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Status and Understanding of Groundwater Quality in the 
Monterey-Salinas Shallow Aquifer Study Unit, 2012–13: 
California GAMA Priority Basin Project

By Carmen A. Burton and Michael T. Wright

Abstract
Groundwater quality in the approximately 7,820-square-

kilometer (km2) Monterey-Salinas Shallow Aquifer (MS-SA) 
study unit was investigated from October 2012 to May 2013 
as part of the second phase of the Priority Basin Project of the 
Groundwater Ambient Monitoring and Assessment (GAMA) 
Program. The study unit is in the central coast region of 
California in the counties of Santa Cruz, Monterey, and San 
Luis Obispo. The GAMA Priority Basin Project is being 
conducted by the California State Water Resources Control 
Board in cooperation with the U.S. Geological Survey and the 
Lawrence Livermore National Laboratory. 

The MS-SA study was designed to provide a statistically 
robust assessment of untreated-groundwater quality in the 
shallow aquifer systems. The assessment was based on water-
quality samples collected by the U.S. Geological Survey 
from 100 groundwater sites and 70 household tap sites, along 
with ancillary data such as land use and well-construction 
information. The shallow aquifer systems were defined by 
the depth interval of wells associated with domestic supply. 
The MS-SA study unit consisted of four study areas—Santa 
Cruz (210 km2), Pajaro Valley (360 km2), Salinas Valley 
(2,000 km2), and Highlands (5,250 km2).

This study had two primary components: the status 
assessment and the understanding assessment. The first 
primary component of this study—the status assessment—
assessed the quality of the groundwater resource indicated by 
data from samples analyzed for volatile organic compounds 
(VOCs), pesticides, and naturally present inorganic 
constituents, such as major ions and trace elements. The 
status assessment is intended to characterize the quality of 
groundwater resources in the shallow aquifer system of the 
MS-SA study unit, not the treated drinking water delivered 
to consumers by water purveyors. As opposed to the public 
wells, however, water from private wells, which often tap the 
shallow aquifer, is usually consumed without any treatment. 
The second component of this study—the understanding 
assessment—identified the natural and human factors that 
potentially affect groundwater quality by evaluating land-
use characteristics, measures of location, geologic factors, 
groundwater age, and geochemical conditions of the shallow 
aquifer. An additional component of this study was a 

comparison of MS-SA water-quality results to those of the 
GAMA Monterey Bay and Salinas Valley Groundwater Basins 
study unit. This study unit covered much of the same areal 
extent as the MS-SA, but assessed the deeper, public drinking-
water aquifer system.

Relative concentrations (sample concentration divided 
by the benchmark concentration) were used to evaluate 
concentrations of constituents in groundwater samples 
relative to water-quality benchmarks for those constituents 
that have Federal or California benchmarks, such as 
maximum contaminant levels. For organic and special-interest 
constituents, relative concentrations were classified as high, 
greater than 1.0; moderate, greater than 0.1 and less than or 
equal to 1.0; or low, less than or equal to 0.1. For inorganic 
constituents, relative concentrations were classified as high, 
greater than 1.0; moderate, greater than 0.5 and less than 
or equal to 1.0; or low, less than or equal to 0.5. A relative 
concentration greater than 1.0 indicates that the concentration 
was greater than a benchmark. Aquifer-scale proportions 
were used to quantify regional-scale groundwater quality. 
The aquifer-scale proportions are the areal percentages of the 
shallow aquifer system where relative concentrations for a 
given constituent or class of constituents were high, moderate, 
or low. 

Inorganic constituents were measured at high and 
moderate relative concentrations more frequently than organic 
constituents. In the MS-SA study unit, inorganic constituents 
with benchmarks were detected at high relative concentrations 
in 51 percent of the study unit. The greatest proportions of 
high relative concentrations of trace elements and radioactive 
constituents were in the Highlands and Santa Cruz study areas, 
whereas high relative concentrations of nutrients were most 
often detected in the Salinas Valley and Pajaro Valley study 
areas and salinity indicators were most often detected in the 
Highlands and Salinas Valley study areas. The trace elements 
detected at high relative concentrations were arsenic, boron, 
iron, manganese, molybdenum, selenium, and strontium. 
The radioactive constituents detected at high relative 
concentrations were adjusted gross alpha radioactivity and 
uranium. The nutrient detected at high relative concentrations 
was nitrate plus nitrite. The salinity indicators detected at 
high relative concentrations were chloride, sulfate, and total 
dissolved solids. 
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Organic constituents (VOCs and pesticides) were not 
detected at high relative concentrations in any of the study 
areas. The fumigant 1,2-dichloropropane was detected at 
moderate relative concentrations. The VOC chloroform and 
the pesticide simazine were the only organic constituents 
detected in more than 10 percent of samples. The constituents 
of special interest NDMA (N-nitrosodimethylamine) and 
perchlorate were detected at high relative concentrations in the 
MS-SA study unit. 

Selected constituents were evaluated with explanatory 
factors to identify potential sources or processes that could 
explain their presence and distribution. Trace elements and 
radioactive constituents came from natural sources and were 
not elevated by anthropogenic sources or processes, except 
for selenium and the radioactive constituent uranium. Arsenic, 
manganese, iron, selenium, and uranium concentrations were 
all influenced by oxidation-reduction conditions. 

Unlike other trace elements and radioactive constituents, 
uranium and selenium can be affected by agricultural 
practices. Uranium and selenium can be released from aquifer 
sediments as a result of irrigation recharge water interacting 
with bicarbonate systems.

Nitrate can be strongly affected by anthropogenic 
sources. Nitrate concentrations were significantly higher in 
modern groundwater, indicating recent inputs of nitrate to 
the shallow aquifer system. Nitrate was positively correlated 
with agricultural land use, indicating that irrigation-return 
water could be leaching nitrogen fertilizer and naturally 
present nitrate to elevate nitrate concentrations in shallow 
groundwater. 

The salinity indicators total dissolved solids, chloride, 
and sulfate all had natural sources in the MS-SA study unit, 
primarily marine sediments. Concentrations of the constituents 
were elevated as a result of evaporative concentration of 
irrigation water or precipitation. Sulfate concentrations were 
significantly correlated to agricultural land use, indicating that 
agricultural land-use practices are a contributing source of 
sulfate to groundwater.

The samples with most of the detections of VOCs were 
from sites in the Pajaro Valley and northern part of the Salinas 
Valley. Most of the samples with pesticide detections were 
from sites in the Salinas Valley study area. The herbicide 
simazine was positively correlated to the percentage of 
agricultural land use, and its concentrations were higher in 
modern groundwater than in pre-modern groundwater. 

Perchlorate, similar to nitrate, has natural and 
anthropogenic sources. Correlations of perchlorate to 
dissolved oxygen, nitrate, and percentage of agricultural land 
use indicated that the irrigation-return water could be leaching 
naturally present perchlorate, as well as perchlorate from 
historical applications of Chilean nitrate fertilizer, to increase 
perchlorate concentrations in groundwater. 

The quality of the water in the shallow aquifer system 
from this study was compared with the quality of water 
in the public drinking-water aquifer in a previous GAMA 

(MS-PA) study in the same area. The shallow system was 
more oxic and had more sites with modern groundwater than 
the public drinking-water aquifer, which was more anoxic 
and had sites with more pre-modern groundwater. Arsenic 
and selenium were found at high relative concentrations in 
a greater proportion of the shallow system. Manganese and 
iron were found at high relative concentrations in a greater 
proportion of the public drinking-water aquifer. Uranium was 
found at higher relative concentrations in a greater proportion 
of the shallow system. Concentrations of arsenic, iron, 
manganese, and molybdenum are not likely to change much as 
groundwater percolates from the shallow system to the public 
drinking-water aquifer because there are no anthropogenic 
sources affecting these constituents. Uranium and selenium 
concentrations in the public drinking-water aquifer could be 
affected by the higher concentrations in the shallow system 
because of irrigation-return water, however.

Nitrate and salinity indicators had concentrations that 
were much higher in the shallow system than the deeper 
public drinking-water aquifer. High concentrations of these 
constituents in the shallow system could lead to increased 
concentrations in the public drinking-water aquifer in parts of 
the study units because of land-use practices, such as irrigated 
agriculture.

Organic constituents were detected more frequently in 
the public drinking-water aquifer than in the shallow system, 
possibly because more of the sites sampled in the public 
drinking-water aquifer were in urban areas compared to the 
sites sampled for the shallow system or because sources of 
contamination have decreased as a result of changes in use at 
the land surface.

Introduction
About one-half of the water used for public and 

domestic drinking-water supply in California is groundwater 
(Kenny and others, 2009). To assess the quality of ambient 
groundwater in shallow aquifers used for drinking-water 
supply and to establish a baseline groundwater-quality 
monitoring program, the California State Water Resources 
Control Board (SWRCB), in cooperation with the 
U.S. Geological Survey (USGS) and Lawrence Livermore 
National Laboratory (LLNL), implemented the Groundwater 
Ambient Monitoring and Assessment (GAMA) Program 
(http://www.waterboards.ca.gov/gama/). The SWRCB initiated 
the GAMA Program in 2000 in response to Legislative 
mandates (State of California, 1999, 2001a). The program 
consists of four projects: (1) the GAMA Priority Basin 
Project (GAMA-PBP), carried out by the USGS  
(http://ca.water.usgs.gov/gama/); (2) the GAMA Domestic 
Well Project, carried out by the SWRCB; (3) the GAMA 
Special Studies, carried out by the LLNL; and (4) the 
GeoTracker GAMA online groundwater information system, 
led by the SWRCB (http://geotracker.waterboards.ca.gov/

http://www.waterboards.ca.gov/gama/
http://ca.water.usgs.gov/gama/
http://geotracker.waterboards.ca.gov/gama/
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gama/). The SWRCB’s Domestic Well Project sampled private 
domestic wells on a voluntary, first-come-first-serve basis in 
six counties between 2002 and 2011. From 2004 to 2012, the 
GAMA-PBP did water-quality assessments for groundwater 
resources used for public drinking water. These resources 
typically are deeper than the groundwater resources used for 
domestic drinking water. In 2012, the GAMA-PBP began 
water-quality assessments of shallow aquifers typically used 
by private domestic wells.

The GAMA-PBP was initiated in response to the 
Groundwater Quality Monitoring Act of 2001 to assess and 
monitor the quality of groundwater in California, to help 
understand and identify risks to groundwater resources, and 
to increase the availability of information about groundwater 
quality to the public (State of California, 2001b). 

For the first phase of the GAMA-PBP, the USGS, in 
cooperation with the SWRCB, developed a monitoring plan to 
assess groundwater resources used for public drinking-water 
supply through statistically reliable sampling approaches 
(Belitz and others, 2003; California State Water Resources 
Control Board, 2003). Hydrologic and geologic conditions 
and land-use patterns in California were considered in this 
statewide assessment of groundwater quality. Belitz and 
others (2003) partitioned the State into 10 hydrogeologic 
provinces, each with distinctive hydrologic, geologic, and 
land-use characteristics: Cascades and Modoc Plateau, 
Klamath Mountains, Northern Coast Ranges, Central Valley, 
Sierra Nevada, Basin and Range, Southern Coast Ranges, 
Transverse Ranges and selected Peninsular Ranges, Desert, 
and San Diego Drainages (fig. 1). These 10 hydrogeologic 
provinces include groundwater basins designated by the 
California Department of Water Resources (CDWR; California 
Department of Water Resources, 2003). Groundwater basins 
generally consist of relatively permeable, unconsolidated 
deposits of alluvial origin. Areas outside of basins generally 
consist of fractured hard-rock aquifers and are an important 
source of drinking water in some hydrogeologic provinces.

