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By Randall W. Jibson, Kate E. Allstadt, Francis K. Rengers, and Jonathan W. Godt

of the South Island—State Highway 1 (SH1) and the South 
Island Main Trunk (SIMT) rail line—were extensively dam-
aged by faulting, landslides, and tectonic deformation. As 
of December 2016, direct economic losses are estimated at 
$2–3 billion NZD ($1.4–2.2 billion USD) (New Zealand 
Treasury, 2016); this number is likely to increase as more 
detailed economic data are collected.

In the hours after the earthquake, the U.S. Geological  
Survey (USGS) informed GNS Science (the Institute of 
Geological and Nuclear Sciences Limited, the New Zealand 
Crown Research Institute responsible for earth and natural 
hazards research) of the availability of satellite imagery over 
the affected area that was collected soon after the earthquake. 
Early assessment of the extent and severity of landsliding 
prompted an informal request from GNS Science for USGS 
assistance in the evaluation of landslide dams and field verifi-
cation of landslide mapping. A formal invitation for the USGS 
to participate in landslide field investigations was received on 
November 22, 2016. We arrived in New Zealand on December 2,  
2016, and departed on December 16, 2016. 

Prior to our field visit, we obtained high-resolution 
satellite imagery (DigitalGlobe, 2016) covering most 
of the affected area for use in the field. Additionally, 
several organizations that had begun compiling landslide 
inventories using this and other satellite imagery soon after 
the earthquake made them available to us. To help prioritize 
our field work, we primarily used a point inventory 
compiled by Valkaniotis and others (2016) and a preliminary 
version of a polygon inventory compiled by Rathje and 
others (in press). Rathje and others (2017) subsequently 
published a completed inventory.

We conducted both ground and aerial reconnaissance. For 
both types of reconnaissance, we used Global Positioning  
System (GPS) tracking at approximately 5-meter (m) resolution  
(fig. 2). Ground surveys were conducted using a four-wheel-
drive vehicle and handheld cameras, but they were limited to 
the edges of the affected area because existing road access to 
the most affected area was limited and commonly blocked by 
landslides. Aerial reconnaissance was by helicopter, in which 
we used both handheld cameras and a GoPro video camera 
mounted to the helicopter.

Our primary mission was to assist GNS Science 
in reconnaissance and preliminary hazard evaluation of 
landslides blocking river channels and of areas where 

Abstract
The November 14, 2016, Kaikoura, New Zealand,  

earthquake (moment magnitude [Mw] 7.8) triggered more  
than 10,000 landslides over an area of about 12,000 square 
kilometers in the northeastern part of the South Island of  
New Zealand. In collaboration with GNS Science (the Institute 
of Geological and Nuclear Science Limited), we conducted 
ground and helicopter reconnaissance of the affected areas  
and assisted in rapid hazard evaluation. The majority of  
the triggered landslides were shallow- to moderate-depth  
(1–10 meters), highly disrupted falls and slides in rock and 
debris from Lower Cretaceous graywacke sandstone in the 
Seaward Kaikoura Range. Deeper, more coherent landslides 
in weak Upper Cretaceous to Neogene sedimentary rock 
also were numerous in the gentler topography south and 
inland (west) of the Seaward Kaikoura Range. The principal 
ground-failure hazards from the earthquake were the hundreds 
of valley-blocking landslides, many of which impounded lakes 
and ponds that posed potential downstream flooding hazards. 
Both large and small landslides also blocked road and rail 
corridors in many locations, including the main north-south 
highway (State Highway 1), which was still closed in  
October 2017. As part of our investigation, we compared  
post-earthquake field observations to the output of models 
used to estimate near-real-time landslide probabilities following 
earthquakes. The models generally over-predicted landslide 
occurrence and thus need further refinement.

Introduction
On November 14, 2016, a large (moment magnitude  

[Mw] 7.8) earthquake struck the northeastern part of the South 
Island of New Zealand (fig. 1). Named after the coastal town 
near the epicenter, the Kaikoura earthquake had associated surface 
rupture on more than 20 mapped faults (Stirling and others, 2017), 
caused widespread crustal deformation (both uplift and subsid-
ence), and triggered more than 10,000 landslides in the complex 
topography of the affected area (Dellow and others, 2017). 
Two fatalities (not related to landslides) were reported, and 
damage to roads, railways, and other infrastructure was extensive.  
The two primary transportation routes on the northern part 
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Figure 1. Maps showing earthquake epicenter and landslide area of the 2016 Kaikoura, New Zealand, earthquake and locations of 
photographs in subsequent figures. A, Landslide extent in relation to epicenter and locations of landslides discussed in this report. 
(Landslide extent from Dellow and others, 2017.)
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abundant or large landslides had occurred. An additional 
purpose was to evaluate the quality of several predictive 
models of ground failure. We also observed surface 
fault rupture and crustal deformation such as uplift and 
subsidence. The objective of this report is to summarize 
preliminary observations of the geologic effects of this 
earthquake made in site visits and overflights during our 
visit. This report is preliminary; GNS Science continues to 
conduct more detailed and quantitative studies.

In this report, we describe the earthquake and 
provide an overview of all geologic effects observed: 
landsliding, faulting, and tectonic deformation (uplift and 
subsidence). We briefly discuss how they affected people 
and infrastructure, with more detailed field observations and 
additional photographs of earthquake-related phenomena 
included in an appendix. We also assess how our field 
observations compare with estimated landslide distributions 
predicted by two near-real-time models.

The 2016 Kaikoura, New Zealand, 
Earthquake

The Mw 7.8 Kaikoura earthquake occurred at 11:02:56 
UTC (coordinated universal time) on November 13, 2016 
(just after midnight on November 14 local time). The USGS 
located the epicenter at a depth of 15.2±3.2 kilometers (km) 
at lat 42.736°S., long 173.050°E. (±4.6 km), about 9 km 
south of the town of Waiau, New Zealand (U.S. Geological 
Survey, 2017c). The rupture propagated about 170 km along 
the northeastern side of the South Island, continued offshore 
into Cook Strait, and stopped just south of the North Island 
about 60 km from the capital city of Wellington (Hamling 
and others, 2017). The earthquake ruptured at least 12 
major faults (>1 m offset) and 20 total faults having widely 
varying strikes, slip styles, and slip amounts; the greatest 
slips occurred in the area about 80 to 120 km northeast of 
the epicenter (Litchfield and others, 2017) (fig. 3). Both the 
USGS finite-fault inversion, based on global seismic data 
(U.S. Geological Survey, 2017a), and a slip distribution, 
based on inversions of geodetic and coastal uplift data 
(Hamling and others, 2017), estimate greater slip at depth 
around that area.

