square error]

Station 
number

Station name Type

Drainage 
area, in 
(square 
miles)

Mean 
error 
(ft3/s)

Mean 
absolute 

error 
(ft3/s)

RMS 
(ft3/s)

01411300

01411442

01411445

01411456

01411500

01411680

01411800

01411850

01411955

01412005

01412405

01412500

01412800

01413050

01413060

01482950

01483010

Average

Tuckahoe River at Head of River NJ

East Creek near Eldora, NJ

West Creek near Eldora, NJ

Little Ease Run near Clayton, NJ

Maurice River at Norma, NJ

Palatine Branch at Palatine, NJ

Maurice River near Millville, NJ

Mill Creek near Millville, NJ

Gravelly Run at Laurel Lake, NJ

Menantico Creek at Route 49 at Millville, NJ

Cohansey River near Beals Mill, NJ

West Branch Cohansey River at Seeley, NJ

Cohansey River at Seeley, NJ

Stow Creek at Jericho, NJ

Canton Drain near Canton, NJ

Cedar Brook near Alloway, NJ

Deep Run near Alloway, NJ

C

LF

LF

C

C

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

30.8

8.1

11.9

9.77

112

5.39

191

15.1

3.19

26.3

9.44

2.58

28

8.07

2.5

3.76

5.3

-2.94

1.06

1.26

1.06

-15.86

3.12

14.09

1.62

0.18

2.92

3.52

-0.10

-3.42

0.74

0.26

1.27

2.84

0.68

9.15

1.96

3.92

3.06

29.63

3.12

38.81

2.33

0.31

3.71

3.52

0.20

3.85

2.35

0.66

1.62

2.84

6.53

1.63

1.15

1.37

1.28

2.21

1.33

2.40

1.19

0.71

1.34

1.36

0.65

1.35

1.20

0.88

1.11

1.30

1.32
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Table 8. Description of parameters for the calibrated numerical groundwater-flow model, Cumberland County study area, New Jersey. 

Parameter 
Zone 
name

Generalized zone location Value Unit

Reference 
figure 

for zone 
location

Model 
layer

Composite 
scaled 

sensitivity

Horizontal 
hydraulic 

conductivity

Vertical 
hydraulic 

conductivity 

KCOH1

KCOH2

KCOH3

KMAU1

KMAU2

KEGG1

KEGG2

KEGG4

KEGG5

KOC1

KBTWN1

KBTWN2

KMAU3

KMAU4

KMAU5

KMAU6

KBAY1

KBAY5

VKA1

VKA12

VKA2

VKA22

VKA4

VKA5

VKA56

Cohansey River Basin

Cohansey River Basin

Cohansey River Basin

Maurice River Basin

Maurice River Basin

Great Egg Harbor River Basin

Great Egg Harbor River Basin

Great Egg Harbor River Basin

Great Egg Harbor River Basin

Kirkwood Formation outcrop

Cohansey and Maurice River Basins

Cohansey and Maurice River Basins

Maurice River Basin

Maurice River Basin

Maurice River Basin

Maurice River Basin

Delaware Bay

Delaware Bay

Cohansey River Basin

Cohansey River Basin

Maurice and Great Egg Harbor River Basins

Maurice and Great Egg Harbor River Basins

Model layers 3 and 4

Delaware Bay tidal 

Model layers 5 and 6

55

48

55

55

40

56

90

100

40

83

65

60

89

40

160

40

60

70

2.85

3.11

0.99

0.29

0.52

0.10

0.95

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

21A

21B

22A

21A

21B

21A

21B and 22A

22B

21C and D

21A and B

21A

21B

22A

22B

22C  

22D

21A, B, and 22A

22B, C, and D

23A

23B

23A

23B

24

24

Not shown in a figure

1

2

3

1

2

1

2

3-4

5-6

1

1

2

3

4

5

6

1-3

5-6

1

2

1

2

3-4

3-4

5-6

1.04

0.56

0.23

1.67

0.51

0.35

0.43

0.17

0.21

0.22

0.70

0.58

0.80

0.32

1.03

0.23

0.00

0.00

0.02

0.02

0.09

0.33

0.16

0.22

0.04
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Table 8. Description of parameters for the calibrated numerical groundwater-flow model, Cumberland County study area, New Jersey. 
—Continued

Parameter 
Zone 
name

Generalized zone location Value Unit

Reference 
figure 

for zone 
location

Model 
layer

Composite 
scaled 

sensitivity

Streambed 
hydraulic 

conductivity 

Recharge
multiplica-
tion factor

Storage 
coefficient

ALLW

LwSAL

OLD

RAC

STO

UpSAL

WOOD

LwCoh

UpCoh

LE

LwMau

MANA

MANT

Md1Mau

Md2Mau

MEN

MUD

SCOT

UpMAU

CDR

DIV

WES

LwGEH

MdGEH

UpGEH

TUC

RECH1

RECH2

RECH3

RECH4

RECH5

RECH6

SS1

SS2

SS3

SS4

SS5

Alloway Creek

Lower Salem River

Oldman Creek

Raccoon Creek

Stow Creek

Upper Salem River

Big Timber Creek

Lower Cohansey River

Upper Cohansey River

Little Ease Run

Lower Maurice River

Manamuskin River

Mantua Creek

Middle  Maurice River

Middle Maurice River

Menantico Creek

Muddy Run

Scotland Run

Upper  Maurice River

Cedar Creek

Dividing Creek

West Creek

Lower Great Egg Harbor River

Middle Great Egg Harbor RIver

Upper Great Egg Harbor River

Tuckahoe River

Western Kirkwood Formation outcrop

Cohansey River Basin

Maurice River Basin

Great Egg Harbor Basin

Stow Creek Basin

Eastern Kirkwood Formation Outcrop

Cohansey River Basin

Maurice and Great Egg Harbor River Basins

Model layers 3 and 4

Southeast area

Model layers 5 and 6

0.25

0.27

0.83

0.13

0.02

0.32

0.53

1.04

14.34

2.16

0.21

0.78

0.25

1.47

8.38

0.26

0.34

0.80

10.36

0.04

2.0x10-4

0.25

1.81

0.69

0.69

10.36

0.11

1.30

1.40

1.45

1.43

0.76

0.0460

0.0440

0.0005

0.0640

0.0057

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

feet/day

dimensionless

dimensionless

dimensionless

dimensionless

dimensionless

dimensionless

dimensionless

dimensionless

dimensionless

dimensionless

dimensionless

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

27

27

27

27

27

27

25

25

Not shown in a figure

25

Not shown in a figure

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1-2

1-2

3-4

1-2

5-6

0.44

0.00

0.09

1.49

0.50

0.15

0.46

0.46

0.10

0.80

0.10

0.32

1.31

0.42

0.06

1.00

0.98

0.66

0.26

0.03

0.00

0.50

0.05

0.54

0.27

0.07

0.12

13.14

14.63

12.19

0.85

2.34

3.78

0.50

0.22

0.22

0.00
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Figure 24. Zones of vertical hydraulic conductivity for model layers 3 and 4 in the groundwater-flow model of the Kirkwood-Cohansey 
aquifer system, Cumberland County study area, New Jersey.
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Figure 25. Zones of storage coefficients in model layers 1 and 2 of the groundwater-flow model of the Kirkwood-Cohansey aquifer 
system, Cumberland County study area, New Jersey.
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base flows. Streambed conductivity values for the Maurice 
River ranged from 2.1 x 10-1 to about 1.0 x 101 ft/d (fig. 26). 
Streambed conductivity values for the Cohansey River were 
estimated to be 3.0 x 10-2 to about 1.4 x 101 ft/d. Streambed 
hydraulic conductivity values for streams in the outcrop of the
Kirkwood Formation ranged from 2.0 x 10-2 to 8.3 x 10-1 ft/d 
and for the Great Egg Harbor and Tuckahoe Rivers, from 
6.9 x 10-1 to about 1.0 x 101 ft/d. Pope and others (2012) used 
a value of 1 ft/d for riverbed hydraulic conductivity for the 
Great Egg Harbor River.

Six recharge zones were used to define recharge in the 
calibrated model. The recharge zones are shown in figure 27. 
The zones were established to better represent the spatial 
distribution of recharge in the model. During model cali-
bration, the Cohansey River Basin and the Maurice River 
Basin were divided into zones on the basis of comparison of 
fluctuations in monthly recharge with the water levels and 
monthly estimated base flow from the PART (Rutledge, 1998)
or MOVE1 (Hirsch, 1982) analysis; there is overlap in the 
recharge zones between these two basins. The outcrop of the 
Kirkwood Formation also was divided into zones—a zone for 
the tidal Salem River area, a zone for the eastern part of the 
outcrop, and a zone that overlaps with another recharge zone 
in the model area. The recharge zone for the Great Egg Harbo
River Basin overlaps with a recharge zone for the Maurice 
River Basin because there were no monthly estimated base 
flow analyses included for that basin.

Recharge zones 1, 2, 5, and 6 had monthly recharge rates
estimated using precipitation measured at the Seabrook Farms
weather station and DRO estimated from MOVE1 analysis 
of the Cohansey River at Seeley streamflow-gaging sta-
tion (01412800; fig. 6). Zones 3 and 4 had monthly recharge 
rates estimated from the precipitation measured at the Mill-
ville Municipal Airport weather station and DRO estimated 
from hydrograph separation of the Maurice River at Norma 
streamflow-gaging station (01411500; fig. 6). Equation 2, 
which was used to estimate recharge, allows some months to 
have zero recharge if the SMD value for that month is greater 
than precipitation. Months that are in this category were 
given a recharge value in the model that equaled the low-
est estimated monthly recharge rate. Although the Millville 
Municipal Airport and Seabrook Farms weather stations used 
to estimate recharge are located within the study area, these 
two weather stations may not be representative of the east-
ern part of the study area. However, the Millville Municipal 
Airport and Seabrook Farms weather stations have records 
that are more complete for the time of the model simulation 
than the Glassboro and Mays Landing weather stations, which
are on the periphery of the study area. The Millville Munici-
pal Airport and Seabrook Farms weather stations probably 
monitor local precipitation in the study area more accurately. 
In addition, DRO values used in the recharge equation for 
the Maurice River Basin were determined for a long-term 
continuous-record streamflow-gaging station in the central 
part of this basin, although the same recharge rates were used 
for the southern part of the basin. For the Cohansey River 

 

 

r 

 
 

 

Basin recharge zone, the DRO value was calculated using 
the streamflow and base flow from the low-flow correlation 
analysis correlated to index stations that have longer periods 
of discharge measurements than the Cohansey River at Seeley 
streamflow-gaging station.

Because of these limitations in the estimates of recharge, 
recharge rates were adjusted during calibration to best match 
estimated base flows and measured water levels. A recharge 
multiplier was used to adjust the recharge spatially over the six 
zones during model calibration (fig. 27). The recharge mul-
tiplication factor was lower (less than 1) in recharge zones 1 
and 2 in the area of the outcrop of the Kirkwood Formation. 
Initial recharge estimates were decreased in the Kirkwood 
Formation outcrop area in the Salem River Basin and the 
Oldmans, Raccoon, Mantua, and Big Timber Creek drainage 
basins (fig. 26), and in the lower part of the Maurice River 
Basin in the tidal area adjacent to the upper wetlands boundary 
(fig. 4). The Kirkwood Formation contains fine- to medium-
grained micaceous sand with clay and silty micaceous clay 
throughout.