The first phase of the GAMA-PBP assessed 
approximately 95 percent of the groundwater resource used 
for public supply. Basins were prioritized for sampling on the 
basis of the number of public-supply wells, with secondary 
consideration given to municipal groundwater use, agricultural 
pumping, the number of historically leaking underground 
fuel tanks, and the number of Public Land Survey sections 
having registered pesticide applications (Belitz and others, 
2003). The State agency responsible for regulation of public 
drinking water maintains a database of public-supply wells 
and water-quality data collected for regulatory compliance 
purposes. On July 1, 2014, this responsibility moved from 
the California Department of Public Health Drinking Water 
Program to the SWRCB Division of Drinking Water (DDW; 
http://www.waterboards.ca.gov/drinking_water/programs/
DW_PreJuly2014.shtml).

For the second phase of the GAMA-PBP, a different 
method of prioritization was required because shallow aquifer 

systems typically are used by private domestic wells, and no 
statewide database of these wells was available. The State 
was divided into 938 groundwater units, corresponding to 
the 463 alluvial groundwater basins defined by the CDWR 
and 475 areas outside of the basins (referred to as highland 
areas; Johnson and Belitz, 2014). The estimated number of 
households relying on domestic wells in each groundwater 
unit was calculated from U.S. Census data (U.S. Census 
Bureau, 1990), and water-use information was compiled from 
drillers’ logs submitted to the CDWR (Johnson and Belitz, 
2015). The groundwater units were prioritized for sampling 
on the basis of the number and density of households relying 
on domestic wells. Groundwater units were grouped into 
study units designed to facilitate comparison of groundwater 
quality between the shallow aquifer systems assessed during 
this second phase of the GAMA-PBP and the deeper aquifer 
systems assessed during the first phase. 

This report discusses the Monterey-Salinas Shallow 
Aquifer (MS-SA) study unit (fig. 1), which was the second 
study unit sampled in the second phase of the GAMA-PBP. 
The MS-SA study unit is in the Southern Coast Ranges 
hydrogeologic province. The study unit has four study areas—
Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands—that 
consist of the groundwater basins included in the GAMA 
Priority Basin Project assessment of groundwater resources 
used for public supply in the Monterey-Salinas region 
(Kulongoski and Belitz, 2007, 2011) and highland areas 
around the groundwater basins.

The GAMA Priority Basin Project was designed to assess 
the status of the quality of the groundwater resources, identify 
natural and human factors likely affecting groundwater 
quality, and monitor changes in groundwater quality. These 
three objectives were modeled after those of the USGS 
National Water Quality Assessment (NAWQA) Program 
(Hirsch and others, 1988). The sample collection protocols 
used in this study were designed to obtain representative 
samples of groundwater. 

In groundwater basins, domestic and small-system wells 
typically are shallower than public-supply wells listed in the 
DDW database. In the first phase of the GAMA-PBP, the 
groundwater resources used for public drinking water were 
defined by the depths of the screened or open intervals of 
public-supply wells in the study unit. The shallow aquifer 
system assessed during the second phase of the GAMA-
PBP was defined as the aquifers generally shallower than 
the groundwater resources used for public drinking water. In 
highland areas, the differences between depth zones used by 
public-supply wells and by domestic and small-system wells 
can be less distinct.

All published and quality-assured data collected for the 
GAMA Program are available through the USGS National 
Water Information System (NWIS) web interface  
(http://waterdata.usgs.gov/ca/nwis/) and the SWRCB 
GeoTracker groundwater information system  
(https://geotracker.waterboards.ca.gov/gama/).

http://geotracker.waterboards.ca.gov/gama/
http://www.waterboards.ca.gov/drinking_water/programs/DW_PreJuly2014.shtml
http://www.waterboards.ca.gov/drinking_water/programs/DW_PreJuly2014.shtml
http://waterdata.usgs.gov/ca/nwis/
https://geotracker.waterboards.ca.gov/gama/
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Figure 1.  California hydrogeologic provinces and the Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient 
Monitoring and Assessment Program Priority Basin Project.

Previous GAMA Priority Basin Project Study

As part of the first phase of GAMA-PBP, the Monterey 
Bay and Salinas Valley Groundwater Basins (MS-PA) study 
unit was sampled in 2005 (Kulongoski and Belitz, 2007, 
2011). The groundwater resources primarily used for public 
drinking water in the CDWR-defined groundwater basins 

and subbasins from Santa Cruz to Paso Robles were studied 
(fig. 2). The groundwater resources used for public drinking 
water for the MS-PA study were defined by the perforation 
intervals of sites listed in the DDW water-quality database 
for the MS-PA study unit. The MS-PA study unit covers 
approximately the same area as the Santa Cruz, Pajaro Valley, 
and Salinas Valley study areas in the MS-SA study unit.  
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The MS-PA study found that inorganic constituents with 
health-based benchmarks were at high concentrations in 
14.5 percent of the primary aquifer. Inorganic constituents 
detected at high concentrations included nitrate, molybdenum, 
arsenic, boron, and gross alpha radioactivity. Organic 
constituents were detected in high concentrations in 
0.2 percent of the primary aquifer because of tetrachloroethene 

(PCE) and methyl tert-butyl ether (MTBE). The herbicide 
simazine was the only organic constituent detected in 
more than 10 percent of the primary aquifer. Land use, 
geochemical conditions, groundwater age, and depth to the 
top of perforations of the well were the factors that most 
strongly correlated with groundwater quality in the MS-PA 
(Kulongoski and Belitz, 2011).
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Figure 2.  Boundaries of the Monterey-Salinas Shallow Aquifer study unit, the Santa Cruz, Pajaro Valley, Salinas Valley, and Highlands 
study areas and the location of major cities, topographic and hydrologic features, California Groundwater Ambient Monitoring 
Assessment Priority Basin Project, October 2012 to May 2013.
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Purpose and Scope

The purposes of this report are to provide a description 
of the hydrogeologic setting of the MS-SA study unit, an 
assessment of the status of quality in the shallow aquifer 
system in the MS-SA study unit, a general identification of 
natural and anthropogenic factors that could be affecting 
groundwater quality, and a comparison between the quality 
of groundwater in the shallow aquifer system (MS-SA study 
unit) and the quality of groundwater resources used for 
public drinking water (MS-PA study unit). Temporal trends 
in groundwater quality in the shallow and primary aquifer 
systems are not discussed in this report. Water-quality data 
from samples collected by the USGS for the GAMA program 
in the MS-SA study unit, as well as details about sample 
collection, analysis, and quality-assurance procedures, are 
provided in Goldrath and others (2016).

Features of the hydrogeologic setting for the four study 
areas are described; features of specific alluvial basins and 
delineated hard-rock aquifers are not discussed. Geology, land-
use patterns, and hydrology of the study unit are summarized. 
Characteristics of groundwater resources used for domestic 
drinking water, including overlying land-use characteristics, 
depth and hydrologic conditions, geologic characteristics, 
groundwater age, and geochemical conditions, are described 
by using ancillary data compiled for the groundwater sites in 
the MS-SA study unit sampled by the USGS.

The status assessment is designed to provide a 
statistically representative characterization of groundwater 
resources used for domestic drinking water at the study-area 
scale for the period of the assessment (Belitz and others, 
2003, 2010, 2015). This report describes methods used 
to design the sampling network for the status assessment 
and to estimate aquifer-scale proportions having specified 
ranges of relative concentrations for constituents. Aquifer-
scale proportion is defined as the areal proportion of the 
groundwater resource having groundwater of defined quality 
(Belitz and others, 2010). The status assessment uses water-
quality data from 100 sites selected by the USGS at a spatial 
coverage of one site per grid cell (referred to as grid sites) 
across the MS-SA study unit. Samples were collected for 
analysis of anthropogenic constituents, such as volatile organic 
compounds (VOCs) and pesticides, and of naturally present 
inorganic constituents, that can be affected by anthropogenic 
activities, such as major ions and trace elements. Data from 
70 other sites also were collected at households supplied by 
domestic wells (referred to as tap sites) in 2 of the 4 study 

areas in the MS-SA study unit. Tap sites were used to increase 
the spatial density of data for selected inorganic constituents in 
the Salinas Valley and Pajaro Valley study areas. The resulting 
set of water-quality data from USGS-grid and tap sites was 
considered to be representative of the shallow aquifer systems 
in the MS-SA study unit.

To provide context, the water-quality data discussed 
in this report were compared to the California and Federal 
regulatory and non-regulatory benchmarks for treated drinking 
water (California State Water Resources Control Board, 2016, 
2018a,b; U.S. Environmental Protection Agency, 2012) and 
non-regulatory health-based drinking-water benchmarks 
known as health-based screening levels (HBSLs) developed 
by the USGS (Toccalino and others, 2012). The assessments in 
this report are intended to characterize the quality of untreated 
groundwater resources in the shallow aquifers in the study 
unit. Grid-site samples used for this study were collected 
before any treatment or storage. Most tap-site samples were 
collected after storage or pressure tanks used to store water 
from wells. The quality of groundwater can differ from the 
quality of drinking water because water chemistry can change 
as a result of contact with plumbing systems or the atmosphere 
or because of treatment, disinfection, or blending with water 
from other sources. The State of California does not regulate 
the quality of drinking water provided by domestic wells. 

The evaluation of natural and human factors that could 
affect groundwater quality in the study unit is based primarily 
on relations between groundwater quality and potential 
explanatory factors. These relations are examined with 
statistical tests and graphical analyses and are discussed in 
the context of the hydrogeologic setting of the study unit. 
Potential explanatory factors included land use; geology; well 
depth; indicators of groundwater age; distance or density of 
possible sources of contamination, such as septic systems; and 
geochemical conditions.

Comparisons between groundwater resources used for 
domestic drinking water (MS-SA) and those used for public 
drinking water (MS-PA) were made using results from the 
Santa Cruz, Pajaro Valley, and Salinas Valley study areas of 
the MS-SA study unit and from the GAMA-PBP sampling 
of the MS-PA in 2005 (Kulongoski and Belitz, 2007, 2011). 
Study-unit characteristics, such as well construction and land 
use around each site, as well as the results of water-quality 
analyses in each study unit are compared and discussed in 
the “Comparison of Water Quality of the Shallow and Public 
Drinking-Water Aquifer Systems” section.
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Hydrogeologic Setting of the 
Monterey-Salinas Shallow Aquifer 
Study Unit

The MS-SA study unit is in the Southern Coast Ranges 
hydrogeologic province (fig.1) described by Belitz and others 
(2003) and the Central Coast Hydrologic Region defined 
by the CDWR (California Department of Water Resources, 
2003). More than three-quarters of the water used for public 
and domestic drinking-water supply in the Central Coast 
Hydrologic Region of California is groundwater, and there are 
over 8,000 well drilling logs for domestic wells (California 
Department of Water Resources, 2013). The study unit covers 
approximately 7,820 square kilometers (km2) in Santa Cruz, 
Monterey, and San Luis Obispo Counties in the central coast 
region of California (fig. 2). Groundwater provides 99 percent 
of water for agricultural and urban use in Monterey County, 
92 percent in San Luis Obispo County, and 79 percent in Santa 
Cruz County (California Department of Water Resources, 
2013).

The MS-SA study unit was divided into four study 
areas based on the CDWR basin delineations, geology, 
and geography. The Santa Cruz, Pajaro Valley, and Salinas 
Valley study areas cover approximately the same area as a 
previous study unit in the first phase of the GAMA-PBP—
the Monterey Bay and Salinas Valley Basins (MS-PA) study 
unit (Kulongoski and Belitz, 2011). A fourth study area in 
the MS-SA study unit, the Highlands study area, consists of 
areas that primarily are served by domestic wells bordering 
the Salinas Valley study area (fig. 2), but are partly outside of 
CDWR defined basins. General information about the study 
areas is given in table 1.

