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Foreword

Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems 
depends on the availability of sound water-resources data and information to develop effective, 
science-based policies. Effective management of water resources also brings more certainty and 
efficiency to important economic sectors. Taken together, these actions lead to immediate and 
long-term economic, social, and environmental benefits that make a difference to the lives of 
the almost 400 million people projected to live in the United States by 2050.

In 1991, Congress established the National Water-Quality Assessment (NAWQA) to address 
where, when, why, and how the Nation’s water quality has changed, or is likely to change in 
the future, in response to human activities and natural factors. Since then, NAWQA has been 
a leading source of scientific data and knowledge used by national, regional, state, and local 
agencies to develop science-based policies and management strategies to improve and protect 
water resources used for drinking water, recreation, irrigation, energy development, and ecosys-
tem needs (https://water.usgs.gov/nawqa/applications/). Plans for the third decade of NAWQA 
(2013–23) address priority water-quality issues and science needs identified by NAWQA 
stakeholders, such as the Advisory Committee on Water Information and the National Research 
Council, and are designed to meet increasing challenges related to population growth, increas-
ing needs for clean water, and changing land-use and weather patterns.

Understanding the occurrence and distribution of pesticides in the Nation’s waters is one priority 
water-quality issue. Pesticides in drinking water and aquatic ecosystems have the potential to 
adversely impact humans and aquatic life. The evaluation of pesticide exposure has traditionally 
required high-frequency (for example, daily) sampling. However, because of the prohibitive cost 
of daily sampling, most monitoring sites have sparse (weekly or less frequent) sampling. This 
report provides a modeling methodology for using sparse pesticide monitoring data to generate 
synthetic time series of daily concentrations that reproduce the statistical properties of actual 
daily time series data. The synthetic data can be used in future studies to better understand 
pesticide exposure risk and uncertainty in our Nation’s rivers and streams.

The purpose of this publication is to provide insight and information to meet water-resource 
needs and to foster increased citizen awareness and involvement in the protection and res-
toration of our Nation’s waters. The information in this report is intended primarily for those 
interested or involved in resource management and protection, conservation, regulation, and 
policymaking at the regional and national levels.

Dr. Donald W. Cline 
Associate Director for Water 

U.S. Geological Survey

https://water.usgs.gov/nawqa/applications
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Model Methodology for Estimating Pesticide Concentration 
Extremes Based on Sparse Monitoring Data

By Aldo V. Vecchia

Abstract
This report describes a new methodology for using sparse 

(weekly or less frequent observations) and potentially highly 
censored pesticide monitoring data to simulate daily pesticide 
concentrations and associated quantities used for acute and 
chronic exposure assessments, such as the annual maximum 
daily concentration. The new methodology is based on a 
statistical model that expresses log-transformed daily pesti-
cide concentration in terms of a seasonal wave, flow-related 
variability, long-term trend, and serially correlated errors. 
Methods are described for estimating the model parameters, 
generating conditional simulations of daily pesticide concen-
tration given sparse (weekly or less frequent) and potentially 
highly censored observations, and estimating concentration 
extremes based on the conditional simulations. The model can 
be applied to datasets with as few as 3 years of record, as few 
as 30 total observations, and as few as 10 uncensored observa-
tions. The model was applied to atrazine, carbaryl, chlorpy-
rifos, and fipronil data for U.S. Geological Survey pesticide 
sampling sites with sufficient data for applying the model. A 
total of 112 sites were analyzed for atrazine, 38 for carbaryl, 
34 for chlorpyrifos, and 33 for fipronil. The results are summa-
rized in this report; and, R functions, described in this report 
and provided in an accompanying model archive, can be used 
to fit the model parameters and generate conditional simula-
tions of daily concentrations for use in investigations involv-
ing pesticide exposure risk and uncertainty.

Introduction
Potential human and ecological exposure to pesticides 

in streams and rivers commonly is evaluated by comparing 
measured or predicted pesticide concentrations or concentra-
tion statistics to acute and chronic water-quality benchmarks 
for human health and aquatic life. An accurate assessment of 
water-quality conditions, therefore, is dependent on charac-
terization of the highest pesticide concentrations that may 
have occurred. Predicting when the highest concentrations of 
a pesticide may occur in a stream or river is difficult because 
of temporal and spatial complexity of pesticide use, pesticide 

transport, and hydrology. Likewise, systematic sampling, such 
as monthly or weekly sampling, may not accurately character-
ize high concentrations, especially in small, flashy streams. 
Exposure estimates calculated from water samples collected 
as frequently as every 4 days were determined to be biased 
low in comparison to estimates calculated from more frequent 
sampling (Lerch and others, 2011). Simulation analysis was 
used by Crawford (2004) to indicate that, for small streams, a 
sampling frequency of 10 times per month produced estimates 
of the time-weighted 99th percentile concentrations that were 
within 50 percent of the true concentrations most of the time. 
The problems with characterizing acute pesticide exposure in 
streams and rivers based on existing pesticide monitoring data 
have been described and discussed during Federal Insecti-
cide, Fungicide, and Rodenticide Act Science Advisory Panel 
meetings regarding atrazine (U.S. Environmental Protection 
Agency, 2010a, 2010b, 2011, 2012).

To accurately characterize extreme pesticide concentra-
tions in streams, daily sampling may be necessary during 
active pesticide runoff periods. The cost of sample collection 
and analysis prohibits this high sampling frequency for most 
monitoring programs. Sampling frequencies of every 4 days, 
10 times per month, or more frequently also are uncommon 
among programs monitoring pesticide concentrations in 
streams. Sampling frequencies of weekly to monthly are more 
common and are referred to in this report as sparse monitoring 
data.

Approaches to estimate extreme pesticide concentra-
tions from temporally sparse data include the use of sampling 
bias factors developed from high-frequency monitoring 
sites (U.S. Environmental Protection Agency, 2012). In this 
approach, concentration extremes computed from various 
subsamples of the high-frequency monitoring data, such as 
monthly or weekly sampling, are compared to the actual 
concentration extremes to compute bias factors. The resulting 
bias factors are related to available data on pesticide use, soil 
characteristic, and other properties of the upstream basins in 
order to estimate bias factors for sites with sparse sampling. 
However, the estimated bias factors may be highly uncertain, 
especially for sites that are not well represented by the small 
subset of sites with high-frequency sampling.

A new model methodology was developed by the 
U.S. Geological Survey (USGS) to address the need for using 
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sparse and potentially highly censored pesticide monitoring 
data to estimate pesticide concentration extremes, such as the 
annual maximum daily concentration. The new methodology 
is based on a statistical model that expresses log-transformed 
daily pesticide concentration in terms of a seasonal wave, 
flow-related variability, long-term trend, and serially cor-
related errors. The seasonal wave models seasonality in 
pesticide concentration because of site-specific timing and 
duration of the pesticide application season. Flow-related 
variability is modeled using two variables that are called 
mid-term and short-term flow anomalies, and the variables are 
computed using antecedent daily discharge. The model errors 
are assumed to have seasonal standard deviation that can 
increase with increasing pesticide concentration and serial 
correlation that is modeled using an exponential correlation 
function. The statistical model can be used to simulate daily 
concentrations that are equal to (for days with uncensored 
observations) or less than (for days with censored observa-
tions) the monitoring data and that consist of model-generated 
values for days with no observations. The simulated daily 
concentrations reproduce the statistical time series character-
istics of actual daily pesticide concentrations, such as serial 
correlation, seasonal means and variances, and flow-related 
variability. The simulated daily concentrations are called con-
ditional simulations, because the simulated concentrations are 
conditioned on the observed monitoring data. The conditional 
simulations can be used to estimate exposure metrics, such as 
the annual maximum daily or 7-day moving average concen-
tration, and to evaluate bias factors.

Pesticide concentration data from the USGS National 
Water Quality Network (NWQN) were used to develop this 
methodology (Vecchia and Williams-Sether, 2017). The 
USGS National Water-Quality Assessment (NAWQA) project 
maintains the NWQN with the goal of understanding the 
nation’s water quality, including the occurrence of pesticides 
in natural waters (Rowe and others, 2013). A primary con-
sideration in developing the methodology was to maximize 
the number of pesticide sampling sites that could be analyzed 
with the model, so that whenever possible, monitoring data 
could be used to estimate daily concentrations and associated 
exposure metrics. Given the short historical records, sparse 
sampling frequencies, and often highly censored concentra-
tion data available for many of the sites and pesticides, the 
methodology needed to be as simple and robust as possible 
while still providing unbiased and informative estimates of 
concentration extremes.

The starting point for the new methodology is a regres-
sion model for analyzing pesticide concentration trends 
developed by Vecchia and others (2008) and referred to 
in later applications as the seasonal wave with streamflow 
adjustment (SEAWAVE–Q) model. The SEAWAVE–Q model 
has been used in a number of studies to analyze long-term 
trends in annual median pesticide concentrations for agricul-
tural, urban, and mixed land-use streams (Sullivan and others, 
2009; Vecchia and others, 2009; Ryberg and others, 2010; 
Ryberg and Gilliom, 2015). For simulating daily pesticide 

concentrations, several enhancements to the SEAWAVE–Q 
model were required. These enhancements include algo-
rithms for estimating serial correlation and nonconstant 
variance of the model errors and generating conditional 
simulations of daily concentrations. The enhanced model 
is referred to as seasonal wave with streamflow adjustment 
and extended capability (SEAWAVE–QEX), where the “EX” 
stands for extended capability to produce simulated daily 
concentrations.

Purpose and Scope
This report describes the SEAWAVE–QEX model meth-

odology and associated R (R core team, 2016) functions for 
estimating the model parameters and generating conditional 
simulations of daily pesticide concentration. Model test results 
for selected atrazine, carbaryl, chlorpyifos, and fipronil data-
sets demonstrate the robust properties of the SEAWAVE–QEX 
model for sparse and potentially highly censored datasets. The 
effects of serial correlation, degree of censoring, and sampling 
frequency on the simulated daily concentrations and associ-
ated concentration extremes are evaluated. Model application 
results are summarized for atrazine, carbaryl, chlorpyrifos, 
and fipronil datasets for USGS pesticide sampling sites with 
sufficient data for applying the model. The conditional simula-
tions of daily pesticide concentrations produced by the model 
can be used in investigations involving pesticide exposure risk 
and uncertainty.

The SEAWAVE–QEX model is intended for use with 
sparse (weekly or less frequent) monitoring data, and the 
model is not a replacement for other methods when high-
frequency monitoring data are available. Simulated daily 
concentrations from the model are intended for use in regional 
to national scale assessments of pesticide exposure risk and 
uncertainty. Model-simulated concentrations for individual 
sites may be highly uncertain, and should not be used for site-
specific evaluation of concentration extremes without careful 
consideration of model assumptions and uncertainty.

Model Methodology
The SEAWAVE–Q model is a regression model that was 

used in previous investigations for analyzing seasonality, flow-
related variability, and trends in pesticide concentrations. The 
SEAWAVE–QEX model is an extension to the SEAWAVE–Q 
model to include seasonal variance and serial correlation in 
the model errors. The following sections describe the underly-
ing principles and equations used for the SEAWAVE–Q and 
SEAWAVE–QEX models.
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SEAWAVE–Q

The SEAWAVE–Q model was introduced by Vecchia 
and others (2008) and has been used as the basis for a number 
of pesticide trend analysis studies (Sullivan and others, 2009; 
Vecchia and others, 2009; Ryberg and others, 2010; Johnson 
and others, 2011; Kalkhoff and others, 2012; Ryberg and oth-
ers, 2014). The model is expressed as

log{ ( )} ( ) ( )
( ) ( ) )

C t W t A t
A t t t t

MT

ST m

= + +
+ + − + (

β β β
β β ε

0 1 2

3 4

(1)

where
log	 is the base-10 logarithm;
C t( ) is concentration, in micrograms per liter;

  0 1 4, , ..., 	 are regression coefficients;
W t( ) is the seasonal wave described later in this 

section (dimensionless);
A tMT ( ) 	 is the mid-term flow anomaly described later 

in this section (dimensionless);
A tST ( ) 	 is the short-term flow anomaly described later 

in this section (dimensionless);
t is the time in decimal years;
tm is the midpoint of the time interval being 

analyzed; and
(t) 	 is the model error (dimensionless).

The seasonal wave (W) models seasonality in log-trans-
formed pesticide concentration resulting from site-specific 
timing and duration of the pesticide application season. It 
is computed using a conceptual storage model in which the 
pesticide is being applied in the upstream basin during one or 
more distinct application seasons (Vecchia and others, 2008). 
For the sake of model simplicity, the number of distinct appli-
cation seasons is assumed to be, at most, two seasons. This 
conceptual storage model is called a pulse input model. For 
this report, two classes of seasonal wave models were used, 
one with a single application season and the other with two 
distinct application seasons,

W t WaveCL SW m h s
m h s

( ) { , , )∈ =1 1( ; 
=1,2, ... ,6; =1, 2, 3, 4; =0,, .5, 1, ... ,11.5}

; 
=1,2,...,12
W t WaveCL SW m h s

m
( ) { ( , , )∈ =2 2

;; =1, 2; =0, .5, 1, ... ,11.5}h s

(2)

where 
	 WaveCL1	 is wave class 1,
	 SW1	 is a seasonal wave from class 1,

m	 denotes the pulse input model,
h is the decay rate (decimal month),
s	 is the phase shift (decimal month),

	 WaveCL2	 is wave class 2, and
	 SW2	 is a seasonal wave from class 2.

In equation 2, there are 576 seasonal waves in each class 
(24 choices for [m, h] times 24 choices for the phase shift), 
or a total of 1,152 seasonal waves. For notational conve-
nience, the decimal year is divided into 12 equal-length 
decimal months instead of calendar months. So, for example, 
a phase shift of 0.5 decimal month corresponds to 1/24 deci-
mal year, or approximately 15.5 (365/24) days. 

Examples of the seasonal waves for WaveCLS1 are 
shown in figure 1 for the six choices of pulse input model 
(m) consisting of single application seasons of durations
1, 2, 3, 4, 6, or 9 months, and for h=1 (left plots) and h=4
(right plots). In each case the phase shift was selected so
that the beginning of the application season corresponded
with the end of the first decimal month. Each wave ranges
from -0.5 to +0.5, increases during the application season,
and decreases exponentially (at a rate determined by h) after
the end of the application season. Increasing h has the effect
of lessening the rate of increase during the beginning of the
application season and lessening the rate of decrease after
the end of the application season. In previous investiga-
tions, h was referred to as the “half-life,” but is an empirical
coefficient and should not be confused with the chemical
half-life of the pesticide. The seasonal waves are analogous
to sine and cosine functions, which are often used to model
seasonality in hydrologic and water-quality time series
data. However, in the case of pesticides, the seasonal waves
generally work much better than sine and cosine func-
tions for representing seasonality. Examples of the seasonal
waves for WaveCL2 are shown in figure 2 for the 12 choices
of pulse input model and for h=1. Each pulse input model
consists of two application seasons of durations 2, 3, or
4 months separated by nonapplication seasons of durations
2, 3, or 4 months. For pulse input models m=1 through m=6
(left plots), the application rate is the same for both seasons,
and for models m=7 through m=12 (right plots), the applica-
tion rate is higher for the first season. The higher h-values
(3 and 4) are not included for WaveCL2 because in those
cases, the double peak becomes less distinct and the waves
are not easily distinguishable from waves with a single appli-
cation season.