The Cohansey Sand downdip from the Kirkwood Forma-
tion outcrop consists of medium to coarse sand, with clay 
occurring locally (New Jersey Geological Survey, 2009). For 
some recharge zones in the Cohansey, Maurice, and Great Egg 
Harbor River Basins where the Cohansey Sand is present, the 
recharge multiplication factor was increased (greater than 1) to 
allow greater recharge rates than were estimated. One expla-
nation for the higher recharge rate is there is more irrigation 
percolation in some areas of the model because crops do not 
use all the water used for irrigation. Much of this water can 
seep back into the land. Stanton and others (2013) indicate that 
their groundwater-flow model for north-central Nebraska sim-
ulated water levels and base flow too low in some agricultural 
areas. They suggest too little simulated recharge or irrigation 
return flow as one possible explanation, as well as too much 
simulated irrigation pumpage and recharge areas that were too 
large areally. Additional recharge ascribed to irrigated agricul-
tural lands was simulated in the groundwater-flow model of 
Stanton and others (2013). Although return flow was not quan-
tified in the Cumberland County groundwater-flow model, in 
the areas where many agricultural-irrigation wells are sited 
in the Cohansey River and Maurice River Basins (fig. 9), 
the recharge multiplication factor was increased. Additional 
recharge to the aquifer system also occurs from the return of 
treated wastewater from septic systems. Many areas adjacent 
to the municipal areas of Bridgeton, Millville, and Vineland 
in Cumberland County are without centralized sewer systems 
and commonly use septic systems.

Flow Budgets

A comparison of the June and September 2008 flow-bud-
get components is shown in figure 28. Because the flow-bud-
get components were determined for September 2008, most of 
the summer irrigation withdrawals and greater ET had already 
taken place. ET is typically greater during the summer months, 
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Figure 26. Zones of streambed hydraulic conductivity for model layer 1 in the groundwater-flow model and surface-water drainage 
basins, Cumberland County study area, New Jersey.
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Figure 28. Graphs showing simulated flow budgets for June 2008 and September 2008 for the Kirkwood-Cohansey aquifer system, 
Cumberland County study area, New Jersey.

affecting recharge to the aquifer. Inflow to the aquifer layer is 
represented by positive values: negative values indicate flow 
out of the aquifer layers. Inflow to model layers can include 
recharge, lateral flow (specified flow) at the eastern boundary 
of the model, flow from the underlying confined aquifers, water
released from storage when water levels decline, and leakage 
from streams to aquifers resulting from withdrawals. Outflow 
from model layers includes lateral flow to the aquifer system 
outside the model area, flow to the underlying aquifers other 
than the Kirkwood-Cohansey aquifer system, flow to offshore 
areas of the aquifer, water going into storage when water levels
are increasing, leakage to streams, and groundwater withdraw-
als. Flow into constant heads represents flow to the Delaware 
or Great Egg Harbor Bays and their adjacent wetlands; flow out
of constant heads represents flow to the aquifer.

A comparison of simulated June 2008 and September 
2008 budgets indicates that recharge was lower in June 2008 
than in September 2008, causing more water to be released 
from storage into the aquifer in June. During 2008, precipita-
tion was 1.15 in. greater at the Seabrook Farms weather station 
(fig. 2) and 0.4 in. greater at the Millville Municipal Airport 
weather station (fig. 2) in June than in September, resulting in 
greater recharge during the month of September. Groundwater 
withdrawals were greater in June 2008 because agricultural 
irrigation increased during the summer growing season months 
of June, July, and August.

The simulated flow budget for September 2008 indicates 
that simulated recharge accounted for about 94 percent of 
inflow to the Kirkwood-Cohansey aquifer system; most of the 
remainder of the budget inflow is from storage. There is some 
simulated leakage from the streams to the aquifer system, and a
small amount from the constant heads and from specified flow 

 

 

 

 

(boundary flows). Simulated groundwater withdrawals account 
for about 10 percent of outflow from the aquifer system, and 
simulated outflow to streams accounts for about 78 percent. For 
much of the remainder of the budget, outflows are to storage 
and to constant heads (wetlands and bays); a small amount is to 
specified flows.

The flow budget for the period 1997 to 2008 is shown in 
figure 29 as recharge, net storage, net base flow, and withdraw-
als. The specified flows from the model boundaries are small 
and constant (fig. 28) and are not shown in figure 29. Flow to the 
constant heads occurs at the wetland areas adjacent to Delaware 
and Great Egg Harbor Bays. Net flow is towards the bay, but 
there is a small component of flow from the constant head in the 
bay to the aquifer in some areas along Delaware Bay. Because 
the Kirkwood-Cohansey aquifer system interacts with Delaware 
Bay and tidal areas, salty tidal water is present in some areas 
and saltwater intrusion is a potential concern in coastal areas 
(New Jersey Geological Survey, 2009). Figure 9 indicates some 
agricultural-irrigation wells are adjacent to the wetlands bound-
ary, but the pumpage from these wells is small. The flow budgets 
indicate that recharge is the major inflow; discharge to streams 
(net base flow) is the major outflow. Recharge varied monthly 
and typically was higher in the winter to early spring. Water is 
released from storage in the summer when recharge is low and 
water levels decline. Water goes into storage in the winter and 
spring months when water levels increase. Withdrawals from 
wells are greater in the summer months for agricultural use, 
and they follow a pattern similar to that of the storage outflow 
component. The budget components indicate that flow from the 
aquifer to the streams (net base flow) follows a pattern that is 
opposite to that of withdrawals. Therefore, the greater the with-
drawals, the less groundwater discharge to streams.
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Figure 29. Simulated flow-budget components for the Kirkwood-Cohansey aquifer system, Cumberland County study area, New 
Jersey, 1998–2008.

Sensitivity Analysis

A sensitivity analysis was conducted to evaluate the 
relative effects of the various parameters on the sensitivity of 
the water levels and base flows. The sensitivity of the model 
parameters was calculated using UCODE-2005 (Poeter and 
others, 2005). Composite-scaled sensitivities (CSS) were cal-
culated for all 62 parameters in the groundwater-flow model 
using measured water levels and estimated base flows from 
1998 to 2008 to determine which parameters were the most 
sensitive. The 62 parameters include the recharge multiplica-
tion factor, horizontal hydraulic conductivity, vertical hydrau-
lic conductivity, streambed hydraulic conductivity, and storage 
coefficient (table 8).

Because the water-level measurements and estimated 
base flows have different units and different orders of mag-
nitude, different error-based weights were assigned to the 
observations. Weighted residuals represent the fit of the regres-
sion relative to the expected accuracy of the observation. For 
water-level measurements, the standard deviation was used 
in the error-based weighting; for the base-flow estimates, the 
variance was used in the error-based weighting. Modifications 
to the initial weighting approach were used to account for dis-
crepancies in data density between the numbers of water-level 
measurement and estimated base-flow observations.

Errors in water-level measurements were limited by the 
accuracy at wells whose locations were not determined using 
a Global Positioning System (GPS) and by the accuracy of 

the method used to estimate the elevation of land surface. 
Some wells have relatively accurate land-surface elevations 
determined by a land survey (leveled), whereas others have 
less accurate values interpreted from digital elevation maps 
or from topographic maps (not leveled). Water-level measure-
ments were divided into one group where the land-surface 
elevation was surveyed and another group where the land-
surface elevation was determined from a topographic map. 
The two different water-level groups were assigned different 
error-based weights.

The base flows were estimated by either low-flow cor-
relation methods or hydrograph separation techniques with 
streamflow discharge measurements at the streamflow-gaging 
station or an index station. This may contribute more error to 
the base flow estimate than a calibration using direct or gaged 
measurements. In addition, errors in streamflow measurements 
generally are within 5 to 10 percent, based on streamflow 
and conditions at the time of the measurement (Reed and 
others, 1999).

Initial weights for the base flow estimates were defined 
using methods suggested by Hill and Tiedeman (2007) for 
flow data. Base-flow estimates were divided into categories 
on the basis of the size of the estimated monthly discharge 
measurement. The four categories—0.25 to 1 ft3/s, greater than 
1 to 10 ft3/s, greater than 10 to 100 ft3/s, and greater than 100 
to 450 ft3/s—were assigned error-based weights. Base flow 
less than 0.25 ft3/s was not assigned a weight and was not used 
in the sensitivity analysis using UCODE-2005. The natural 
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section control for a streamflow-gaging station is typically less
sensitive for discharge of less than about 0.25 ft3/s, resulting in
a higher degree of uncertainty in the stage-discharge relation. 
Base flows of less than 0.25 ft3/s were considered unreliable 
at the scale of the model and subsequently were not used. As 
previously mentioned, because of the variability in base flow 
and streamflow at gaging stations along the mainstem of the 
Maurice and Cohansey Rivers, a 3-month average was used 
for the estimated base flow when compared to the simulated 
base flow (Claire Tiedeman, U.S. Geological Survey, oral 
commun., 2014).

The CSS values for 35 parameters are shown in figure 30
all other parameters had very small sensitivities and were not 
included on this graph. The CSS values indicate how sensitive
all the water-level measurements or base-flow estimates in the 
model are to changes in each of the parameters. The parame-
ters with the largest CSS values are the recharge multiplicatio
factor for parts of the Maurice (RECH 3) and Cohansey River 
(RECH2) Basins. The next four most sensitive parameters 
are the recharge to the upper part of the Maurice River Basin 
(RECH4), a storage coefficient for layer 1 (SS1), recharge to 
a section of the outcrop area (RECH6), and hydraulic con-
ductivity in sections of the Maurice River Basin (KMAU1). 
Streambed hydraulic conductivity and other horizontal hydrau
lic conductivities for layer 1 and the lower model layers, and 
vertical hydraulic conductivity, show similar composite scaled
sensitivities.

Model Limitations

 All models are based on a limited amount of data and 
thus are simplifications of the aquifer system and its repre-
sentation. Limitations result from uncertainty in four aspects 
of the model, including inadequacies or inaccuracies in (1) 
conceptualization of the flow system; (2) model discretization 
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Figure 30. Composite scaled sensitivities of model parameters, Cumberland County study area, New Jersey. (Parameter names appear 
in table 8.)

and heterogeneity; (3) the methods used to estimate model 
parameters, sensitivity, and uncertainty; and (4) measurements 
or estimates used to calibrate the model.

The accuracy of a groundwater-flow model depends on 
the accuracy of the conceptual model and available data. The 
necessary simplification of the physical system in groundwa-
ter-flow models involves spatial discretization and the repre-
sentation of physical heterogeneity. For this model, a model 
cell size is 500 ft by 500 ft where detail is needed in the study 
area. Because of this discretization, the hydraulic properties 
and simulated conditions within each cell are reduced to one 
average value for the entire cell. Although this cell size is 
adequate for the simulation objectives described in this report, 
new analyses requiring finer spatial detail would benefit from 
refinement of the model. The hydrogeologic framework and 
initial hydraulic property estimates come from sources with 
their own scale and uncertainty. As previously mentioned, 
many of the clay units within the Kirkwood-Cohansey aquifer 
system are of variable extent.

Water-level measurements have a level of accuracy that 
creates additional uncertainty, affecting limitations to model 
accuracy. The lack of water-level measurements for the deeper 
model layers adversely affected determination of parameters 
and provided an additional source of uncertainty that limits 
model applicability. Errors that contribute to the uncertainty 
of a water-level measurement include (1) inaccuracies in the 
altitude and location of a well and the measurement of a water 
level and (2) fluctuations introduced by transient stresses. 
Well-altitude error directly affects the calculation of the water 
level as referenced to a common datum. The error associated 
with the potential inaccuracy in well altitude was computed 
using the altitude accuracy code given in GWSI. The error 
range varies owing to the precision of measuring methods—
GPS surveys and positioning from topographic maps—by 
±10 ft for estimates determined from topographic maps having 
large (20 ft) contour intervals. Measurement instrument errors 
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result from inaccuracies in the measurement of the depth to 
water and depend primarily on the device being used to make 
the measurement. Most water levels were measured using a 
steel tape or an electric tape; both have a high accuracy of 
±0.01 ft. Other factors, such as equipment calibration, can also 
affect the overall accuracy.