The climate in the MS-SA study unit is characterized 
by warm, dry summers and cool, moist winters. Based on an 

80-year average of climate records from 1931 to 2015 from 
the National Climatic Data Center station at the Salinas airport 
(station USW00023233), the average annual temperature was 
14 degrees Celsius (ºC), and the average annual precipitation 
was 331 millimeters (mm) falling as rain during the winter 
and early spring (accessed October 24, 2016, http://www.ncdc.
noaa.gov/cdo-web/datatools/findstation). The distribution of 
precipitation across the area is dependent on the topography 
and the prevailing winds, such that precipitation increases 
concomitantly with increasing altitude. 

The MS-SA study unit has several rivers and creeks 
including the Salinas River, the Pajaro River, and the San 
Lorenzo River (fig. 2). The direction of groundwater flow 
generally follows the topography of the basins, going from 
the mountain ranges, down to the Salinas Valley and then 
flowing towards Monterey Bay and the Pacific Ocean. Sources 
of groundwater recharge include percolation of precipitation, 
streamflow infiltration, and agricultural irrigation and return 
flow. Groundwater discharge primarily is through the pumping 
of wells.

Land use in the MS-SA study unit primarily is natural in 
the Santa Cruz study area (fig 3). The land use in the Pajaro 
Valley study area primarily is a mix of agricultural and urban. 
The Salinas Valley study area is primarily agricultural with 
some urban land use present in the northern part of the study 
area. The Highlands study area primarily is natural (fig. 3).

Previous studies have indicated water-quality issues in 
the study unit. These issues include seawater intrusion in the 
Pajaro and Salinas Valley study areas near Monterey Bay 
(Hanson, 2003); elevated nitrate concentrations in several 
parts of the Salinas Valley study area (Kulongoski and Belitz, 
2011; Harter and others, 2012); and high concentrations of 
trace elements such as arsenic, boron, molybdenum, and gross 
alpha radioactivity in parts of the study unit (Kulongoski and 
Belitz, 2011).

Table 1.  Study areas with number of cells, grid sites, tap sites, and dominant land use, Monterey-Salinas Shallow Aquifer study unit, 
California Groundwater Ambient Monitoring Assessment Priority Basin Project.

[km2, square kilometers]

Study 
area

Study-
area 

abbreviation

Size of 
study area 

(km2)

Number of 
grid cells

Average size 
of grid cell 

(km2)

Number of 
grid sites 
sampled

Number of 
tap sites 
sampled

Predominant 
land use

Santa Cruz MS-SC 210 15 13 15 0 Natural
Pajaro Valley MS-P 360 15 18 15 15 Natural
Salinas Valley MS-SV 2,000 40 49 40 55 Agricultural
Highlands MS-H 5,250 30 174 30 0 Natural

http://www.ncdc.noaa.gov/cdo-web/datatools/findstation
http://www.ncdc.noaa.gov/cdo-web/datatools/findstation
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Figure 3.  Land use in the Monterey-Salinas Shallow Aquifer study unit, 1992, California Groundwater Ambient Monitoring Assessment 
Priority Basin Project.
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Santa Cruz Study Area

The Santa Cruz study area covers approximately 210 km2 

and includes the following groundwater basins: Santa Cruz 
Purisima Formation Highlands, Felton Area, Scotts Valley, 
Soquel Valley, and West Santa Cruz Terrace as defined 
in Bulletin 118 by the California Department of Water 
Resources (2003). The Santa Cruz study area is bounded to 
the north, east, and west by the Santa Cruz Mountains, where 
altitudes are as high as 880 meters (m), and to the south 
by the Monterey Bay and the Pajaro Valley groundwater 
basin (fig. 2).

In the northern part of the Santa Cruz study area, the 
Santa Cruz Purisima Formation Highlands groundwater basin 
(fig. 2) is defined by the geologic boundary of the Purisima 
Formation. The Purisima Formation is a Pliocene deposit 
that is the primary water-bearing unit and consists of poorly 
consolidated, silty to very fine- to medium-grained sandstone 
interbedded with siltstone. The formation ranges in thickness 
from 183 m in the north to 305 m in the south near Soquel 
(Muir, 1980). These formations are primarily of marine 
origin (fig. 4).

The West Santa Cruz Terrace and Soquel Valley 
groundwater basins are south of the Santa Cruz Purisima 
Formation Highlands groundwater basin and primarily are 
composed of alluvial deposits (fig. 4). In the Soquel Valley 
groundwater basin, the water-bearing sediments consist of 
the Pliocene Purisima Formation, overlain by the Pleistocene 
Aromas Sand and by Quaternary terrace deposits. The 
Purisima Formation and Quaternary terrace deposits have been 
incised locally by streams, and these channels have been filled 
with Quaternary alluvium (Muir, 1980). To the southeast, 
the Purisima Formation is overlain by the hydraulically 
unconfined Aromas Sand. The Aromas Sand is brown to 
red, poorly consolidated, fine- to coarse-grained sandstone 
containing lenses of silt and clay (California Department 
of Water Resources, 2003). The West Santa Cruz Terrace 
groundwater basin contains water-bearing sediments derived 
from the Purisima Formation, Quaternary terrace deposits, 
and alluvium along the San Lorenzo River and other streams 
(figs. 2, 4). The Purisima Formation, the main water-bearing 
formation, is a thick sedimentary sequence with a fossiliferous 
marine-rock base that grades to continental deposits in its 
upper part. The thin terrace deposits and alluvium are poorly 
cemented, moderately permeable gravel, sands, silts and silty 
clays that yield only minor quantities of groundwater to wells 
(Greene, 1970).

The Scotts Valley and Felton area groundwater basins 
are small alluvial valleys in the Santa Cruz Mountains (fig. 2). 
The Felton area and Scotts Valley groundwater basins include 
the following formations from oldest to youngest: granitic 
basement, Tertiary Lompico Sandstone, Monterey Formation, 

Santa Margarita Sandstone, and Quaternary alluvium. The 
principal water-bearing formation is the unconfined Santa 
Margarita Sandstone, which is as much as 107 m thick. The 
underlying Lompico Sandstone also yields water, but to a 
lesser extent, and is as much as 183 m thick.

Pajaro Valley Study Area

The Pajaro Valley study area covers about 360 km2 
and consists of the Pajaro Valley groundwater basin (fig. 2). 
The Pajaro Valley study area is bounded to the west by 
the Monterey Bay, to the east and north by the Santa Cruz 
Mountains, and to the south by the Salinas Valley. The water-
bearing geologic units in the Pajaro Valley include, from 
oldest to youngest, the Purisima Formation, the Aromas Sand, 
terrace deposits, alluvium, and dune deposits (Johnson and 
others, 1988). The Aromas Sand is the primary freshwater-
bearing unit in the Pajaro Valley study area. It consists of 
upper eolian and lower fluvial sand units that are separated 
by confining layers of interbedded clays and silty clay, and 
it ranges in thickness from 30 m in the foothills to more than 
250 m near the mouth of the Pajaro River (Johnson and others, 
1988). The terrace deposits consist of unconsolidated gravel, 
sand, silt, and clay overlain by alluvium. The basal gravel has 
good hydraulic continuity with the underlying Aromas Sand 
and is a major source of water for shallow wells in the Pajaro 
River floodplain. The alluvium is composed of Pleistocene 
materials, which are overlain by Holocene alluvium consisting 
of sand, gravel, and clay deposited by the Pajaro River and 
by dune deposits consisting of dune sands with an average 
thickness of 15–90 m (Johnson and others, 1988).

Salinas Valley Study Area

The Salinas Valley study area covers approximately 
2,000 km2 and includes the following CDWR-defined 
groundwater subbasins of the Salinas Valley (California 
Department of Water Resources, 2003): 180/400 Foot 
Aquifer, Seaside Area, Corral de Tierra Area, Langley Area, 
Eastside Aquifer, Forebay Aquifer, Upper Valley Aquifer, 
and the Quaternary alluvium part of the Paso Robles Area 
groundwater subbasin (figs. 2, 4). The part of the Paso Robles 
Area subbasin mapped as having Plio-Pleistocene alluvium 
as the surficial geologic unit was considered part of the 
Highlands study area (see the following section). The Salinas 
Valley study area is bounded by the Monterey Bay, Sierra de 
Salinas, and Santa Lucia Range along the west and southwest; 
the Pajaro Valley to the north; the Gabilan Range to the east; 
and the Temblor Range and La Panza Range to the southeast 
and south, respectively (fig. 2).
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Figure 4.  Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project.
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The Salinas Valley is the largest of the intermontane 
valleys of the southern Coast Ranges, and it extends 
southeastward 193 km from Monterey Bay to Paso Robles 
(fig. 2). The Salinas Valley was formed, in part, as a result 
of normal faulting along the Rinconada-Reliz fault along the 
western margin of the valley from King City in the south to 
Monterey Bay in the north (figs. 2, 4: California Department 
of Water Resources, 2003). Normal movement along the fault, 
valley-side down, resulted in the deposition of a westward 
thickening alluvial wedge (Showalter and others, 1984). The 
Salinas Valley is filled by as much as 3,048 m on the east 
and by as much as 4,572 m on the west with Tertiary and 
Quaternary marine and terrestrial sediments that include as 
much as 609 m of saturated alluvium (Showalter and others, 
1984). Water-bearing units, which lie above mostly non-
water-bearing and consolidated granitic basement, include the 
Miocene Monterey Formation, Pliocene Purisima Formation, 
Pliocene-to-Pleistocene Paso Robles Formation, and 
Pleistocene to Holocene alluvium (Hanson and others, 2002). 
The main water-bearing units in the northern and eastern 
parts of the Salinas Valley study area are unconsolidated to 
semi-consolidated sediments with interbedded gravel sand 
and silt, alluvial-fan, and river deposits (Durbin and others, 
1978). The 180-Foot Aquifer is likely to be an important 
source of water to shallow domestic wells in the area of the 
180/400 Foot Aquifer subbasin in the north and the Forebay 
Aquifer subbasin in the south (fig. 2). The deeper 400-Foot 
and 900-Foot Aquifers are likely the main source of water for 
public-supply wells. Water-bearing units in the southern part 
of the Salinas Valley study area, the area surrounding the city 
of Paso Robles, include Pleistocene alluvium that consists 
of unconsolidated fine-to-coarse-grained sand and Holocene 
alluvium that consists of pebbles and boulders as much as 
40 m thick near the Salinas River, which convey limited 
amounts of water to shallow wells in the area.

Highlands Study Area

The Highlands study area covers about 5,250 km2 that 
surround the Salinas Valley study area on three sides. Surface 
and groundwater generally flow out of the Highlands and 
toward the Salinas Valley study area. The Highlands study 
area is underlain by fractured rocks in the north and Plio-
Pleistocene sediments in the south that compose the hills 
and mountains bordering the Highlands study area (figs. 2, 
3). Elevations in the study area ranged from 300 to more 
than 1,200 m above sea level. The Highlands study area is 
underlain by the Franciscan Complex and the Salinian block 
basement complexes as a result of transverse movement along 
the San Andreas Fault (Compton, 1966; Alt and Hyndman, 

2000). The Cretaceous Franciscan basement complex 
generally is composed of accreted ocean-floor sediments and 
rocks formed during subduction; the Mesozoic Salinian block 
basement complex generally is composed of rocks formed 
when the continental crust was intruded by granitic plutons 
(Harden, 2004). 

The northwestern part of the Highlands study area is 
underlain by the Sierra de Salinas, which is composed of schist 
that was formed when sandstone was intruded by granitic 
magma that formed the Salinian block (Compton, 1966; Alt 
and Hyndman, 2000). The southwestern part of the Highlands 
study area includes part of the Santa Lucia Range, which 
is composed of the Franciscan Complex that has intensely 
sheared sediments and serpentine (Compton, 1966; Alt and 
Hyndman, 2000). Other sedimentary rocks in the Franciscan 
Complex include sandstone, shale, and limestone. The 
southern and southeastern part of the Highlands study area is 
in the 80-million-year-old La Panza Range, which is part of 
the granitic Salinian block. The southern part of the Highlands 
study area also includes the Plio-Pleistocene alluvium of the 
Paso Robles Area groundwater basin that is not included in the 
Salinas Valley study area. This is underlain by the Monterey 
Formation (Durham, 1974). The eastern part of the Highlands 
study area includes the Gabilan Range, which is generally 
composed of granite that is also part of the Salinian block 
complex. A layer of the Monterey Formation lies between the 
surficial Paso Robles Formation and the underlying granitic 
rocks (Durham, 1974).