GeoNet (www.geonet.org.nz) operates strong-motion 
stations throughout the affected area (fig. 3) and makes 
the data publicly available. Only one strong-motion 
station (KEKS, Kekerengu Valley Road) is located in the 
mountainous area most affected by landsliding. This station 
is located on a foothill in the northeastern end of the area 
most affected by landslides, just 3 km from the Kekerengu 
fault. Some of the greatest lateral surface fault displacements 
were measured in this area (Litchfield and others, 2017). 
At this site, horizontal ground accelerations reached 1.2 g 

(acceleration of gravity), and vertical accelerations reached 
0.4 g. Greater ground motions were recorded at two other 
stations located in low-lying areas on soft soils that likely 
experienced site amplification: WTMC (Te Mara Farm 
Waiau) in the Humps fault zone about 13 km from the 
epicenter (1.1 g horizontal, 3.1 g vertical) and WDFS (Ward 
Fire Station) in Ward at the northeast end of the affected area, 
about 6 km from the offshore Needles fault (1.3 g horizontal, 
1.2 g vertical). 

The USGS produces spatial estimates of ground shaking 
through a tool called ShakeMap (Wald and others, 1999, 
2005; U.S. Geological Survey, 2017d). ShakeMap combines 
data from felt reports and instrumental recordings such as 
those provided by GeoNet with ground-motion prediction 
equations and fault-plane location estimates to create a spatial 
estimate of several ground-motion parameters such as peak 
ground acceleration (PGA), peak ground velocity (PGV), and 
spectral acceleration. Because ShakeMap incorporates new 
information as it becomes available, the estimated ground 
motions for this earthquake evolved throughout the study 
period. Version 16 is the most recent update at the time of this 
writing (March 2017); this version includes better defined 
fault planes and more strong-motion data than previous 
versions. Figure 3 shows estimated PGA values from version 
16. ShakeMap version 7 was available when we were in the 
field, and it provided the ground-motion input for the suite 
of prototype coseismic landslide and liquefaction prediction 
models (Allstadt and others, 2016) we used to guide some of 
our ground investigations (see “Comparison of Observed to 
Modeled Landslide Distribution” section, p. 16).

As of December 12, 2016, GeoNet reported 8,735 
aftershocks, 52 of them Mw 5 and greater (GeoNet, 2016a), 
strong enough to trigger additional landslides. A Mw 5.5 
aftershock occurred while we were driving on SH1 near Ward 
on December 4, 2016, and we encountered fresh rock falls 
from several road cuts that were triggered by that event (fig. 4). 
These rock falls all occurred from slopes that had produced 
landslides in the main shock.

Figure 3 (following page). Map showing ground shaking 
from the 2016 Kaikoura, New Zealand, earthquake in relation 
to the landslide area. (GeoNet sites: AMBC, Amberly; ASHS, 
Ashley School; BTWS, Nelson Brightwater; BWRS, Waikakaho 
Road; CACS, Christchurch Canterbury Aero Club; CECS, Cheviot 
Emergency Centre; CSTC, Cust School; CULC, Culverdon Airlie 
Farm; GLWS, Glyn Wye; GVZ, Greta Valley; HSES, Manmer Springs 
Emergency Centre; KEKS, Kekerengu Valley Road; KIKS, Kaikoura; 
KPOC, Kaiapoi North School; MATS, Matariki Wadsworth Road; 
MCAS, Murchison Area School; MGCS, Blenheim Marlborough 
Girls College; MOLS, Molesworth Station; OHSS, Ouruhika School; 
SCAC, Scargill; SEDS, Seddon Fire Station; SMHS, Summerhill; 
SWNC, Swannanoa School; THZ, Top House; WAKC, Waikari; 
WDFS, Ward Fire Station; WIGC, Waiau Gorge; WTMC, Te Mara 
Farm Waiau; WVFS, Wairau Valley Farm)

file:///C:\Users\jibson\Downloads\www.geonet.org.nz
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Overview of Geologic Effects of the 
Kaikoura Earthquake

Landslides

Landslides were the most numerous and widespread 
effect of the earthquake. We saw thousands of landslides during 
our reconnaissance, and we estimate that the total number of 
landslides triggered is more than 10,000. GNS Science initially 
estimated that the earthquake triggered more than 80,000 land-
slides over an area of about 12,000 square kilometers (km2) 
(GeoNet, 2016b). Subsequent estimates are lower, but the 
process of creating a comprehensive inventory is ongoing.  
Not all triggered landslides will be resolvable from satellite 
imagery, and the true total number of landslides is likely more 
than what will be recorded in the inventory. Previous studies 
of worldwide earthquakes have related earthquake magnitude 
to number of landslides. For a Mw 7.8 earthquake, the relation 
of Malamud and others (2004) predicts about 25,000 landslides; 
Keefer’s (2002) relation predicts about 60,000 landslides. 
Both relations are based solely on magnitude and do not take 
into account other factors (such as earthquake depth, distance 
to fault, topography, rock type, climate, and vegetation) that 
contribute. Based on our observations, we judge that the total 
number of landslides from this earthquake is probably toward 
the lower end of this range.

The area affected by landslides (approx. 12,000 km2 as 
estimated from satellite imagery and regional air and ground 
reconnaissance) is smaller than predicted by Keefer (1984, 
2002); his maximum area for Mw 7.8 is about 90,000 km2, 
and the average predicted area is about 22,000 km2. The out-
ermost extent of landsliding was not mapped during our field 
reconnaissance, in the GNS Science assessment, or in the 
other inventories used; we focus on areas where significant 
concentrations of landslides are present.

Consistent with observations from other worldwide 
earthquakes (Keefer, 1984, 2002), the large majority of 

Figure 5. Photograph showing a small rock fall along State 
Highway 1 near Waipapa Bay. (See fig. 1F.)

Figure 6. Photograph showing a debris slide along State Highway 1  
about 14 kilometers southwest of Waipapa Bay. (See fig. 1B.)

Figure 7. Photograph showing landslides in the Seaward 
Kaikoura Range. (See fig. 1B.)

Figure 4. Photograph showing debris from a road cut that was 
shaken during the Mw 5.5 aftershock of December 4, 2016, following 
the 2016 Kaikoura, New Zealand, earthquake. (See fig. 1B.)
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triggered landslides are disrupted slides and falls in rock and 
debris (terminology from Varnes, 1978) of shallow to moder-
ate depth (1–10 m). These types of slides range in size from 
small features having volumes of a few cubic meters (fig. 5) to 
larger, deeper landslides having volumes of tens of thousands 
of cubic meters (fig. 6). Such landslides are pervasive in many 
parts of the Seaward Kaikoura Range (fig. 7) and the complex 
topography along the coastline where the slopes are formed 
mainly in Lower Cretaceous graywacke sandstones and Qua-
ternary sediment.