Base flow was estimated using hydrograph separation 
techniques that have an associated uncertainty contributing 
more error to the estimation. In addition, their weighting was 
unrelated to measurable accuracy but was driven by subjec-
tive decisions regarding the estimated value. Monthly base 
flow was estimated for 4 streamflow-gaging stations in the 
model using the PART program (Rutledge, 1998); monthly 
base flow for 14 streams and tributaries in the model was 
estimated using the MOVE1 (Hirsch, 1982) analysis. Vari-
ability in discharge is large for many of the smaller streams 
and the rivers; the very high base flows were not well matched 
during model calibration for the rivers. A possible explanation 
may be the interval over which the recharge was calculated 
for the model, which is monthly. A smaller interval, such as 
biweekly, may have resulted in better matching for the higher 
base flows. However, the monthly withdrawal data provided 
by the NJDEP are not reported at a smaller interval; therefore, 
monthly recharge values were used. Other limitations regard-
ing recharge were previously discussed in the “Model Calibra-
tion” section of the report.

Because boundary flows from the RASA model represent 
annual flows, the boundary flows of the Cumberland study 
area may not represent actual seasonal flows. The RASA 
model was temporally discretized on an annual scale, unlike 
the monthly scale of the Cumberland study groundwater-flow 
model. However, model limitations associated with boundary 
flows are minor because boundary flows are a small part of the 
overall flow budget.

The accuracy of the groundwater withdrawals and 
surface-water diversions input to the model is difficult to 
assess because of uncertainties inherent in collecting, record-
ing, and reporting the data for the NJDEP. These inaccuracies 
can also affect the groundwater discharge to streams in areas 
if not properly represented. In addition, domestic self-supply 
groundwater withdrawals were not input into the model. 
These withdrawals are assumed to be small; for example, 
in 1994, these withdrawals accounted for about 5 percent 
of total groundwater withdrawals in Cumberland County 
(Nawyn, 1997).

As previously mentioned, simulation of the unconfined 
system resulted in numerical instabilities associated with solv-
ing the nonlinear equations that made it necessary to treat the 
subsurface flow system as confined. The constant-saturated-
thickness approximation has been used in numerical simula-
tions to characterize regional-scale groundwater flow during 
the calibration period. Faunt and others (2011) used this 
approach in the groundwater-flow model of the Death Valley 
regional groundwater-flow system where the relevant satu-
rated thickness is generally much greater than the drawdowns. 
The authors stated that simulated drawdowns are accurate as 

long as they remain a small fraction of the initial saturated 
thickness because the transmissivity (thickness multiplied by 
hydraulic conductivity) of the constant-saturated-thickness 
system will remain close to that of the unconfined system, and 
under the assumption of confined flow, changes in parameters 
such as hydraulic conductivity do not alter the state of the 
flow system. Cosgrove and others (2006) also found that the 
confined representation in a MODFLOW model of the uncon-
fined Snake Plain aquifer allowed for a more stable numerical 
simulation of the aquifer during model calibration. From the 
specific-capacity data from well-acceptance tests, drawdowns 
for wells about 50 ft in depth in the Cumberland County 
study area are about 8 ft or less. The average drawdown for 
wells with depths greater than 100 ft is about 24 ft. However, 
in areas where a clay unit is present and confined conditions 
exist, drawdowns can be greater. Sheets and others (2015) also 
discuss the issue of large drawdowns and aquifer thickness 
using a specified thickness approximation approach.

Simulation of Water Levels Using MODFLOW-
NWT 

A simulation was conducted using the calibrated model 
parameters and using the MODFLOW-NWT, a package for 
simulating unconfined groundwater-flow using the Upstream-
Weighting (UPW) package of MODFLOW-NWT (analogous 
to the Layer-Property Flow package of MODFLOW-2005). 
The results from the calibrated confined model simulation 
were compared to those of the unconfined simulation using the 
MODFLOW-NWT package, although the groundwater-flow 
model was not calibrated using this package. The simula-
tion using MODFLOW-NWT included some convergence 
problems.

Final parameter values from the confined model (table 8) 
were input to the MODFLOW-NWT unconfined model. 
Because the confined model represented the aquifer system 
under confined conditions, a specific yield value of 0.1 was 
assumed for specific yield in layer 1. This value is similar to 
a value used for a groundwater-flow model of the adjacent 
Great Egg Harbor River Basin of 0.15 (Pope and others, 2012) 
and is similar to a value used in the Cumberland County 
groundwater-flow model calculated from the range of storage 
coefficients divided by the aquifer thickness. Simulated water 
levels, base flows, and flow budgets were compared and were 
in reasonable agreement between the confined and uncon-
fined simulations. As an example, the simulated water-level 
contours from the MODFLOW-NWT model for May through 
June 2008 are shown in figure 31. The differences between 
the simulated water levels for the confined aquifer model run 
and those for the unconfined aquifer model run are shown in 
figure 31. Figure 17A shows the simulated water levels for the 
June 2008 for the confined simulation. The average differ-
ence between the simulated water levels from the unconfined 
simulation and those from the confined simulation is 2 ft 
with 65 percent of the wells having a difference of 2 ft or 
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Figure 31. Simulated unconfined water-level contours, the difference in simulated water levels between the unconfined and confined 
aquifers, and the difference in base flows between the unconfined and confined aquifers in the Kirkwood-Cohansey aquifer system for 
June 2008, Cumberland County study area, New Jersey.
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less and 85 percent having a difference of 5 ft or less. For the 
17 streamflow-gaging stations, the average difference betwee
the unconfined and confined simulation is 4.7 ft3/s.

Withdrawal Scenarios Using the 
Cumberland County Study Area 
Groundwater-Flow Model

Five withdrawal scenarios were simulated using the 
calibrated groundwater-flow model of the Cumberland Count
study. The results of these scenarios are evaluated to assess 
changes in monthly base flows, water levels, and flow-budget 
components in the Kirkwood-Cohansey aquifer system com-
pared to a baseline scenario (scenario 1).

Simulations Using the Numerical Groundwater-
Flow Model

Scenarios 1 through 5 were simulated using the cali-
brated groundwater-flow model for the Cumberland County 
study area to evaluate several withdrawal conditions. The 
scenarios are summarized in table 9. Scenario 1 represents 
the monthly average of 1998‒2008 groundwater withdrawals.
The results of the other four scenarios are compared to results
of the scenario 1 (baseline scenario). Scenario 2 incorporates 
monthly full-allocation groundwater withdrawals, except for 
the agricultural-irrigation withdrawals. Agricultural-irrigation
groundwater withdrawals were modified by decreasing the 
full-allocation withdrawal to reflect seasonal changes when 
water-use demand is lower, such as during winter months. 
Scenario 2 is referred to as an adjusted agriculture full-allo-
cation scenario. Scenario 3 incorporates the monthly full-
allocation groundwater withdrawals at all wells. Scenario 4 

n 

y 

 
 

 

Table 9. General description of withdrawal scenarios for groundwater-flow models, Cumberland County study area, New Jersey.

Scenario number Withdrawal scenario Aquifer of interest

Transient scenarios using Cumberland groundwater-flow model

1 Monthly average 1998–2008 (baseline flow)

2

3

4

Monthly adjusted agriculture full allocation 

Monthly full allocation

Estimated monthly 2050 municipal public supply

Kirkwood-Cohansey  
aquifer system

5 Estimated monthly 2050 municipal public-supply seasonal alternative

Steady-state scenarios  using New Jersey Regional Aquifer System Analysis (RASA) groundwater-flow model

6 Annual average 2004–08 

7 Estimated 2050 municipal public supply Piney Point

8 Full allocation for Millville City, Vineland City, and Monroe Township

incorporates estimated increases in municipal public-supply 
demand in 2050. Scenario 5 incorporates the same withdraw-
als as scenario 4, except that the withdrawals for several 
municipal public-supply wells were moved to a deeper model 
layer to observe the effect on streams. Scenario 5 is a seasonal 
municipal public-supply alternative scenario. Only existing 
wells in the Cumberland County study area groundwater-flow 
model were used in scenarios 1‒5. The NJPDES discharges 
and surface-water diversions input into the SFR2 package 
(Niswonger and Prudic, 2009) of the model were not changed 
for the scenarios (fig. 15). Total groundwater withdrawals for 
scenarios 1‒4 are shown in figure 32, by NJDEP permit series. 
Total groundwater withdrawals for 2008 are also included in 
this figure for comparison.

The annual precipitation rates from 1998 to 2008 include 
a wet and dry period. As previously mentioned, mean annual 
precipitation at the Seabrook Farms and Millville Municipal 
Airport weather stations from 1998 to 2008 was 44.4 in/yr 
and 39.1 in/yr, respectively. The period 1998‒2008 includes 
the drier years of 1998 and 2001 and the wetter years of 1999 
and 2003. For the years when precipitation was lower than 
the average, the total precipitation for the Seabrook Farms 
weather station in 1998 was 37.8 in/yr and in 2001 was 
36.1 in/yr; for the Millville Municipal Airport weather station, 
the total precipitation was 36.5 in/yr in 1998 and 27.5 in/yr 
in 2001. For the years 1999 and 2003 when precipitation 
was greater than the average, the total precipitation for the 
Seabrook Farms weather station was 49.1 in/yr and 55 in/yr, 
respectively, and for the Millville Municipal Airport weather 
station it was 41.9 in/yr and 50.8 in/yr, respectively.

 The five scenarios pertain to an 11-year hypothetical 
period during which monthly recharge is equivalent to that 
estimated for 1998‒2008 in the calibrated model. In each of 
these scenarios, the cycle of withdrawals varies by month. 
Therefore, these scenarios represent monthly conditions that 
would have occurred if the withdrawals for the scenarios had 
occurred during 1998‒2008. For discussion of the scenarios 
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Figure 32. Groundwater withdrawals, by permit series, incorporated in the numerical groundwater-flow model for scenarios 1–4 and 
2008, Cumberland County study area, New Jersey.

using the Cumberland County study area groundwater-flow 
model, the years 1998‒2008 are referred to as scenarios 
years 1 through 11. The scenario year and the recharge year 
are shown in table 10. Recharge for each year and the ratio of 
the recharge per year to the largest recharge (2003) are also 

Table 10. Scenario years and recharge per year used for 
scenarios 1–5, Cumberland County study area, New Jersey.

[Mgal/yr, million gallons per year; ft3/s, cubic foot per second]

Scenario Recharge Recharge Recharge Recharge
year year (ft3/s) (Mgal/yr) ratio1

1 1998 10,506 2.48 0.66

2 1999 15,054 3.55 0.94

3 2000 10,897 2.57 0.68

4 2001 10,506 2.48 0.66

5 2002 14,142 3.34 0.89

6 2003 15,970 3.77 1.00

7 2004 12,005 2.83 0.75

8 2005 14,534 3.43 0.91

9 2006 10,506 2.48 0.66

10 2007 13,101 3.09 0.82

11 2008 11,684 2.76 0.73

1 Ratio is recharge for year to largest recharge (2003).

shown. Recharge and withdrawals for the first 5 stress periods 
were not changed for scenarios 1‒5.

Scenario 1 Average Monthly 1998–2008 
Groundwater Withdrawals (Baseline Scenario)

Scenario 1 simulated average withdrawal conditions 
using withdrawal rates from 1998 to 2008 averaged for each 
month. The locations of the wells are shown in figure 9. The 
simulated water-level contours for scenario 1 are shown in 
figure 33A for June and figure 33B for September of scenario 
year 11. The simulated water-level contours form patterns 
similar to those shown in figure 17A‒B for June and Septem-
ber of 2008. The simulated budget components—groundwater 
withdrawals, net storage, and net base flow—are shown in 
figure 34 for scenarios 1–3. A decrease in base flow is shown 
in figure 34A when withdrawals increase during the summer 
months. A net decrease in storage (a negative value) is shown 
in figure 34B when water levels decline owing to increased 
withdrawals and lower recharge because of increased ET, 
which are typical during the summer months. A net increase in 
storage (a positive value) is shown in figure 34B when water 
levels are recovering. Monthly groundwater flow to streams 
(base flow) varied over the 11-year simulation period and 
ranged from 516.7 ft3/s in November of scenario year 4 to 
1,307.3 ft3/s in April of scenario year 10. Monthly groundwa-
ter withdrawals varied over the 11-year simulation period, and 
the average for each month ranged from 34.8 ft3/s in Febru-
ary to 148.1 ft3/s in August. Monthly recharge (not shown in 
figure 34A‒B) varied over the 11-year simulation period and is 
the same monthly recharge as shown in figure 29.
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Figure 34. Selected simulated flow-budget components A, groundwater withdrawals and net base flow, and B, groundwater 
withdrawals and net storage for scenarios 1–3 of the groundwater-flow model, Cumberland County study area, New Jersey.
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Analysis of Simulated Base Flow in the Cohansey 
and Maurice River Basins 

The locations of selected HUC11 drainage basins located 
in the Cohansey and Maurice River Basins and the Back, 
Cedar and Nantuxent Creeks Basin are shown in figure 35. 
Each HUC11 in the Cumberland County study area is desig-
nated by the first eight digits of the HUC as 02040206. These 
digits are followed by a 3-digit number that designates an indi-
vidual HUC11 in either the Cohansey or Maurice River Basin. 
The bottom of the watershed (pour point) is the lowest point 
of the land area where water flows out of the watershed, in 
this case, the HUC11 (U.S. Environmental Protection Agency, 
2015). The pour point for each HUC11 in the Cohansey and 
Maurice River Basins is shown in figure 35.