The seasonal wave generally is the most important term 
in the SEAWAVE–Q model (eq. 1) because the seasonal wave 
usually explains the most variability in concentrations com-
pared to the other variables in the regression model. However, 
flow-related variability also is an important consideration. 
The two flow-anomaly terms in equation 1 are dimensionless 
variables calculated from a daily streamflow record assumed 
to be available from a streamflow-gaging station at or near the 
site being modeled. The mid-term flow anomaly (MTFA) is 
computed using log-transformed daily streamflow for 30 days 
up to and including the current time as follows:

A t Q t j MMT
j

( ) {log ( ) }= − −
=
∑1

30 0

29
 (3)
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Figure 1.  Examples of seasonal waves for wave class 1, consisting of pulse input models with one application season 
of various durations.
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Figure 2.  Examples of seasonal waves for wave class 2, consisting of pulse input models with two application seasons of 
various durations.
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where
A tMT ( )	 is the MTFA;

j	 is the time lag, in days;
log	 is the base-10 logarithm;

Q	 is daily mean streamflow, in cubic feet per 
second;

t is the integer day associated with the current 
decimal time; and

M 	 is the mean of log-transformed daily flow for 
the period being analyzed.

The short-term flow anomaly (STFA) is computed by subtract-
ing the mean and the MTFA from log-transformed flow,

A t Q t M A tST MT( ) log ( ) ( )= − − (4)

where
A tST ( ) 	 is the STFA.

An example of the flow anomalies for Sope Creek near Mari-
etta, Georgia (USGS station number 02335870; U.S. Geo-
logical Survey, 2017) is shown in figure 3. MTFA captures 

seasonal variability relative to the long-term mean (M), and 
STFA captures higher-frequency variability relative to the 
long-term mean plus MTFA. As is typically the case for small, 
flashy streams such as Sope Creek, STFA tends to be highly 
positively skewed compared to MTFA. Including both anoma-
lies in the model generally explains more variability in pesti-
cide concentrations than including only log-transformed flow. 
Often the coefficient for MTFA will be negative, indicating 
that dilution is the primary process at the seasonal scale, and 
the coefficient for STFA will be positive, indicating that short-
term increases in the hydrograph (such as from a rainfall-run-
off event) cause concentrations to increase. If daily streamflow 
is not available, surrogate variables computed using estimated 
precipitation from the watershed may be considered in place 
of streamflow (Johnson and others, 2011). The fifth term on 
the right-hand side of the SEAWAVE–Q model (eq. 1) is a 
linear trend term for modeling gradual increases or decreases 
in concentration on a longer (interannual) time scale.
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Figure 3.  Daily streamflow for Sope Creek near Marietta, Georgia (U.S. Geological Survey station number 02335870) for 2006–09, 
showing mid-term flow anomaly and short-term flow anomaly.
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SEAWAVE–QEX

Analyzing long-term trends was the primary objective in 
previous investigations using the SEAWAVE–Q model. For 
analyzing trends with sparse monitoring data, the error term in 
equation 1 generally can be assumed to consist of independent 
normal random variables with constant variance. However, for 
the objective of this study, namely simulating daily concentra-
tions, the properties of the error term needed to be more care-
fully considered. In particular, nonconstant (seasonal) variance 
as well as serial correlation between errors for closely spaced 
observations are important considerations for simulating real-
istic daily concentrations.

The SEAWAVE–QEX model consists of the SEAWAVE–
Q model (eq. 1) modified to include seasonal variance and 
serial correlation in the model errors,

log{ ( )} ( ) ( )
( ) ( ) ( ) )

C t W t A t
A t t t SSD t Z t

MT

ST m

= + +
+ + − + (

  
 

0 1 2

3 4

(5)

SSD t W t( ) [ ( )] /= +σ α1 1 2 (6)

where
log	 is the base-10 logarithm;
C t( ) is concentration, in micrograms per liter;

  0 1 4, , ..., are regression coefficients;
W t( ) is a seasonal wave (eq. 2);
A tMT ( ) is the mid-term flow anomaly (eq. 3);
A tST ( ) 	 is the short-term flow anomaly (eq. 4);

t is the time, in decimal years;
tm is the midpoint of the time interval being 

analyzed;
	 SSD(t)	 is the seasonal standard deviation 

(dimensionless); 
σ>0	 is a seasonal standard deviation parameter;

0≤α<2	 is a seasonal standard deviation parameter; 
and

	 Z(t)	 is the normalized model error.
The normalized model errors are assumed to have a normal 
distribution with mean zero, variance one, and serial correla-
tion function

Corr k EV Z t Z t k e k CTS( ) [ ( ) ( )] | |/= + = −
  (7)

where
 Corr(k)	 is the serial correlation function;

k	 is the time lag, in days, between observations;
	 EV [.]	 denotes expected value;

Z	 is the normalized model error (eq. 5);
t is the integer day associated with decimal 

time t;
e	 is Euler’s constant; and

	 CTS>0	 is the correlation time scale (days).

The correlation function (eq. 7) is an exponential correlation 
function that is parameterized in terms of the correlation time 
scale (CTS), which is the time lag for which the correlation 
equals e–1, or approximately 0.37. The correlation between 
observations separated by 1 day, or lag-1 correlation, equals 
e–1/CTS. For example, a 15-day CTS is equivalent to a lag-1 cor-
relation of e− =1 15 0 936/ . . The rationale for using an exponen-
tial correlation function is discussed later in the “Examples of 
SEAWAVE–QEX Model Results” section.

The methodology for estimating the SEAWAVE–QEX 
model parameters, generating conditional simulations of daily 
pesticide concentration, and using the conditional simulations 
for estimating pesticide concentration extremes is summarized 
in figure 4. The first step in analyzing a pesticide dataset for a 
particular site is to prepare the data for analysis and determine 
if the data are sufficient for applying the SEAWAVE–QEX 
model (fig. 4). This step will be explained in detail in the 
“Data Preparation and Screening” section of this report. The 
remaining steps of the methodology are described in nontech-
nical terms in the remainder of this section, and examples are 
provided in the “Examples of SEAWAVE–QX Model Results” 
section to illustrate model output and interpretation. Details of 
the methodology and self-contained R code for completing the 
computations are described in the appendix.

Regression Analysis and Selection of the Best-
Fit Seasonal Wave

The second step of the analysis is to estimate the regres-
sion coefficients (β0, β1, …, β4 in equation 5) and select the 
best-fit seasonal wave (fig. 4). For this step, the seasonal 	
standard deviation (SSD) is assumed to be constant (α=0 in 
equation 6) and correlation is ignored (CTS=0 in equation 7, 
equivalent to uncorrelated observations). Censored regression 
(survreg function in the survival library in R) is used to esti-
mate the regression coefficients for each of the 1,152 choices 
for the seasonal wave (eq. 2). The seasonal wave with the 
largest value of the likelihood function is selected as the 
best-fit seasonal wave. Fitted values for log-transformed con-
centration are computed from equation 5 with the estimated 
regression coefficients in place of the true coefficients and the 
normalized errors equal to zero as follows:

FV t b bW t b A t b A t b t ti i i i iMT ST m( ) *( ) ( ) ( ) ( )= + + + + −0 1 2 3 4 	 (8)

where
	 FV(ti )	 is the fitted value of log-transformed 

concentration for the ith observation,
ti	 is the observation time for the ith observation,

	b0, b1, …, b4	 are the estimated regression coefficients, and
	 W*(ti)	 is the best-fit seasonal wave.
The fitted values represent variability in log-transformed 
concentration that is explained by the seasonal wave, the 
flow anomalies, and the trend. The regression residuals are 
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Data preparation and 
screening 

Regression analysis and
selection of the best-fit 

seasonal wave  

Estimation of seasonal 
standard deviation and 

serial correlation 
parameters   

Generation of conditional 
traces of daily 
concentration  

• Download daily discharge data and compute
flow anomalies

• Merge concentration data and flow anomalies
• Determine appropriate period of record
• Determine if data meet minimum screening

requirements

• Generate values for censored normalized residuals
• Generate normalized residuals for days with no

 observations
• Multiply normalized residuals by seasonal standard

 deviation and add fitted values
• Reverse log transformation
• Repeat to obtain specified number of equally likely

 conditional traces

• Compute simulated values of concentration extremes
 (for example, annual maximum daily concentrations 
 or bias factors) from the simulated traces of daily 
concentration

• Use simulated values to obtain point estimates (mean
 of simulated values) or confidence intervals (quantiles of
 simulated values)

• Using regression residuals, compute 
maximum pseudo-likelihood estimates 
 of seasonal standard deviation parameters 
 (σ and α) and correlation time scale (CTS)

• Divide regression residuals by estimated 
 seasonal standard deviation to obtain 
 normalized residuals (includes censored 
 values)

Analysis step Description R user library (UL) or
SEAWAVE–QEX function 

Estimation of pesticide 
concentration extremes 

using generated 
conditional traces    

waterData (UL)
swaveqexMerge

survival (UL)
swaveqexFit

tmvtnorm (UL)
swaveqexFit
swaveqexPESTpdo
estsigxx
Evalmodlikxx
Compwaveconvxx
evalmodlikxx

tmvtnorm (UL)
swaveqexCSIM
impcenvals
condsim

• Choice of 1,152 seasonal waves
• Best-fit seasonal wave (largest

 likelihood function) selected

• Ignore serial correlation and assume constant 
 seasonal standard deviation (α=0)

• Estimate regression coefficients for seasonal wave,
 flow anomalies, and trend

• Compute fitted values from regression equation
• Compute regression residuals (includes censored

 values)

Figure 4.  SEAWAVE–QEX modeling methodology.
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obtained by subtracting the fitted values from the observations 
as follows:

RR t

C t FV t
i

i

i i

( )

log{ ( )} ( ),

=

−  
if the th observation is not cennsored

 
if the th observation is censored

log{ } ( ),L FV t
i

i i−





















	

(9)

where
	 RR(ti)	 is the regression residual for the ith 

observation, and
	 Li	 is the censoring limit for the ith observation if 

the observation is censored (C(ti)<Li).
Note that regression residuals for censored observations 
also are censored values. The regression residuals represent 
variability in log-transformed concentration remaining after 
removing variability explained by the seasonal wave, the flow 
anomalies, and the trend. For isolating the seasonal variability, 
it is useful to compute adjusted concentrations by removing 
the flow-related variability and the trend as follows:

AC t

C t b A t b A t b t t
i

i

i i i iMT ST m

( )

log{ ( )} ( ) ( ) ( ),

=

− − − −2 3 4  
if th obsservation is not censored;

log{ } ( ) ( ) (L b A t b A t bi i iMT ST− − −2 3 4 tt t
i

i m−





















),  
if th observation is censored 	

(10)

where
	 AC(ti)	 is the adjusted concentration for the ith 

observation.

Estimation of Seasonal Standard Deviation and 
Serial Correlation Parameters

The third step in the analysis is to estimate the SSD 
parameters (σ and α) in equation 6 and the correlation time 
scale (CTS) in equation 7 (fig. 4). These parameters are 
estimated using the regression residuals (eq. 9) along with an 
estimation method known as maximum pseudo-likelihood esti-
mation (see appendix). The normalized residuals are computed 
by dividing the regression residuals by the estimated SSD as 
follows:

NR t RR t SSD SSD W ti i i( ) ( ) / *; * *[ * *( )] /= = + σ α1 1 2

	 (11)

where
	 NR(ti)	 is the normalized residual for the ith 

observation,
	 SSD*	 is the estimated SSD, and

σ*, α*	 are the estimated values of the SSD 
parameters σ and α.

The normalized residuals, which are estimates of the normal-
ized model errors (Z in eq. 5), are useful for model diagnostic 
purposes.

Generation of Conditional Traces of Daily 
Concentration

The fourth step in the analysis is to generate conditional 
traces of daily concentration given the parameter estimates, 
fitted values, and normalized residuals from the previous steps 
(fig. 4). First, a conditional trace of the normalized residuals is 
generated as described in the appendix. The generated values 
of the normalized residuals for days with uncensored observa-
tions are equal to the observed values. However, normalized 
residuals for days with censored observations and normalized 
residuals for days with no observations differ for each trace 
and are randomly generated in such a way that the statistical 
time series characteristics of the data are maintained. After 
generating a conditional trace of the normalized residuals, the 
normalized residuals are multiplied by the estimated SSD and 
added to the fitted values from the regression model to obtain 
generated values for log-transformed concentration. Note that 
the fitted values from the regression model can be computed 
for each day of record provided there are no missing values for 
the flow anomalies. If some days are missing flow anomalies, 
the generated concentrations for those days also will be miss-
ing values. After generating a conditional trace for log-trans-
formed concentration, the log transformation is reversed to 
obtain a conditional trace of untransformed concentration. The 
generated daily concentrations from the conditional trace are 
equal to the observed concentrations for days with uncensored 
observations; are less than the censoring limit for days with 
censored observations; and for days with no observations, the 
generated concentrations should be indistinguishable (statisti-
cally) from values that could have occurred if samples had 
been collected daily. The trace is referred to as “conditional” 
trace because it is conditioned on the observed concentrations. 
The process for generating a conditional trace is repeated to 
obtain a specified number (N) of randomly generated condi-
tional traces, where guidelines for specifying N are discussed 
in the next step.

Estimation of Concentration Extremes using 
Generated Conditional Traces

The fifth step in the analysis is to use the conditional 
traces of daily concentration from the previous step to estimate 
pesticide concentration extremes (fig. 4). This step depends 
on the particular objectives of the analysis. For example, one 
objective might be to obtain an estimated value or confi-
dence interval for the annual maximum daily concentra-
tion (AMDC). For this application, it may be appropriate to 
generate N=100 conditional traces, where each trace consists 
of n years of generated daily values and n is the record length 
(RL). For each year of record, there are N=100 simulated 
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values for the AMDC. The mean of the 100 simulated val-
ues is the estimated value for the AMDC and the 10th and 
90th percentiles of the simulated values provide an approxi-
mate 80 percent confidence interval for the AMDC. If a higher 
confidence level is required, generating more than 100 traces 
may be necessary. For example, to obtain a 95 percent con-
fidence interval, N=250 traces may be required. Generally, 
to obtain a confidence level of P percent, N(1–P/100) should 
be at least 20 to obtain a reasonable confidence interval. The 
same technique described for AMDC can be used to estimate 
other exposure metrics, such as the annual maximum 7-day 
or 30-day moving average concentration. Another objective 
may be to obtain estimates of bias factors (U.S. Environmental 
Protection Agency, 2012). For estimating bias factors, N=50 
conditional traces may be sufficient provided a constant bias 
factor for a particular site is used, rather than bias factors 
that vary by year. In the former case there would be 50 times 
n generated values of the bias factors (for all n simulation 
years combined), or at least 150 values if the RL (n) is at least 
3 years.

Examples of SEAWAVE–QEX Model 
Results

Several examples are presented in this section to illustrate 
the SEAWAVE–QEX modeling methodology and to help rein-
force the definitions, terminology, and interpretation of model 
output. Details of the data sources, sample collection and 
preservation methods, laboratory analytical methods, and other 
data considerations are described later in the “SEAWAVE–
QEX Model Applications” section and are not important for 
purposes of this section.