The earthquake also triggered dozens of large, deep 
slumps and block slides, which remained much more coherent 
(terminology from Keefer, 1984). These slides were triggered 
primarily in weaker Upper Cretaceous to Neogene sedimen-
tary rock and Quaternary sediment (primarily terrace sand 
and gravel) in the lower, seaward reaches south and west of 
Kaikoura (fig. 8), where topography is less rugged than in the 
Seaward Kaikoura Range. Many of these deeper landslides 
blocked valleys and dammed rivers and posed potential hazards 
to areas downstream. These types of landslides have volumes 
in the hundreds of thousands to millions of cubic meters.

The most significant post-earthquake hazard is the 
formation of landslide dams. GNS Science mapped 196 such 
dams from satellite imagery, and we saw several hundred 
dams of all sizes during our aerial reconnaissance. GNS Sci-
ence named the significant landslide dams by their drainage 
and approximate elevation in meters above sea level; for 
example, the Leader 220 landslide dam is in the Leader River 
drainage at 220 meters above sea level. We use their names 
in this report. A significant landslide dam is defined as being 
greater than 10 m high and one whose failure could lead to 
a flood affecting people or infrastructure downstream. Dams 
too small to be detected on imagery are abundant in the 
upper reaches of many drainages, some of which are almost 
entirely filled with landslide debris (fig. 9). The larger land-
slide dams impound lakes big enough to pose downstream 
hazards in the event of sudden breach (fig. 10). Some of the 
large landslide dams consist of disrupted rock-fall deposits 
from the steep Lower Cretaceous graywacke slopes (fig. 11); 
others formed as large, deep block slides in Neogene sedi-
mentary rock that dammed and pinched streams and in some 
cases entire river valleys (see fig. 10).

Figure 8. Photograph showing the Stanton Left Tributary 220 
landslide. (See fig. 1H.)

Figure 9. Photograph showing landslide debris blocking a 
channel in Sawcut Gorge. (See fig. 1E.)

Figure 10. Photograph showing the Leader 220 landslide dam. 
(See fig. 1H.)

Figure 11. Photograph showing the Hapuku 740 landslide dam. 
(See fig. 1B.)
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Ground Cracking

Ground cracking was widespread following the earthquake.  
Cracks on steep slopes appear to be gravitationally influenced 
and to relate to incipient landsliding (fig. 12). Likewise, cracks 
along the outboard edges of roads excavated into steep slopes 
(fig. 13) are common and probably relate to incipient sliding 
or slumping in fill material along the edge of the road as well 
as possible amplification of ground shaking at steep breaks in 
slope (Ashford and others, 1997). Other cracks appear unrelated 
to topography and probably resulted from strong ground shak-
ing (fig. 14). Topographic noses (spur ends) at the ends of ridges 
experienced extensive cracking, probably related to topographic 
amplification of ground shaking; such concentration of cracking 
on the ends of ridges has been observed in previous earthquakes 
(Keefer and Manson, 1998; Collins and Jibson, 2015).

Figure 12. Photograph showing ground cracking on a hillside 
near Conway River. (See fig. 1H.)

Figure 13. Photograph showing cracks along the outboard edge 
of a mountain road above Mount Lyford. (See fig. 1G.)

Figure 15. Photograph showing ejected sand near the Wairau 
River northeast of Blenheim. (See fig. 1B.)

Figure 14. Photograph showing ground cracks unrelated to 
slope failure. (See fig. 1E.)

Liquefaction

We observed evidence of liquefaction in several areas 
near the mouth of the Wairau River northeast of Blenheim 
(fig. 1). The liquefied deposits are in Quaternary alluvial  
and estuarine sand and silt along the main river channel  
and its distributaries. Evidence of liquefaction includes 
numerous deposits of ejected sand and silt in several areas 
(fig. 15) as well as lateral-spread landslides along river  
channels. Lateral spreads formed primarily parallel to and 
within a few hundred meters of river banks (fig. 16). Lateral-
spread displacements ranged up to a few meters. Liquefac-
tion from this earthquake was documented more extensively 
by the team supported by Geotechnical Extreme Events 
Reconnaissance (GEER, 2017).
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Surface Faulting

Coseismic surface fault ruptures occurred throughout 
the affected area on at least 12 major transpressional faults as 
well as on several minor faults (Hamling and others, 2017; 
Stirling and others, 2017). GNS Science and partners have 
been conducting detailed surveys to measure displacements 
across surface fault ruptures (Litchfield and others, 2017). 
Dextral slip as great as 12 m and vertical offsets as great as 7 m 
along the Kekerengu and Papatea faults, respectively, northeast 
of Kaikoura (see fig. 3) have been documented (Hamling and 
others, 2017). Elsewhere, displacements generally range from 
0.1 to 2 m. Documenting surface faulting was not our primary 
objective, but it was found to be relevant to landsliding because 
many of the large, deep landslides occur directly on or very 
close to surface fault displacements (fig. 17). The role played 
by the surface fault displacement in triggering these landslides 
requires further investigation.

We also encountered surface fault offsets throughout the 
study area unrelated to landsliding; such features were visible 
both on the ground and from the air, clearly offsetting roads, 
railways, and river channels (figs. 18–20). In some locations, 
differentiating surface fault offsets from cracking due to ground 
failure and ground shaking was difficult (fig. 21).

Figure 16. Photograph showing lateral spread along the Wairau 
River northeast of Blenheim. (See fig. 1B.)

Figure 17. Photograph showing surface fault rupture along the 
Papatea fault (indicated by black arrows) extending through the 
source area of the Sea Front landslide (indicated by red arrow). 
(See fig. 1F.)
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Figure 18. Photograph showing the Papatea fault offsetting State Highway 1 and South Island Main Trunk rail line near Waipapa Bay, 
aerial view. (See fig. 1F.)

Figure 19. Photograph showing the Papatea fault offsetting State Highway 1 and South Island Main Trunk rail line near Waipapa Bay, 
ground view. (See fig. 1F.)
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Figure 20. Photograph showing the Kekerengu fault extending through alluvium in the Clarence River channel. (See fig. 1E.)

Figure 21. Photograph showing ground cracks along the trace of the Kekerengu fault about 10 kilometers northwest of Waipapa Bay. 
(See fig. 1D.)
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Effects on People and Infrastructure

Considering the magnitude of the earthquake, effects 
on people and infrastructure were relatively limited because 
the strongest ground shaking was concentrated in a sparsely 
populated area. Only two fatalities related to the earthquake 
were reported, one from a collapsed structure in Kaikoura and 
the other from a heart attack (U.S. Geological Survey, 2017b). 
Ground-shaking damage to structures (fig. 22) was limited and 
scattered because of the paucity of structures in the earthquake 
area, but many agricultural buildings were damaged.