Groundwater in the Highlands study area comes from 
aquifers in granitic, metamorphic, or lithified sedimentary 
rocks, rather than from sediment deposits in groundwater 
basins. These rocks typically have low permeability, except 
where they are extensively fractured. The three-dimensional 
complexity and variability of fracture systems can cause 
well yields and water quality to vary widely on a local scale. 
These hard-rock aquifers are recharged by infiltration of 
precipitation, snow melt, and water from lakes and streams 
(California Department of Water Resources, 2011).

Methods
This section describes the methods used for (1) defining 

groundwater quality, (2) assembling the datasets used for 
the assessments, (3) selecting constituents for evaluation, 
(4) calculating aquifer-scale proportions, (5) providing 
statistical analyses for the understanding assessment, and 
(6) comparing the groundwater quality of the MS-SA and 
MS-PA study units. 
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Relative Concentrations and Water-Quality 
Benchmarks

In this study, groundwater-quality data are presented 
as relative concentrations, which are defined as the ratio of 
a constituent’s concentration measured in a groundwater 
sample to the concentration of a constituent’s regulatory or 
non-regulatory benchmark used to evaluate drinking-water 
quality. A relative-concentration value less than 1 indicates 
that the sample concentration was less than the benchmark 
concentration, and a relative-concentration value greater than 
1 indicates that the sample concentration was greater than the 
benchmark concentration. The use of relative concentrations 
permits comparison on a single scale for constituents that 
can be present at a wide range of concentrations. Relative 
concentrations can only be computed for constituents with 
water-quality benchmarks; therefore, constituents without 
water-quality benchmarks were not included in the status 
assessment. 

The use of relative concentration is similar to the 
approaches used by other studies to place the concentrations 
of constituents in groundwater in a toxicological context. 
Toccalino and others (2004), Toccalino and Norman 
(2006), and Rowe and others (2007) previously used the 
ratio of measured sample concentration to the benchmark 
concentration—either the U.S. Environmental Protection 
Agency (EPA) maximum contaminant levels (MCLs) or 
health-based screening levels (HBSL)—and defined this ratio 
as the benchmark quotient. The ratio is called the relative 
concentration in this report rather than benchmark quotient 
because the two ratios may be calculated with benchmarks 
from different sources and therefore can have different values.

The benchmarks used for each constituent in this study 
were selected in the following order of priority:

Regulatory, health-based: California and EPA maximum 
contaminant levels (MCL-CA and MCL-US), action 
levels (AL-US), and treatment technique levels (TT-US; 
California State Water Resources Control Board, 2015; 
U.S. Environmental Protection Agency, 2016).

Non-regulatory, health-based: HBSL, EPA lifetime 
health-advisory levels (HAL-US), EPA risk-specific doses for 
1:100,000 (RSD5-US), and California notification levels (NL-
CA: California State Water Resources Control Board, 2015; 
U.S. Environmental Protection Agency, 2016).

Non-regulatory: California and EPA secondary maximum 
contaminant levels (SMCL-CA and SMCL-US; California 
State Water Resources Control Board, 2015). For constituents 
with recommended and upper SMCL-CA levels, the values for 
the upper levels were used.

For constituents with multiple types of benchmarks, 
this hierarchy may not result in selection of the benchmark 
with the lowest concentration. Additional information about 
the types of benchmarks and listings of the benchmarks 
for all constituents analyzed is provided by Goldrath and 
others (2016).

For ease of discussion, relative concentrations of 
constituents were classified into low, moderate, and high 
categories. Relative concentrations greater than 1.0 indicate 
groundwater concentrations greater than the benchmark 
concentrations and were defined as “high” for all constituents. 
For inorganic constituents (trace elements, nutrients, 
radioactive constituents, and inorganic constituents having 
SMCL benchmarks) relative concentrations greater than 0.5 
and less than or equal to 1.0 (groundwater concentration 
greater than half of the benchmark concentration, but less 
than the benchmark) were defined as “moderate,” and 
relative concentration less than or equal to 0.5 (groundwater 
concentration less than half the benchmark concentration) 
were defined as “low.” For organic and special-interest 
constituents, relative concentration greater than 0.1 and less 
than or equal to 1.0 were defined as “moderate,” and relative 
concentration less than or equal to 0.1 were defined as “low.” 

A larger threshold value for inorganic constituents was 
used because in the MS-SA study unit, and elsewhere in 
California, naturally present inorganic constituents tend to 
be more prevalent and have higher background levels than 
organic constituents in groundwater (Belitz and others, 2015). 
Although more complex classifications based on the properties 
and sources of individual constituents could be devised, use 
of a single moderate/low threshold value for each of the two 
major groups of constituents provided a consistent, objective 
criteria for distinguishing constituents at moderate, rather than 
low, concentrations.

Datasets and Methods for Status Assessment

Groundwater-quality data used for the status assessment 
came from 100 grid and 70 tap sites sampled by the USGS in 
the MS-SA study unit between October 2012 and May 2013.

Grid Sites
Detailed descriptions of the methods used to identify sites 

for sampling are given in Goldrath and others (2016). Briefly, 
each study area was divided into equal-area grid cells (Scott, 
1990), but the size and number of grid cells were not the same 
for the different areas. The Santa Cruz study area was divided 
into 15 cells (13-km2 each), the Pajaro Valley study area was 
divided into 15 cells (18-km2 each), the Salinas Valley study 
area was divided into 40 cells (49-km2 each), and the Highland 
study area was divided into 30 cells (174-km2 each; table 1). 
In each grid cell, one site was randomly selected to represent 
the groundwater resource used for domestic supply (grid 
sites). Sites were selected from lists of candidate domestic 
sites in each grid cell, identified using drillers’ log information 
obtained from the CDWR. The target lists of domestic wells 
were taken into the field and door-to-door canvassing was 
done, beginning with the site nearest to a random point in the 
grid cell to ensure random selection of sites. In cases where 
limited or no drillers’ logs were available for a grid cell, wells 
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were identified by door-to-door canvassing. The MS-SA study 
unit contained a total of 100 grid cells, and a sample was 
collected from each cell (fig. 5). Grid-site samples were named 
with an alphanumeric GAMA identification (ID) consisting of 
an alpha prefix identifying the type of GAMA PBP study, the 
study unit, and the study area and a numeric suffix indicating 
the cell number of the site (table 2). For example, in the 
S-MS-SC14 GAMA ID, the S stands for PBP shallow aquifer, 
MS stands for Monterey-Salinas study unit, SC stands for the 
Santa Cruz study area, and the number 14 means the site was 
in cell 14 of the Santa Cruz study area. The following prefixes 
were used to identify the study area: SC, Santa Cruz study 
area; P, Pajaro Valley study area; SV, Salinas Valley study 
area; and H, Highlands study area.

Samples collected from grid wells were analyzed for 
208 constituents. The classes of constituents analyzed in 
samples included volatile organic compounds, pesticides, trace 
elements, isotopic tracers, and radioactivity (table 3). The 
collection, analysis, and quality-control data for these analytes 
are described by Goldrath and others (2016). Water-quality 
data collected are tabulated in Goldrath and others (2016) and 
also are available from the SWRCB’s database GeoTracker 
GAMA (http://www.waterboards.ca.gov/gama/geotracker_
gama.shtml) and the USGS’s database NWISWeb  
(http://waterdata.usgs.gov/ca/nwis/).

Tap Sites
In addition to the water-quality data obtained from 

samples collected at grid sites, spatially weighted calculations 
of aquifer-scale proportions of relative concentrations for the 
MS-SA study unit also used data from water samples collected 
from household tap sites. Seventy groundwater samples were 
collected from tap sites, primarily at households supplied by a 
domestic well. Most tap samples were collected from faucets 
downstream from storage or pressure tanks used to store 
water pumped from wells. Tap-site samples were collected in 
the Salinas Valley and Pajaro Valley study areas to provide 
a greater spatial density of groundwater data to define the 
distribution of inorganic constituents (fig. 5). Goldrath and 
others (2016) provide a more thorough discussion of the tap 
sampling design. A total of 39 water-quality indicators and 
inorganic constituents were analyzed in samples collected 
at tap sites (table 3). Comparison of the data from samples 
collected at the well head to data from samples at tap sites 
showed that most water-quality data collected from tap 
sites may be combined with data from the grid sites for the 
purposes of calculating aquifer-scale proportions (Justin 
Kulongoski, U.S. Geological Survey, written commun., 2016).

Calculation of Aquifer-Scale Proportions
Aquifer-scale proportions are defined as the percentage 

of the area (rather than the volume) of the shallow aquifer 
system where concentrations are greater than or less than 

specified thresholds relative to regulatory or aesthetic water-
quality benchmarks. The proportions of those areas with high, 
moderate, and low relative concentrations of constituents were 
calculated using the spatially weighted approach of Belitz 
and others (2010). For ease of discussion, these proportions 
are referred to as high, moderate, and low aquifer-scale 
proportions. Aquifer-scale proportions were calculated for 
individual constituents and for classes of constituents. 

Aquifer-scale proportions were computed on a cell-
by-cell basis rather than an average of all the sites. The 
proportion of high values for each study area was computed 
by (1) calculating the number of sites with high relative 
concentrations in each grid cell and (2) averaging the grid-cell 
values computed in step 1 (equation 1; Isaaks and Srivastava, 
1989; Belitz and others, 2010). The resulting proportions are 
spatially unbiased. The aquifer-scale proportion for moderate 
relative concentrations was calculated similarly.
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where
	 Ps

high  	 is the high aquifer-scale proportion for the 
study area,

	 Wc
high

 
	 is the number of sites in a particular cell 

in the study area having high relative 
concentration for the constituent,

	 Wc  
	 is the number of sites in a particular cell in the 

study area having data for the constituent,
	 ∑c 	 is summation over the number of cells in the 

study area for the constituent, and
	 N	 is the number of cells in the study area having 

data for the constituent.
The proportion for each study area was calculated 

individually because grid-cell sizes are not uniform across the 
study areas. The proportion for the study unit is determined 
by calculating the area-weighted sum using the following 
equation:

	 P P FSU SA SA= ∑ 	 (2)

where
	 PSU 	 is the aquifer proportion for the study unit, 
	 PSA 	 is the aquifer proportion for a study area, and
	 FSA 	 is the fraction of the total study unit area 

occupied by the study area.
The FSA for each study area of the MS-SA study unit 

follows: Santa Cruz at 0.03, Pajaro Valley at 0.04, Salinas 
Valley at 0.26, and Highlands at 0.67. The FSA for the three 
study areas of the MS-SA study unit used to compare the 
water quality with the MS-PA study unit follows: Santa Cruz 
at 0.08, Pajaro Valley at 0.14, and Salinas Valley at 0.78. The 
Highlands study area was not included because that area was 
not part of the MS-PA study unit.

http://www.waterboards.ca.gov/gama/geotracker_gama.shtml
http://www.waterboards.ca.gov/gama/geotracker_gama.shtml
http://waterdata.usgs.gov/ca/nwis/
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Figure 5.  Study-area grid cells, grid and tap wells in the Monterey-Salinas Shallow Aquifer assessment study unit, California 
Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013: A, northern part, and B, southern part.
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Figure 5.  —Continued
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Table 2.  Nomenclature and well-construction information for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013. 