Atrazine

The first example is for atrazine concentration for Little 
Buck Creek near Indianapolis, Indiana (USGS station num-
ber 03353637) for 1993–2002 (fig. 5). This site has a drain-
age area of 44 square kilometers (km2) and mixed urban and 
agricultural (mostly corn and soybeans) land use, and atrazine 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.001

0.01

0.1

1

10

100

EXPLANATION

Conditional trace

Estimated annual maximum

Observed concentration●

Year

Co
nc

en
tra

tio
n,

 in
 m

ic
ro

gr
am

s 
pe

r l
ite

r

Figure 5.  Observed atrazine concentrations, simulated conditional trace of daily concentrations, and estimated annual maximum daily 
concentrations for Little Buck Creek near Indianapolis, Indiana (U.S. Geological Survey station number 03353637) for 1993–2002.
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is an agricultural herbicide used mostly on corn (Ryberg and 
others, 2010). The red points in figure 5 indicate observed con-
centrations. There are no censored values for this dataset. The 
dataset has 148 observations, or an average annual sampling fre-
quency (ASF) of about 15 observations per year. However, ASF 
was variable, ranging from 28 samples in 1993 to 8 samples in 
1999. The grey line in figure 5 shows a single conditional trace 
(out of 100) generated from the SEAWAVE–QEX model, which 
is equal to the observed atrazine concentration values during 
observation days and hypothetical randomly generated values 
for the remaining days. The horizontal blue lines show the esti-
mated annual maximum concentration for each year, which is 
the average of the annual maxima for all 100 conditional traces.

The best-fit seasonal wave (W*), estimated linear regres-
sion coefficients (b0, b1, …, b4), estimated SSD parameters (σ* 
and α*), and estimated CTS (CTS*) for this dataset were as 
follows:

W*=SW1(m=3, h=2, s=6);
b0=-0.88, b1=1.35, b2=-0.30, b3=0.16, b4=-0.06; and
σ*=0.379, α*=1.11, CTS*=15.1.

The regression coefficients for the seasonal wave (1.35), 
MTFA (-0.30), STFA (0.16), and trend (-0.06) were significant 
(p-values less than 0.05; note that the p-values are approximate 
because they are based on assumption of constant variance and 
no serial correlation). The downward trend probably resulted 
from increasing urban land use (and decreasing corn acre-
age) during the analysis period (Ryberg and others, 2010). The 
best-fit seasonal wave (b0+b1W*) is shown in figure 6. For this 
example, W* was from wave class 1 and the pulse input model 
consisted of a 3-month application season (m=3), decay rate (h) 
of 2 months, and phase shift (s) of 6 months. The application 
season extends from early April through early July. The points 
in figure 6 show adjusted concentrations (eq. 10) to highlight 
the seasonal variability along with the fitted seasonal wave. 
Observations are shown for all years combined. Also shown are 
lines at plus and minus 2 times the estimated SSD (b0+b1W*+/-2 
σ* (1+α*W*)1/2). For these data, α*=1.11, thus the seasonal stan-
dard deviation was considerably higher during the application 
season than during other times of the year.

The normalized residuals (eq. 11) for this example are 
shown in figure 7. No obvious problems with lack-of-fit (non-
constant mean or variance, skewness, outliers, and so on) are 
indicated, with the possible exception of three residuals equal to 
3, which may be outliers. In the estimation algorithms described 
in the appendix, to reduce the effects of potential outliers on 
the parameter estimates, the normalized residuals were trun-
cated at plus or minus 3. In this case, three of the residuals 
were truncated at plus 3. Further examination of the simula-
tion results indicated that only one of the truncated residuals, 
during June 1997, may have adversely affected the estimated 
annual maximum concentration for that year. Further examina-
tion of the data for that observation may be warranted. Note 
that serial correlation may produce apparent clustering in the 
normalized residuals, and such clustering should not adversely 
affect the results. In this case, clustering is apparent during May 
through August, during which concentrations (and sampling 

frequencies) were highest. The fitted exponential correlation 
function (eq. 7) for this example is shown in figure 8. The esti-
mated CTS for this example was about 15 days (CTS*=15.1). 
The points in figure 8 show empirical estimates of the cor-
relation function at selected lags and were computed directly 
from the normalized residuals using methods for estimating the 
empirical variogram (Cressie, 1991, p. 74) and converting the 
empirical variogram to the empirical correlogram. The exponen-
tial correlation function provided a reasonable approximation 
to the empirical correlogram for this example. The exponential 
correlation function has been found generally to be a reason-
able approximation to the empirical correlogram for datasets 
(such as this one) that have sampling frequencies sufficient for 
computing the empirical correlogram for short time lags. The 
exponential correlation function has two features that have 
considerable influence on the conditional simulations—the 
assumption that the correlation function approaches one as the 
time lag approaches zero and the assumption of an exponential 
decay rate as the time lag increases. Measurement error (differ-
ences between actual and measured concentrations because of 
factors such as sample collection and preservation techniques 
or laboratory analytical techniques) could cause a discontinuity 
in the correlation function at lag zero. For USGS pesticide data 
analyzed for this report, measurement error generally can be 
considered to be negligible in relation to natural variability.

Carbaryl

The next example is for carbaryl concentration for Kisco 
River below Mount Kisco, New York (USGS station num-
ber 01374987) for 2000–2008 (fig. 9). This site has a drainage 
area of 49 km2 and mixed urban and agricultural land use, 
and carbaryl is an insecticide with many urban and agricul-
tural uses (Ryberg and others, 2010). The dataset includes 
186 observations with ASF ranging from 28 in 2002 to 15 in 
2008. This example is typical of the high censoring rate (CR) 
for many pesticides. About 71 percent (134) of the observa-
tions were censored. The censored values in figure 9 and in 
subsequent figures are shown as open circles; and, for plotting 
purposes, the values are equal to the randomly generated value 
from the conditional trace. The best-fit seasonal wave model, 
estimated linear regression coefficients, estimated SSD param-
eters, and estimated CTS for this site were as follows:

W*=SW1(m=4, h=3, s=6.5);
b0=-2.42, b1=0.906, b2=0.17, b3=0.75, b4=0.04; and
σ*=0.542, α*=0, CTS*=4.7.

The regression coefficients for the seasonal wave (0.906) and 
STFA (0.75) were significant. The best-fit seasonal wave for 
this example (fig. 10) was from wave class 1 and consisted 
of a 4-month application season from late March through late 
July (m=4 and s=6.5) and a decay rate of 3 months (h=3). The 
estimated SSD was constant (α* = 0) and the estimated CTS 
was about 5 days (CTS*=4.7). Note that a lower bound of zero 
was assumed for the estimated value of α (α*≥0) and for this 
example the estimate was equal to the lower bound.
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Figure 6.  Adjusted (minus trend and flow-related variability) atrazine concentrations, fitted seasonal wave, and fitted seasonal 
standard deviation for Little Buck Creek near Indianapolis, Indiana (U.S. Geological Survey station number 03353637) for 1993–2002.
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Figure 7.  Normalized residuals from SEAWAVE–QEX model for atrazine concentration for Little Buck Creek near Indianapolis, Indiana 
(U.S. Geological Survey station number 03353637) for 1993–2002.
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Figure 9.  Observed carbaryl concentrations, simulated conditional trace of daily concentrations, and estimated annual maximum daily 
concentrations for Kisco River near Mount Kisco, New York (U.S. Geological Survey station number 01374987) for 2000–2008.
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Figure 10.  Adjusted (minus trend and flow-related variability) carbaryl concentrations, fitted seasonal wave, and fitted seasonal 
standard deviation for Kisco River near Mount Kisco, New York (U.S. Geological Survey station number 01374987) for 2000–2008.

Chlorpyrifos

The next example is for chlorpyrifos concentration for 
Sope Creek near Marietta, Georgia (USGS station num-
ber 02335870), for 1993–2002 (fig. 11). This site has a 
drainage area of about 80 km2 and urban land use of about 
70 percent (Ryberg and others, 2010). During 1993–2002, 
chlorpyrifos was a widely used insecticide in a variety of 
urban and agricultural settings, but residential use was phased 
out starting in about 1997 and essentially eliminated by 2002 
(Ryberg and others, 2010). The dataset includes 118 observa-
tions with ASF of 32 in 1993, 23 in 2002, and from 0 to 12 
in the other years. About 70 percent (83) of the values were 
censored. The best-fit wave model, estimated linear regression 
coefficients, estimated SSD parameters, and estimated CTS for 
this example were as follows:

W*=SW2(m=4, h=2, s=5.5);
b0 = -2.78, b1 = 0.80, b2 = 0.92, b3 = 0.61, b4 = -0.06; and
σ* = 0.374, α* = 0, CTS* = 3.5.

The regression coefficients for the seasonal wave (0.80), 
MTFA (0.92), STFA (0.61), and trend (-0.06) all were signifi-
cant. The downtrend probably resulted from the aforemen-
tioned phasing out of residential uses. The best-fit seasonal 
wave for this example (fig. 12) was from wave class 2 and 
consisted of two 3-month application seasons, from mid-Octo-
ber through mid-January and from mid-March through mid-
June (m=4 and s=5.5), and a decay rate of 2 months (h=2). 
The estimated SSD was constant (α*=0) and the estimated 

CTS was 3.5 days. Note that a lower bound for the estimated 
CTS of 3.5 days (CTS*≥3.5) was assumed because sampling 
frequencies are rarely sufficient to discern correlation structure 
at such small time lags. For this example, CTS* was equal to 
the lower bound.

Fipronil

The final example is for fipronil concentration for Sope 
Creek near Marietta, Georgia (U.S. Geological Survey sta-
tion number 02335870) for 2003–12 (fig. 13). Fipronil is an 
insecticide that was first registered for use in 1996 and quickly 
gained widespread use by 2002 as a replacement for other 
insecticides, such as diazinon and chlorpyrifos, that were 
being phased out for residential use (Ryberg and others, 2010). 
The dataset includes 127 observations with ASF ranging from 
22 in 2008 to 6 in several other years. The dataset includes 
68 censored observations (about 54 percent). The best-fit 
seasonal wave model, estimated linear regression coefficients, 
estimated SSD parameters, and estimated CTS for this site 
were as follows:

W*=SW2(m=5, h=1, s=7);
b0=-2.15, b1=0.17, b2=0.14, b3=0.29, b4=0.01; and
σ*=0.201, α*=0.218, CTS*=5.9.

The regression coefficients for the seasonal wave (0.17), 
MTFA (0.14), and STFA (0.29) all were significant. The best-
fit seasonal wave (fig. 14) was from wave class 2 and consisted 
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Figure 11.  Observed chlorpyrifos concentrations, simulated conditional trace of daily concentrations, and estimated annual maximum 
daily concentrations for Sope Creek near Marietta, Georgia (U.S. Geological Survey station number 02335870) for 1993–2002.
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Figure 12.  Adjusted (minus trend and flow-related variability) chlorpyrifos concentrations, fitted seasonal wave, and fitted seasonal 
standard deviation for Sope Creek near Marietta, Georgia (U.S. Geological Survey station number 02335870) for 1993–2002.
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Figure 13.  Observed fipronil concentrations, simulated conditional trace of daily concentrations, and estimated annual maximum daily 
concentrations for Sope Creek near Marietta, Georgia (U.S. Geological Survey station number 02335870) for 2003–12.
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Figure 14.  Adjusted (minus trend and flow-related variability) fipronil concentrations, fitted seasonal wave, and fitted seasonal 
standard deviation for Sope Creek near Marietta, Georgia (U.S. Geological Survey station number 02335870) for 2003–12.
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of two 3-month application seasons, from early November 
through early February and from early May through early 
August (m=5 and s=7), and a decay rate of 1 month (h=1). The 
seasonal wave for fipronil was similar to the seasonal wave for 
chlorpyrifos (fig. 12), but with somewhat different timing of 
the application seasons and faster decay rate. The SSD had a 
small degree of seasonality (α*=0.24), and the estimated CTS 
was about 6 days (CTS*=5.9).

Model Testing
Simulation experiments were used to test the 

SEAWAVE–QEX model and determine limits for the RL, 
ASF, and CR for applying the model. The objective of the 
SEAWAVE–QEX model is to provide a robust tool that can be 
used to generate conditional simulations of daily concentration 
and estimate associated statistics, such as the AMDC, for as 
many pesticide monitoring sites as possible and for pesticides 
(such as carbaryl, chlorpyrifos, and fipronil) that may have 
short records, sparse sampling frequencies, or a high percent-
age of censored data. Important considerations for verifying 
any statistical model include (1) verification of model assump-
tions and (2) verification of model results. The first consid-
eration will be discussed later in the “Model Limitations” 
section of this report. The simulation experiments described 
in this section were designed with the second consideration in 
mind, namely, given that the model assumptions are satisfied, 
does the model provide reasonable estimates of concentration 
extremes? How do properties of the estimates (for example, 
bias and uncertainty) depend on RL, ASF, and CR?

For the simulation experiments, the atrazine, carba-
ryl, and chlorpyrifos examples described in the “Examples 
of SEAWAVE–QEX Model Results” section were used to 
randomly generate time series of “known” daily pesticide 
concentrations assuming the true model was given by the 
fitted model for the respective examples, except for CTS, 
which was varied. The “known” daily pesticide concentrations 
(which have no censored values or days with missing observa-
tions) are referred to as model-generated traces to distinguish 
them from the conditional traces described previously. For 
each model-generated trace, the RL, ASF, CTS, and CR were 
varied to represent a reasonable range of values that may be 
expected. In particular, all combinations of two RLs (RL=3 
and 6 years), three ASFs (ASF=12, 24, and 48 samples per 
year), three CTSs (CTS=7, 15, and 30 days), and two CRs 
(CR=30 and 70 percent) were considered. For each pesticide 
and each combination of RL, ASF, CTS, and CR, 100 model-
generated traces were generated from the SEAWAVE–QEX 
model. The flow anomalies for each model-generated trace 
were computed using consecutive years of daily stream-
flow from the period of record used for the examples, where 
the beginning year was selected at random for each trace. 
For example, for the atrazine model (where the period of 
record used for the example was 1993–2002) and RL=3, the 

starting year was selected at random from eight possibilities 
(1993–2000). The lowest ASF (ASF=12) represents approxi-
mate monthly sampling. For that case, the data used for fitting 
the model were assumed to consist of 12 observations per 
year, where the first observation was selected at random from 
days 1 to 30 and the remaining 11 observations were selected 
every 30 days thereafter. For ASF=24, representing approxi-
mate bimonthly sampling, the first observation was selected 
at random from days 1 to 15 and the remaining 23 observa-
tions were selected every 15 days thereafter. For ASF=48, 
representing approximate weekly sampling, 24 additional 
observations were added to the ASF=24 design each year 
(about midway between adjacent observations for the ASF=24 
design, resulting in alternating 7- or 8-day spacing between 
observations). After selecting the observations used for fitting 
the model, the known concentrations for the selected observa-
tions were artificially censored at either the lower (CR=30) or 
higher (CR=70) level. For example, with RL=3, ASF=12, and 
CR=70, there were 36 observations for all 3 years, 11 of which 
(about 30 percent) were uncensored and 25 of which (about 
70 percent) were censored.