As much as 11 m of surface faulting offset roads and  
rail lines in several areas along the coast and in the Seaward 
Kaikoura Range. Dramatic examples of this occurred along  
SH1 near Waipapa Bay, where several meters of vertical 
and horizontal fault offset on the Papatea fault displaced the 
road and adjacent rail line (see figs. 18 and 19). A house was 
destroyed by surface rupture on the Kekerengu fault (fig. 23). 

Figure 22. Photographs of ground-shaking damage to structures. A, Damaged exterior walls at Ward Fire Station. (See fig. 1E.)  
B, Stone tower toppled from Saint Oswald’s Church about 13 kilometers south of Ward along State Highway 1. (See fig. 1E.) 

Figure 23. Photograph showing a house damaged by 
displacement on the Kekerengu fault about 20 kilometers north-
northeast of Waipapa Bay. (See fig. 1E.) 

Figure 24. Photograph showing railroad tracks disrupted by 
ground deformation 16 kilometers southwest of Ward. (See fig. 1E.)

A

B
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Even in areas not directly affected by surface fault offset, rail 
lines were displaced and rendered unusable by the effects of 
strong ground shaking, fill settlement, and crustal deformation 
(folding and subsidence) (fig. 24). Several river bridges were 
damaged or destroyed by strong ground shaking and fault 
offset (fig. 25).

Landslides triggered by the earthquake caused a great 
deal of damage to regional transportation systems. SH1, the 
principal road connecting Picton and Blenheim (on the north 
end of the South Island) to Christchurch (on the central east 
coast) was blocked in numerous places by both small and large 
landslides (figs. 26 and 27). Some of the largest landslides are 
likely to take months to stabilize and clear, and the coastal sec-
tion of SH1 remained closed in July 2017 and might need to be 
fundamentally reengineered in some areas (see fig. 6). Tunnel 
portals were blocked by landslide debris in some areas (fig. 28). 
The SIMT rail line parallels SH1 along the coast and was simi-
larly disrupted by landslides (fig. 29). Landslides also severely 

Figure 25. Photograph showing a destroyed bridge over the 
Clarence River. (See fig. 1D.)

Figure 26. Photograph showing landslides blocking State 
Highway 1 between Waipapa Bay and Kaikoura. (See fig. 1B.)

Figure 27. Photograph showing State Highway 1 and the South  
Island Main Trunk rail line blocked by landslides about 7 kilometers  
southwest of Waipapa Bay. (See fig. 1F.)

Figure 28. Photograph showing a landslide blocking State 
Highway 1 and a tunnel portal west of Kaikoura. (See fig. 1B.)

Figure 29. Photograph showing the South Island Main Trunk  
rail line along State Highway 1 blocked by landslides about  
7 kilometers southwest of Waipapa Bay. (See fig. 1F.)
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disrupted secondary roads and local farm roads in the interior 
part of the island (fig. 30).

Valley-blocking landslides that dam rivers and streams 
are a major post-earthquake hazard. After this earthquake, 
they altered stream drainages, inundated upstream areas with 
impounded water, and damaged roads and trails. Some of 
these landslide dams breached safely and are passing water in 
a controlled fashion with little residual upstream impoundment. 
Others are likely to remain until tested by more significant rain 
or snowmelt events. Some could persist for the foreseeable 
future and form semipermanent lakes and ponds.

Crustal deformation from the fault movement uplifted 
large areas of the previously submerged coastal platform to 

above sea level (fig. 31; also see fig. 17). Other areas along the 
coast subsided and were inundated with water following the 
earthquake (fig. 32). This deformation affected roads and rail 
lines (fig. 33) and disrupted stream drainages; the widespread 
subsidence could result in continued flooding problems in the 
Kaikoura region.

Comparison of Observed and Modeled 
Landslide Distribution

We have been working with collaborators to develop 
a suite of coseismic landslide and liquefaction models that 
will provide near-real-time estimates of coseismic ground-
failure hazards based on USGS ShakeMap ground-shaking 
estimates and other globally and regionally available input 
layers (Allstadt and others, 2016). An objective of our field 
reconnaissance was to (1) qualitatively assess how well the 
models performed for the Kaikoura earthquake, (2) identify 
possible sources of error, and (3) determine how the models 
can be improved. Our focus is on the coarser resolution global 
landslide models (approx. 1-km grid cells); these include 
Nowicki and others (2014), which estimates the probability of 
any landslide occurring in a given grid cell, and Godt and others 
(2008), which estimates the percentage of a given cell that 
could be affected by landsliding. Both models require ShakeMap 
PGA estimates, so we ran the models using ShakeMap version 
7 (fig. 34A), the most up-to-date version available at the time 
we were in the field. Figure 3 shows the most recent version 
(ShakeMap version 16), which has been updated with better 
constrained faults and more strong-motion data.

Figure 30. Photograph showing a landslide blocking a minor 
road along the Clarence River. (See fig. 1D.)

Figure 31. Photograph showing uplifted marine platforms about 10 kilometers southwest of Waipapa Bay. (See fig. 1B.)



Comparison of Observed and Modeled Landslide Distribution  17

A quantitative assessment of modeled landslide prob-
abilities will not be possible until a detailed landslide 
inventory is published, but our qualitative assessment indi-
cates that both models overpredict landsliding. Both models 
correctly identify areas that were affected by landsliding, but 
they overpredict the extent of landsliding in those areas and 
do not correctly characterize areas not strongly affected by 
landslides (fig. 34B–C). For example, both models show high 
probabilities where landsliding was densest, including within 
the Seaward Kaikoura Range; in the lower relief areas affected 
by large, deep landslides northeast of Waiau; and along the 
coastal cliffs that produced landslides that blocked SH1 both 
north and south of Kaikoura (see fig. 34B–C). However, both 
models greatly overestimated landslide probabilities outside 
of these areas of dense landsliding, such as in the Inland 
Kaikoura Range. One reason for the poor model predictions 
in this area is that ground-shaking estimates in the Inland 
Kaikoura Range in ShakeMap version 7 were too high; this 
version included the Awatere fault (northwesternmost fault in 
fig. 3), which was later determined not to have slipped in this 
event. This misfit between model prediction and observation 

Figure 32. Photograph showing ponding in a subsided area astride the Kekerengu fault (indicated by white arrows) 15 kilometers 
southwest of Ward. (See fig. 1E.)

Figure 33. Photograph showing the South Island Main Trunk  
rail line offset laterally and vertically by the Kekerengu fault  
15 kilometers southwest of Ward. (See fig. 1E.)
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demonstrates that, in near real time, incomplete or inaccurate 
input data can strongly skew the estimated ground-shaking 
and ground-failure hazard estimates; thus, a way of account-
ing for and communicating uncertainty is needed. ShakeMap 
estimates some sources of ground-shaking uncertainties, but 
currently it does not account for epistemic uncertainties that 
can arise from errors such as a nonseismogenic fault. Like-
wise, the ground-failure models do not account for uncertain-
ties in their input parameters (such as rock strength), which 
can be significant (Dreyfus and others, 2013).