[H, Highlands study-area well; MS, Montery-Salinas study unit; na, data not available; P, Pajaro Valley study-area well; S, shallow aquifer assessment; 
SC, Santa Cruz study-area well; SV, Salinas Valley study-area well; T, tap well; USGS, U.S. Geological Survey]

GAMA site-
identification 

number 

USGS site-
identification 

number

Construction information
(meters)

Well 
depth

Depth to top 
of perforations

Depth to bottom 
of perforations

Length 
of perforations

Santa Cruz study-area grid sites

S-MS-SC01 365727122041701 91 na na na
S-MS-SC02 370039121594901 159 116 159 43
S-MS-SC03 370150122010601 37 18 37 19
S-MS-SC04 370632121591001 30 10 30 21
S-MS-SC05 370322121582801 155 119 155 37

S-MS-SC06 370226121574301 99 26 99 73
S-MS-SC07 365954121571601 35 18 35 17
S-MS-SC08 365911121562001 46 32 46 13
S-MS-SC09 370120121561501 134 na na na
S-MS-SC10 370145121560101 41 35 41 6

S-MS-SC11 370314121570801 52 21 52 30
S-MS-SC12 370456121565301 74 30 74 44
S-MS-SC13 370159121515601 274 152 244 91
S-MS-SC14 370055121485701 73 30 73 43
S-MS-SC15 370000121445601 82 67 82 15

Pajaro Valley study-area grid sites

S-MS-P01 365443121500701 115 na na na
S-MS-P02 365709121500401 61 24 58 34
S-MS-P03 365905121540901 88 55 88 34
S-MS-P04 365943121504101 183 146 180 34
S-MS-P05 365853121463101 na na na na

S-MS-P06 365415121471501 61 49 58 9
S-MS-P07 365117121473601 58 43 49 6
S-MS-P08 364938121433701 55 39 54 15
S-MS-P09 365140121451201 55 43 55 12
S-MS-P10 365259121430101 79 67 79 12

S-MS-P11 365722121441601 91 79 91 12
S-MS-P12 365541121405801 140 104 134 30
S-MS-P13 365318121394601 134 95 131 37
S-MS-P14 365159121413301 159 128 159 30
S-MS-P15 365016121383701 146 na na na
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Table 2.  Nomenclature and well-construction information for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[H, Highlands study-area well; MS, Montery-Salinas study unit; na, data not available; P, Pajaro Valley study-area well; S, shallow aquifer assessment; 
SC, Santa Cruz study-area well; SV, Salinas Valley study-area well; T, tap well; USGS, U.S. Geological Survey]

GAMA site-
identification 

number 

USGS site-
identification 

number

Construction information
(meters)

Well 
depth

Depth to top 
of perforations

Depth to bottom 
of perforations

Length 
of perforations

Salinas Valley study-area grid sites

S-MS-SV01 353151120403801 85 43 85 43
S-MS-SV02 354141120413301 88 52 88 37
S-MS-SV03 363332121415701 140 64 137 73
S-MS-SV04 363418121425001 104 43 104 61
S-MS-SV05 363437121481201 152 49 146 98

S-MS-SV06 363531121512601 84 6 84 78
S-MS-SV07 364356121464701 120 107 120 12
S-MS-SV08 363951121420201 88 79 88 9
S-MS-SV09 363507121380601 213 137 213 77
S-MS-SV10 362314121214401 58 46 58 12

S-MS-SV11 361910121184801 125 113 125 12
S-MS-SV12 360831121061901 79 54 79 24
S-MS-SV13 354745120461101 104 37 101 64
S-MS-SV14 355008120445501 120 na na na
S-MS-SV15 360024120550501 55 30 55 24

S-MS-SV16 361227121085501 50 37 49 12
S-MS-SV17 362335121215301 49 30 49 18
S-MS-SV18 362815121275801 26 na na na
S-MS-SV19 363953121405001 113 108 111 3
S-MS-SV20 364117121411401 152 na na na

S-MS-SV21 364555121434301 73 61 73 12
S-MS-SV22 363100121270002 165 128 165 37
S-MS-SV23 362547121214801 91 na na na
S-MS-SV24 361941121153701 204 168 198 30
S-MS-SV25 361552121105701 84 35 67 32

S-MS-SV26 360747121005701 30 18 30 12
S-MS-SV27 360000120540001 40 24 40 15
S-MS-SV28 353908120303101 39 na na na
S-MS-SV29 361123121040801 26 21 24 3
S-MS-SV30 362017121134501 61 na na na
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GAMA site-
identification 

number 

USGS site-
identification 

number

Construction information
(meters)

Well 
depth

Depth to top 
of perforations

Depth to bottom 
of perforations

Length 
of perforations

Salinas Valley study-area grid sites—Continued

S-MS-SV31 362438121165801 38 na na na
S-MS-SV32 363329121282401 87 na na na
S-MS-SV33 364601121411901 79 67 79 12
S-MS-SV34 364944121384101 192 51 186 134
S-MS-SV35 364757121373301 144 132 144 12

S-MS-SV36 363718121302001 213 146 207 61
S-MS-SV37 363527121270001 101 49 98 49
S-MS-SV38 362517121170401 61 34 51 16
S-MS-SV39 354027120204901 98 46 95 49
S-MS-SV40 353547120203701 89 na na na

Highlands study-area grid sites

S-MS-H01 352125120324101 146 55 146 91
S-MS-H02 352838120341901 110 49 110 61
S-MS-H03 353212120433101 na na na na
S-MS-H04 353707120432001 72 35 72 37
S-MS-H05 354251120504701 na na na na

S-MS-H06 363403121532701 122 61 116 55
S-MS-H07 362938121311201 7 na na na
S-MS-H08 361449121140301 30 na na na
S-MS-H09 360856121122301 43 24 43 18
S-MS-H10 355325120552201 36 na na na

S-MS-H11 354321120423401 125 na na na
S-MS-H12 353322120320101 42 na na na
S-MS-H13 352230120163701 146 na na na
S-MS-H14 353327120273901 226 183 226 43
S-MS-H15 354302120335501 143 125 143 18

S-MS-H16 354327120344601 98 79 98 18
S-MS-H17 355322120470201 122 61 122 61
S-MS-H18 360919121005501 122 na na na
S-MS-H19 363608121255101 46 na na na
S-MS-H20 362727121135701 38 15 38 23

Table 2.  Nomenclature and well-construction information for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[H, Highlands study-area well; MS, Montery-Salinas study unit; na, data not available; P, Pajaro Valley study-area well; S, shallow aquifer assessment; 
SC, Santa Cruz study-area well; SV, Salinas Valley study-area well; T, tap well; USGS, U.S. Geological Survey]
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GAMA site-
identification 

number 

USGS site-
identification 

number

Construction information
(meters)

Well 
depth

Depth to top 
of perforations

Depth to bottom 
of perforations

Length 
of perforations

Highlands study-area grid sites—Continued

S-MS-H21 361020120590501 122 116 122 6
S-MS-H22 355538120364001 47 na na na
S-MS-H23 354731120321801 212 159 212 53
S-MS-H24 353830120215001 152 91 152 61
S-MS-H25 353753120125301 na na na na

S-MS-H26 353707120181601 154 32 123 91
S-MS-H27 355018120322301 152 na na na
S-MS-H28 355803120390001 18 na na na
S-MS-H29 360939120533101 27 10 15 16
S-MS-H30 362841121134201 130 116 na 45

Pajaro Valley study-area tap sites

S-MS-P01-T1 365519121502901 78 60 na na
S-MS-P02-T1 365613121511301 na na na na
S-MS-P03-T1 365816121500101 213 na na na
S-MS-P04-T1 370017121482301 107 na na na
S-MS-P05-T1 365704121462201 na na na na

S-MS-P06-T1 365552121461001 72 na na na
S-MS-P07-T1 365253121473901 na na na na
S-MS-P08-T1 364811121450501 na na na na
S-MS-P09-T1 365017121435701 na na na na
S-MS-P10-T1 365425121452201 54 31 45 13

S-MS-P11-T1 365632121443101 na na na na
S-MS-P12-T1 365522121402401 85 na na na
S-MS-P13-T1 365245121411201 na na na na
S-MS-P14-T1 365134121420101 na na na na
S-MS-P15-T1 365047121412201 na na na na

Salinas Valley study-area tap sites

S-MS-SV01-T1 352725120292101 na na na na
S-MS-SV01-T2 353351120415801 na 9 17 8
S-MS-SV02-T1 353510120413301 na na na na
S-MS-SV02-T2 354000120410001 51 38 51 12
S-MS-SV03-T1 354659120481001 61 40 55 15
S-MS-SV03-T2 355316120541701 na na na na

Table 2.  Nomenclature and well-construction information for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[H, Highlands study-area well; MS, Montery-Salinas study unit; na, data not available; P, Pajaro Valley study-area well; S, shallow aquifer assessment; 
SC, Santa Cruz study-area well; SV, Salinas Valley study-area well; T, tap well; USGS, U.S. Geological Survey]
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GAMA site-
identification 

number 

USGS site-
identification 

number

Construction information
(meters)

Well 
depth

Depth to top 
of perforations

Depth to bottom 
of perforations

Length 
of perforations

Salinas Valley study-area tap sites—Continued

S-MS-SV04-T1 363535121413301 na na na na
S-MS-SV04-T2 363420121470401 146 na na na
S-MS-SV05-T1 363920121434901 104 91 104 12
S-MS-SV05-T2 363745121423901 122 101 113 12
S-MS-SV06-T1 363945121444701 149 87 na na
S-MS-SV06-T2 363700121500001 70 57 66 9

S-MS-SV08-T1 364242121442401 na na na na
S-MS-SV08-T2 364042121435801 105 93 105 12
S-MS-SV09-T1 362951121300801 180 146 177 30
S-MS-SV09-T2 363538121361101 na na na na
S-MS-SV11-T1 361615121180401 na na na na
S-MS-SV11-T2 362037121190801 na na na na

S-MS-SV13-T1 354911120452701 61 na na na
S-MS-SV13-T2 354501120413301 91 27 82 56
S-MS-SV16-T1 361356121102901 na na na na
S-MS-SV16-T2 361228121100801 na na na na
S-MS-SV17-T1 361830121155501 na na na na
S-MS-SV17-T2 361747121144801 na na na na

S-MS-SV18-T1 363310121321301 na na na na
S-MS-SV19-T1 363428121344901 na na na na
S-MS-SV19-T2 363813121360601 na na na na
S-MS-SV20-T1 364441121433801 na na na na
S-MS-SV20-T2 364615121455701 na na na na

S-MS-SV21-T1 364448121425401 na na na na
S-MS-SV21-T2 364337121402601 137 na na na
S-MS-SV22-T1 363308121283001 91 37 91 55
S-MS-SV22-T2 363719121332801 na na na na
S-MS-SV23-T1 362934121253901 na na na na

Table 2.  Nomenclature and well-construction information for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[H, Highlands study-area well; MS, Montery-Salinas study unit; na, data not available; P, Pajaro Valley study-area well; S, shallow aquifer assessment; 
SC, Santa Cruz study-area well; SV, Salinas Valley study-area well; T, tap well; USGS, U.S. Geological Survey]
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Table 2.  Nomenclature and well-construction information for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[H, Highlands study-area well; MS, Montery-Salinas study unit; na, data not available; P, Pajaro Valley study-area well; S, shallow aquifer assessment; 
SC, Santa Cruz study-area well; SV, Salinas Valley study-area well; T, tap well; USGS, U.S. Geological Survey]

GAMA site-
identification 

number 

USGS site-
identification 

number

Construction information
(meters)

Well 
depth

Depth to top 
of perforations

Depth to bottom 
of perforations

Length 
of perforations

Salinas Valley study-area tap sites—Continued

S-MS-SV24-T1 361631121112001 na na na na
S-MS-SV24-T2 362215122185101 91 51 89 38
S-MS-SV25-T1 361338121083001 na na na na
S-MS-SV25-T2 361335121083101 na na na na
S-MS-SV26-T1 360516120584101 na na na na
S-MS-SV26-T2 360600121000001 43 27 43 15