For each model-generated trace, the SEAWAVE–QEX 
model methodology described previously (fig. 4 and associ-
ated discussion) was applied to fit the model, generate N=100 
conditional traces, and compute estimates of the AMDC for 
each simulation year. The following statistics were used to 
evaluate the estimated AMDC:

• Bias—the geometric mean of the estimated AMDCs
minus the geometric mean of the known AMDCs, as a
percent of the geometric mean of the known AMDCs.

• 80-percent error bounds—(P10, P90), where P10 and
P90 are the 10th and 90th percentiles of the estima-
tion errors. The estimation errors are the differences
between the estimated and known values of AMDC,
expressed as a percent of the known value. For
example, if the 80-percent error bounds are (-10, 50),
most (80 percent) of the estimated AMDCs are within
-10 and +50 percent of the known value.

Bias was categorized as low (between -10 and 25 percent), 
moderate (between 25 and 50 percent), or high (greater than 
50 percent). No cases had substantial downward (negative) 
bias (less than -10 percent)—in most cases there was upward 
(positive) bias. Thus, the estimated values of AMDC generally, 
on average, were higher than the known values.

Results of the simulation experiments for all three 
models (atrazine, carbaryl, and chlorpyrifos) indicated that, as 
expected, both bias and uncertainty were lower for RL=6 years 
compared to RL=3 years. Therefore, only the results for 
RL=3 years, given in table 1, are discussed.

For the lower CR (CR=30), bias was low for all three 
models and for all combinations of ASF and CTS (table 1). 
However, estimation errors (uncertainty) depended on ASF 
and CTS. For CR=30 and ASF=12 (30 days between observa-
tions), estimation uncertainty was high relative to ASF=24 
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Table 1.  SEAWAVE–QEX model testing results based on simulated data from the atrazine, carbaryl, and chlorpyrifos models with 
record length 3 years.

Censoring 
rate,  

in percent

Annual 
sampling 

frequency, 
in samples 

per year

Correlation 
time scale, 

in days

Atrazine model Carbaryl model Chlorpyrifos model

1Bias 2P10 2P90 1Bias 2P10 2P90 1Bias 2P10 2P90

30 12 7 -7 -61 112 19 -66 264 16 -49 141
30 12 15 10 -48 129 13 -49 157 24 -36 142
30 12 30 19 -32 107 22 -52 192 16 -31 90
30 24 7 -5 -50 86 23 -36 137 19 -30 84
30 24 15 5 -33 73 12 -35 92 6 -30 54
30 24 30 9 -27 59 16 -31 86 10 -21 59
30 48 7 3 -33 53 15 -31 83 10 -26 57
30 48 15 2 -26 39 2 -35 53 2 -21 31
30 48 30 6 -16 36 2 -23 36 8 -15 40
70 12 7 15 -56 227 21 -66 272 24 -47 140
70 12 15 33 -54 237 21 -60 224 42 -41 210
70 12 30 48 -33 266 46 -43 269 40 -42 190
70 24 7 32 -35 166 48 -33 268 19 -36 136
70 24 15 31 -21 129 20 -41 151 7 -31 70
70 24 30 18 -20 78 6 -41 97 3 -37 52
70 48 7 31 -13 104 45 -12 153 13 -20 70
70 48 15 18 -13 71 20 -24 88 9 -22 54
70 48 30 16 -9 45 12 -23 67 2 -23 36

1Difference between geometric means of estimated and known annual maximum daily concentrations, as a percent of the known value. 
2Tenth (P10) and 90th (P90) percentiles of the estimation errors, where the estimation error is the difference between the estimated and known annual 

maximum daily concentration, as a percent of the known value.

(15 days between observations) or 48 (approximately 7 days 
between observations). For ASF=12, spacing between samples 
was equal to (for CTS=30), twice (for CTS=15), or about 
4 times (for CTS=7) the CTS. Thus, correlation between 
neighboring observations was low and the conditional simula-
tions of daily concentrations for days between neighbor-
ing observations (which are used to estimate AMDC) were 
uncertain. Uncertainty generally decreased as spacing between 
observations became small in relation to CTS. For example, 
for CR=30, CTS=15, and ASF=48 (spacing between samples 
equal to about one-half of the CTS), most of the estimated 
values for AMDC for carbaryl were between -35 and 53 per-
cent of the known values compared to -49 and 157 percent 
for CR=30, CTS=15, and ASF=12 (spacing between samples 
equal to twice the CTS). In addition to higher spacing between 
observations (relative to CTS), higher SSD also causes higher 
estimation uncertainty. The maximum value of the SSD 
(σ[1+0.5α]1/2, which occurs when the seasonal wave equals its 
maximum value of 0.5) was about 0.49 for atrazine, 0.54 for 
carbaryl, and 0.37 for chlorpyrifos. Thus, estimation uncer-
tainty generally was highest for the carbaryl model and lowest 
for the chlorpyrifos model. For example, for CR=30, ASF=24, 

and CTS=15, most of the estimated values of AMDC for the 
carbaryl model were between -35 and 92 percent of the known 
values compared to -30 and 54 percent for the chlorpyrifos 
model. The dependence of estimation uncertainty on the SSD 
was diminished as the observations became closely spaced 
with respect to CTS. For example, for CR=30, ASF=48, and 
CTS=30, the 80-percent error bounds for the carbaryl model 
(-23 to 36 percent) were similar to the error bounds for the 
chlorpyrifos model (-15 to 40 percent) and the atrazine model 
(-16 to 36 percent).

As expected, increasing the CR increased bias of the 
estimated AMDCs (table 1). For CR=70, the estimated AMDC 
had moderate upward bias (between 25 and 50 percent) for 
many cases. However, none of the cases had high upward bias 
(greater than 50 percent). The cases with moderate upward 
bias tended to occur when the spacing between observations 
was high in relation to CTS. Increasing the CR also increased 
estimation uncertainty, especially when the spacing between 
observations was high in relation to CTS. For example, 
for CR=70, ASF=24, and CTS=15, most of the estimated 
values for AMDC for the carbaryl model were between -41 
and 151 percent of the known values compared to -35 and 
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92 percent for CR=30, ASF=24, and CTS=15. The effect of 
high censoring rates on estimation uncertainty diminished as 
the spacing between observations became small in relation 
to CTS. For example, for CR=70, ASF=48, and CTS=15, 
most of the estimated values for AMDC for the carbaryl 
model were between -24 and 88 percent of the known values 
compared to -35 and 53 percent for CR=30, ASF=48, and 
CTS=15.

Overall, based on the model testing, if the model 
assumptions are satisfied, the SEAWAVE–QEX model 
should produce reasonable estimates of AMDCs with as few 
as 3 years of data, ASF as low as 12 samples per year, and 
CRs as high as 70 percent. The estimates should be rela-
tively unbiased (bias between -10 and 25 percent) for low 
CRs (less than 30 percent), but can have moderate upward 
bias (between about 25 and 50 percent) for higher CRs. The 
estimates can have high uncertainty, especially when the CR 
is high and the spacing between observations is large in rela-
tion to the CTS. However, provided estimation uncertainty is 
quantified (for example, using confidence intervals instead of 
point estimates), the estimates should be useful for evaluat-
ing pesticide exposure risk and uncertainty.

Model Assumptions and Limitations
The simulation experiments described in the “Model 

Testing” section provide evidence that the SEAWAVE–QEX 
modeling methodology can be a useful and robust tool for 
estimating concentration extremes based on sparse monitoring 
data. For the models tested, the estimated AMDCs produced 
by the model were relatively unbiased and had reasonable 
uncertainty. Note, however, that the model testing assumed 
that in each case, the model assumptions were satisfied 
because the “known” concentrations were generated from 
the model. In the examples used for selecting the models that 
were tested, the period of record was long enough and the 
sampling frequent enough to provide reasonable assurance that 
the model assumptions were met. When applying the model in 
practice, the normalized residuals (eq. 11) should be examined 
in an effort to verify the following assumptions:

• The normalized residuals are approximately normally
distributed with mean equal to zero and variance equal
to one. Plots of the normalized residuals with time of
year (for example, fig. 7) should be examined to iden-
tify any obvious seasonality remaining in the mean or
standard deviation, as well as any obvious nonnormal-
ity (skewness, outliers, and so forth).

• The normalized residuals have exponential correlation
function. The empirical correlogram (for example,
fig. 8) should be examined for obvious discontinuity
at the origin or nonexponential decay as the time lag
increases.

The shorter the sampling record, the sparser the sampling 
frequency, or the more highly censored the data, the more 
difficult the assumptions are to verify; therefore, more caution 
should be taken when using the model results. Model verifica-
tion can be especially difficult when a large percentage of the 
data (more than 50 percent) are censored, in which case a large 
percentage of the normalized residuals are generated values 
from a conditional trace and not observed residuals. The gen-
erated residuals, by definition, satisfy the model assumptions.

In addition to verifying model assumptions, the following 
general limitations of the methodology should be noted:

• Alternative, more data intensive, methods may be
available for estimating concentration extremes for cer-
tain pesticides, such as atrazine, that have been exten-
sively monitored through various sampling programs
(Mosquin and others, 2012). The SEAWAVE–QEX
model is proposed as an alternative—not a replace-
ment—for other methods, with the primary goal of
increasing the geographic extent, hydrologic condi-
tions, and pesticide use characteristics of sites that can
be analyzed. Comparing SEAWAVE–QEX to other
approaches is beyond the scope of this report.

• Measurement error is assumed to be negligible. The
SEAWAVE–QEX model was designed to handle
sparse sampling and censoring, but the model was not
designed to handle measurement error (differences
between the actual concentration and the observed
concentration because of sample collection and pres-
ervation techniques or laboratory analytical methods).
For the model, measurement error is assumed to be
small in relation to the standard deviation of the actual
concentrations (σ in eq. 6) and, for practical purposes,
can be ignored. The conditional traces of daily con-
centrations from the model are “exact interpolators” in
that the simulated daily concentrations coincide with
the observed concentrations on days when samples
were collected (unless the observation is censored, in
which case the simulated concentration is less than the
censoring limit).

• The generated conditional simulations of daily pesti-
cide concentrations from the SEAWAVE–QEX model
should not be interpreted as actual daily concentra-
tions. The simulations are designed to mimic the
statistical properties of actual data, not to predict actual
concentrations. Estimated concentration extremes
derived from the conditional simulations for individual
sites should not be reported without careful consider-
ation of model assumptions and estimation uncertainty.
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Data Preparation and Screening
The simulation experiments described in the “Model 

Testing” section were used in conjunction with practical con-
siderations involving actual monitoring datasets, such as vari-
able ASF, variable spacing between samples, and gaps in the 
record, to develop a stepwise screening procedure for deter-
mining which datasets are appropriate for SEAWAVE–QEX 
model applications (fig. 4, data preparation and screening). 
The following data preparation and screening procedure steps 
were used for this report. The R function swaveqexMerge (see 
appendix) can be used for completing the data preparation and 
screening.

Step 1. Assemble daily streamflow data and compute 
flow anomalies.—Daily streamflow data from a streamflow-
gaging station, at or near the pesticide sampling site, is used to 
compute the flow anomalies. Generally, the streamflow-gaging 
station should have upstream drainage area within 5 percent of 
the drainage area upstream from the pesticide sampling site, 
and no major diversions or other flow modifications should 
be between the sampling site and the streamflow-gaging sta-
tion. The daily streamflow record should consist of complete 
calendar years starting on January 1 of the beginning year 
of the pesticide observations and ending on December 31 of 
the ending year of the pesticide observations, but excluding 
leap days. Each year, therefore, should have 365 values. Leap 
days are excluded because the SEAWAVE–QEX model uses a 
fixed period of 365 days per year for all of the computational 
algorithms. Missing daily streamflow values are allowed at 
this step, and every day should have a streamflow record (with 
placeholders for missing values inserted for days with miss-
ing record). The MTFA (eq. 3) and STFA (eq. 4) are computed 
using the daily streamflow record. If part of the streamflow 
record is missing, the long-term mean required for comput-
ing the MTFA (M in eq. 3) is computed using the nonmissing 
streamflow record, but the MTFA and STFA for a given day 
are missing if there are any missing streamflow values for the 
30-day period up to and including the given day.

Step 2. Merge pesticide data and daily streamflow data 
and determine appropriate period of record.—Pesticide 
observations with missing streamflow anomalies should be 
removed. These observations cannot be used by the model 
and removing them, rather than substituting missing values, 
is required because the algorithms used for fitting the model 
do not allow missing values for the observed concentrations. 
Let NOBSG denote the number of pesticide observations and 
NUCG the number of uncensored observations in a generic 
year. If, after removing observations with missing flow anoma-
lies, there are fewer than 3 individual years of record that meet 
the minimum requirements that NOBSG≥6 and NUCG≥2, the 
dataset is not appropriate for analysis using the SEAWAVE–
QEX model. Otherwise, continue with the data screening. If 
the beginning or ending year of the pesticide record do not 
meet the minimum requirements (NOBSG≥6 and NUCG≥2), 

increase the beginning year or decrease the ending year, as 
required, so that both the beginning and ending year of record 
meet the minimum requirements. Note that years in the middle 
of the record that do not meet NOBSG≥6 and NUCG≥2 
should be included; however, if there is a long gap (3 or more 
consecutive years) that fails to meet the minimum require-
ments, consider adjusting the beginning and ending year, if 
possible, to exclude the gap and still maintain at least 3 years 
that meet the minimum requirements.

Step 3. Thin the pesticide data to maintain at least 3 days 
between consecutive observations.— Most pesticide monitor-
ing datasets, such as those described in the “SEAWAVE–QEX 
Model Applications” section of this report, have sustained 
high-frequency sampling (more than two samples per week) 
for, at most, 1 or 2 years, and even then only for short periods 
such as 1–3 months. Including all of those high-frequency 
samples can result in undue influence of those years for fit-
ting the SEAWAVE–QEX model, especially with regard to 
selecting the best-fit seasonal wave and estimating the linear 
regression coefficients. The seasonal wave is meant to model 
“typical” seasonal behavior of pesticide concentrations during 
a span of several years; not fit the observations in any single 
year as closely as possible. Therefore, thinning to at least 
3 days between samples (at most two samples per week) is 
advised.

Step 4. Determine if the pesticide data are sufficient for 
SEAWAVE–QEX model application.—The fourth and final 
data preparation step is to verify that the pesticide observa-
tions remaining after the first three steps satisfy the following 
minimum data requirements:

• at least 3 individual years with 6 or more observations,
30 percent or more of which are uncensored;

• at least 30 observations for all years combined; and

• at least 10 uncensored observations for all years com-
bined.