An area of overestimation that is less easily explained 
is the area around Ward, where both ground-failure models 
estimate high landslide probabilities but where we found few 
slope failures. Recorded ground shaking at Ward exceeded 1 g,  
and the ShakeMap algorithm assumes that if shaking is high 
at a strong-motion station, it is also high for a certain radius 
around that station after adjusting for differing site condi-
tions (Worden and others, 2010). Figure 34A shows a patch 
of high PGA around Ward that extends into the surrounding 
hills, which, in turn, generated high landslide probability 
estimates there; landslides in that area were not confirmed 
by observations. Although we cannot currently explain this 
discrepancy, possible explanations include the following:  
(1) the high PGA recorded at Ward is a highly localized anom-
aly attributable to site amplification; (2) although the PGA  
was high, other ground-motion parameters such as frequency 
and duration were not conducive to landslide triggering; or  
(3) geologic conditions in nearby sloping areas were mischar-
acterized in the models. Though high ground accelerations 
can significantly decrease effective stress on a shear surface 
and increase downslope driving forces on a potential landslide 
mass, the frequency and duration of the ground motion also 
are important (Jibson and others, 2004; Jibson, 2011). Tran-
sient spikes of high-frequency PGA commonly generate little 
slope displacement (Newmark, 1965) and thus contribute little 
to slope-failure probability. Other ground-motion parameters 
might be more effective at estimating landslide probabilities. 
For example, Jibson (2007) developed a model relating esti-
mated landslide displacement (and thus failure probability) to 
Arias (1970) intensity, which implicitly accounts for frequency 
and duration in addition to the amplitude of acceleration. Also, 
a newer revision of the Nowicki and others (2014) model uses 
PGV rather than PGA; PGV is less sensitive to isolated peaks 
and does not saturate with magnitude, and this model does 
not estimate high landslide probabilities around Ward (M.A. 
Jessee, Indiana University Bloomington, oral commun., 2017). 

These options for ground-motion parameterization provide 
opportunities for future model development.

Summary and Conclusions
The 2016 Kaikoura, New Zealand, earthquake triggered 

widespread landslides that dammed rivers and blocked roads 
and rail lines. Observations from our reconnaissance of the 
area after the earthquake include the following salient points:

• Thousands of landslides were triggered over an area of 
at least 12,000 square kilometers in the northeastern 
part of the South Island. Landslides primarily were 
concentrated in the Seaward Kaikoura Range and sur-
rounding areas of lower topography.

• Most of the landslides occurred in Lower Cretaceous 
graywacke sandstone that predominates in this area. 
Landslides in this material generally were highly 
disrupted falls and slides, some of which transformed 
into debris avalanches that blocked valleys and 
dammed rivers.

• Weak Upper Cretaceous to Neogene sedimentary rock 
that surrounds the graywacke produced deeper, more 
coherent slumps and block slides. Many of these 
deeper landslides also blocked rivers and created sub-
stantial hazards from potential breach of impounded 
lakes. The likelihood and results of breach were not 
analyzed as part of this work.

• Many of the largest landslides clustered along faults 
that produced surface displacement, which suggests a 
possible causative relationship.

• We used observations from this earthquake to quali-
tatively evaluate two models that predict landslide 
probabilities in near real time following earthquakes. 
Both models we examined did well at predicting 
areas where landslides were observed but signifi-
cantly overpredicted landslide probabilities in areas 
where we observed few or no landslides. 

Observations in this report are preliminary. GNS Science 
is leading research efforts in more detailed and quantitative 
studies in collaboration. The appendix contains more detailed 
observations and photographs of the areas investigated.
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This appendix provides a general overview of the land-
slides and other geologic effects we observed in three phys-
iographically distinct regions of the area affected by the 2016 
Kaikoura, New Zealand, earthquake (fig. 35):

• Cape Campbell to Waipapa Bay.—This area is a coastal 
margin composed of Quaternary low-lying beaches 
and uplifted marine terraces backed by hilly areas 
composed of Neogene to Upper Cretaceous sedimen-
tary rock interspersed with Lower Cretaceous gray-
wacke sandstone and argillite. Landslides included 

rock falls and debris avalanches in steeper terrain and 
slides and slumps in less steep areas. The Sea Front 
(Cow Slip) landslide, described below, is the largest 
landslide in this area (see fig. 17).

• Waipapa Bay to Mount Lyford.—This area includes the 
Seaward Kaikoura Range, where Lower Cretaceous 
graywacke sandstone forms high ridges and steep 
topography. The Clarence River, a long fluvial system 
controlled by northeast-trending regional faulting, 

Appendix. Field Reconnaissance Observations
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separates the Seaward and Inland Kaikoura Ranges; 
landslides were abundant in the Seaward Kaikoura 
Range but ended abruptly at the valley of the Clar-
ence River. Resistant Paleogene limestone forms hard 
points in the landscape, most notably Sawcut Gorge, 
where slot canyons deeply incise the resistant lime-
stone. (See also fig. 1A–B.)

• Mount Lyford to Waiau.—This area is characterized by 
rolling hills composed of weak Upper Cretaceous to 
Neogene sedimentary rock (both marine and nonma-
rine) that produced several deep coherent slides that 
blocked rivers and streams.

The locations of the landslides described in this appendix 
are shown in figure 1A. With few exceptions, we identify these 
landslides by using the naming convention developed by GNS 
Science (Institute of Geological and Nuclear Sciences Lim-
ited): the name of the drainage blocked by the landslide and 
the approximate elevation in meters above sea level. The Cape 
Campbell and Sea Front landslides do not block drainages and 
therefore do not have elevations as part of their names.

Cape Campbell to Waipapa Bay

At Cape Campbell, we observed a surface fault rupture 
on a previously unmapped fault that has been named the 
Lighthouse fault by GNS Science (fig. 36). Fault displacement  
averaged about 0.5 meter (m) of vertical displacement. Visible 
surface faulting extended approximately 1 kilometer (km) 
from the south-facing shoreline on the south end of Cape 
Campbell northward toward the tip of the cape.

A large preexisting landslide on a hill composed of weak 
Neogene sandstone and siltstone was reactivated and signifi-
cantly enlarged by the earthquake shaking (fig. 37). Extensive 
ground cracking on the crest of the hill indicates incipient 
failure of larger parts of the hillside (fig. 38). Numerous other 
preexisting landslides on steep slopes in weak sediment in the 
vicinity of Cape Campbell were reactivated and enlarged by 
strong shaking (fig. 39). 