The simulated monthly base flows at the pour point for 
each HUC11 for scenarios 1‒5 are shown in figure 36. Simu-
lated monthly base flows for scenarios 2‒5 can be compared to 
the simulated monthly base flows from the baseline scenario 
(scenario 1) to evaluate months and drainage basins in which 
base flow decreased. Figure 36 also shows the 7-day 10-year 
low flow (7Q10) given in Domber and others (2013) for each 
HUC11. The drought or low-flow statistic traditionally used 
by New Jersey water-supply planners is the 7Q10. The 7Q10 
is a 7-day average low flow that has 10-percent chance of 
occurring in a given year (Gillespie and Schopp, 1982). The 
hydrographs in figure 36 indicate that for scenario 1, base 
flows at the pour points are greater than the 7Q10 value for 
all HUC11s, except HUC 02040206180 (Menantico Creek). 
Menantico Creek, which is in the Maurice River Basin, has 
monthly simulated base flow that is about equal or slightly less 
than the 7Q10 in November and December of scenario year 4 
and January through March and August and September of 
scenario year 5 (fig. 36B). 

Total groundwater withdrawals in the Cohansey and 
Maurice River Basins for scenarios 1‒4 and for 2008 are listed 
in table 11 by NJDEP Bureau of Water Allocation & Well 
Permitting (BWA) permit type and by HUC11 drainage basin. 
The total withdrawals for scenario 5 are not shown in the 
table because they are the same withdrawals as simulated in 
scenario 4 but in a deeper model layer. Withdrawals in table 11 
are in ft3/s for easier comparison with the 7Q10 and discharge 
values in the streams. The HUC11 drainage basins in table 11 
are shown on figure 35.

Scenario 2 Adjusted Agriculture Full-Allocation 
For the adjusted agriculture full-allocation scenario, 

it was assumed that monthly agricultural-irrigation full-
allocation withdrawals would not be pumped over the entire 
year, but only during the late spring into summer growing 
months. The maximum permitted withdrawals per water-
allocation permit, well registration, or agricultural certifica-
tion or registration (referred to as “full allocation” in this 
report) used in these scenarios reflect information listed in 

NJDEP files as of July 2012. Allocation limits are specified 
for all water-allocation permits that may include more than 
one source (wells or surface-water diversions). In some cases, 
allocation limits are assigned for a group of sources within a 
permit. Full-allocation rates were estimated for each site (in a 
group) associated with a BWA permit and having withdrawals 
from 1998 to 2008. Estimates for each withdrawal site were 
determined using a USGS computer program that distributes 
allocation limits among withdrawal sites for a given BWA 
permit (Mary Chepiga, U.S. Geological Survey, written com-
mun., 2012). Monthly and annual limits were estimated using 
withdrawal patterns at each site from 1998 to 2008. For each 
site associated with a BWA permit, the estimated full alloca-
tion was based on the percentage of the total withdrawals for 
the BWA permit such that the summed allocation amount for 
sites associated with a BWA permit does not exceed the BWA 
permit monthly or yearly allocation limit.

 The monthly agricultural-irrigation groundwater 
withdrawals averaged from 2004 to 2008 that were used to 
determine which months to adjust full-allocation withdraw-
als in scenario 2 are shown in figure 37. Figure 37 shows that 
the smallest withdrawals occur during January‒April and 
October‒December, and the largest withdrawals occur during 
June‒August. Using the information in figure 37, full-alloca-
tion withdrawals for agricultural-irrigation wells were input 
to the groundwater-flow model for June, July, and August. No 
withdrawals were represented for these wells for November, 
December, January, February, and March. One-half of the full-
allocation withdrawals were input to the model for April, May, 
September, and October. The locations of agricultural-irriga-
tion wells in the Cumberland County study area for scenarios 
2 and 3 are shown in figure 38. Other wells from the 2000P, 
10000W, and 5000 BWA permit series were assigned monthly 
full-allocation withdrawals in this scenario.

The simulated water-level contours for scenario 2 and the 
change in simulated water levels from the baseline conditions 
(scenario 1) are shown in figure 39 for June and September 
of scenario year 11. Full-allocation agricultural-irrigation 
withdrawals for June were input to the model. In September, 
withdrawals decrease following the growing season months, 
so one-half the full allocation was input for September. Simu-
lated water levels in the upper Cohansey River Basin (HUC 
02040206080; fig. 35) decreased by more than 67 ft in June 
and September in scenario year 11 at a pumped well in the 
upstream part of the basin where the agricultural-irrigation 
wells are located. Water-level drawdowns in the Cohansey 
River Basin of as much as 80 ft have been reported for this 
area. An aquifer test in 1951 in Deerfield Township in the 
Cohansey River Basin recorded drawdowns of 79 ft (Rem-
son, 1952) where a layer of clay was verified as being present 
above the pumped well. Total groundwater withdrawals in 
the Cohansey River Basin were 520 ft3/s greater in scenario 2 
than in scenario 1 (table 11). The average decline in simulated 
water levels for this drainage basin was less than 10 ft for 
this scenario. 
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Figure 36.  Hydrographs of simulated monthly base flow at pour points in Hydrologic Unit Code 11 drainage basins on the A, Cohansey 
River Basin, B, tributaries to the Maurice River Basin, and C, the mainstem of the Maurice River for scenarios 1–5 in the groundwater-
flow model and the 7-day 10-year low flows, Cumberland County study area, New Jersey. (7Q10, 7-day 10-year low flows) 
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Figure 36.  Hydrographs of simulated monthly base flow at pour points in Hydrologic Unit Code 11 drainage basins on the A, Cohansey 
River Basin, B, tributaries to the Maurice River Basin, and C, the mainstem of the Maurice River for scenarios 1–5 in the groundwater-
flow model and the 7-day 10-year low flows, Cumberland County study area, New Jersey. (7Q10, 7-day 10-year low flows) —Continued
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Figure 36.  Hydrographs of simulated monthly base flow at pour points in Hydrologic Unit Code 11 drainage basins on the A, Cohansey 
River Basin, B, tributaries to the Maurice River Basin, and C, the mainstem of the Maurice River for scenarios 1–5 in the groundwater-
flow model and the 7-day 10-year low flows, Cumberland County study area, New Jersey. (7Q10, 7-day 10-year low flows)—Continued
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Table 11. Groundwater withdrawals for 2008 and scenarios 1–4, by permit type, for selected Hydrologic Unit Code 11 drainage basins 
in the groundwater-flow model, Cumberland County study area, New Jersey.

[Permit types are from the New Jersey Department of Environmental Protection Bureau of Water Allocation and Wells Permitting. HUC11, Hydrologic Unit 
Code 11; all withdrawals in cubic feet per second and rounded to nearest integer]

HUC11 number
for subbasin

River or Tributary in the 
Maurice River Basin

10000 Series 2000 Series 5000 Series Agriculture Totals

02040206080 Cohansey River  
2008 Withdrawals

1 63 10 98 172

02040206090 Cohansey River  3 0 48 53 104

02040206100 Back / Cedar / Nantuxent Creeks 1 0 0 33 34

02040206120 Still Run / Little Ease Run 2 0 23 16 41

02040206130 Scotland Run 2 2 30 3 37

02040206140 Maurice River 3 53 133 38 227

02040206150 Muddy Run 2 0 0 105 107

02040206160 Maurice River 1 0 17 10 28

02040206170 Maurice River  0 5 23 17 45

02040206180 Menantico Creek 1 2 33 83 119

02040206190

02040206080

Manamuskin River 0 1 0 21 22
Totals

Cohansey River  

16 126 317 477
Scenario 1  Monthly average 1998–2008 withdrawals (Baseline)

0 68 6 61

936
 

135

02040206090 Cohansey River  2 0 30 25 57

02040206100 Back / Cedar / Nantuxent Creeks 0 0 0 18 18

02040206120 Still Run / Little Ease Run 1 0 14 6 22

02040206130 Scotland Run 2 1 33 1 37

02040206140 Maurice River 2 42 149 25 217

02040206150 Muddy Run 1 0 0 58 59

02040206160 Maurice River 0 0 12 4 16

02040206170 Maurice River  0 7 27 10 45

02040206180 Menantico Creek 1 0 18 61 79

02040206190

02040206080
02040206090
02040206100
02040206120
02040206130

Manamuskin River 0 2 0 15 17
Totals

Cohansey River  
Cohansey River  
Back / Cedar / Nantuxent Creeks
Still Run / Little Ease Run
Scotland Run

9 120 289 284
Scenario 2  Adjusted agriculture full-allocation withdrawals

4 97 10 351
17 0 53 170
2 0 0 139

11 0 25 43
10 81 50 9

702
 

462
240
141
79

151
02040206140 Maurice River 12 0 173 87 273
02040206150
02040206160

Muddy Run
Maurice River 

14 0 0 230
6 0 32 33

244
70

02040206170 Maurice River  3 33 39 39 114
02040206180 Menantico Creek 6 6 23 164 199
02040206190

 
Manamuskin River 4 0 0 49 53
Totals 89 217 405 1314 2026
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Table 11. Groundwater withdrawals for 2008 and scenarios 1–4, by permit type, for selected Hydrologic Unit Code 11 drainage basins 
in the groundwater-flow model, Cumberland County study area, New Jersey.—Continued

[Permit types are from the New Jersey Department of Environmental Protection Bureau of Water Allocation and Wells Permitting. HUC11, Hydrologic Unit 
Code 11; all withdrawals in cubic feet per second and rounded to nearest integer]

HUC11 number
for subbasin

River or Tributary in the 
Maurice River Basin

10000 Series 2000 Series 5000 Series Agriculture Totals

02040206080
02040206090
02040206100
02040206120
02040206130
02040206140
02040206150
02040206160
02040206170
02040206180
02040206190

02040206080
02040206090
02040206100
02040206120
02040206130
02040206140
02040206150
02040206160
02040206170
02040206180
02040206190

Cohansey River  
Cohansey River  
Back / Cedar / Nantuxent Creeks
Still Run / Little Ease Run
Scotland Run
Maurice River 
Muddy Run
Maurice River 
Maurice River  
Menantico Creek
Manamuskin River

Scenario 3  Full-allocation withdrawals  

656
317
199
97

154
318
348
89

129
298
80

4 97 10 545
17 0 53 247
2 0 0 197

11 0 25 60
10 81 50 13
12 0 173 133
14 0 0 334
6 0 32 51
3 33 39 54
6 6 23 264
4 0 0 76

Totals

Cohansey River  
Cohansey River  
Back / Cedar / Nantuxent Creeks
Still Run / Little Ease Run
Scotland Run
Maurice River 
Muddy Run
Maurice River 
Maurice River  
Menantico Creek
Manamuskin River

89 217 405 1974 2685
 

169
91
34
37
48

269
107
25
54

107
22

 Scenario 4  2050 Municipal public-supply withdrawals1

1 63 8 98
3 0 36 53
1 0 0 33
2 0 19 16
2 2 41 3
3 53 175 38
2 0 0 105
1 0 14 10
0 5 32 17
1 2 21 83
0 1 0 21

Totals 16 126 346 477 963

1Withdrawals were increased from monthly average 1998–2008 withdrawals to projected 2050 demand for municipal public-supply wells only; simulated 

2008 withdrawals were used for all other wells. Values are the same for scenario 5.