These steps should cull most of the sites for which the data 
are too sparse for analysis, while at the same time keeping as 
many sites as possible for use in investigations using the simu-
lated daily concentrations from the SEAWAVE–QEX model. 
The minimum data requirements given in step 4 were moti-
vated by the simulation experiments described in the “Model 
Testing” section of this report, which indicated that the model 
results should be reasonable provided there are at least 3 years 
of pesticide data, ASF consists of 12 or more (equally spaced) 
observations per year, and at least 30 percent of the observa-
tions are uncensored (or, equivalently, at most 70 percent are 
censored). Those data constraints were relaxed somewhat 
to accommodate common issues with actual datasets, such 
as nonuniform spacing between samples, nonuniform ASF, 
and gaps in the record. As with any model, results should be 
examined in each case to help confirm that the simulated daily 
concentrations are reasonable.
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SEAWAVE–QEX Model Applications 
For each of the four pesticides considered in this report 

(atrazine, carbaryl, chlorpyrifos, and fipronil), available 
concentration data from USGS NWQN were screened 
to determine datasets that could be analyzed using the 
SEAWAVE–QEX model. Sample collection and preservation 
methods, laboratory analytical techniques, quality control 
procedures, and data preparation methods are described in 
this section and are similar to previous studies (Martin, 2009; 
Ryberg and others, 2010). The concentration data used in this 
report are provided in a separate data release (Vecchia and 
Williams-Sether, 2018), and the discharge data are available in 
the USGS National Water Information System (U.S. Geologi-
cal Survey, 2017). Self-contained R functions described in 
the appendix of this report can be used to verify the results, 
to complete additional analyses with the data provided, or to 
analyze user-provided datasets.

Pesticide Data-Processing Steps

Pesticide concentration data for this report are based on 
flow-weighted, depth- and width-integrated water samples 
collected and preserved using standard USGS methods and 
analyzed by the USGS National Water Quality Laboratory 
using gas chromatography/mass spectrometry (see Ryberg 
and others, 2010, and references therein, for details). Meth-
ods developed by Martin (2009) and modified as described 
in appendixes 1–4 of Ryberg and others (2010) were used to 
adjust raw (laboratory reported) concentrations for possible 
recovery bias and to determine appropriate censoring limits to 
use for nondetections. The data adjustment process consisted 
of the following steps (see appendix 1 in Ryberg and others, 
2010).

Step 1. Identification of laboratory reporting levels.—
“Routine” reporting levels (those excluding raised report-
ing levels caused by matrix interference or other analytical 
difficulties) were identified for each pesticide. The laboratory 
reporting level is the “less-than” concentration value reported 
for samples in which the pesticide was not detected. The 
reporting level from the USGS laboratory changed through 
time and was not generally interpretable as a method detection 
limit (MDL).

Step 2. Reassignment of censoring limit for routine 
nondetections.—Detailed analyses of quality assurance/
quality control data were used to determine the maximum 
long-term method detection level (maxLT–MDL) for each 
pesticide analyte. The detection level may have changed 
through time, but generally did not indicate any consistent 
patterns (increasing or decreasing) or large changes for the 
pesticides during the period of record (1992–2012) used for 
this report. The maxLT–MDL is the maximum of the MDLs. 
The maxLT–MDL was determined to be 0.004 micrograms 
per liter (µg/L) for atrazine, 0.03 µg/L for carbaryl, 0.003 µg/L 

for chlorpyrifos, and 0.01 µg/L for fipronil (table 1 in Martin, 
2009). These values are the default censoring limits assigned 
to routine nondetections for each site. The default censoring 
limit may be lowered as described in step 5.

Step 3. Rounding concentrations to a consistent level of 
precision.—The precision (number of decimal places reported 
for samples with detected and quantified pesticide concentra-
tion) changed though time. Concentrations were rounded to a 
consistent level of precision depending on various concentra-
tion ranges (table 4 in Martin, 2009).

Step 4. Adjustment of concentrations for temporal 
changes in recovery.—Ideally, the gas chromatography/mass 
spectrometry analytical method should have 100 percent 
recovery (quantified concentration equal, on average, to actual 
concentration). However, because of instrument drift between 
calibrations, complexity of analytical techniques, and other 
factors, the actual recovery may vary above or below 100 per-
cent through time. Quality control data from “spiked” samples 
(samples with known pesticide concentration) were used to 
model changes in recovery through time, and concentration 
values for samples with detected and quantified concentra-
tions were adjusted to represent 100 percent recovery. Recov-
ery adjusted concentrations were re-rounded as described in 
step 3. The recovery adjustment was not applied to the censor-
ing limit (maxLT–MDL) used for nondetections.

Step 5. Reassignment of censoring limit for selected sites 
to the median of low-level detections.—The default censoring 
limit assigned for routine nondetections (“<maxLT–MDL”) 
was lowered for some pesticide-site combinations to reflect 
site-specific differences in detection sensitivity. Some pes-
ticide-site combinations can have frequent occurrences of 
low-level detections, which are concentration values for which 
the pesticide was detected and quantified at a value less than 
maxLT–MDL. For sites with 10 or more low-level detections, 
the censoring limit was lowered to the median concentration 
of the low-level detections, denoted as qlow50. For such cases, 
the concentration value for routine nondetections for that site 
is recoded to “<qlow50” rather than “<maxLT–MDL”. Finally, 
all quantified concentrations that are less than the censoring 
limit (either maxLT–MDL or qlow50, depending on the site) 
are recoded as censored values.

Overview of SEAWAVE–QEX Model Results

A broad overview of the SEAWAVE–QEX parameter 
estimation results for each pesticide is provided in this section. 
The parameter estimates for each pesticide and site (best-fit 
seasonal wave, estimated regression coefficients and approxi-
mate p-values, estimated values of the SSD parameters, and 
CTS) are provided in the model archive (see appendix). R 
functions described in the appendix and provided in the model 
archive can be used to verify the parameter estimates, generate 
diagnostic plots (similar to figs. 5–8), and generate conditional 
traces of daily pesticide concentration for use in investigations 
of pesticide exposure risk and uncertainty.
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To facilitate comparisons of the relative magnitudes of 
the regression coefficients among sites and pesticides, the 
estimated regression coefficients (eq. 8) were multiplied by 
scaling factors:

CSWAVE = 0.5 b1; CMTFA= SDMTFA b2;  
	 CSTFA = SDSTFA b3	

(12)

where
	 b1, b2, b3	 are the estimated regression coefficients for 

the seasonal wave, MTFA, and STFA;
	 CSWAVE	 is the scaled coefficient for the seasonal wave;
	 CMTFA	 is the scaled coefficient for the MTFA;
	 SDMTFA	 is the standard deviation of the MTFA;
	 CSTFA	 is the scaled coefficient for the STFA; and
	 SDSTFA	 is the standard deviation of the STFA.
Loosely interpreted, the higher the magnitude (absolute value) 
of a scaled coefficient, the more variability of the observed 
pesticide concentrations is explained by that variable and 
the more important that variable is in the model. To simplify 
the notation and discussion of results in this section, SSD 
is used to denote the estimated seasonal standard deviation 
(SSD*=σ*(1+α*W*)1/2, eq. 11) and CTS is used to denote the 
estimated correlation time scale (CTS*). For α*>0 (noncon-
stant SSD), the minimum and maximum values of SSD (which 
occur when W*= -0.5 and W*=0.5, respectively) differ. For 
α*=0, and minimum and maximum values of SSD both equal 
the same constant value (σ*). The maximum value of the esti-
mated seasonal standard deviation (σ*(1+0.5α*)1/2) is denoted 
by maxSSD.

Atrazine
For atrazine, 112 USGS sampling sites were identified 

for the SEAWAVE–QEX model application (table 2). Atra-
zine is one of the most widely used and commonly detected 
pesticides in streams throughout the Nation (Stone and others, 
2014). Consequently, many sites had long RLs and low CRs. 
A total of 900 site years were analyzed, with 99 sites having 
RL≥5 years and 45 sites having RL=10 years. Many sites had 
more than 10 years of record available, but a maximum RL 
of 10 years was used. When selecting the period of record for 
sites with more than 10 years of data, or for sites with gaps in 
the record, preference was given to including the most recent 
years. The total number of observations (NOBS) generally 
was large, and the percent of the observation that were uncen-
sored (PUC) was high: 85 sites had NOBS≥60 and 100 sites 
had PUC≥80.

The scaled coefficients for the seasonal wave, MTFA, and 
STFA (CSWAVE, CMTFA, and CSTFA in eq. 12) for the atra-
zine sites are shown in figure 15. Sites are ordered with respect 
to increasing USGS station number, and the site numbers are 
given in table 2. Most (88) sites had CSWAVE≥0.4 and all but 
one of the coefficients was statistically significant (approxi-
mate p-value less than 0.05) (fig. 15A). Only 24 sites had 
CSWAVE<0.4, including 11 sites among sites 93–112 (these 

sites are in the Western United States; table 2). The values 
for CMTFA (fig. 15B) generally were smaller in magnitude 
compared with CSWAVE. However, CMTFA was significant 
for many (51) sites and the significant coefficients were evenly 
distributed between positive and negative values. The values 
for CSTFA (fig. 15C) were similar in magnitude to CMTFA 
and most (74) were significant. However, unlike CMTFA, 
most (68) of the significant values for CSTFA were positive.

The estimated SSDs and CTSs for the atrazine sites 
are shown in figure 16. The SSD (fig. 16A) generally was 
small in relation to CSWAVE (fig. 15A): most (93) sites had 
maxSSD<0.4 whereas most (88) sites had CSWAVE≥0.4. 
The CTS (fig. 16B) was variable: 48 sites had CTS≤10 days 
and 64 sites had CTS>10 days. There was no readily apparent 
correlation between the values of CTS and SSD or between 
the values of CTS and CSWAVE. Generally, sites with lower 
maxSSD, higher CTS, or both, should have lower uncertainty 
in estimated pesticide concentration extremes computed using 
conditional simulations from the SEAWAVE–QEX model.

Carbaryl
For carbaryl, 38 USGS sampling sites were identified 

for SEAWAVE–QEX model application (table 3). Compared 
to atrazine, carbaryl concentrations tended to be much more 
highly censored. Consequently, there were only 38 sites that 
met the minimum data requirements for carbaryl. A total of 
308 site years were analyzed, with 36 sites having RL≥5 years 
and 13 sites having RL≥10 years. When selecting the period of 
record for sites with gaps in the record, preference was given 
to including the most recent years. NOBS generally was large 
(34 sites had NOBS≥60) and PUC was moderate to low (only 
9 sites had PUC>40).

The scaled coefficients for the seasonal wave, MTFA, and 
STFA for the carbaryl sites are shown in figure 17. Sites are 
ordered with respect to increasing USGS station number and 
the site number is given in table 3 (note that the site numbers 
for carbaryl differ from the site numbers for atrazine). Most 
(28) carbaryl sites had CSWAVE≥0.4 and all but 3 of the 
coefficients were significant (fig. 17A). The values for CMTFA 
(fig. 17B) generally were smaller in magnitude compared with 
CSWAVE, and only nine of the coefficients were significant. 
The values for CSTFA (fig. 17C) generally were smaller in 
magnitude compared with CSWAVE, but unlike CMTFA, 
most (27) of the coefficients were significant and 26 of the 
significant coefficients were positive.

The estimated SSDs and CTSs for the carbaryl sites are 
shown in figure 18. The SSD (fig. 18A) generally was simi-
lar in magnitude to CSWAVE (fig. 17A): most (36 sites) had 
maxSSD≥0.4 and most (28) sites had CSWAVE≥0.4. This 
similarity between the values of maxSSD and CSWAVE for 
carbaryl is in contrast to atrazine, for which maxSSD generally 
was smaller than CSWAVE. Also, unlike atrazine, which had 
variable CTS (fig. 16B), most (34) of the carbaryl sites had 
CTS<10. Because of the larger values of maxSSD and lower 
values of CTS for carbaryl (compared to atrazine), estimated 
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Table 2.  U.S. Geological Survey water-quality sampling sites, period of record, and number of observations used for application of 
SEAWAVE–QEX model for atrazine.

[USGS, U.S. Geological Survey; km2, square kilometers; NOBS, number of observations; NUC, number of uncensored observations; PUC, percent uncensored 
observations]

Site 
number

USGS 
station  
number

Site name
Drainage 

area, 
in km2

Starting 
year

Ending 
year

Record 
length,  
in years

NOBS NUC PUC

1 01184000 Connecticut River at Thompsonville, 
Connecticut

25,012 1997 2006 10 107 65 61

2 01349150 Canajoharie Creek near Canajoharie, New York 155 1998 2007 10 145 144 99
3 01356190 Lisha Kill northwest of Niskayuna, New York  49 2001 2010 10 98  39  40
4 01357500 Mohawk River at Cohoes, New York 8,986 1997 2006 10 134 131 98
5 01374987 Kisco River below Mount Kisco, New York  46 2000 2008 9 186 66  35
6 01463500 Delaware River at Trenton, New Jersey 17,574 2003 2012 10 99 97 98
7 01464907 Little Neshaminy Creek at Valley Road near 

Neshaminy, Pennsylvania
71 1999 2004 6 77 76 99

8 01472157 French Creek near Phoenixville, Pennsylvania 158 1999 2004 6 58 57 98
9 01474500 Schuylkill River at Philadelphia, Pennsylvania 4,889 1999 2004 6 68 67 99

10 01493112 Chesterville Branch near Crumpton, Maryland 18 1999 2002  4  51  51 100
11 01493500 Morgan Creek near Kennedyville, Maryland 33 2002 2004  3  52  51 98
12 01555400 East Mahantango Creek at Klingerstown, 

Pennsylvania
116 1997 2000  4  48  48 100

13 01578310 Susquehanna River at Conowingo, Maryland 70,161 1996 2004 9 65 65 100
14 01621050 Muddy Creek at Mount Clinton, Virginia 43 1997 2001  5 66 66 100
15 01654000 Accotink Creek near Annandale, Virginia 62 1997 2001  5 63  50 79
16 02087580 Swift Creek near Apex, North Carolina 56 2002 2011 10 116 94 81
17 02089500 Neuse River at Kinston, North Carolina 7,020 2003 2012 10 142 138 97
18 02091500 Contentnea Creek at Hookerton, North Carolina 1,898 1997 2006 10 119 110 92
19 02169570 Gills Creek at Columbia, South Carolina 164 2001 2006 6  59  58 98
20 02174250 Cow Castle Creek near Bowman, South  

Carolina
64 1999 2008 10 105 89 85

21 02306774 Rocky Creek at State Highway 587 at Citrus 
Park, Florida

 49 2002 2004  3  49  38 78

22 02318500 Withlacoochee River at U.S. 84 near Quitman, 
Georgia

3,872 1999 2008 10 100 99 99

23 02335870 Sope Creek near Marietta, Georgia 86 2003 2012 10 127 121 95
24 02338000 Chattahoochee River near Whitesburg, Georgia 6,252 2003 2012 10 144 141 98
25 02350080 Lime Creek near Cobb, Georgia 162 2001 2007 7 89 77 87
26 02359170 Apalachicola River near Sumatra, Florida 49,771 2008 2012  5  52  52 100
27 0242354750 Cahaba Valley Creek at Cross Creek Road at 

Pelham, Alabama
71 2003 2012 10 99 99 100

28 02444490 Bogue Chitto Creek near Memphis, Alabama 138 1999 2004 6 73 73 100
29 03086000 Ohio River at Sewickley, Pennsylvania 50,496 2001 2007 7 88 83 94
30 03216600 Ohio River at Greenup Dam near Greenup, 