S-MS-SV27-T1 355827120520601 122 15 122 107
S-MS-SV29-T1 360613120585801 na na na na
S-MS-SV29-T2 361115121043601 56 na na na
S-MS-SV30-T1 361753121094801 na na na na
S-MS-SV32-T1 363011121232201 122 na na na

S-MS-SV33-T1 363818121334001 201 177 201 24
S-MS-SV33-T2 364337121383501 na na na na
S-MS-SV34-T1 364721121405301 na na na na
S-MS-SV34-T2 364902121384001 85 na na na
S-MS-SV35-T1 364633121354801 21 na na na
S-MS-SV35-T2 364347121374201 na na na na

S-MS-SV36-T1 364034121331601 na na na na
S-MS-SV36-T2 364317121354001 na na na na
S-MS-SV37-T1 363158121242801 122 na na na
S-MS-SV40-T1 353236120200501 na na na na
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Aquifer-scale proportions of high relative concentrations 
also were determined for classes of constituents. Aquifer-scale 
proportions for constituent classes were calculated using the 
maximum relative concentration for any constituent in the 
class to represent the class. The classes of organic constituents 
for which aquifer-scale proportions were calculated included 
trihalomethanes and pesticides (herbicides, insecticides, and 
fumigants). The classes of inorganic constituents with human-
health benchmarks for which aquifer-scale proportions were 
calculated include trace elements, radioactive constituents, 
nutrients, and any inorganic with a health-based benchmark. 
Classes of inorganic constituents with SMCL benchmarks 
for which aquifer-scale proportions were calculated were 
the salinity indicators total dissolved solids, sulfate, and 
chloride and any inorganic constituent with an aesthetic-based 
benchmark. Constituents of special interest were considered as 
a class. 

The raw detection frequency of each constituent with 
high or moderate relative concentrations was calculated for the 
same dataset as used for the aquifer-scale proportions as well. 
This approach is not spatially unbiased because tap sites are 
not uniformly distributed throughout the MS-SA study unit. 
Consequently, the raw detection frequency of high relative 
concentrations at sites clustered in a particular area represents 
a smaller part of the shallow aquifers and could be given a 

disproportionately high weight compared to spatially unbiased 
methods.

Selection of Constituents for Status Assessment
More than 200 constituents were analyzed in samples 

from the MS-SA study-unit wells; however, only subsets of 
these constituents are discussed in this report. Criteria used to 
select constituents for evaluation in the status assessment are 
as follows:

Constituents present at high or moderate relative 
concentrations in grid or tap sites.

Organic or special-interest constituents for which study-
unit detection frequencies were 10 percent or more in samples 
from grid sites, regardless of concentration.

These criteria identified 5 organic and special-interest 
constituents and 20 inorganic constituents for evaluation in 
the status assessment (table 4A). An additional 18 organic 
constituents and 21 inorganic constituents were detected, but 
were not evaluated in the status assessment because either 
benchmarks were not established or detections were at low 
relative concentrations (table 4B). Complete tables of the 
constituents analyzed in samples collected in the MS-SA study 
unit can be found in Goldrath and others (2016).

Table 3.  Number of sites sampled by the U.S. Geological Survey for grid and tap sampling schedules and number of constituents 
sampled in each constituent class for the Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring 
Assessment Priority Basin Project, October 2012 to May 2013.

[—, no data]

Schedule
Grid Tap

Total number of sites 100 70
Constituent class Number of constituents

Field water-quality indicators
Dissolved oxygen, temperature, pH, and specific conductance 4 4
Field alkalinity 1 —

Organic constituents
Volatile organic compounds (VOCs)1 85 —
Pesticides and degradates 63 —

Constituents of special interest
Perchlorate and N-nitrosodimethylamine (NDMA) 2 —

Inorganic constituents
Trace elements 23 23
Nutrients 5 1
Major and minor ions, silica, and total dissolved solids (TDS) 11 11
Radon-222 1 —
Gross alpha and gross beta radioactivity (72-hour and 30-day)2 2 —

Isotopic constituents
Stable isotopes of hydrogen and oxygen in water 2 —
Stable isotopes of carbon in dissolved inorganic carbon and carbon-14 abundance 2 —
Tritium 1 —
Noble gases 6 —
Total 208 39

1Includes nine fumigants.
2Only 72-hour results are used for analyses in this report.
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Table 4A.  Benchmark types and values and reporting limits for constituents that were detected at high or moderate concentration 
or, for organic constituents, were detected in more than 10 percent of the grid samples, Monterey-Salinas Shallow Aquifer study unit, 
California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.

[Benchmark types: Regulatory, health-based benchmarks: MCL-CA, California’s maximum contaminant level; MCL-US, U.S. Environmental Protection 
Agency (EPA) maximum contaminant level. Non-regulatory, health-based benchmarks: HAL-US, EPA lifetime health-advisory level; HBSL, health-
based screening level developed by the U.S. Geological Survey (USGS); NL-CA, California’s notification level. Non-regulatory, aesthetic-based 
benchmarks: SMCL-CA, California’s secondary maximum contaminant level. Abbreviations: mg/L, milligrams per liter; na, not available; pCi/L, picocuries 
per liter; ssLC, sample-specific critical level; µg/L, micrograms per liter]

Constituent
Benchmark Reporting limits

Type1 Value Units USGS California
Trace and minor elements

Arsenic MCL-US 10 µg/L 0.03 2
Beryllium MCL-US 4 µg/L 0.006 1
Boron HAL-US 5,000 µg/L 3 100
Chromium MCL-CA 50 µg/L 0.07 10
Fluoride MCL-CA 2 µg/L 0.04 0.1
Iron SMCL-CA 300 µg/L 3.2 100
Manganese HBSL 300 µg/L 0.13 20
Molybdenum HBSL 40 µg/L 0.014 na
Selenium MCL-US 50 µg/L 0.03 2
Strontium HAL-US 4,000 µg/L 0.2 2
Vanadium NL-CA 50 µg/L 0.08 3

Radioactive constituents
Adjusted gross alpha radioactivity, 72-hour count MCL-US 15 pCi/L ssLC

2 3
Gross beta radioactivity, 72-hour count MCL-CA 50 pCi/L ssLC

2 1
Radon-222 Proposed MCL-US 4,000 pCi/L ssLC

2 100
Uranium MCL-US 30 µg/L 0.003 1 (pCi/L)

Nutrients
Ammonia, as nitrogen HAL-US 25 mg/L 0.01 na
Nitrate plus nitrite, as nitrogen MCL-US 10 mg/L 0.04 0.4

Salinity indicators3

Chloride SMCL-CA 500 (250) mg/L 0.06 na
Sulfate SMCL-CA 500 (250) mg/L 0.09 0.5
Total dissolved solids (TDS) SMCL-CA 1,000 (500) mg/L 10 na

Trihalomethanes
Chloroform (trichloromethane)4 MCL-US 80 µg/L 0.03 1

Fumigant
1,2-Dichloropropane (1,2-DCP) MCL-US 5 µg/L 0.026 0.5

Herbicides
Simazine MCL-US 4 µg/L 0.006 1

Constituents of special interest
Perchlorate MCL-CA 6 µg/L 50.1 4
N-nitrosodimethylamine NL-CA 0.01 µg/L 50.002 na

1Maximum contaminant level benchmarks are listed as MCL-US when the MCL-US and MCL-CA are identical, and as MCL-CA when the MCL-CA is less 
than the MCL-US or no MCL-US exists. 

2Reporting limits vary by sample.
3The SMCL-CA for chloride, sulfate, and TDS have recommended and upper benchmark values. The lower benchmark value is shown in parentheses.
4Benchmark value is for the sum of four trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform). Only chloroform 

was detected in more than 10 percent of the grid sites.
5Reporting limits are from Weck Laboratories.
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Table 4B.  Constituents detected in samples collected by the U.S. Geological Survey that have no benchmarks, were present only 
at low relative concentrations, or, for organics, were detected in less than 10 percent of the grid samples, Monterey-Salinas Shallow 
Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.

[Benchmark types: Regulatory, health-based benchmarks: AL-US, U.S. Environmental Protection Agency (EPA) lifetime health-advisory level; 
MCL-CA, California’s maximum contaminant level; MCL-US, EPA maximum contaminant level. Non-regulatory, health-based benchmarks: HBSL, health-
based screening level developed by the USGS; NL-CA, California’s notification level. Non-regulatory, aesthetic-based benchmarks: SMCL-CA, California’s 
secondary maximum contaminant level. Abbreviations: mg/L, milligrams per liter; na, not applicable; µg/L, micrograms per liter]

Constituent
Benchmark Reporting limits

Type Value Units USGS California

Trace elements

Aluminum MCL-CA 1,000 µg/L 2.2 10
Antimony MCL-US 6 µg/L 0.027 6
Barium MCL-CA 1,000 µg/L 0.07 100
Cadmium MCL-US 5 µg/L 0.016 1
Copper AL-US 1,300 µg/L 0.08 50
Lead AL-US 15 µg/L 0.025 5
Lithium na na µg/L 0.22 na
Nickel MCL-CA 100 µg/L 0.09 2
Silver HBSL 100 µg/L 0.005 1
Thallium MCL-US 2 µg/L 0.01 1
Zinc HBSL 2,000 µg/L 1.4 20

Nutrients

Nitrite (as nitrogen) MCL-US 1 mg/L 0.001 0.4
Total nitrogen (ammonia + nitrite + nitrate + organic nitrogen) na na mg/L 0.05 na
Orthophosphate (as phosphorus) na na mg/L 0.004 0.3

Major ions

Bromide na na mg/L 0.01 na
Calcium na na mg/L 0.022 na
Magnesium na na mg/L 0.011 na
Potassium na na mg/L 0.03 2
Sodium na na mg/L 0.06 na
Silica (as SiO2) na na mg/L 0.018 na
Laboratory or field alkalinity (as CaCO3)

1 na na mg/L 4.6 na
Volatile organic compound

tert-Amyl methyl ether (TAME) na na µg/L 0.06 3
Bromodichloromethane MCL-US 180 µg/L 0.034 na
Bromoform (tribromomethane) MCL-US 180 µg/L 0.1 1
Carbon disulfide HBSL 700 µg/L 0.1 0.5
Carbon tetrachloride (tetrachloromethane) MCL-CA 0.5 µg/L 0.06 0.5
Dibromochloromethane MCL-US 180 µg/L 0.12 1
Dichlorodifluoromethane (CFC-12) HBSL 1,000 µg/L 0.1 na
Methyl tert-butyl ether (MTBE) MCL-CA 13 µg/L 0.1 3
Tetrachloroethene (PCE) MCL-US 5 µg/L 0.026 0.5
Toluene MCL-CA 150 µg/L 0.018 0.5
Trichlorofluoromethane (CFC-11) MCL-CA 150 µg/L 0.06 na
Trichlorotrifluoroethane (CFC-113) MCL-CA 1,200 µg/L 0.022 na
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Understanding-Assessment Methods

The data used in the understanding assessment were from 
grid sites. Constituents discussed in the status assessment 
that had high relative concentrations in greater than 2 percent 
of the MS-SA study unit or were organic or special-interest 
constituents detected in greater than 10 percent of the grid-
site samples are discussed in the understanding assessment. 
Potential explanatory factors were analyzed in relation to 
the constituents of interest to help understand the physical 
and chemical processes affecting groundwater quality in the 
shallow aquifers of the MS-SA. Statistical tests were used 
to identify significant correlations between the constituents 
of interest and potential explanatory factors. The strongest 
correlations of factors affecting water quality are shown 
graphically.