The simulated net base flow to streams in scenario 2 and 
the recharge input for each month in scenario 2 are shown 
in figure 40. Figure 40 indicates that the monthly recharge is 
variable and the base flow follows a similar pattern over the 
11-year period. The simulated base flow is typically greater 
when the monthly recharge is greater and less when monthly 
recharge is lower. Monthly base flow for scenario 2 var-
ies over the 11-year simulation and ranges from 448.2 ft3/s 
in September of scenario year 4 to 1,185.7 ft3/s in April of 
scenario year 10. The average difference in total simulated 
base flow is about 86 ft3/s less in scenario 2 than in scenario 
1. The simulated budget components for groundwater with-
drawals, net storage, and net base flow are shown in figure 34 
for scenario 2.

The simulated monthly base flow at the pour point of each 
selected HUC11 in the Cohansey and Maurice River Basins 
and the Back, Cedar and Nantuxent Creeks Basin is shown in 
figure 36. Simulated base flow is lower than the 7Q10 values 
in several months (about 27 percent) from scenario year 7 to 
scenario year 11 for HUC 02040206080 in the Cohansey River 
Basin. (Scenario years 7 to 11 represent the same period of 
time represented in the hydrographs in figure 20 for this basin 
[01412800].) Many agricultural-irrigation wells are located in 
the upper part of HUC 020406080 and are screened less than 
100 ft below land surface. The total increase in groundwater 
withdrawals from scenario 1 to scenario 2 in this drainage 
basin for agricultural use is 290 ft3/s (table 11). Most of the 
months that show a base-flow value less than the 7Q10 are July 
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Figure 37. Average monthly full-allocation groundwater 
withdrawals for agricultural-irrigation use, Cumberland County 
study area, New Jersey, 2004–08.

through October when agricultural-irrigation withdrawals are 
at full allocation or at one-half the full-allocation. 

The 7Q10 for Menantico Creek in the Maurice River 
Basin (HUC 02040206180) is greater than the simulated 
monthly base flow for about 29 percent of the 11-year simula-
tion period (fig. 36B), mostly during late summer of scenario 
year 4, a year of low recharge in the 11-year simulation period 
(table 10). Vineland City and Millville City and two mobile 
home parks have public-supply wells sited in this drain-
age basin. Many agricultural-irrigation wells are sited in the 
upstream part of this drainage basin; these wells are screened 
less than 100 ft below land surface. The total increase in 
agricultural-irrigation groundwater withdrawals from scenario 
1 to scenario 2 is 103 ft3/s (table 11).

Scenario 3 Full Allocation 
The full-allocation simulation represents withdrawal con-

ditions with all wells pumping at the monthly full-allocation 
rate. The location of withdrawal wells in scenario 3 are shown 
in figure 38 and are the same wells as shown in figure 9, 
except that wells with very small allocations were not included 
in the model. This exception is the result of the method used to 
distribute full-allocation withdrawals among groups of wells. 

The simulated water-level contours for scenario 3 and 
the water-level changes from scenario 1 (baseline scenario) to 
scenario 3 are shown in figure 41 for June and September of 
scenario year 11. The full-allocation withdrawals affect simu-
lated water levels and simulated base flow to streams, particu-
larly in the Cohansey River Basin. Simulated water levels in 
small areas of the Cohansey River Basin decreased by more 
than 90 ft in June and more than 110 ft in September in a small 
area of the upstream part of the basin where many agricultural-
irrigation wells are located. The average decline in simulated 
water levels for the Cohansey River Basin is less than 20 ft 
for scenario 3. When compared to scenario 1, simulated water 

levels declined more than 30 ft in the central western part of 
Muddy Run (HUC 02040206150) and more than 20 ft in the 
northeastern part of Menantico Creek (HUC 02040206180) 
subbasins in June and September of scenario year 11 (fig. 35). 
A large number of agricultural-irrigation wells are located in 
these two subbasins.

Total simulated monthly base flow for scenario 3 varied 
over the 11-year simulation from 420.1 ft3/s in November of 
scenario year 4 to 1,169.7 ft3/s in March of scenario year 1 
(fig. 40). The average difference in total simulated monthly 
base flow is about 128.4 ft3/s less in scenario 3 than in 
scenario 1. When simulated base flow in scenario 2 is com-
pared to that of scenario 3 in which all wells are pumping at 
full-allocation withdrawals in all months, the average differ-
ence in simulated monthly base flow is about 41.5 ft3/s greater 
in scenario 2 than in scenario 3. The simulated budget com-
ponents—groundwater withdrawals, net storage, and net base 
flow—for scenario 3 are shown in figure 34. Water is released 
into the aquifer from storage in the summer when withdrawals 
are greater and recharge is lower, and water goes into storage 
in the winter.

The simulated monthly base flow at the pour point of 
each HUC11 in the Cohansey and Maurice River Basins 
is shown in figure 36A‒C. Total groundwater withdrawals 
in the Cohansey River Basin are 781 ft3/s more in the full-
allocation scenario (scenario 3) than in scenario 1 (table 11). 
Figure 36A indicates that simulated base flow in the upper 
Cohansey River Basin is less than the 7Q10 in all months over 
a 5-year simulation period (scenario years 7 to 11) for HUC 
02040206080. The total increase in agricultural-irrigation 
groundwater withdrawals from scenario 1 to scenario 3 in this 
drainage basin is 484 ft3/s (table 11). More than 60 percent of 
the agricultural-irrigation wells are screened less than 100 ft 
below land surface in this basin. Figure 36A also indicates 
that simulated base flow in the lower Cohansey River Basin 
(HUC 02040206090) is less than the 7Q10 for more than 
one-half of the months during scenario years 7 through 11. 
The total increase in groundwater withdrawals from scenario 1 
to scenario 3 in this drainage basin for agricultural-irrigation 
withdrawals is 222 ft3/s and for public-supply wells is 23 ft3/s 
(table 11). The municipal public-supply wells for Bridgeton 
City and several agricultural-irrigation wells are sited in the 
downstream part of HUC 02040206090.

Simulated base flow in HUC 020406180 (Menantico 
Creek) in the Maurice River basin is less than the 7Q10 for 
about 71 percent of the months over the 11-year simulation 
period, of which 70 percent of the months are April to Novem-
ber (fig. 36B). The total increase in groundwater withdraw-
als from scenario 1 to scenario 3 in this drainage basin for 
agricultural-irrigation withdrawals is 203 ft3/s (table 11).

Total groundwater withdrawals from wells located in 
the Scotland Run (HUC 0204206130) and Still Run/Little 
Ease Run (HUC 02040206120) subbasins in scenario 3 are 
251 ft3/s (table 11). This is an increase of 192 ft3/s more in the 
Scotland Run and Still Run/Little Ease subbasins compared to 
scenario 1. In the Muddy Run subbasin (HUC 02040206150), 
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Figure 40. Monthly simulated net base flow and recharge for scenarios 1–5 in the groundwater-flow model, Cumberland County study 
area, New Jersey.

the increase is 289 ft3/s from scenario 1. In the Scotland Run 
and Still Run/Little Ease subbasins, the increase is for all cat-
egories of wells. In the Muddy Run subbasin, the increase is 
mostly for agricultural-irrigation wells. However, these three 
basins do not show base flow less than the 7Q10 for any of the 
scenarios (fig. 36).

Scenario 4 Projected 2050 Municipal Public-
Supply Demand 

During 1990‒2000, the population of Cumberland 
County increased by 6.1 percent (New Jersey Department 
of Labor, 2006) and during 2000‒10 by 7.15 percent (Cen-
susViewer, 2012). The U.S. Census Bureau estimates that 
the population of Cumberland County was 155,544 in 2007, 
a 6 percent increase from the 2000 population of 146,438 

(Delaware Valley Regional Planning Commission, 2009). 
Municipal population estimates for Cumberland County and 
the surrounding counties of Atlantic, Cape May, and Salem 
used in this scenario were developed by the South Jersey 
Transportation Planning Organization for 2007‒30 (South 
Jersey Transportation Planning Organization, 2006). For each 
municipality in the study area, a linear projection was used 
to calculate the change in population over the interval from 
2030 to 2050. Municipal population estimates for Gloucester 
County were developed by the Delaware Valley Regional 
Planning Commission to 2040 (Delaware Valley Regional 
Planning Commission, 2013). A linear projection was used to 
calculate the change in population from 2040 to 2050 for each 
municipality in the study area in that county. The projected 
percent increase for 2050 for municipalities in the study area 
is shown in table 12. The greatest projected increase in popu-
lation in the study area is in Monroe Township (42 percent) 
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Table 12. Projected percent increase in population from 2008 to 
2050 for selected municipalities in the Cumberland County study 
area, New Jersey.

[NJDEP, New Jersey Department of Environmental Protection] 

Municipality County

NJDEP 
Bureau of 

Water 
Allocation 

number and 
wells for 

municipality

Percent 
increase in 
population 

from 2008 to 
20501

Bridgeton City

Clayton Borough

Glassboro Borough

Millville City

Monroe Township

Newfield Borough

Upper Deerfield 
Township

Vineland City

Washington Township

Weymouth Township

Cumberland

Gloucester

Gloucester

Cumberland

Gloucester

Gloucester

Cumberland

Cumberland

Gloucester

Atlantic

5032

5244

5135

5316

5161

5147

5376

5148

5194

5365

0.23

0.38

0.38

0.17

0.42

0.10

0.19

0.18

0.17

0.18

1 Percent population increase estimated from South Jersey Transportation  
Planning Organization (2006) and  Delaware Valley Regional Planning Com-
mission (2013).

and in Clayton and Glassboro Boroughs (38 percent) in 
Gloucester County. The projected percent increase in popula-
tion for each municipality was used to increase the ground-
water withdrawals at municipal public-supply wells in the 
Kirkwood-Cohansey aquifer system from the 2008 monthly 
rate to the 2050 estimated rate to evaluate the effects of 
future groundwater withdrawals on these municipalities. 
The locations of municipal public-supply wells are shown 
in figure 42. All other wells were assigned the monthly 2008 
withdrawals.

The simulated water-level contours for scenarios 4 
and 5, and the water-level change from the baseline sce-
nario (scenario 1), are shown in figure 43A‒B for June and 
September of scenario year 11. Simulated water levels in 

the Maurice River Basin generally follow a pattern similar 
to those in scenario 1 for June and September in scenario 
year 11, and most areas show a decrease in simulated water 
levels of about 2 ft or less. In small areas in the upstream part 
of HUC 02040206080 (upper Cohansey River drainage basin), 
simulated water levels decreased by about 8 ft in June and 
September in scenario year 11 and by about 11 ft in June and 
September of scenario year 11 in HUC 02040206090 (lower 
Cohansey River drainage basin) where many agricultural-
irrigation wells are present. Groundwater withdrawals in the 
Cohansey River Basin are 69 ft3/s greater in scenario 4 than 
in scenario 1. Figure 43 shows water-level recovery in some 
small areas of the study area because the monthly groundwa-
ter withdrawals for June and September in scenario 1 are less 
than the withdrawals in 2008. (Total groundwater withdraw-
als in the groundwater-flow model in 2008 were 1,153.9 ft3/s, 
whereas the total for scenario 1 was 917.3 ft3/s).