Kentucky
159,235 1998 2007 10 132 129 98

31 03267900 Mad River at Saint Paris Pike at Eagle City, 
Ohio

798 1999 2004 6 103 100 97

32 03303280 Ohio River at Cannelton Dam, at Cannelton, 
Indiana

249,355 2003 2012 10 125 125 100
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Table 2.  U.S. Geological Survey water-quality sampling sites, period of record, and number of observations used for application of 
SEAWAVE–QEX model for atrazine. —Continued

[USGS, U.S. Geological Survey; km2, square kilometers; NOBS, number of observations; NUC, number of uncensored observations; PUC, percent uncensored 
observations]

Site 
number

USGS 
station  
number

Site name
Drainage 

area, 
in km2

Starting 
year

Ending 
year

Record 
length,  
in years

NOBS NUC PUC

33 03353637 Little Buck Creek near Indianapolis, Indiana 51 1995 2004 10 127 127 100
34 03357330 Big Walnut Creek near Roachdale, Indiana 374 2002 2011 10  54  54 100
35 103374100 White River at Hazleton, Indiana 29,069 2003 2012 10 136 135 99
36 203378500 Wabash River at New Harmony, Indiana 75,585 2003 2012 10 127 127 100
37 03466208 Big Limestone Creek near Limestone,  

Tennessee
203.8 1996 2004 9 95 95 100

38 03467609 Nolichucky River near Lowland, Tennessee 4,374 1996 2004 9 92 89 97
39 03575100 Flint River at Brownsboro, Alabama 967 1999 2007 9 105 105 100
40 04072150 Duck Creek near Howard, Wisconsin 279 1997 2001  5  57  57 100
41 04161820 Clinton River at Sterling Heights, Michigan 811 2002 2006  5  46  46 100
42 04178000 St. Joseph River near Newville, Indiana 1,537 1996 2004 9 81 81 100
43 04186500 Auglaize River near Fort Jennings, Ohio 861 2002 2008 7 74 73 99
44 04193500 Maumee River at Waterville, Ohio 16,274 1998 2007 10 113 112 99
45 04234000 Fall Creek near Ithaca, New York 327 1997 1999  3  37  37 100
46 04264331 St. Lawrence River at Cornwall Ontario near 

Massena, New York
10,366 2008 2012  5  57  57 100

47 05288705 Shingle Creek at Queen Avenue in Minneapolis, 
Minnesota

103 1997 2006 10 104 87 84

48 05320270 Little Cobb River near Beauford, Minnesota 331 1998 2007 10 83 82 99
49 05330000 Minnesota River near Jordan, Minnesota 41,787 1996 1998  3  37  37 100
50 05331580 Mississippi River below Lock and Dam 2 at 

Hastings, Minnesota
95,179 1996 2004 9 88 87 99

51 05412500 Turkey River at Garber, Iowa 4,023 2004 2012 9 100 100 100
52 05420500 Mississippi River at Clinton, Iowa 220,066 2003 2012 10 116 116 100
53 05420680 Wapsipinicon River near Tripoli, Iowa 901 1996 2004 9  56  56 100
54 05422000 Wapsipinicon River near De Witt, Iowa  41 2004 2012 9 99 99 100
55 05449500 Iowa River near Rowan, Iowa 1,105 1996 2004 9 87 87 100
56 05451210 South Fork Iowa River northeast of New 

Providence, Iowa
583 2003 2012 10 125 125 100

57 05464220 Wolf Creek near Dysart, Iowa 773 1996 1999  4  51  51 100
58 05465500 Iowa River at Wapello, Iowa 32,341 2003 2012 10 136 136 100
59 05474000 Skunk River at Augusta, Iowa 11,165 2004 2012 9 98 98 100

60 05490500 Des Moines River at Keosauqua, Iowa 36,310 2004 2012 9 121 121 100
61 05525500 Sugar Creek at Milford, Illinois 1,159 1999 2004 6 64 64 100
62 05531500 Salt Creek at Western Springs, Illinois 306 1999 2007 9 99 99 100
63 05532500 Des Plaines River at Riverside, Illinois 1,656 1999 2004 6  46  46 100
64 05572000 Sangamon River at Monticello, Illinois 1,447 1997 2006 10 122 122 100
65 05586100 Illinois River at Valley City, Illinois 68,925 2003 2012 10 102 102 100
66 05587455 Mississippi River below Grafton, Illinois 444,074 2004 2012 9 105 105 100
67 06295000 Yellowstone River at Forsyth, Montana 102,211 1999 2004 6 66  48 73
68 06329500 Yellowstone River near Sidney, Montana 177,171 2001 2007 7  54  35 65
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Table 2.  U.S. Geological Survey water-quality sampling sites, period of record, and number of observations used for application of 
SEAWAVE–QEX model for atrazine. —Continued

[USGS, U.S. Geological Survey; km2, square kilometers; NOBS, number of observations; NUC, number of uncensored observations; PUC, percent uncensored 
observations]

Site 
number

USGS 
station  
number

Site name
Drainage 

area, 
in km2

Starting 
year

Ending 
year

Record 
length,  
in years

NOBS NUC PUC

69 06485500 Big Sioux River at Akron, Iowa 17,815 2004 2010 7 79 79 100
70 06607500 Little Sioux River near Turin, Iowa 9,179 2004 2012 9 104 104 100
71 06609500 Boyer River at Logan, Iowa 2,259 2004 2012 9 100 100 100
72 06610000 Missouri River at Omaha, Nebraska 780,965 2003 2012 10 129 129 100
73 06713500 Cherry Creek at Denver, Colorado 1,057 2001 2009 9 111 107 96
74 06714000 South Platte River at Denver, Colorado 10,001 1994 2000 7  59  47 80
75 06753990 Lonetree Creek near Greeley, Colorado 1,481 2001 2004  4  44  44 100
76 06754000 South Platte River near Kersey, Colorado 25,021 1997 2006 10 108 108 100
77 06800000 Maple Creek near Nickerson, Nebraska 962 1997 2006 10 171 171 100
78 06800500 Elkhorn River at Waterloo, Nebraska 17,446 2002 2004  3  41  41 100
79 06805500 Platte River at Louisville, Nebraska 12 2003 2012 10 114 114 100
80 06810000 Nishnabotna River above Hamburg, Iowa 7,279 2004 2012 9 104 103 99
81 06817700 Nodaway River near Graham, Missouri 3,933 1996 2001 6  38  38 100
82 06934500 Missouri River at Hermann, Missouri 1,277,918 2003 2012 10 132 132 100
83 07022000 Mississippi River at Thebes, Illinois 1,769,764 2003 2012 10 129 129 100
84 07053250 Yocum Creek near Oak Grove, Arkansas 138 2006 2012 7 58  25  43
85 07144100 Little Arkansas River near Sedgwick, Kansas 3,242 1995 2004 10  48  48 100
86 07288650 Bogue Phalia near Leland, Mississippi 1,439 1999 2008 10 101 99 98
87 07288955 Yazoo River below Steele Bayou near Long 

Lake, Mississippi
34,742 2003 2012 10 134 134 100

88 07369500 Tensas River at Tendal, Louisiana 2,514 1996 1999  4 62 62 100
89 07374000 Mississippi River at Baton Rouge, Louisiana 2,880,682 2004 2012 9 103 103 100
90 07374525 Mississippi River at Belle Chasse, Louisiana 2,881,390 2009 2012  4  46  46 100
91 07381590 Wax Lake Outlet at Calumet, Louisiana 6,297 2009 2012  4  48  48 100
92 07381600 Lower Atchafalaya River at Morgan City, 

Louisiana
3,130,494 2006 2012 7 90 90 100

93 08057200 White Rock Creek at Greenville Avenue  
Dallas, Texas

190 2002 2011 10 121 120 99

94 08057410 Trinity River below Dallas, Texas 16,253 2003 2012 10 143 143 100
95 08064100 Chambers Creek near Rice, Texas  2,091 2001 2004  4  52  52 100
96 08116650 Brazos River near Rosharon, Texas 103,578 2008 2012  5  56  56 100
97 08178800 Salado Creek at Loop 13, San Antonio, Texas 489 2002 2008 7 72 72 100
98 08181800 San Antonio River near Elmendorf, Texas  4,529 1997 2004 8 77 77 100
99 09163500 Colorado River near Colorado-Utah State Line 46,122 1997 2004 8 61  41 67

100 10168000 Little Cottonwood Creek at Jordan River near 
Salt Lake City

105 1999 2007 9 92 64 70

101 11074000 Santa Ana River below Prado Dam, California 5,680 2004 2012 9 125 68  54
102 11274538 Orestimba Creek at River Road near Crows 

Landing, California
465 1997 2004 8 130  59  45

103 11303500 San Joaquin River near Vernalis, California 35,855 2003 2012 10 166 80  48
104 12505450 Granger Drain at Granger, Washington 150 1999 2004 6 105 104 99
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Table 2.  U.S. Geological Survey water-quality sampling sites, period of record, and number of observations used for application of 
SEAWAVE–QEX model for atrazine. —Continued

[USGS, U.S. Geological Survey; km2, square kilometers; NOBS, number of observations; NUC, number of uncensored observations; PUC, percent uncensored 
observations]

Site 
number

USGS 
station  
number

Site name
Drainage 

area, 
in km2

Starting 
year

Ending 
year

Record 
length,  
in years

NOBS NUC PUC

105 12510500 Yakima River at Kiona, Washington 14,060 1999 2008 10 91 78 86
106 13092747 Rock Creek above Highway 30/93 crossing at 

Twin Falls, Idaho
632 1997 2005 9 127 98 77

107 13154500 Snake River at King Hill, Idaho 62,321 1998 2007 10 115  87  76
108 13351000 Palouse River at Hooper, Washington 6,219 1997 2003 7 93  42  45
109 14201300 Zollner Creek near Mount Angel, Oregon  41 1999 2008 10 120 120 100
110 14206950 Fanno Creek at Durham, Oregon 82 2001 2011 11 142 102 72
111 14211720 Willamette River at Portland, Oregon 28,922 2003 2012 10 155 136 88
112 14246900 Columbia River at Beaver Army Terminal near 

Quincy, Oregon
619,784 2003 2012 10 100  59  59

1Streamflow data are for White River at Petersburg, Indiana (U.S. Geological Survey station number 03374000).
2Streamflow data are for Wabash River at Mt. Carmel, Illinois (U.S. Geological Survey station number 03377500). 

carbaryl concentration extremes computed using conditional 
simulations from the SEAWAVE–QEX model generally 
should have high uncertainty compared to atrazine. 

Chlorpyrifos

For chlorpyrifos, 34 USGS sampling sites were identified 
for SEAWAVE–QEX model application (table 4). A total of 
292 site years were analyzed, with 30 sites having RL≥5 and 
14 sites having RL≥10. When selecting the period of record 
for sites with gaps in the record, preference was given to 
including the most recent years. NOBS was variable (28 sites 
had NOBS≥60 and 5 sites had NOBS<40) and PUC was low 
(only 9 sites had PUC≥40 and 17 sites had PUC<25).

The coefficients for the seasonal wave, MTFA, and 
STFA for the chlorpyrifos sites are shown in figure 19. Sites 
are ordered with respect to increasing USGS station num-
ber and the site number is given in table 4. CSWAVE was 
variable (fig. 19A): 18 sites had CSWAVE≥0.4, 16 sites had 
CSWAVE<0.4, and all but 4 of the coefficients were signifi-
cant. The values for CMTFA (fig. 19B) generally were smaller 
in magnitude compared with CSWAVE; however, 12 coef-
ficients were significant and most (11) of the significant coef-
ficients were positive. This result is in contrast to atrazine and 
carbaryl (figs. 15B and 17B), for which the values of CMTFA 
were evenly split between positive and negative values. How-
ever, similar to atrazine and carbaryl, the values of CSTFA for 
chlorpyrifos (fig. 19C) were mostly positive and many (15) 
were significant.

The estimated SSDs for chlorpyrifos (fig. 20A) were vari-
able: 20 sites had maxSSD≥0.4 and 14 sites had maxSSD<0.4. 
The estimated values of CTS (fig. 20B) also were variable: 

18 sites had CTS≤10 and 16 sites had CTS>10. The combina-
tion of variable SSD and variable CTS indicates that uncer-
tainty of the estimated chlorpyrifos concentration extremes 
computed using conditional simulations from the SEAWAVE–
QEX model should have variable uncertainty.

Fipronil

For fipronil, 33 USGS sampling sites were identified 
for SEAWAVE–QEX model application (table 5). A total of 
219 site years were analyzed, with 23 sites having RL≥5 years 
and 4 sites having RL≥10 years. When selecting the period 
of record for sites with gaps in the record, preference was 
given to including the most recent years. NOBS was variable 
(22 sites had NOBS≥60 and 5 sites had NOBS<40) and PUC 
was variable (16 sites had PUC>40 and 10 sites had PUC<25).

The coefficients for the seasonal wave, MTFA, and STFA 
for the fipronil sites are shown in figure 21. Sites are ordered 
with respect to increasing USGS station number and the 
site number is given in table 5. CSWAVE (fig. 21A) gener-
ally was small (29 sites had CSWAVE≤0.4 and only 4 sites 
had CSWAVE>0.4) and all but 7 of the coefficients were 
significant. The values for CMTFA (fig. 21B) generally were 
comparable in magnitude compared with CSWAVE, 23 coef-
ficients were significant, and (like atrazine and carbaryl) the 
significant coefficients were equally split between positive and 
negative values. Similar to the other pesticides, many (16) of 
the values of CSTFA for fipronil (fig. 21C) were significant 
and most (15) of the significant coefficients were positive. 
However, the values of CSTFA for fipronil generally were 
small in comparison to the other pesticides.
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Figure 15.  Estimated regression coefficients from SEAWAVE–QEX model results for atrazine. A, scaled coefficient for seasonal wave; 
B, scaled coefficient for mid-term flow anomaly; C, scaled coefficient for short-term flow anomaly.
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Figure 16.  Estimated seasonal standard deviations and correlation time scales from SEAWAVE–QEX model results for atrazine. 
A, seasonal standard deviation; B, correlation time scale.
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Table 3.  U.S. Geological Survey water-quality sampling sites, period of record, and number of observations used for application of 
SEAWAVE–QEX model for carbaryl. 