Nonparametric statistical methods were used to test the 
significance of correlations between water-quality variables 
and potential explanatory factors. Nonparametric statistics 
are robust techniques that generally are not affected by 
outliers and do not require that the data follow any particular 
distribution (Helsel and Hirsch, 2002). The significance level 
(p) used to test hypotheses for this report was compared to a 
threshold value (α) of 5 percent (α=0.05) to evaluate whether 
the relation was statistically significant (p<α).

Correlations were investigated by using Spearman’s 
method to calculate the rank-order correlation coefficient (ρ) 
between continuous variables, such as well depth or pH. The 
values of ρ can range from +1.0 (perfect positive correlation) 
to 0.0 (no correlation) to −1.0 (perfect negative correlation). 

The Kruskal-Wallis analysis of variance on ranks was the 
statistical test used to compare three or more independent 
populations (data groups or categories) to determine whether 
one population contains larger values of a constituent. 
Examples of independent populations and categorical 
variables include groundwater age (modern, mixed, or pre-
modern) or land-use classification (natural, agricultural, or 
urban; Helsel and Hirsch, 2002). If a significant difference was 
found among the groups, a multiple comparison test (Dunn’s 
test; Dunn, 1964) was used to determine which groups were 
different. The null hypothesis for the Kruskal-Wallis analysis 
of variance on ranks is that there is no significant difference 
among the median values of the three independent data 
groups. The Wilcoxon rank sum test was used if there were 
only two data groups, for example, redox conditions (oxic and 
anoxic or mixed).

Study-Unit Comparison Assessment Methods

The comparison between the MS-SA and the MS-PA 
study units focused on two aspects: study-unit characteristics 
and results of groundwater-quality analyses. Differences 
between the MS-SA and MS-PA study-unit characteristics 
were evaluated to identify dissimilarities that could affect 
interpretations of comparisons between the study units with 
respect to the groundwater-quality results. Wilcoxon rank 
sum tests were used to evaluate differences in categorical 
and continuous variables between the two study units. If 
an appropriate statistical test could not be run, qualitative 
graphical comparisons were used.

Constituent
Benchmark Reporting limits

Type Value Units USGS California

Herbicides

Atrazine MCL-CA 1 µg/L 0.008 0.5
Deethylatrazine (2-chloro-4-isopropylamino-6-amino-s-triazine) na na µg/L 0.006 na
Hexazinone HBSL 400 µg/L 0.012 na
Pendimethalin HBSL 20 µg/L 0.012 na

Insecticides

Chlorpyrifos HBSL 2 µg/L 0.0036 1
Dimethoate HBSL 2 µg/L 0.006 2

1Benchmark value is for the sum of four trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform).

Table 4B.  Constituents detected in samples collected by the U.S. Geological Survey that have no benchmarks, were present only 
at low relative concentrations, or, for organics, were detected in less than 10 percent of the grid samples, Monterey-Salinas Shallow 
Aquifer study unit, California Groundwater Ambient Monitoring AssessmentPriority Basin Project, October 2012 to May 2013.—
Continued

[Benchmark types: Regulatory, health-based benchmarks: AL-US, U.S. Environmental Protection Agency (EPA) lifetime health-advisory level; 
MCL-CA, California’s maximum contaminant level; MCL-US, EPA maximum contaminant level. Non-regulatory, health-based benchmarks: HBSL, health-
based screening level developed by the USGS; NL-CA, California’s notification level. Non-regulatory, aesthetic-based benchmarks: SMCL-CA, California’s 
secondary maximum contaminant level. Abbreviations: mg/L, milligrams per liter; na, not applicable; µg/L, micrograms per liter]
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Using the framework established in the status and 
understanding assessments of the MS-SA and MS-PA study 
units, constituents selected for additional evaluation were 
the focus of the comparison between the study units with 
respect to groundwater quality. Individual constituent aquifer 
proportions and proportions of constituent groups by class 
presented in the assessments of status and understanding 
for the MS-SA study unit discussed in this report were 
recalculated for the comparison with the MS-PA. This was 
necessary because sites in the MS-SA study outside of the 
area of comparison were not included in the comparison of 
the two study units. The MS-PA is equivalent to collapsing 
the Santa Cruz, Pajaro Valley, and Salinas Valley study 
areas of the MS-SA study unit into one group (referred to 
as MS-SA3). A few caveats are important to note when 
interpreting the results of the comparison: (1) the MS-PA 
system assessment included two grid sites sampled in the 
Carmel Valley groundwater basin, which was not sampled 
in the MS-SA systems assessment; (2) calculation of aquifer 
proportions for the MS-PA system assessment were redone 
using benchmarks used for the MS-SA system so constituent 
classes would be consistent with the MS-SA system 
assessment; (3) age classification for the MS-PA system was 
redone so classification would be consistent with the MS-SA 
system assessment, and carbon-14 data collected from sites 
as part of the trend sampling in 2008 for the MS-PA were 
included; (4) special-interest constituents in the MS-PA system 
assessment were only available for a subset of grid sites 
and, therefore, were not compared; and (5) because 7 years 
separated sample collection and analysis between the MS-PA 
and MS-SA systems assessments, laboratory reporting levels 
(LRL) had changed for many of the constituents (Kulongoski 
and Belitz, 2007, 2011; Goldrath and others, 2016). These 
LRL discrepancies would affect detection frequencies for 
organics, leading to a biased comparison. For the purpose of 
this comparison, therefore, VOC and pesticide detections were 
censored using the higher of the two LRLs as the censoring 
level. 

Not all constituents, primarily inorganic constituents, 
were collected at all sites for the MS-PA study; therefore, 
inorganic data were supplemented using data from the 
DDW database. Details about how the MS-PA data were 
supplemented are in Kulongoski and Belitz (2011). The data 
from the DDW database used in the MS-PA understanding 
assessment were used in the comparison between the two 
studies.

Potential Explanatory Factors
Characteristics of the shallow aquifer system are 

described using explanatory factor data compiled for the 
sites sampled by the GAMA-PBP in the study unit. Several 
explanatory factors were evaluated, but only the factors with 

explanatory value are discussed here: geology, land use, well 
construction, groundwater age, geochemical conditions, and 
hydrologic conditions. Groundwater age and geochemical 
condition explanatory variables were not available for tap 
sites.

Land-Use Characteristics

Human activities at the land surface can affect 
groundwater quality because they can be sources of 
contaminants and because they can alter the groundwater flow 
system. Fertilizers and amendments applied to agricultural and 
residential lands, livestock, septic and wastewater systems, 
runoff from urban and residential areas, industrial activities, 
leaking fuel and chemical storage tanks, landfill leachates, 
and other anthropogenic sources can contribute nitrate, salts, 
pesticides, VOCs, and other constituents to groundwater 
recharge. Irrigation and groundwater pumping can alter the 
volume and source of groundwater recharge and can change 
the rates and directions in which recharge moves through an 
aquifer system. 

Land use was classified by using an enhanced version of 
the satellite-derived (30-m pixel resolution) USGS National 
Land Cover Dataset (Nakagaki and others, 2007). This dataset 
has been used in previous national and regional studies 
relating land use to water quality (Gilliom and others, 2006; 
Zogorski and others, 2006). The dataset characterizes land 
cover during the early 1990s. One pixel in the dataset imagery 
represents a land area of 900 square meters (m2), calculated 
from the pixel resolution of 30 m. The imagery was classified 
into 25 land-cover classes (Nakagaki and Wolock, 2005). 
These 25 land-cover classes were aggregated into 3 principal 
land-use classes—urban, agricultural, and natural. 

Overall land use (proportions of urban, agricultural, 
and natural) in the study unit, the study areas, and the areas 
within a radius of 500 m (1,640 ft) surrounding each site was 
calculated using a geographic information system, ArcGIS 
(version 9.2; Johnson and Belitz, 2009). Land use assigned to 
the area surrounding an individual site (appendix table 1–1) 
was calculated from land use in the area surrounding each site 
(radius of 500 m). Each area was assigned a land-use class if 
more than 50 percent of the land cover in that area could be 
associated with a single land use. If no land cover was greater 
than 50 percent of the pixel area, the classification of “mixed” 
was assigned.

Of land use in the MS-SA study unit, 76 percent was 
classified as natural, 19 percent was agricultural, and 5 percent 
was urban (fig. 6). Land use within the 500-m radius around 
all grid sites sampled in the study unit was more evenly 
distributed among land-use types, with 46 percent classified 
as natural, 38 percent as agricultural, and 16 percent as urban 
(fig. 6). In the MS-SA study unit, natural lands were mostly 
grasslands and shrub lands, and the primary use of agricultural 
land was for row crops, pasture, and hay.
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Figure 6.  Percentage of urban, agricultural, and natural land use in the Monterey-Salinas Shallow Aquifer assessment study unit, 
California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013, for A, the study unit and study 
areas, and B, the 500-meter buffer area surrounding each grid or tap site.
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Land use in the Santa Cruz, Pajaro Valley, and Highlands 
study areas was predominately natural, and land use in the 
Salinas Valley study area was predominately agricultural 
(fig. 6A). The Santa Cruz and Pajaro Valley study areas both 
had more than 25 percent of their area classified as urban, 
whereas the Salinas Valley and Highlands study area only 
had 9 and 1 percent, respectively, classified as such. Land use 
within the 500-m buffer surrounding each study-area grid site 
generally followed the same land-use patterns as observed at 
the study-area scale, with natural land use predominating at 
all study-area grid sites, except the grid sites in the Salinas 
Valley study area where agricultural land use was the 
predominate land-use type (figs. 6A, B). Land use in the 500-m 
buffer surrounding tap sites was similar to grid sites in their 
respective study areas.

Septic tanks also are markers of land-use patterns. The 
density of septic tanks in the 500-m radius area around a site 
can be an indicator of potential sources of anthropogenic 
contaminants from the land surface. Septic-tank density was 
determined from housing characteristics data from the 1990 
U.S. Census (U.S. Census Bureau, 1990). The density of septic 
tanks in each housing census block was calculated from the 
number of tanks and block area. The density of septic tanks 
around each site was calculated from the area-weighted mean 
of the block densities for blocks within a 500-m buffer around 
the site location (Tyler Johnson, U.S. Geological Survey, 
written commun., 2009). The density of septic tanks around 
grid sites ranged from 0 to 67 tanks per square kilometer 
(tanks/km2), and the median density was 1.2 tanks/km2 
(appendix table 1–1). The Santa Cruz and Pajaro Valley study 
areas had the highest density of septic tanks (table 5).

Table 5.  Results of nonparametric analysis for differences among categories for selected potential explanatory factors for grid 
sites, Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, 
October 2012 to May 2013.