Selected simulated budget components—groundwa-
ter withdrawals, net storage, and base flow—for scenario 4 
are shown in figure 44. When the results of scenario 4 are 
compared to those of scenario 1, the average change in total 
simulated base flow is about 20.5 ft3/s less in scenario 4 
(fig. 36). Total monthly base flow in scenario 4 varied over the 
11-year simulation and ranged from 490.9 ft3/s in November 
of scenario year 4 to 1,296 ft3/s in April of scenario year 10. 
Total net storage varied over the 11-year simulation from a 
low of -2,340 ft3/s in January of scenario year 5 to as much as 
1,113 ft3/s in May of scenario year 10. Water is released into 
the aquifer from storage in the summer when withdrawals are 
greater and recharge is lower, and water goes into storage in 
the winter. A ZONEBUDGET (Harbaugh, 1990) flow-budget 
analysis indicated that groundwater flow to the wells in the 
deeper model layers is from vertical flow from the overlying 
model layer and from horizontal flow within the model layer. 
Groundwater is being intercepted by withdrawal wells and, 
therefore, is not available to discharge to streams.

Groundwater withdrawals from wells in the Scotland 
Run (HUC 0204206130) and Still Run/Little Ease Run (HUC 
02040206120) subbasins for scenario 4 (83 ft3/s; table 11) 
were 26 ft3/s greater than those in scenario 1 (table 11). 
The increase occurred mostly in public-supply and agricul-
tural wells in these two subbasins. For the three drainage 
basins along the mainstem of the Maurice River (HUCs 
02040206140, 02040206160, and 0204006170), ground-
water withdrawals in scenario 4 were 70 ft3/s more than in 
scenario 1.

For HUC 02040206180 (Menantico Creek), simulated 
base flow was less than the 7Q10 during 12 months over the 
11-year simulation (9 percent) (fig. 36). The groundwater 
withdrawals from the municipal public-supply wells in Vine-
land City and Millville City in this HUC11 were increased 
to 2050 estimates, an increase of 3 ft3/s from scenario 1. The 
groundwater withdrawals at the agricultural-irrigation wells 
located in this HUC11 were increased 22 ft3/s from those in 
scenario 1. As previously mentioned, the agricultural-irrigation 
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Figure 44.  Selected flow-budget components for scenarios 1, 4, and 5 in the groundwater-flow model, by scenario month and year, 
Cumberland County study area, New Jersey.
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groundwater withdrawals increased in scenario 4 because the 
monthly withdrawals for 2008 were used and were the starting 
point to increase withdrawals from the municipal public-
supply wells, whereas scenario 1 incorporated the monthly 
average 1998‒2008 withdrawals.

Scenario 5 Seasonal Alternative for Projected 
2050 Public-Supply Demand 

In this scenario, groundwater withdrawals in 2008 from 
municipal public-supply wells in the study area screened in 
the Kirkwood-Cohansey aquifer system were increased to the 
2050 estimates used in scenario 4; however, the withdrawals 
at municipal public-supply wells were moved one model layer 
deeper. This was done to evaluate the effects of pumping from 
deeper parts of the Kirkwood-Cohansey aquifer system on 
base flow. All other wells in this scenario were pumped at the 
monthly groundwater withdrawal amounts for 2008. 

The municipal public-supply wells for those municipali-
ties shown in table 11 were assigned to model layers 2‒5; one 
well was assigned to layer 6. The municipal public-supply 
wells in model layer 2 have a screened interval from 50 
to 100 ft below land surface (bls); layer 3, 101‒150 ft bls; 
layer 4, 151‒200 ft bls; layer 5, 201‒300 ft bls, and layer 6, 
greater than 301 ft bls. There are 59 municipal public-supply 
wells represented in the scenario, of which 23 remained in 
the original model layer because the wells were already in the 
lowest active model layer. Most of these wells are in Glouces-
ter and Salem Counties and in the upstream part of the Cohan-
sey River Basin (fig. 42). Therefore, 36 municipal public-sup-
ply wells in the model represented groundwater withdrawals 
in the next deeper model layer. Four of these wells are in the 
Great Egg Harbor River Basin (fig. 1). Twenty-nine wells are 
in the Still Run/Little Ease (HUC 02040206120) and Scotland 
Run (HUC 02040206130) subbasins, and the two drainage 
basins in the Cohansey River Basin (HUCs 02040206080 
and 02040206090) (fig. 42). However, 1 well is in HUC 
02040206170, and 2 wells are in HUC 02040206160, which 
are in the Maurice River Basin (fig. 42).

The simulated water-level contours for scenario 5 are 
shown in figure 43A‒B for June and September of scenario 
year 11. Figure 43 also shows the simulated water-level 
changes from the baseline scenario (scenario 1) to scenario 5 
for June and September of scenario year 11. The simulated 
water levels are similar to those shown in scenario 4 (fig. 43). 
In small areas of the upper Cohansey River drainage basin 
(HUC 02040206080), simulated water levels are about 8 ft 
lower in June and September of scenario year 11 in scenario 5 
than in the baseline scenario. In small areas of the lower 
Cohansey River drainage basin (HUC 02040206090), simu-
lated water levels are about 12 ft lower than simulated baseline 
scenario water levels in June and September of scenario 
year 11. Water-level declines occurred at irrigation wells 
pumped at the 2008 withdrawal rate. The Maurice River Basin 

shows water-level recoveries of more than 2 ft to more than 
5 ft in some areas (indicated by a negative values on fig. 43). 
The recoveries occurred because the average 1998‒2008 
withdrawal rates used in scenario 1 are less than the 2008 rates 
used in scenario 4.

Selected flow-budget components for scenario 5 are 
shown in figure 44A‒B. In scenario 5, total monthly base flow 
varied over the 11-year simulation and ranged from a low of 
501.3 ft3/s in November of scenario year 4 to 1,282.4 ft3/s in 
April of scenario year 10. These values are similar to those 
in scenario 4. When the results for scenario 1 are compared 
to those for scenario 5, the average difference in simulated 
monthly base flow is about 19.2 ft3/s less in scenario 5. When 
the results for scenario 4 are compared to those for scenario 5, 
the average difference in simulated monthly base flow is about 
0.5 ft3/s less for scenario 4.

The results for scenario 5 indicate that moving the 
wells deeper into the aquifer affects simulated water-level 
declines in the area of those wells and increases groundwater 
discharge to streams but only by less than 1 ft3/s. Groundwa-
ter discharge to streams is affected either by pumped wells 
intercepting water so this water does not discharge to a stream 
or by pumped wells directly pulling water from a stream so 
the stream becomes a losing stream in the area of the wells. 
In scenarios 4 and 5, groundwater discharge to wells is being 
intercepted by pumped wells and therefore is not available to 
discharge to streams. The municipal public-supply wells in 
the Cumberland County study area in the baseline scenario 
were assigned to layers 2 to 6 in the groundwater-flow model. 
Therefore, in scenario 5, groundwater withdrawals from the 
36 municipal public-supply wells were made from a deeper 
part of the aquifer system, farther below land surface by 50 ft 
or more. A flow-budget analysis of model results using the 
ZONEBUDGET program (Harbaugh, 1990) indicates that 
groundwater flow to the wells in the deeper model layers is 
from vertical flow from overlying model layers and from hori-
zontal flow in the aquifer layer.

Hydrographs of the HUC11 drainage basins in figure 36 
show that simulated monthly base flow in the Cohansey 
River Basin in scenario 5 is similar to simulated monthly 
base flow in scenario 4. Of the 16 municipal public-supply 
wells in the Cohansey River Basin (HUCs 02040206080 and 
02040206090), 8 wells were not moved down to the next 
layer. For the Maurice River Basin, simulated monthly base 
flows at the Maurice River at Norma streamflow-gaging sta-
tion (01411500) in HUC 02040206140 and the next down-
stream drainage basin, HUC 02040206170, were similar to 
simulated base flows in scenario 4.

For Menantico Creek in the Maurice River Basin (HUC 
020406180) simulated base flow was lower during 12 non-
consecutive months (9 percent of the simulation period) of 
scenario years 4 and 5 (fig. 36). Municipal public-supply wells 
for Vineland City and Millville City are in the Menantico 
Creek subbasin. 
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Simulations Using the New Jersey RASA 
Numerical Groundwater-Flow Model

The Kirkwood-Cohansey aquifer system in the study area
is underlain by the Piney Point aquifer, except for northern-
most part where the outcrop of the Kirkwood Formation is 
present (fig. 45). Because the Piney Point aquifer was not 
modeled in the groundwater-flow model of the Cumberland 
study area, the RASA groundwater-flow model (Voronin, 
2004) was used for scenarios 6‒8. These simulations provide 
general information on the manner in which water levels in 
the confined Piney Point aquifer in the Cumberland County 
study area may change when groundwater withdrawals are 
increased. The RASA groundwater-flow model is described in 
Voronin (2004). The three steady-state scenarios are summa-
rized in.

New Jersey Steady-State RASA Model
As part of this study, the finite-difference numerical 

flow model developed for the USGS RASA program for 
the New Jersey Coastal Plain was used to simulated flow in 
the Piney Point aquifer. The RASA numerical groundwater-
flow model simulated flow in 10 New Jersey Coastal Plain 
aquifers, including the Piney Point aquifer. The New Jersey 
Coastal Plain was discretized vertically into 10 aquifers and 
9 intervening confining units (Zapecza, 1989; Martin, 1998). 
The RASA model grid consists of 135 rows and 245 columns 
with a cell size of 0.25 mi2 in the northern and southwestern 
Coastal Plain, 0.31 mi2 in the southeastern Coastal Plain, 
and up to 3.16 mi2 in offshore areas (Voronin, 2004). Aver-
age annual groundwater withdrawals were used to represent 
withdrawal conditions from 1968 to 1998. The RASA model 
grid boundary and the updip limit of the Piney Point aquifer 
in the Cumberland County study area are shown in figure 45. 
A more detailed description of the RASA model for the New 
Jersey Coastal Plain is provided in Martin (1998) and Voronin 
(2004). The RASA model has been used by the USGS to simu
late water-supply scenarios for New Jersey (Watt and Voronin,
2006; Gordon, 2007; Spitz and DePaul, 2008). Minor changes 
previously were made to the vertical conductance of the 
Vincentown-Manasquan confining unit of the regional New 
Jersey Coastal Plain RASA model by Watt and Voronin (2006)
to improve the representation of the hydrogeology of two 
minor confined aquifers, and the model was updated to includ
1999‒2003 average annual withdrawal data.

The RASA model was modified for this study to include 
annual groundwater withdrawals averaged from 2004 to 
2008. In addition, transmissivity of the Piney Point aquifer in 
the RASA model was decreased to 500 ft2/d, which is about 
one-half the previous value, only in the Cumberland County 
study area where the aquifer is present. In addition, boundary 
flows in the Piney Point aquifer were increased by 20 percent 
in a small number of model cells across Delaware Bay to 
allow representation of increased groundwater withdrawals in 

 

-
 

 

e 

Delaware and southern New Jersey. This was done to better 
match the 2008 synoptic water-level measurements in wells 
screened in the Piney Point aquifer in the Cumberland County 
study area (DePaul and Rosman, 2015). The inset in figure 45 
shows the updip limit of the Piney Point aquifer in Delaware 
(Lacombe and Rosman, 2001). No other boundary flows were 
changed. No additional calibration or sensitivity analysis was 
done.

In this study, simulations were conducted with the 
modification to the RASA model in order to evaluate the 
effects of increased groundwater withdrawals on water 
levels in the Piney Point aquifer in the Cumberland County 
study area. Many verification simulations were conducted 
with different modifications to transmissivity and boundary 
flows in the Piney Point aquifer in order to best simulate the 
2008 measured water levels for that aquifer (DePaul and Ros-
man, 2015).

There are some limitations using the RASA model for 
scenarios 6‒8. Local-scale hydrologic features are not rep-
resented in the model. The use of an estimated parameter 
for transmissivity and the use of averaged annual values for 
groundwater withdrawals may lead to inaccuracies in the 
simulations. The simulated water levels for the regional flow 
system are considered reasonable because the area of influ-
ence is regional in extent and withdrawals made in 2008 from 
this aquifer in the Cumberland County study area are small 
in comparison to all other groundwater withdrawals from the 
New Jersey Coastal Plain aquifers. The effects of additional 
groundwater withdrawals on local water levels and flow are 
uncertain, but the simulations for scenarios 6‒8 provide a 
reasonable estimate of simulated water-level declines. 