[USGS, U.S. Geological Survey; km2, square kilometers; NOBS, number of observations; NUC, number of uncensored observations; PUC, percent uncensored 
observations]

Site 
number

USGS 
station  
number

Site name
Drainage 

area, 
in km2

Starting 
year

Ending 
year

Record 
length,  
in years

NOBS NUC PUC

1 01356190 Lisha Kill northwest of Niskayuna, New York 49 2002 2008  7  70 23 33
2 01374987 Kisco River below Mount Kisco, New York 46 2000 2008  9 186 54 29
3 01464907 Little Neshaminy Creek at Valley Road near 

Neshaminy, Pennsylvania
71 1999 2004  6  77 28 36

4 01474500 Schuylkill River at Philadelphia, Pennsylvania 4,889 1999 2004  6  68 21 31
5 01654000 Accotink Creek near Annandale, Virginia 62 1994 2000  7  79 39 49
6 02087580 Swift Creek near Apex, North Carolina 56 2002 2009  8  92 41 45
7 02089500 Neuse River at Kinston, North Carolina 7,020 2003 2012 10 128 42 33
8 02091500 Contentnea Creek at Hookerton, North Carolina 1,897 1997 2008 12 142 35 25
9 02169570 Gills Creek at Columbia, South Carolina 164 1996 2005 10  86 19 22

10 02318500 Withlacoochee River at U.S. 84, near Quitman, Georgia 3,872 1995 2004 10 102 15 15
11 02335870 Sope Creek near Marietta, Georgia 86 2002 2012 11 150 42 28
12 02338000 Chattahoochee River near Whitesburg, Georgia 6,252 2001 2010 10 141 61 43
13 0242354750 Cahaba Valley Creek at Cross Creek Road at Pelham, 

Alabama
71 2001 2010 10  98 23 23

14 03216600 Ohio River at Greenup Dam near Greenup, Kentucky 159,235 1997 2002  6  80 16 20
15 03353637 Little Buck Creek near Indianapolis, Indiana 51 1995 2004 10 127 34 27
16 04161820 Clinton River at Sterling Heights, Michigan 811 2003 2006  4  38 16 42
17 05288705 Shingle Creek at Queen Avenue in Minneapolis, 

Minnesota
103 2003 2010  8  76 19 25

18 05531500 Salt Creek at Western Springs, Illinois 306 1999 2007  9  99 30 30
19 05532500 Des Plaines River at Riverside, Illinois 1,656 1999 2004  6  53 17 32
20 06713500 Cherry Creek at Denver, Colorado. 1,057 2001 2011 11 132 52 39
21 06714000 South Platte River at Denver, Colorado. 10,001 1994 2000  7  59 37 63
22 06754000 South Platte River near Kersey, Colorado 25,021 1997 2005  9 104 35 34
23 07031692 Fletcher Creek at Sycamore View Road at Memphis 80 1997 2004  8  52 26 50
24 08057200 White Rock Creek at Greenville Avenue, Dallas, Texas 190 2002 2011 10 121 49 40
25 08057410 Trinity River below Dallas, Texas 16,253 2003 2012 10 143 35 24
26 08178800 Salado Creek at Loop 13, San Antonio, Texas 489 2002 2008  7  72 16 22
27 08181800 San Antonio River near Elmendorf, Texas 4,529 1997 2004  8  77 16 21
28 10168000 Little Cottonwood Creek at Jordan River near Salt 

Lake City
105 1999 2009 11 109 34 31

29 11074000 Santa Ana River below Prado Dam, California 5,680 2003 2012 10 133 23 17
30 11274538 Orestimba Creek at River Road near Crows Landing, 

California
465 1992 2000  9 104 24 23

31 11303500 San Joaquin River near Vernalis, California 35,855 1993 1999  7  85 22 26
32 11447360 Arcade Creek near Del Paso Heights, California 98 2001 2008  8  82 39 48
33 12128000 Thornton Creek near Seattle, Washington 31 2001 2007  7  74 20 27
34 12505450 Granger Drain at Granger, Washington 150 2002 2004  3  83 23 28
35 12510500 Yakima River at Kiona, Washington 14,060 1999 2004  6  69 11 16
36 14201300 Zollner Creek near Mount Angel, Oregon 41 1999 2005  7  94 21 22
37 14206950 Fanno Creek at Durham, Oregon 82 2001 2005  5  73 35 48
38 14211720 Willamette River at Portland, Oregon 28,922 2006 2011  6 104 22 21
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Figure 17.  Estimated regression coefficients from SEAWAVE–QEX model results for carbaryl. A, scaled coefficient for seasonal wave; 
B, scaled coefficient for mid-term flow anomaly; C, scaled coefficient for short-term flow anomaly.
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Figure 18.  Estimated seasonal standard deviations and correlation time scales from SEAWAVE–QEX model results for carbaryl. 
A, seasonal standard deviation; B, correlation time scale.

The estimated SSDs for fipronil (fig. 22A) generally 
were small in comparison to the other pesticides: 29 sites had 
maxSSD≤0.4 and only 4 sites has maxSSD>0.4. Like atra-
zine and carbaryl, the estimated values of CTS for fipronil 
(fig. 22B) were variable: 20 sites had CTS<10 and 14 sites 
had CTS>10. However, unlike the other pesticides, for 
fipronil there was a statistically significant positive correla-
tion between the values of SSD and CTS––the Kendall’s rank 
correlation (r) between σ* and CTS*was r=0.353 (p=0.004). 

Consequently, all four of the sites with large estimated SSD 
(maxSSD>0.4) also had high estimated CTS (CTS>20). This 
positive correlation between SSD and CTS, combined with the 
generally small values of maxSSD, indicate that uncertainty of 
the estimated fipronil concentration extremes computed using 
conditional simulations from the SEAWAVE–QEX model 
generally should have low uncertainty compared to the other 
pesticides.
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Table 4.  U.S. Geological Survey water-quality sampling sites, period of record, and number of observations used for application of 
SEAWAVE–QEX model for chlorpyrifos. 

[USGS, U.S. Geological Survey; km2, square kilometers; NOBS, number of observations; NUC, number of uncensored observations; PUC, percent uncensored 
observations]

Site 
number

USGS  
station 
number

Site name
Drainage 

area, 
in km2

Starting 
year

Ending 
year

Record 
length,  
in years

NOBS NUC PUC

 1 01403900 Bound Brook at Middlesex, New Jersey  132 1996 1998  3  37  18 49

 2 01555400 East Mahantango Creek at Klingerstown, 
Pennsylvania

 116 1993 2000  8  91  13 14

 3 01654000 Accotink Creek near Annandale, Virgina 62 1994 2000  7  79  31 39
 4 02091500 Contentnea Creek at Hookerton, North Carolina 1,897 1997 2008 12 142  18 13
 5 02174250 Cow Castle Creek near Bowman, South Carolina 64 1999 2008 10 105  53 50
 6 02335870 Sope Creek near Marietta, Georgia 86 1993 2000  8  84 33 39
 7 0242354750 Cahaba Valley Creek at Cross Creek Road at 

Pelham, Alabama
71 1999 2005  7  92  17 18

 8 02424000 Cahaba River at Centreville, Alabama 2,659 1999 2000  2  35  14 40
 9 02444490 Bogue Chitto Creek near Memphis, Alabama  138 1999 2003  5  66  16 24

10 03303280 Ohio River at Cannelton Dam at Cannelton, Indiana 249,355 1996 2000  5  63  13 21
11 03353637 Little Buck Creek near Indianapolis, Indiana 51 1992 2001 10 150  65 43
12 103374100 White River at Hazleton, Indiana 29,069 1992 1996  5 119  34 29
13 203378500 Wabash River at New Harmony, Indiana 75,585 1997 2004  8 109  18 17
14 04186500 Auglaize River near Fort Jennings, Ohio  861 1996 2005 10  78  13 17
15 04193500 Maumee River at Waterville, Ohio 16,273 1996 2007 12 142  29 20
16 05320270 Little Cobb River near Beauford, Minnesota  331 2005 2007  3  38  12 32
17 05572000 Sangamon River at Monticello, Illinois 1,447 1997 2008 12 145  14 10
18 06609500 Boyer River at Logan, Iowa 2,259 2004 2012  9 100  12 12
19 06713500 Cherry Creek at Denver, Colorado. 1,057 1993 1994  2  31  12 39
20 06800000 Maple Creek near Nickerson, Nebraska 962 1997 2012 16 239  52 22
21 06805500 Platte River at Louisville, Nebraska 12 1992 2000  9  97  13 13
22 07031692 Fletcher Creek at Sycamore View Road at Memphis 80 1997 2004  8  52  26 50
23 08057200 White Rock Creek at Greenville Avenue, Dallas, 

Texas
 190 1997 2007 11 123  37 30

24 08057410 Trinity River below Dallas, Texas  16,253 1995 1999  5  36  11 31
25 11273500 Merced River at River Road Bridge near Newman, 

California
3,287 2002 2009  8  80  27 34

26 11274538 Orestimba Creek at River Road near Crows 
Landing, California

 465 1997 2006 10 145  88 61

27 11303500 San Joaquin River near Vernalis, California  35,855 1997 2012 16 273 132 48
28 11447360 Arcade Creek near Del Paso Heights, California 98 1997 2008 12 110  56 51
29 11447650 Sacramento River at Freeport, California  59,572 2004 2011  8 115  28 24
30 12505450 Granger Drain at Granger, Washington  150 1999 2004  6 105  19 18
31 12510500 Yakima River at Kiona, Washington  14,059 1999 2008 10  91  19 21
32 14201300 Zollner Creek near Mount Angel, Oregon 41 1997 2008 12 140 106 76
33 14206950 Fanno Creek at Durham, Oregon 82 2001 2006  6  82  15 18
34 14211720 Willamette River at Portland, Oregon  28,921 1996 2012 17 249  54 22

1Streamflow data are for White River at Petersburg, Indiana (U.S. Geological Survey station number 03374000).
2Streamflow data are for Wabash River at Mt. Carmel, Illinois (U.S. Geological Survey station number 03377500).
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Figure 19.  Estimated regression coefficients from SEAWAVE–QEX model results for chlorpyrifos. A, scaled coefficient for seasonal 
wave; B, scaled coefficient for mid-term flow anomaly; C, scaled coefficient for short-term flow anomaly.
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Figure 20.  Estimated seasonal standard deviations and correlation time scales from SEAWAVE–QEX model results for chlorpyrifos. 
A, seasonal standard deviation; B, correlation time scale.
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Table 5.  U.S. Geological Survey fipronil water-quality sampling sites, period of record, and number of observations used for application 
of SEAWAVE–QEX model. 

[USGS, U.S. Geological Survey; km2, square kilometers; NOBS, number of observations; NUC, number of uncensored observations; PUC, percent uncensored 
observations]

Site 
number

USGS  
station 
number

Site name
Drainage 

area, 
in km2

Starting 
year

Ending 
year

Record 
length,  
in years

NOBS NUC PUC

 1 01374987 Kisco River below Mount Kisco, New York  46 2005 2007  3  61 11 18
 2 01403900 Bound Brook at Middlesex, New Jersey 132 2004 2011  8  42 19 45
 3 02087580 Swift Creek near Apex, North Carolina  56 2003 2011  9 103 54 52
 4 02089500 Neuse River at Kinston, North Carolina  7,020 2005 2012  8 117 57 49
 5 02091500 Contentnea Creek at Hookerton, North Carolina  1,897 2005 2008  4  33 20 61
 6 02169570 Gills Creek at Columbia, South Carolina 164 2005 2010  6  41 17 41
 7 02318500 Withlacoochee River at U.S. 84, near Quitman, 

Georgia
 3,872 2005 2012  8  36 18 50

 8 02335870 Sope Creek near Marietta, Georgia  86 2003 2012 10 127 59 46
 9 02338000 Chattahoochee River near Whitesburg, Georgia  6,252 2003 2012 10 144 69 48
10 0242354750 Cahaba Valley Creek at Cross Creek Road at 

Pelham, Alabama
 71 2005 2012  8  83 44 53

11 03303280 Ohio River at Cannelton Dam at Cannelton, 
Indiana

 249,355 2008 2011  4  48 14 29

12 04186500 Auglaize River near Fort Jennings, Ohio 861 2005 2008  4  51 27 53
13 04193500 Maumee River at Waterville, Ohio 16,273 2003 2006  4  39 18 46
14 05465500 Iowa River at Wapello, Iowa 32,341 2006 2012  7 106 17 16
15 05490500 Des Moines River at Keosauqua, Iowa 36,310 2008 2011  4  60 13 22
16 05531500 Salt Creek at Western Springs, Illinois 306 2003 2011  9  70 34 49
17 05572000 Sangamon River at Monticello, Illinois  1447 2005 2012  8  75 16 21
18 05586100 Illinois River at Valley City, Illinois 68,924 2005 2012  8  78 35 45
19 05587455 Mississippi River below Grafton, Illinois  444,073 2007 2011  5  60 12 20
20 06485500 Big Sioux River at Akron, Iowa 17,814 2004 2009  6  70 13 19
21 06805500 Platte River at Louisville, Nebraska 12 2003 2009  7  75 18 24
22 06934500 Missouri River at Hermann, Missouri 1,277,917 2003 2009  7  93 14 15
23 07022000 Mississippi River at Thebes, Illinois 1,769,764 2007 2009  3  38 10 26
24 07288650 Bogue Phalia near Leland, Mississippi  1,439 2003 2008  6  73 14 19
25 07288955 Yazoo River below Steele Bayou near Long 

Lake, Mississippi
34,742 2005 2009  5  56 10 18

26 07381590 Wax Lake Outlet at Calumet, Louisiana  6,296 2007 2009  3  35 11 31
27 08057200 White Rock Creek at Greenville Avenue, Dallas, 

Texas
190 2003 2011  9  97 60 62

28 08057410 Trinity River below Dallas, Texas 16,253 2003 2012 10 143 65 45
29 08178800 Salado Creek at Loop 13, San Antonio, Texas 490 2005 2012  8  67 18 27
30 11074000 Santa Ana River below Prado Dam, California  5,680 2005 2012  8 117 44 38
31 11447360 Arcade Creek near Del Paso Heights, California  98 2003 2012 10  73 62 85
33 14211720 Willamette River at Portland, Oregon 28,921 2006 2008  3  46 12 26
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Figure 21.  Estimated regression coefficients from SEAWAVE–QEX model results for fipronil. A, scaled coefficient for seasonal wave; 
B, scaled coefficient for mid-term flow anomaly; C, scaled coefficient for short-term flow anomaly.
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Figure 22.  Estimated seasonal standard deviations and correlation time scales from SEAWAVE–QEX model results for fipronil. 
A, seasonal standard deviation; B, correlation time scale.
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Summary and Conclusions
To accurately characterize extreme pesticide concentra-

tions in streams, daily sampling may be necessary during 
active pesticide runoff periods. However, the cost of sample 
collection and analysis prohibits this high sampling frequency 
for most monitoring programs. Sampling frequencies of 
every 4 days, 10 times per month, or more frequently also are 
uncommon among programs monitoring pesticide concentra-
tions in streams. Sampling frequencies of weekly to monthly 
are more common and are referred to in this report as sparse 
monitoring data.

A new model methodology was developed for using 
sparse and potentially highly censored pesticide monitoring 
data to estimate pesticide concentration extremes, such as the 
annual maximum daily concentration. The new methodol-
ogy is based on a statistical model, called SEAWAVE–QEX 
(seasonal wave with streamflow adjustment and extended 
capability to produce simulated daily concentrations). The 
SEAWAVE–QEX model expresses log-transformed daily pes-
ticide concentration in terms of a seasonal wave, flow-related 
variability, long-term trend, and serially correlated errors. The 
seasonal wave models seasonality in pesticide concentration 
because of site-specific timing and duration of the pesticide 
application season. Flow-related variability is modeled using 
two variables that are called mid-term and short-term flow 
anomalies, and the variables are computed using anteced-
ent daily discharge. The model errors are assumed to have 
seasonal standard deviation that can increase with increasing 
pesticide concentration and serial correlation that is modeled 
using an exponential correlation function. The SEAWAVE–
QEX model can be used to simulate daily concentrations that 
are equal to (for days with uncensored observations) or less 
than (for days with censored observations) the monitoring data 
and that consist of randomly generated values for days with 
no observations. The simulated daily concentrations reproduce 
the statistical time series characteristics of actual daily pesti-
cide concentrations, such as serial correlation, seasonal means 
and variances, and flow-related variability. The simulated daily 
concentrations are called conditional simulations, because 
the simulated concentrations are conditioned on the observed 
monitoring data. The conditional simulations can be used to 
estimate concentration extremes, such as the annual maximum 
daily concentration, or to estimate bias factors.