From Blenheim to Ward, we observed numerous failures  
on steep, unengineered roadcuts and fill embankments (fig. 40).  
On the coast, just east of Ward, we saw several landslide scars, 
but many of them appeared to be preexisting features that 
might have been partially reactivated during the earthquake.

In the steeper Inland Kaikoura Range about 8 km west 
of Ward, we observed landslides that transitioned into steep 
debris flow-like channels (fig. 41). From a distance, we 
could not determine if these channels formed from rapid dry 
granular flow or if enough water was present to form a true 
debris flow.

Just south of Ward, we followed the Ure River up 
toward Sawcut Gorge. The Ure River is braided and choked 
with large boulders and cobbles; much of this sediment 
is landslide debris derived from the steep-walled canyons 
upstream. We saw fresh landslides, presumably from the 

Figure 36. Photograph showing surface fault rupture on Cape 
Campbell. (See fig. 1C.)

most recent earthquake, within the fluvial corridor that 
directly supplied sediment to the river. Some of these slides 
occurred on the ends of ridges (fig. 42). They are commonly 
called “nose” or “spur-end” failures and are common in 
earthquakes, most likely because of topographic amplifica-
tion (Keefer and Manson, 1998).

Upstream, the river narrows into Sawcut Gorge, a  
resistant limestone block that has been narrowly incised. 
Landslides in this steep terrain created multiple in-channel 
dams that formed chains of ponds in the gorge (see fig. 9).

About 13 km south of Ward along State Highway 1, we 
saw structural damage to St. Oswald’s Church (see fig. 22B). 
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Figure 37. Photograph showing a preexisting landslide on Cape Campbell that was reactivated and significantly enlarged during the 
earthquake. (See fig. 1C.)

Figure 38. Photograph showing a fresh crack on crest of hillside 
above Cape Campbell landslide. (See figs. 1C and 37.)

Figure 40. Photograph showing landslides from roadcuts 
between Blenheim and Ward. (See fig. 1E.)

Figure 39. Photograph showing reactivated landslides on 
coastal bluffs west of Cape Campbell. (See fig. 1C.)

Figure 41. Photograph showing debris slides about 8 kilometers 
west of Ward. (See fig. 1E.)



28  Overview of the Geologic Effects of the November 14, 2016, Mw 7.8 Kaikoura, New Zealand, Earthquake

A few kilometers farther south, State Highway 1 was damaged 
from surface fault rupture, and a down-dropped block adjacent 
to the coast created a temporary lake (see fig. 32). Because the 
new lake is not connected to the ocean, it presumably is filled 
by groundwater seepage and surface drainage. This location also 
experienced significant damage to the railway (see fig. 33). 

The Clarence River discharges into the ocean at Waipapa 
Bay. At about 20 km upstream from its mouth, looking down-
stream, the river turns abruptly to the southeast and cuts through 
the Seaward Kaikoura Range. Just north of this sharp turn, we 
saw several steep landslides with substantial cracks uphill of 
the landslide main scarp (fig. 43). Farther north in the Seaward 
Kaikoura Range, we saw additional landsliding that transitioned 
into debris slides with flow-like features (fig. 44). 

Perhaps the most widely reported landslide caused by the 
earthquake is the Sea Front landslide, originally referred to as 
the Cow Slip landslide because of a widely viewed aerial video 
(Newshub, 2016) showing several cows stranded on an isolated 

Figure 42. Photograph showing fresh landslide on the end of a 
ridge directly entering the Ure River near Sawcut Gorge. (See fig. 1E.)

Figure 43. Photograph showing hillside cracks that indicate incipient landslide movement above the shallow failure triggered by the 
earthquake in the Seaward Kaikoura Range. (See fig. 1E.)

Figure 44. Photograph showing debris slides triggered by the earthquake in the Seaward Kaikoura Range. (See fig. 1E.)
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landslide block. This landslide is a complex feature involving 
slumping, sliding, toppling, and disaggregated flow of late  
Miocene calcareous silty mudstone of the Waima Formation  
(fig. 45). The landslide has an estimated volume of 6,000,000 
cubic meters (m3) and a total length of about 1,100 m (Massey 
and others, 2017). The Papatea fault, which produced surface 
rupture during the earthquake, comes onshore just south of the  
Sea Front landslide, passes through the landslide source area, and  
continues along smaller ridges to the north that also produced  
smaller landslides during the earthquake. The upper parts of the 
slide moved as coherent—though extensively fractured—blocks 
(fig. 46). The central part of the slide is chaotic, with evidence 
of backward, lateral, and forward rotation of distinct landslide 
blocks (fig. 47). The toe of the landslide transformed into disag-
gregated earth flows that moved into two drainages (fig. 48).

Figure 45. Photograph showing the Sea Front landslide near 
Waipapa Bay. (See fig. 1D.)

Figure 47. Photograph showing the central part of the Sea Front 
landslide. (See fig. 1D.)

Figure 48. Photograph showing the toe of the Sea Front landslide 
that transformed into an earth flow. (See fig. 1D.)

Figure 46. Photograph showing the main scarp and upper part of 
the Sea Front landslide. (See fig. 1D.)
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Waipapa Bay to Mount Lyford (Seaward 
Kaikoura Range)

The greatest concentration of landslides triggered by 
the earthquake is in the Seaward Kaikoura Range, an area of 
steep topography and peaks reaching an elevation of 2,600 m. 
The main backbone of this mountain range consists of Lower 
Cretaceous graywacke sandstone; both the northwestern and 
southeastern fringes of the range have outcrops of Upper Cre-
taceous to Neogene marine and nonmarine sedimentary rock. 
Landslides in the graywacke generally are highly disrupted 
falls and slides in rock and debris (see figs. 6 and 7). Sizes 
range from a few tens of cubic meters to hundreds of thou-
sands of cubic meters. The Upper Cretaceous to Neogene sedi-
mentary rock produced several deep, coherent block slides and 
slumps that blocked valleys and dammed rivers (see fig. 8). 
Pervasive ground cracking in these rock units suggests incipi-
ent landsliding on many slopes as well as failure caused by 
lurching during the strong ground shaking (see figs. 12–14).

This section describes some of the larger and more 
significant landslides in the Seaward Kaikoura Range. Each of 
these landslides dammed a river valley and thus was a focus of 
concern following the earthquake. 

Hapuku 740 Landslide
The Hapuku 740 landslide is a rock avalanche that 

occurred in the upper Hapuku River valley (fig. 49). With 
an estimated volume of more than 12,000,000 m3, a source 
area of more than 650,000 square meters (m2), and a length 
of 2,100 m, this was the largest landslide triggered by the 
earthquake (Massey and others, 2017). The slide occurred in 
basement graywacke and consists of coarse fractured blocks 
ranging in size from a few centimeters to several decimeters; 
scattered large (>1 m in diameter) boulders also are abundant. 
The landslide deposit contains a fine matrix of pulverized 
rock that renders the dam mostly impermeable and thus able 
to impound a lake approximately 350 m long by 100 m wide. 