Scenario 6 Average Annual 2004–08 
Groundwater Withdrawals 

This scenario is a steady-state simulation that incor-
porates the average annual withdrawals from 2004 to 2008 
from aquifers in the New Jersey Coastal Plain. Groundwater 
withdrawals from most wells in the Cumberland study area 
groundwater-flow model are included in the RASA ground-
water-flow model; however, the regional RASA model does 
not include the detail of agricultural-irrigation wells and many 
smaller users that are represented in the Cumberland County 
study area groundwater-flow model. These wells were given a 
RASA model grid location and added to layer 2 of the RASA 
model, which represents the Kirkwood-Cohansey aquifer 
system.

The simulated water levels for scenario 6 are shown in 
figure 45. Also shown are the six public-supply wells (3 in 
Buena Borough and 3 in Bridgeton City), which are repre-
sented as pumping from the Piney Point aquifer in the RASA 
model within the boundary of the Cumberland County study 
area. The groundwater withdrawal data for these wells are 
listed in table 13. The simulated water levels at the center of 
the cone of depression are more than 120 ft below NGVD 29 
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Table 13. Groundwater withdrawals from wells in the Piney Point aquifer for scenarios 6–8 in the RASA model, by municipality, in the 
Cumberland County study area, New Jersey.

[Mgal/yr, million gallons per year; N/A, not applicable; NJDEP, New Jersey Department of Environmental Protection; RASA, Regional Aquifer System 
Analysis]

Municipality County

NJDEP
Bureau of 

Water 
Allocation 

permit 
number

Number of 
wells pump-
ing from the 
Piney Point 

aquifer

Number of 
pumped wells 

moved from the 
Kirkwood-Cohan-
sey aquifer system 
to the Piney Point 

aquifer

Total 
withdrawals

(Mgal/yr)

Approximate 
largest decline 

in simulated 
water level 

from baseline 
scenario 

(feet)

Scenario 6 Baseline

Bridgeton City Cumberland 5032 3 0 363.7 N/A

Buena Borough Atlantic 5275 3 0 200.2 N/A

Scenario 7 Estimated 2050 public-supply demand

Bridgeton City Cumberland 5032 3 1 388.2 40

Glassboro Borough Gloucester 5135 0 1 44.4 50

Buena Borough Atlantic 5275 3 0 200.2 20

Clayton Borough Gloucester 5244 0 1 127.4 50

Millville City Cumberland 5316 0 1 282.2 130

Monroe Township Gloucester 5161 0 1 114.5 70

Newfield Borough Gloucester 5147 0 1 48.6 40

Upper Deerfield Township Cumberland 5376 0 1 197.6 70

Vineland City Cumberland 5148 0 1 267.7 100

Weymouth Township Atlantic 5365 0 1 22.7 20

Scenario 8 Full allocation

Bridgeton City Cumberland 5032 3 0 363.7 20

Buena Borough Atlantic 5275 3 0 200.2 40

Millville City Cumberland 5316 0 2 483.8 170

Monroe Township1 Gloucester 5161 0 1 235.8 110

Vineland City Cumberland 5148 0 1 484.6 190

1The total full-allocation withdrawal for the well in Monroe Township is 283 Mgal/yr. The remainder of the withdrawals, 47.2 Mgal/yr, was input for a well 
in the Kirkwood-Cohansey aquifer system.
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at two of the Piney Point wells located in Bridgeton City; the 
simulated water levels are more than 100 ft below NGVD 29 
at the third Bridgeton City well in the Piney Point aquifer. The 
simulated water levels at the center of the two cones of depres-
sion in Buena Borough are about 20 ft below NGVD 29 in the 
area around the three Piney Point wells.

Scenario 7 Projected 2050 Demand for Municipal 
Public Supply 

Scenario 7 is a steady-state scenario, which investigates 
the possible future use of the Piney Point aquifer in the Cum-
berland County study area. The groundwater withdrawals in 
this scenario are the same as in scenario 6, except for the with-
drawals from 50 municipal public-supply wells in the Kirk-
wood-Cohansey aquifer system (layer 2) in the RASA model 
that are within the boundary of the Cumberland County study 
area. For these 50 public-supply wells, the average annual 
2004‒08 groundwater withdrawals used in scenario 6 were 
increased to annual 2050 withdrawals by using the percentages 
shown in table 12, depending on the municipality in which 
the wells are located. In addition, groundwater withdrawals in 
nine public-supply wells screened in the Kirkwood-Cohansey 
aquifer system in the RASA model (1 well each for 9 of the 
10 municipalities in table 12) were moved to the Piney Point 
aquifer (for example, from RASA model layer 2 [scenario 6] 
to layer 4 [scenario 7].) Therefore, for these nine wells, only 
the model layer (aquifer) was changed. (Layer 3 of the RASA 
model is the confined Kirkwood aquifer and is present east of 
the Cumberland County study area groundwater-flow model 
(see figure 3). One municipality listed in table 12, Washington 
Township in Gloucester County, is north of the northwestern 
extent of the Piney Point aquifer; therefore, those municipal 
public-supply wells could not be moved to the Piney Point 
aquifer, and withdrawals were represented as being in the 
Kirkwood-Cohansey aquifer system. The groundwater with-
drawals from the Piney Point aquifer for those wells are listed 
in table 13. All other wells in the RASA groundwater-flow 
model were pumped at the average annual 2004–08 with-
drawal rates input in scenario 6.

Because optimization of groundwater withdrawals from 
the Piney Point aquifer was not within the scope of this study, 
multiple simulations were run using different combinations 
of moving withdrawals from a public-supply well from each 
municipality pumping from the Kirkwood-Cohansey aquifer 
system to pump from the Piney Point aquifer instead. There-
fore, the location of the pumping well in the model was not 
changed. The results of only one of these simulations are 
presented in this report.

During the well selection process, the geohydrologic 
location of the public-supply wells and aquifer thickness were 
used as a selection criteria. The aquifer is thickest in western 
Cumberland County, more than 200 ft thick (Martin, 1998). 
As previously mentioned in scenario 6, Bridgeton City and 
Buena Borough use the Piney Point aquifer for public supply, 

so groundwater withdrawals moved to the Piney Point aquifer 
had to be located away from the Bridgeton City and Buena 
Borough wells to limit the effects of new pumping on the 
existing pumped wells in those two municipalities (fig. 46). 
The selected location and distance from the updip limit of the 
aquifer and from existing Piney Point aquifer pumped wells 
were based, in part, on the magnitude of the withdrawals from 
the hypothetical well. Figure 46 shows the altitude of the top 
of the Piney Point aquifer as given Zapecza (1989). Because 
of the low transmissivity incorporated in the model of the 
Piney Point aquifer in the study area, a public-supply well 
pumped at the estimated 2050 withdrawal rate could cause the 
simulated water level to fall below the top of the altitude of 
the aquifer, which can cause drying up of wells, land subsid-
ence, and increased pumping costs. The average transmissivity 
of the Piney Point aquifer in the Cumberland County study 
area simulated by the RASA model is 500 ft2/d, which is less 
than the average transmissivity of the Kirkwood-Cohansey 
aquifer system of 4,500 ft2/d (Voronin, 2004) in the Cumber-
land County study area. To prevent this problem from occur-
ring in a simulation, a particular combination of withdrawals 
from all the wells pumping from the Piney Point aquifer in the 
study area was identified from the multiple simulations run for 
scenario 7. Additionally, future use of the Piney Point aquifer 
in the Cumberland County study area for public supply would 
need to consider increased groundwater withdrawals from the 
Piney Point aquifer at pumped wells across Delaware Bay in 
Delaware. The location of the groundwater divide in the Piney 
Point aquifer could not be determined from the limited number 
of water levels measured in wells screened in the Piney Point 
aquifer in the Cumberland County study area and in Delaware 
during the 2008 New Jersey Coastal Plain synoptic (DePaul 
and Rosman, 2015).

The simulated water levels for the selected well locations 
used in scenario 7 are shown in figure 46. Declines in simu-
lated water levels are observed at the nine Piney Point wells 
that represented the estimated 2050 groundwater withdraw-
als. The simulation resulted in cones of depression around the 
pumped wells. The largest decline in simulated water level is 
shown in table 13.

Scenario 8 Full-Allocation Groundwater 
Withdrawals for Public-Supply Wells in Millville 
City, Vineland City, and Monroe Township 

 Scenario 8 is a steady-state simulation that investigates 
the use of the Piney Point aquifer in the study area under 
annual full-allocation groundwater withdrawals for three 
municipalities. The groundwater withdrawals in this scenario 
are the same as in scenario 6, except for the withdrawals from 
the municipal public-supply wells in the Kirkwood-Cohansey 
aquifer system in Millville City, Vineland City, and Monroe 
Township which were increased to annual full-allocation with-
drawals. In addition, the full-allocation withdrawals from the 
Kirkwood-Cohansey aquifer system in one public-supply well 
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in each of the three municipalities was moved to the deeper 
Piney Point aquifer; therefore, following the same method used 
in scenario 7, for these three wells, only the model layer was 
changed. Multiple simulations were run using different combi-
nations of public-supply wells moved to the Piney Point aqui-
fer, but the results of only one of these simulations is presented 
in this report. The groundwater withdrawals used for these 
wells in scenario 8 are listed in table 13. The same criteria used 
in scenario 7 for well selection was used for this scenario.

The simulated water-level contours from scenario 8 are 
shown in figure 47. Monroe Township is near the northwestern 
extent of the Piney Point aquifer; therefore, only the public-
supply wells in this township located farther downdip from the 
northwestern extent or that had smaller full-allocation rates 
could be used in the simulation without causing simulated 
water levels to drop below the top of the Piney Point aquifer. 
The two wells farthest from the updip limit of the aquifer had 
the largest allocation limits; therefore, two other wells were 
chosen (fig. 47). The well chosen to represent pumping from 
the Piney Point aquifer in this scenario could not be pumped 
at the full allocation limit (1.2 ft3/s) because the full alloca-
tion caused the simulated water level to drop almost to the 
altitude of the top of the Piney Point aquifer. Therefore, this 
well was given an allocation of 1.0 ft3/s, and the remainder of 
the allocation (0.2 ft3/s) was assigned to a well pumping from 
the Kirkwood-Cohansey aquifer system in Monroe Township. 
A cone of depression was simulated near the well in the Piney 
Point aquifer. The simulated water levels are about 40 ft below 
NGVD 29, about 110 ft lower than the simulated water levels 
from scenario 6. The simulated water levels from scenario 8 
are about 10 ft above the altitude of the top of the Piney Point 
aquifer in this area.

A cone of depression centered on a public-supply well 
moved to the Piney Point aquifer from the Kirkwood-Cohan-
sey aquifer system in Vineland City is about 200 ft below 
NGVD 29, about 190 ft lower than the simulated water levels 
in scenario 6. When compared to the simulated water levels 
for scenario 6, simulated water levels for scenario 8 were 
more than 40 ft lower in the Buena Borough well nearest 
to the Vineland City well and about 20 ft lower in the other 
two Buena Borough wells farther away from the Vineland 
City well.

A cone of depression is centered on two public-supply 
wells in Millville City moved to the Piney Point aquifer from 
the Kirkwood-Cohansey aquifer system. The water level was 
more than 180 ft below NGVD 29 for one well and about 
160 ft below NGVD 29 for the other well, a decline of less 
than 170 ft and about 150 ft, respectively, from the simulated 
water levels in scenario 6. The center of a cone of depression 
near Bridgeton City in scenario 6 showed a 20 ft decline in 
simulated water levels as a result of the additional pumping of 
the two wells in Millville City.