This report describes the SEAWAVE–QEX modeling 
methodology, model testing, and data requirements. Self-
contained R functions for fitting the model parameters and 
generating conditional simulations of daily concentrations 
are provided in an accompanying model archive (appendix). 
The model can be applied to datasets with as few as 3 years 
of record, as few as 30 total observations, and as few as 
10 uncensored observations. Model testing indicated that, 
provided the model assumptions are verified, estimated annual 
maximum daily concentrations produced by the model should 
be relatively unbiased (bias between -10 and 25 percent) 
for low censoring rates (less than 30 percent), but can have 

moderate upward bias (between about 25 and 50 percent) for 
higher censoring rates. The estimates can have high uncer-
tainty, especially when the censoring rate is high and the spac-
ing between observations is large in relation to the correlation 
time scale of the model errors. However, provided estima-
tion uncertainty is quantified (for example, using confidence 
intervals instead of point estimates), the estimates should be 
useful for evaluating pesticide exposure risk and uncertainty. 
The model was applied to atrazine, carbaryl, chlorpyrifos, 
and fipronil data from the U.S. Geological Survey (USGS) 
National Water Quality Network (NWQN). A total of 112 sites 
were analyzed for atrazine, 38 for carbaryl, 34 for chlorpy-
rifos, and 33 for fipronil. Uncertainty in the estimated con-
centration extremes computed using conditional simulations 
from the SEAWAVE–QEX model increases as the standard 
deviation of the model error increases or the correlation time 
scale of the model error decreases. Based on the parameter 
estimation results for the sites analyzed, uncertainty generally 
should be highest for carbaryl, lowest for fipronil, and mixed 
for atrazine and chlorpyrifos.
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Appendix. Description of R Functions and Model Archive for Running 
SEAWAVE–QEX.

R functions are provided for merging daily discharge and pesticide concentration data, preparing the data for analysis, fit-
ting the seasonal wave with streamflow adjustment and extended capability (SEAWAVE–QEX) model parameters, and gener-
ating conditional simulations of daily pesticide concentrations. In many cases, the R functions complete straightforward tasks 
described in the main body of this report and require little explanation. Some tasks, such as maximum likelihood estimation of 
the seasonal variance and serial correlation parameters and conditional simulation of daily concentrations, have additional expla-
nation. The functions are listed and described in the following section, and the code for creating the functions and instructions 
for running the model are provided in the “Model Archive” section of this appendix.

SEAWAVE–QEX Functions

Function: swaveqexMerge

Purpose: Merges daily discharge and pesticide concentration data, completes data screening steps, produces rough 
data plots, and creates object for input to swaveqexFit.

Required R libraries: waterData

Usage

> qexfitinput <– swaveqexMerge( cdatin, qwstnum, ddstnum, yrbeg, yrend, getdd=”WD”)

cdatin is a data frame with the pesticide concentration data

- the first column should be the station number (character)

- the second column should be the date, in “yyyy-mm-dd” format (character)

- the concentration value should be in a column named “final_value” (numeric)

- the remark should be in a column named “final_remark” (character)

qwstnum is the station number from cdatin to analyze (character).

ddstnum is the station number for daily discharge (character, usually the same as qwstnum). If getdd is  
omitted or gettdd=”WD”, the waterData package is used to download daily discharge for the specified U.S.  
Geological Survey station number (ddstnum). If getdd=”File”, the daily discharge data are assumed to be in a 
tab-delimited text file called dd_ddstnum.txt in the current working directory. The first column of the text file 
for daily discharge should be the date (in yyyy-mm-dd format) and the second column should be the discharge 
value. The text file should not have a header and there should be no missing values. 

yrbeg and yrend are the beginning and ending calendar years for analysis (numeric). If unknown, the entire 
period of record can be analyzed by setting yrbeg=0 and yrend=3000.

Examples

qexfitinput <- swavqexMerge(SWqexAtrazineData,”03353637”,”03353637”,1993,2002)

Prepares the atrazine data for Little Buck Creek near Indianapolis, Indiana (USGS station number 03353637 in 
the SWqexAtrazineData dataframe) for 1993–2002.

qexfitinput <- swavqexMerge(SWqexAtrazineData,”03353637”,”03353637”,1993,2002,getwd=”File”)

looks for discharge data in a file called dd_03353637.txt in the current working directory.

Output

Rough data plots (sent to the default plot device). These plots can be used to adjust yrbeg and yrend and see if 
data are sufficient for analysis. 
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An object (list) named qexfitinput or any other user-specified name, for input to swaveqexFit

Function: swaveqexFit

Purpose: Uses input object prepared by swaveqexMerge to estimate the model parameters, produce diagnostic 
plots, and generate conditional simulations of daily concentration.

Required R libraries: tmvtnorm, survival

Other functions required (described later): swaveqexPESTpdo, swaveqexCSIM 

Usage

> qexfitout <- swaveqexFit(qexfitinput,outfolder,ncs=50)

qexfitinput is an object (list) produced by swaveqexMerge.

outfolder is a character name for the folder to save the diagnostic plots and conditional simulations. The folder 
needs to be created ahead of time. For example, “outatrazine\\” will save the results in a folder called outatra-
zine in the default working directory.

ncs is the number of conditional simulations to generate (default is 50, maximum is 250).

Output

A Portable Document Format (PDF) file called “PlotsXXX.pdf”, where XXX is the qwstnum used to produce 
qexfitinput. This file contains diagnostic plots similar to figures 5–8 of this report.

A tab-delimited text file called “CSIMSXXX.txt” (where XXX is the qwstnum) with daily output information for 
the period of record, including columns with the observed concentrations, daily discharges, and ncs conditional 
simulations. See the “Model Archive” section of this appendix for description of the CSIMXXX.txt file.

A list with three elements, saved as qexfitout or any other user specified name, with the parameter estimates 
and other information as follows:

qexfitout[[1]] is the station number for pesticide concentration data (character)

qexfitout[[2]] is a vector of length 25 with the output names (character)

qexfitout[[3]] is a vector of length 25 with the output values (numeric)

The output names and descriptions are as follows:

yrbeg	 beginning year of record
yrend	 ending year of record
rlen	 record length
nobs	 number of observations
nucen	 number of uncensored observations
prucen	 proportion of uncensored observations
int	 regression intercept
cswave	 regression coefficient for seasonal wave
pswave	 approximate p-value for cswave
cmtfa	 regression coefficient for mid-term flow anomaly
pmtfa	 approximate p-value for cmtfa
cstfa	 regression coefficient for short-term flow anomaly
pstfa	 approximate p-value for cstfa
ctnd	 regression coefficient for trend term
ptnd	 approximate p-value for ctnd
wmcls	 wave model class (1 or 2)
wmodno	 pulse input model number (1 through 6)
hlife	 modeled “half-life” (1 through 4)
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wshft	 phase shift
sigma	 estimated error standard deviation
alph	 estimated value of alpha
cts	 estimated correlation time scale
n2LLIK	 negative 2 times the log-likelihood value
sdmtfa	 standard deviation of the mid-term flow anomaly
sdstfa	 standard deviation of the short-term flow anomaly

Function: swaveqexPESTpdo

Purpose: Selects the best wave model and computes estimates of the regression coefficients and maximum 
pseudo-likelihood estimates of the seasonal standard deviation and serial correlation parameters. 

Required R libraries: tmvtnorm, survival

Other functions used (described later): estsigxx, evalmodlikxx, compwaveconvxx 

This function is called internally from swaveqexFit. User does not need to call this function.

Additional details: With highly censored data, exact maximum likelihood estimation is intractable. An alternative 
method, based on the pseudo-likelihood function is used. This method has been determined to be comparable 
(in terms of bias and efficiency) to exact maximum likelihood while being much simpler to compute (Besag, 1977; 
Zeger and Brookmeyer, 1986). 

Function: estsigxx

Purpose: Finds iterative solution for sigma to maximize the pseudo-likelihood given values for alpha and cts. User 
does not need to call this function.

Function: evalmodlikxx

Purpose: Computes value of negative 2 times the log-pseudo-likelihood. User does not need to call this function.

Function: compwaveconvxx

Purpose: Computes the seasonal wave given the model class, model number, model half-life, and phase shift. Func-
tion used internally.

Function: swaveqexCSIM

Purpose: Computes conditional simulations of daily pesticide concentration given estimated model parameters and 
other information passed from swaveqexFit. Input and output are processed within swaveqexFit. 

Required R libraries: tmvtnorm

Other functions required (described later): impcenvals, condsim 

Function: impcenvals

Purpose: Imputes values for censored normalized residuals. Input and output are processed within swaveqexCSIM. 
Function used internally.

Required R libraries: tmvtnorm

Additional details:  The imputed values for each block of consecutive censored residuals are generated at random 
from a truncated conditional multivariate normal distribution for the censored residuals given the closest uncen-
sored values before and after the block. This process relies on the assumption of an exponential correlation func-
tion, for which the residuals have a first-order Markov dependence structure and, thus, only the closest uncensored 
values are required. 

Function: condsim
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Purpose: Computes a conditional trace for the normalized residuals given the uncensored residuals and the imput-
ed censored residuals. Input and output are processed within swaveqexCSIM and are not important for user.

Required R libraries: tmvtnorm

Additional details:  The values for each block of days in between the observed/imputed values are generated at 
random from a conditional multivariate normal distribution given the closest values before and after the block. This 
process relies on the assumption of an exponential correlation function, for which the residuals have a first-order 
Markov dependence structure and, thus, only the closest values before and after the block are required.

Model Archive

The following files are available for download at https://doi.org/10.3133/sir20175159.
• swaveqexFunctions_V1.R

Text file with the code required to create the SEAWAVE–QEX functions.

• swaveQEX.Rdata

R workspace containing the following dataframes:

o SWqexAtrazineData, SWqexCarbarylData, SWqexChlorpyrifosData, SWqexFipronilData

The atrazine, carbaryl, chlorpyrifos, and fipronil dataframes used for the applications in this

report.

o SWqexAtrazineSites, SWqexCarbarylSites, SWqexChlorpyrifosSites, SWqexFipronilSites

The site lists and other information for each pesticide (see tables 2–5 of this report).

o SWqexAtrazinePest, SWqexCarbarylPest, SWqexChlorpyrifosPest, SWqexFipronilPest
The SEAWAVE–QEX parameter estimates for each pesticide/site using the period of record (yrbeg,
yrend) that is specified in the site list files. See description of output for the swaveqexFit function
for the variable names.

Instructions for Running SEAWAVE–QEX

A recent version of R (v.3.3.0 or later) is required, and installing Rstudio is recommended. The user libraries water-
Data, tmvtnorm, and survival also need to be installed. 

Step 1. Open the swaveQEX.Rdata workspace containing the dataframes described previously.

Step 2. Create the SEAWAVE–QEX functions in your user environment using the source command: 

> source(“swaveqexFunctions.txt”)

Step 3. Before running the model, attach the following required libraries:

> library(“survival”)

> library(“tmvtnorm”)

> library(“waterData”)

SEAWAVE–QEX should now be fully functional. Start by verifying some of the results from the report, provided in 
the dataframes. For example, reproduce the results for the example model for carbaryl (figs. 9 and 10 and related 
discussion). This site is the second site in the carbaryl site list (USGS station number 01374987; the second row of 
the dataframe SWqexCarbarylSites; also the second row in table 3 of the report). The data first need to be prepared 
using swaveqexMerge:
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> Kisco <- swaveqexMerge(SWqexCarbarylData,”01374987”,”01374987”,2000,2008)

This command will create an object named Kisco in your workspace that is ready for swaveqexFit. Before running 
swaveqexFit, create a folder in the default directory called CarbarylOutput or some other name for storing the out-
put files. Also, make sure that no plotting devices are open. Then, run swaveqexFit:

> KiscoPest <- swaveqexFit(Kisco,”CarbarylOutput\\”,ncs=100)

This command will create the object KiscoPest in your workspace with the SEAWAVE–QEX parameter estimates. 
To make the results easier to view, a dataframe can be created with the first column consisting of the parameter 
names and the second column consisting of the parameter estimates:

> KiscoPest <- data.frame(KiscoPest[[2]],KiscoPest[[3]])

The parameter estimates should be identical to the values in the second row of the SWqexCarbarylPest dataframe.

The two files named “Plots01374987.pdf” and “CSIM01374987.txt” also should be in the CarbarylOutput folder. 
Look at the plots in the PDF file. The first plot should look similar to figure 9. The points labeled as “observed 
concentrations” (the uncensored observations) should be identical to figure 9 because those points do not change 
depending on the conditional simulation. However, the conditional trace (including the points labeled “simulated 
censored concentrations”) are randomly generated and will differ for each plot. The estimated annual maximum 
concentrations (which are the average of ncs=100 values) may differ slightly for each plot.

The second plot should look like figure 10 of the report. Note that the curves showing the fitted seasonal wave 
and +/- two seasonal standard deviations (and the solid points) should be identical to figure 10. However, the open 
points (corresponding to simulated censored observations) are from the conditional trace and will be different for 
each plot.

Now look at the CSIM01374987.txt file. The file should look similar to the following:
date	        year	  jday	  qobs	  cobs	  crem	 estreg	 estcmu  csim1   csim2   csim3 
2000-01-01	 2000	   1	  24.0	   1.11	  2.14	   0.20    0.10    2.38 
2000-01-02	 2000	   2	  24.0	   1.11	  3.48	   0.22    0.41    1.05 
2000-01-03	 2000	   3	  29.0	   1.28	  3.11	   0.58    1.08    1.90	
2000-01-04	 2000	   4	  32.0	   1.37	  3.23	   0.91    2.88    1.85	
2000-01-05	 2000	   5	  61.0	   2.22	  9.26	   1.34    1.47    1.27	

This is a tab-delimited text file with a row for each day of the period analyzed and the following columns:

date (column 1):  YYYY–MM–DD format

year (column 2):  the calendar year

jday (column 3):  integer day

qobs (column 4):  observed daily discharge (cubic foot per second)

cobs (column 5):  observed concentrations (micrograms per liter, blanks for missing values)

crem (column 6):  concentration remark (< for censored value, blank for missing or uncensored values)

The remaining columns (7 through ncs+8) contain transformed model generated concentrations (TC):

TC = Round(1000C,2), where C is concentration, in micrograms per liter. TC is obtained by multiplying the model 
generated concentration by 1,000 and rounding to 2 decimal places. To obtain concentration, in micrograms per 
liter, out to 5 decimal places, divide TC by 1,000.

Note that missing values of TC are coded as numeric value -9

estreg (column 7): Fitted value of TC from the regression model

estmu (column 8): Mean of the ncs (for example, ncs=100) conditional traces

csim1, csim2, csim3, … (columns 9 through ncs+8): conditional traces of TC.
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