At the time of our visit, several seepage points and areas of 
headward erosion immediately behind the seepage points had 
formed on the downstream face of the dam (fig. 50), which 
presented a significant hazard that could cause the dam to fail 
catastrophically from some combination of headward erosion, 
internal erosion (piping), or overtopping of the impounded 
lake. The landslide source area consists of fairly planar sur-
faces that appear to be preexisting discontinuities in the rock 
mass. The trace of the Upper Kowhai fault extends through the 
landslide source area and probably influenced the location and 
geometry of the slide.

In April 2017, subsequent to our visit, Cyclone Cook 
produced heavy rainfall in the Hapuku drainage. Following 
this event, the dam partially failed by headward erosion above 
the seeps and was overtopped by the rising lake level; the 
result was a debris flood extending 3–4 km downstream (Chris 
Massey, GNS Science, written commun., 2017). Continuing 
seepage and erosion from the downstream face indicates that 
future heavy rainfall could cause additional erosion and over-
topping episodes that would pose downstream risks.

Linton 340 Landslide

The Linton 340 landslide occurred in Lower Cretaceous 
graywacke that, in this area, is deeply weathered and soil-like 
in texture. The landslide, located astride the Kowhai fault but 
south of where Litchfield and others (2017) mapped surface 

Figure 49. Photograph showing the Hapuku 740 rock avalanche 
and dam. (See fig. 1B.)

Figure 50. Photograph showing the downstream face of the 
Hapuku 740 landslide dam. Arrows indicate locations of seeps. 
(See fig. 1B.)
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fault displacements, moved by a combination of slumping and  
sliding. The landslide blocked the Linton River, and the toe area  
appeared to have deformed through plastic flow (fig. 51). The 
landslide has a volume of about 1,000,000 m3, a source area 
covering 95,000 m2, and a length of 650 m (Massey and others, 
2017). The Linton 340 slide pinched closed the river channel and  
impounded a lake of moderate size. In April 2017, rainfall from 
Cyclone Debbie overtopped the dam and caused a significant 
downstream flood that deposited debris for about 2 km down-
stream (Chris Massey, GNS Science, written commun., 2017).

Conway 420 Landslide

The Conway 420 landslide occurred in graywacke and 
blocked the Conway River just north of the Hope fault (fig. 52). 
Surface fault offsets were not mapped on the Hope fault in this 
area (Litchfield and others, 2017), and Hamling and others 

Figure 51. Photograph showing the Linton 340 landslide dam. 
(See fig. 1B.)

Figure 52. Photograph showing the Conway 420 landslide dam. 
(See fig. 1G.)

Figure 53. Photograph showing the planar failure surface of the 
Conway 420 landslide. (See fig. 1G.)

Figure 54. Photograph showing the lake impounded by the 
Conway 420 landslide dam. (See fig. 1G.)

(2017) modeled negligible slip at depth here. The landslide 
has a volume of 500,000 m3, a source area covering more than 
50,000 m2, and a length of 825 m (Massey and others, 2017). 
The landslide initiated as a highly disrupted rock slide from 
a planar failure surface that was likely a preexisting discon-
tinuity in the rock mass (fig. 53); the geometry and run-up 
characteristics of the deposit indicate that the slide became a 
rock avalanche as velocity increased downslope. The deposit 
consists of fractured rock fragments and a fine-grained matrix 
of pulverized rock. The deposit formed a large, dome-shaped 
dam that impounded a lake 650 m long by about 100 m wide. 
At the time of our visit, it appeared from high-water marks 
that the lake had decreased in elevation 2–3 m from its peak 
sometime after the earthquake (fig. 54). The dam appeared 
stable at the time of our visit, but it was entirely washed  
away in April 2017 during heavy rainfall from cyclones  
(Chris Massey, GNS Science, written commun., 2017).
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Towy 500 Landslide

The Towy 500 landslide occurred in deeply weathered 
graywacke sandstone just north of the Hope fault (fig. 55). 
The landslide consists of a rock slide having a volume of 
about 500,000 m3, a source area covering 62,000 m2, and a 
length of 465 m (Massey and others, 2017). The landslide 
briefly blocked the Towy River, but at the time of our visit, the 
dam had largely breached (fig. 56), and the impounded lake 
upstream was considerably lower than its peak elevation (see 
fig. 55). Redeposited landslide material downstream from the 

breached dam caused aggradation of a few meters. Evidence 
including channel incision, debris lines, and disturbed veg-
etation indicates a maximum flood height of perhaps 2–4 m 
immediately downstream from the dam (fig. 57). Redeposition 
of dam material extended a few kilometers downstream.

Mount Lyford to Waiau

The lower elevation area between the coast and the 
Seaward Kaikoura Range west and south of Kaikoura (fig. 1), 
characterized by peak elevations of 300–960 m, was heavily 
affected by landsliding and landslide dams. In contrast to the 
shallower, disrupted landslides that dominate in the more rug-
ged graywacke-dominated Seaward Kaikoura Range, this area 
experienced deeper, coherent landsliding in Neogene sedimen-
tary rock, similar in style to the Sea Front landslide. Several 
fault zones extend through this area, and many of the larger 
landslides occurred on or near fault traces; thus, it appears that 
surface faulting was a contributing factor to the observed land-
slide style and distribution. The following sections describe 
some of the significant landslides in this area.

Leader 220 Landslide

The Leader River was dammed in more than a dozen 
places within two tributaries. The largest and potentially most 
hazardous of these is the Leader 220 landslide (figs. 58 and 59), 
with an estimated volume of 2,000,000 m3, a source area cover-
ing almost 200,000 m2, and length of about 1,100 m (Massey 

Figure 55. Photograph showing the Towy 500 landslide dam and 
the remaining impounded lake. (See fig. 1G.)

Figure 56. Photograph showing the area where the Towy 500 landslide dam breached. (See fig. 1G.)
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and others, 2017). This landslide occurred in the Neogene 
Greta Formation, which consists of marine siltstone, mudstone, 
sandstone, and limestone. At the time of our visit, the landslide 
abutted the terraces on the opposite side of the stream, and it 
entirely blocked the river and impounded a lake about 1 km 

long (fig. 60). At that time, water was flowing over the dam 
and was actively downcutting the dam, which suggested the 
possibility of rapid failure. As of February 22, 2017, the main 
dam had eroded, and water was flowing through the breach 
(Environment Canterbury, 2017). The North and South Leader 
fault zones extend through this area, but we cannot confirm 
that surface fault slip occurred directly below the landslide 
source area on these faults. Investigations subsequent to our 
visit confirm that a fault rupture along the Humps fault zone 
extends through the toe of the landslide debris (Chris Massey, 
GNS Science, written commun., 2017). This landslide is 
largely coherent, with intact and nearly upright forest on the 
upper half of the deposits. The toe is more disrupted but has 
patches of tilted vegetation still clumped together. 