The results of scenarios 7 and 8 indicate that the with-
drawal rate and location of additional pumping in the Piney 
Point aquifer in the study area need further evaluation. The 
simulated water levels from scenarios 7 and 8 indicate that 
the additional pumping from the Piney Point aquifer did not 
result in a drop in simulated water levels below the top of the 
Piney Point aquifer for that particular set of withdrawals rates 
and well locations. Additionally, future use of the Piney Point 
aquifer in the Cumberland County study area for public supply 
would need to consider the effects of increased withdrawals 
at pumping wells screened in the Piney Point aquifer across 
Delaware Bay in Delaware.

Photograph of agricultural-irrigation well in Cumberland County (Provided by Robert Rosman, U.S. Geological Survey)
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Summary and Conclusions
The U.S. Geological Survey, in cooperation with the New 

Jersey Department of Environmental Protection, conducted 
an investigation of the groundwater/surface-water interactions 
and the effects of withdrawals from the Kirkwood-Cohansey 
aquifer system in the Maurice and Cohansey River Basins 
in Cumberland County and adjacent counties. The major 
resource for groundwater withdrawals in the Maurice and 
Cohansey River Basins is the Kirkwood-Cohansey aquifer 
system. This aquifer system is present throughout Cumberland 
County and is the principal source of groundwater for public 
and domestic supply and agricultural-irrigation, industrial, 
and commercial water use in Cumberland County, which has a 
substantial agricultural economy. The aquifer system is gener-
ally unconfined, but semi-confined and confined conditions 
exist within the Cumberland County study area. Although 
many areas of local clay units are present, the aquifer system 
is vertically connected because an extensive confining unit 
is not present in most of Cumberland County. The aquifer 
system consists of gravel, sand, silt, and clay sediments of 
the Cohansey Sand and Kirkwood Formation. Many of the 
clay units within the Kirkwood-Cohansey aquifer system are 
of variable extent. The Kirkwood-Cohansey aquifer system 
thickens downdip from its northern extent near the outcrop 
area of the Kirkwood Formation in southern Salem and central 
Gloucester Counties to more than 500 feet (ft) in southeastern 
Cumberland County.

This investigation involved the development of a numeri-
cal ground-water flow model to simulate the effects of ground-
water withdrawals from the Kirkwood-Cohansey aquifer sys-
tem on base flow in the Cohansey and Maurice River Basins. 
The groundwater system in the Cohansey and Maurice River 
Basins supplies about 80 percent or more of annual streamflow 
as base flow. Increasing groundwater withdrawals from the 
Kirkwood-Cohansey aquifer system is a concern because of 
potential streamflow depletion, resulting from lower base flow 
owing to increased withdrawals in the basins.

A transient numerical groundwater-flow model of the 
Kirkwood-Cohansey aquifer system was constructed and cali-
brated; the model incorporated monthly recharge, groundwater 
withdrawals, and surface-water diversions from 1998 to 2008. 
The Kirkwood-Cohansey aquifer system was represented in 
the model by six layers. Base flow for each stream and river 
in the model was represented using the Streamflow-Routing 
Package of MODFLOW to simulate base flow. Hydraulic 
conductivity in the groundwater-flow model ranged from 40 to 
160 feet per day (ft/d).

The recharge rates input to the groundwater-flow model 
represent long-term precipitation minus long-term evapora-
tion and surface-water runoff. A monthly recharge rate was 
calculated for each month from January 1998 to December 
2008 from the monthly soil moisture deficit and the average 
direct runoff for the Cohansey River and the Maurice River 
Basins. The simulated flow budgets for the entire simula-
tion period, 1997–2008, indicate that the major inflow to the 

Kirkwood-Cohansey aquifer system is recharge that eventually 
discharges to streams when not diverted to wells or diverted 
from the streams for irrigation. Hydrographs of base flow 
of the Cohansey and Maurice Rivers indicate that monthly 
discharge is variable.

In 2008, reported groundwater withdrawals from the 
Kirkwood-Cohansey aquifer system in the study area totaled 
about 21,700 million gallons; about 36 percent was used for 
public supply, about 49 percent for agricultural-irrigation use, 
and the remaining 15 percent for industrial, commercial, min-
ing by sand and gravel companies, and non-agricultural irriga-
tion use. Seasonal variations in withdrawals in the study area 
were observed for each year; generally, greater withdrawals 
occurred during the summer months for irrigation water use. 
Withdrawals from 1998 to 2008 in the summer months (June‒
August) generally were more than 4 times those in the winter 
(December‒February). The simulated flow budget for 2008 
indicated that groundwater withdrawals accounted for about 
10 percent of outflow from the aquifer system, and outflow to 
streams accounted for about 77 percent of the budget.

Five withdrawal scenarios were simulated using the 
numerical groundwater-flow model of the Cumberland County 
study area. The scenarios represented an 11-year period. 
Monthly recharge values from the numerical groundwater-flow 
model were used, and the groundwater withdrawals, by month, 
were varied, depending on the withdrawal scenario. The 
results of these scenarios were evaluated to assess changes in 
base flow, water levels, and flow budgets for the Kirkwood-
Cohansey aquifer system compared to a baseline simulation 
(scenario 1). Scenario 1 incorporated averaged 1998‒2008 
monthly groundwater withdrawals and this scenario was used 
as a baseline for comparison to the results of scenarios 2‒5.

In scenario 2, full-allocation groundwater withdrawals 
at agricultural-irrigation wells were input for June, July, and 
August. No groundwater withdrawals were input for Novem-
ber, December, January, February, and March, and 50 percent 
of the full-allocation groundwater withdrawals was input for 
April, May, September, and October for each agricultural-
irrigation well. For all other types of wells, full-allocation 
withdrawals were used. In scenario 2, simulated water levels 
in the Cohansey River Basin decreased by more than 67 ft 
in June of scenario year 11 in the upstream part of the basin 
where many agricultural-irrigation wells are located. In sce-
nario 3, simulated water levels in a small part of the Cohansey 
River Basin decreased by more than 100 ft in September of 
scenario year 11.

In scenario 2, the simulated monthly base flow is lower 
than the 7-day 10-year (7Q10) low flow for about 27 percent 
of the months during scenario years 7‒10 for Hydrologic Unit 
Code 11 (HUC) 02040206080 in the upper Cohansey River 
Basin. Many agricultural-irrigation wells are in the upper part 
this basin. During July‒October, when agricultural-irrigation 
wells were pumped at full allocation or at one-half the full-
allocation rates, simulated base flow generally was less than 
the 7Q10. For Menantico Creek in the Maurice River Basin 
(HUC 02040206180), the 7Q10 is greater than the simulated 
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monthly base flow for about 29 percent of the months over the 
11-year simulation period. Many agricultural-irrigation wells
are sited in the upstream part of this HUC, and these wells are
screened at less than 100 ft below land surface.

In scenario 3, the simulated base flow in the upper 
Cohansey River Basin is less than the 7Q10 in all months 
during scenario years 7‒11 for HUC 02040206080. The 
simulated monthly base flow in the lower Cohansey River 
drainage basin (HUC 02040206090) is less than the 7Q10 for 
more than one-half the months during scenario years 7‒10. 
Several agricultural-irrigation wells are in the western part 
of the lower Cohansey River Basin. Simulated monthly base 
flow for Menantico Creek in the Maurice River Basin (HUC 
02040206180) is less than the 7Q10 for about 71 percent of 
the months during the 11-year simulation period. Several 
agricultural-irrigation wells are in the upstream part of HUC 
02040206180.

Scenarios 4 and 5 had similar characteristics. In scenario 
4, estimated municipal public-supply demand was increased 
for 2050 in 10 municipalities in the Cumberland County study 
area. In scenario 5, municipal public-supply well withdraw-
als from scenario 4 were used, except that withdrawals from 
36 of the municipal public-supply wells came from a deeper 
part of the aquifer; this was done to observe the effects on 
the streams. The results of scenarios 4 and 5 indicate that, for 
Menantico Creek, simulated monthly base flow is less than 
the 7Q10 during 12 months (9 percent of the 11-year simula-
tion period). The results of scenario 5, in which 36 municipal 
public-supply wells were pumped from a deeper part of the 
aquifer, indicate that the average difference in base flow is 
about 0.5 cubic feet per second (ft3/s) more in this scenario 
than in scenario 4. The municipal public-supply wells have 
screened intervals greater than 50 ft below land surface. The 
groundwater discharge to streams in scenarios 4 and 5 is 
similar because groundwater was intercepted by pumped wells 
and, therefore, was not available for discharge to streams.

Three additional scenarios (scenarios 6‒8) were simu-
lated to evaluate the possible use of the Piney Point aquifer 
in the Cumberland County study area by using a previously 
existing numerical groundwater-flow model, the New Jersey 
Regional Aquifer-System Analysis (RASA) model, because 
the Piney Point aquifer was not represented in the Cumberland 
County study area groundwater-flow model. The withdrawal 
scenarios were used to assess changes in water levels in the 
Piney Point aquifer and evaluate the possible use of the Piney 
Point aquifer for water supply.

In scenario 6, average annual 2004‒08 withdrawals 
for all aquifers were input to the RASA model; the results 
were used for comparison to the results of scenarios 7 
and 8. Scenario 7 incorporated the withdrawals from the 

Kirkwood-Cohansey aquifer system used in scenario 6, except 
annual withdrawals were increased to 2050 rates at municipal 
public-supply wells; scenario 8 incorporated the withdraw-
als from the Kirkwood-Cohansey aquifer system used in 
scenario 6, except annual full-allocation withdrawals were 
incorporated at the municipal public-supply wells in Vineland 
City, Millville City, and in Monroe Township. Additionally 
for scenario 7, an existing municipal public-supply well from 
each municipality in the study area pumping in 2008 from the 
Kirkwood-Cohansey aquifer system was represented as pump-
ing from the Piney Point aquifer instead. In scenario 8, exist-
ing municipal public-supply wells—one each from Vineland 
City, Millville City, and Monroe Township—with pumping in 
2008 from the Kirkwood-Cohansey aquifer system were rep-
resented as pumping from the Piney Point aquifer instead. The 
results of scenarios 6‒8 indicate that the Piney Point aquifer 
could be a limited option for public supply in the southeastern 
areas of the Cumberland County study area with constraints 
on withdrawal rates, the number of wells, and the proximity of 
proposed wells to the wells already pumping from the aquifer 
in Buena Borough and Bridgeton City. The transmissivity of 
the Piney Point aquifer used in the RASA model of the Cum-
berland County study area is 500 square feet per day (ft2/d), 
which is lower than the average transmissivity of 4,500 ft2/d 
in the Kirkwood-Cohansey aquifer system in the study area. 
This difference in transmissivity may result in deeper cones of 
depression around the pumped wells completed in the Piney 
Point aquifer. Monitoring of the water levels in the Piney Point 
aquifer in the Cumberland County study area and in Delaware 
is needed to better evaluate the use of this aquifer as an addi-
tional source of public supply in the study area.

Population growth and economic growth from agriculture 
in the Cohansey River Basin necessitates monitoring of dis-
charge in the Maurice and Cohansey River drainage basins and 
some of the tributaries to evaluate future groundwater with-
drawals in the study area. Therefore monitoring of streamflow 
is needed to evaluate the effects of additional withdrawals in 
these two basins. The population in the Cohansey River Basin 
is expected to increase by approximately 20 percent by 2050. 
Since 2004, the Cohansey River streamflow-gaging station at 
Seeley (01412800) has been a continuous-record streamflow-
gaging station. Because of the large number of agricultural-
irrigation groundwater withdrawals in the upper part of the 
Cohansey River Basin and the municipal public-supply 
groundwater withdrawals for Bridgeton City and Upper Deer-
field Township, a long-term period of discharge data is needed 
to evaluate base flow and runoff components of streamflow in 
the basin. Because of the many agricultural-irrigation and the 
municipal public-supply wells in the Menantico Creek sub-
basin (HUC 02040206180), monitoring of streamflow also is 
needed to evaluate the effects of withdrawals in the subbasin.
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