Stanton 200 Landslide

Just over the drainage divide southeast of the Leader 220 
dam, the Stanton 200 landslide blocked the Stanton River  
(fig. 61). Though somewhat smaller than the Leader 220 with 
a volume of 1,500,000 m3, a source area of about 135,000 m2, 
and a length of about 470 m (Massey and others, 2017), this 
landslide is very similar in style and geologic setting to the 
Leader 220. At the time of our fieldwork, it had impounded a 
lake a few hundred meters long in two pools connected by a 
small channel. This landslide is notable because just a small 
isthmus of the landslide deposits was damming these upper 
pools, and water was flowing over these deposits into much 
smaller and muddier pools (fig. 62), indicating that downcut-
ting was occurring at the time of our last overflight on Decem-
ber 11, 2016. The Stanton 200 landslide also was covered by 

Figure 57. Photograph showing deposits of the eroded Towy 500 
landslide dam burying trees near original river channel.  
(See fig. 1G.)

Figure 58. Photograph showing the Leader 220 landslide dam. (See fig. 1H.)
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Figure 59. Photograph showing the main scarp and head of the Leader 220 landslide. (See fig. 1H.)

Figure 60. Photograph showing the lake impounded by the Leader 220 landslide dam. (See fig. 1H.)
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coherent vegetation over most its surface and appears to be 
even less disrupted toward its toe than the Leader 220 land-
slide. Displacement from the crown to the top of the coherent 
vegetated deposits on the landslide head is about 50 m. Sub-
sequent investigation shows that a strand of the Humps fault 
zone passes through the lower part of the landslide source area 
(Chris Massey, GNS Science, written commun., 2017).

No additional changes in the lake level were reported 
through March 2017, and clear water was flowing over the 
dam at that time (Environment Canterbury, 2017). Heavy 
rainfall from Cyclone Cook in April 2017 caused this landslide 
dam to breach. Debris from the dam extends about 500 m 
downstream onto a wide floodplain (Chris Massey, GNS Sci-
ence, written commun., 2017).

Figure 61. Photograph showing the Stanton 200 landslide dam 
and impounded lake. (See fig. 1H.)

Figure 62. Photograph showing water flow over the Stanton 200 landslide dam and ponding below the dam. (See fig. 1H.)



36  Overview of the Geologic Effects of the November 14, 2016, Mw 7.8 Kaikoura, New Zealand, Earthquake

Mason 360 Landslide
The Mason 360 landslide (locally referred to as the Bat-

tery landslide) is a massive (approx. 2 km wide, 0.5 km long) 
preexisting landslide in Oligocene limestone and interspersed 
volcanic rocks. Fresh, incipient landslide blocks had partially 
detached from the main scarp, presumably from earthquake 
shaking, and fresh talus deposits were present along the base 
of most of the length of the main scarp and below minor cliffs 
in the sliding mass (fig. 63). Fresh cracking was visible on 
the body of the landslide in several places, but it is unclear if 
these cracks indicate local shallow deformation or reactivation 
of the entire mass along its basal shear surface. The Mason 
River, which flows through a canyon carved through the toe 
of the landslide, does not appear to be blocked or deflected by 
additional horizontal deep-seated sliding, with the exception 
of some small landslides off the steepened toe of the land-
slide. Post-earthquake interferometric synthetic aperture radar 
(InSAR) measurements suggest about 10 cm of movement on 
the main body of the landslide mass. Field measurements of 
displaced blocks near the landslide main scarp made by GNS 
Science after our visit show 0.5–1.0 m of displacement (Chris 
Massey, GNS Science, written commun., 2017). 

Other Landslides

The earthquake triggered numerous other landslides in 
this region; most are morphologically similar to the Leader 
220 and Stanton 200 landslides, and many have very steep 
or vertical main scarps (figs. 64–68, see fig. 8). Many of 
the drainages in this region are small, so the water volumes 
impounded behind some of the dams were small at the time 
of our visit (see fig. 66). However, these impounded waters 
could become more hazardous when stream discharges 
increase or water transmission through or around the dams 
is impeded.

Mount Lyford 

The steep gravel road that extends north from Mount 
Lyford to a ski resort was heavily damaged by ground  
failure, primarily slope-parallel cracking and spreading 
along the outboard edges (possibly formed in fill materials) 
of the mountainous road (see fig. 13). Several homes  
in Mount Lyford along the road to the resort were affected  
by localized ground failure, primarily ridgetop crack-
ing (fig. 69). None of these features appeared to be large 
enough to affect multiple homes, nor did we see any signs 
of incipient large, deep slope failures from the steep moun-
tains above the neighborhood.

Sea Cliffs

The steep sea cliffs south of Kaikoura and south of 
where State Highway 1 turns inland from the coast produced 
scattered shallow debris falls whose deposits are eroding 
rapidly under the influence of wave action (fig. 70). During 
our overflight, wave action was causing rapid erosion of the 
slide deposits, and offshore sediment plumes were visible 
along the shoreline. In some areas, the entire edge of the sea 
cliff failed, as indicated by lines of trees that toppled outward 
from the cliff face (fig. 71).

Figure 64. Photographs showing the Stanton East Tributary 170 landslide. A, Main body of the landslide consisting of several large, fairly 
coherent blocks. B, Nearly vertical main scarp and upper landslide blocks; landslide moved from right to left in photograph. (See fig. 1H.)

Figure 63. Photograph showing the main scarp of the Mason 360 
(Battery) landslide. (See fig. 1H.)

A B
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Figure 65. Photograph 
showing a landslide from 
the edge of the terrace 
directly across the valley 
from the Leader 220 
landslide. (See fig. 1H.)

Figure 66. Photograph showing 
the Bourne 210 landslide. (See 
fig. 1H.)

Figure 67. Photograph 
showing the Bourne 270 
landslide with a near-
vertical headscarp. (See 
fig. 1H.)
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Figure 69. Photograph showing a ridgetop crack extending through a house in Mount Lyford. (See fig. 1G.)

Figure 68. Photograph showing a landslide between Waiau and Mount Lyford with a near-vertical headscarp. (See fig. 1H.)
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Figure 70. Photograph showing debris falls along coastal cliffs south of Kaikoura. (See fig. 1B.)

Figure 71. Photograph showing toppled trees along a section of sea cliff that failed south of Kaikoura. (See fig. 1B.)
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