[Results are shown only for those correlations with a p value is less than or equal to (≤) 0.05 (significant correlation). Abbreviations: Ag, agricultural; 
An-mix, anoxic or mixed oxidation-reduction classifications; grMz-m, Mesozoic granitic rocks and metamorphic rocks; H, Highlands; Mix, groundwater 
having both modern and pre-modern groundwater; Mod, modern groundwater primarily recharged after 1953; Nat, natural; ns, not significant; P, Pajaro Valley; 
preM, pre-modern groundwater primarily recharged before 1953; Q, Holocene alluvial and sand dune deposits; Qpc, Plio-Pleistocene and Pliocene non-marine 
sediments; SC, Santa Cruz; SV, Salinas Valley; TK, Tertiary (Pliocene, Miocene, and Paleocene) marine sediment and Cretaceous metasediments; Urb, urban; 
<, less than; >, greater than; —, not applicable]

Potential 
explanatory 

factor

Kruskal-Wallis with Dunn’s multiple comparison test
p value

significant differences

Land-use 
category 

(Ag, Nat, Urb)

Study 
area

Geology 
(Q, Qpc, TK, grMz-m)

Oxidation-reduction 
class 

(Oxic, An-mix)

Age 
class 

(Mod, Mix, preM)

Percentage of  
urban land use — <0.001

P,SV,SC>H
<0.001
Q>Qpc ns ns

Percentage of 
agricultural land use — <0.001

SV>SC,H
<0.001

Q>Qpc,TK,grMz-m
<0.001

Oxic>An-mix
0.005

Mod>preM
Percentage of  

natural land use — <0.001
H>SV,P; SC>SV

<0.001
grMz-m,Qpc,TK>Q

<0.001
An-mix>Oxic

0.011
PreM>Mod

Depth of well ns ns ns ns 0.006
preM> Mod

Depth to top of 
perforation ns ns ns ns ns

Dissolved oxygen ns <0.001
P,SV,H>SC

<0.001
grMz-m,Qpc,Q>TK

<0.001
Oxic>An-mix

0.007
Mod>Mix, preM

pH ns ns ns ns <0.001
preM>Mix,Mod

Density of septic tanks <0.001
Urb>Ag,Nat

<0.001
SC,P>SV,H

0.002
TK>Qpc ns ns

Distance to nearest 
geothermal site

0.006
Nat>Ag,Urb

<0.001
SC>SV,P,H

0.002
TK>Q,Qpc

0.046
An-mix >Oxic ns

Aridity index <0.001
Urb,Nat>Ag

<0.001
SC,P>SV,H

<0.001
TK>Q,Qpc

<0.001
An-mix >Oxic ns

Percentage of  
modern carbon-14

0.005
Ag>Nat

0.004
P,SV>H

0.001
Q>Qpc,TK

0.035
Oxic>An-mix

<0.001
Mod>Mix>preM
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Measures of Location

Four potential explanatory factors were used to represent 
the locations of sites in the MS-SA study-unit hydrologic 
system: study area, climate index, well depth, and depth to top 
of perforations in well. 

There are many differences between study areas 
in the MS-SA study unit discussed in the section on the 
hydrogeologic setting. The factor “study area” combines all 
of those differences in one variable. By using study area as a 
potential explanatory factor, the differences and similarities 
among the component study areas in the study unit could be 
evaluated.

The aridity index was used as an indicator of climate. 
Aridity index is defined as average annual precipitation 
divided by average annual evapotranspiration, and it is equal 
to the United Nations Educational, Scientific, and Cultural 
Organization Aridity Index (United Nations Educational, 
Scientific, and Cultural Organization, 1979; United Nations 
Environment Programme, 1997). Average annual precipitation 
for each grid site was extracted from the PRISM average 
annual precipitation for 1971–2009 GIS coverage (PRISM 
Group, Oregon State University, 2010). Average annual 
evapotranspiration for each grid site was extracted from a 
GIS coverage modified from Flint and Flint (2007). The 
modification consisted of calibrating the evapotranspiration 
values to the measured California Irrigation Management 
Information System reference evapotranspiration values 
(California Irrigation Management Information System, 
2012; A.L. Flint, U.S. Geological Survey, oral commun., 
2009). Greater values of aridity index correspond to wetter 
conditions. Values less than 0.05 are defined as hyper-arid, 
0.05 to less than 0.20 as arid, 0.20 to less than 0.50 as semi-
arid, 0.50 to less than 0.65 as dry subhumid, 0.65 to less than 
1.00 as humid, and 1.00 or greater as wet.

Aridity-index values at grid sites ranged from 0.21 to 
0.89 (appendix table 1–1). Of the 100 grid sites sampled in 
the MS-SA study unit, 10 had an aridity index in the humid 
or wet category (aridity index greater than 0.65), all of which 
were in the Santa Cruz study area. The grid sites in the Salinas 
Valley and Highlands study areas had aridity index values less 
than 0.50, or semi-arid. In general, the Santa Cruz and Pajaro 
Valley study areas were less arid than the Salinas Valley and 
Highlands study areas (table 5).

Well-construction information was available for 96 of the 
100 grid sites sampled in the MS-SA study unit. Most of the 
well-construction data were from driller’s logs and are given 
in table 2. Other sources were ancillary records from well 
owners and the USGS National Water Information System 
database. Grid-site identification verification procedures are 
described by Goldrath and others (2016). Well depths of 

grid sites ranged from 7 to 275 m below land surface (bls), 
with a median of 89 m bls (fig. 7; table 2). Depths to the top 
of perforation ranged from 6 to 183 m bls, with a median 
of 50 m bls. The perforation length of well casings ranged 
from 3 to 134 m, with a median of 30 m. Well-construction 
information was available for 28 of 70 tap sites that had 
similar depths and opening lengths as grid sites. Well depths 
of tap sites ranged from 21 to 213 m bls, with a median of 
91 m bls (fig. 7; table 2). Depths to the top of perforation 
ranged from 9 to 177 m bls, with a median of 51 m bls. The 
perforation length of tap well casings ranged from 8 to 107 m, 
with a median of 15 m. Well depths and depths to top of 
perforations were not significantly different among study areas 
(table 5).

Geologic Factors

Geologic factors were represented by two variables: 
aquifer lithology and distance to nearest geothermal site. 
Aquifer lithology was classified on the basis of lithologic 
information from the CDWR well-completion reports and 
the surficial geology on the California state geologic map 
(Jennings and others, 1977; Saucedo and others, 2000). For 
the purpose of examining broad relations between geology and 
groundwater quality in the MS-SA study unit, the lithology 
was simplified into four groups (fig. 4; appendix table 1–1):

Q: Q, mostly Holocene alluvial deposits with some 
Pleistocene of marine and non-marine origin; Qs, sand dune 
deposits.

QPc: Plio-Pleistocene and Pliocene non-marine 
sediments.

TK: T, Tertiary marine sediments (Miocene and Pliocene 
marine sediments); K, Upper Cretaceous metasediment and 
Paleocene marine sediments; FJf, Franciscan Complex. 

grMz-m: grMz, Mesozoic granitic rocks; m, undivided 
Mesozoic, Paleozoic, and Precambrian metamorphics.

The Pajaro and Salinas Valley study areas were composed 
almost entirely of alluvial deposits. The Santa Cruz study 
area was composed primarily of marine sediments, with some 
alluvial deposits in the southwestern part of the study area. 
The Highlands study area is composed of marine sediments 
and non-marine rocks (fig. 4).

Some constituents are naturally elevated as a result of 
geothermal activity. Distance to the nearest geothermal site 
was used to evaluate the influence of geothermal activity on 
water quality. Data for geothermal sites (appendix table 1–1) 
were obtained from a list compiled by the National Oceanic 
and Atmospheric Administration (Berry and others, 1980) and 
the USGS Mineral Resources Data System  
(http://tin.er.usgs.gov/mrds/).

http://tin.er.usgs.gov/mrds/
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Groundwater Age

Groundwater age was selected as a potential explanatory 
factor because a longer contact time between groundwater and 
aquifer sediments generally provides a greater opportunity for 
reactions that can alter the groundwater quality. Groundwater 
“age” refers to the length of time that the water has resided in 
the aquifer system, which is the amount of time elapsed since 
the water was last in contact with the atmosphere. Carbon-14 
dating was used as an explanatory factor representing the 
age of groundwater samples. In addition, data for the age-
dating tracers tritium and carbon-14 were used to classify 
groundwater ages among three categories: modern, mixed, and 
pre-modern. 

Groundwater samples with tritium activities less 
than 0.3 tritium units (TU) and carbon-14 values less than 
90-percent modern carbon (pmc) were classified as “pre-
modern” groundwater; samples with tritium activities greater 
than or equal to 0.3 TU and carbon-14 values greater than or 
equal to 90 pmc were classified as “modern” groundwater. 
Samples with tritium activities greater than or equal to 0.3 TU 
and carbon-14 values less than 90 pmc, or with tritium 
activities less than 0.3 TU and carbon-14 values greater than 
or equal to 90 pmc, were classified as “mixed” groundwater. 
Samples classified as modern consist primarily of water 
recharged after 1953; samples classified as pre-modern 

consist primarily of water recharged before 1953; and samples 
classified as mixed contain substantial amounts of modern and 
pre-modern groundwater. Practically speaking, pre-modern 
groundwater could contain a fraction of modern water, and 
modern water could contain a fraction of pre-modern water. 
Previous investigations have used a range of tritium values 
from 0.3 to 1.0 TU as thresholds for distinguishing pre-1953 
from post-1953 water (Michel, 1989; Plummer and others, 
1993; Michel and Schroeder, 1994; Clark and Fritz, 1997; 
Manning and others, 2005). By using a tritium value of 0.3 TU 
for the threshold in this study, the age-classification scheme 
allows for samples with a slightly greater fraction of pre-
modern water to be classified as modern. 

Background tritium values in California precipitation 
at the latitudes and longitudes corresponding to the southern 
Coast Ranges are approximately 4 TU (Michel, 1989; Jurgens 
and others, 2012). Aboveground nuclear testing greatly 
increased tritium values in precipitation beginning in about 
1952; tritium values peaked in the northern hemisphere in 
1963 at more than 1,000 TU (Michel, 1989). Radioactive 
decay of tritium in water is such that 4 TU in 1952 would be 
0.14 TU in 2012. The lower threshold for modern groundwater 
was defined as 0.3 TU because most of the samples with 
tritium values between 0.14 and 0.30 TU also had carbon-14 
values less than 90 pmc, indicating dominance by old 
groundwater. 
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Aboveground nuclear testing also increased carbon-14 
values in atmospheric carbon dioxide and dissolved inorganic 
carbon in precipitation. Radioactive decay of carbon-14 
in the dissolved inorganic carbon in precipitation at a 
background value of 100 pmc in 1952 would result in a 
carbon-14 value of 99 pmc in 2010. The upper threshold for 
pre-modern groundwater was defined as 90 pmc because the 
carbon-14 values in this study are “uncorrected,” meaning 
they have not been adjusted to consider exchanges with 
sedimentary sources of carbon (Fontes and Garnier, 1979). 
Bexfield and others (2012) corrected carbon-14 values of 
groundwater samples from Albuquerque, New Mexico, by 
using geochemical modeling to account for reactions with 
sedimentary carbonates and oxidation of sedimentary organic 
matter, yielding corrected values of carbon-14 that were from 
1 to 9 pmc greater than the measured values. It was assumed 
that corrected carbon-14 values for MS-SA samples would be 
similar to the higher corrections for the Albuquerque samples 
because the Coast Ranges alluvium contains some carbonate 
minerals.

Tritium, carbon-14, and sample-age classifications are 
reported in appendix table 1–2. Although more sophisticated 
lumped parameter models to analyze age distributions that 
incorporate mixing are available (Cook and Böhlke, 2000), 
use of these models to characterize age mixtures was beyond 
the scope of this report. Rather, classification into modern 
(recharged after 1953), mixed, or pre-modern (recharged 
before 1953) was sufficient to provide an appropriate and 
useful characterization for the purposes of examining 
groundwater quality.

Age classifications were assigned to 99 out of 100 grid 
sites sampled, such that 25 samples were classified as modern, 
31 as mixed, and 43 as pre-modern age (appendix table 1–2). 
Most samples classified as pre-modern groundwater were in 
and near the Pajaro Valley study area or in the southern part of 
the study unit. Most of the modern-age groundwater samples 
were in the Salinas Valley (fig. 8A). The Highlands study area 
has some of the oldest groundwater on the basis of carbon-14 
dating (table 5).

Geochemical Condition

Geochemical conditions investigated as potential 
explanatory factors in this report include oxidation-reduction 
characteristics, dissolved oxygen (DO), and pH. Geochemical 
conditions influence the mobility of many inorganic and 
organic constituents (McMahon and Chapelle, 2007). 
A modified classification of oxidation-reduction (redox) 
conditions was adapted from the framework presented by 
McMahon and Chapelle (2007) based on dissolved oxygen 
(DO), nitrate-nitrogen (N), manganese, iron, and sulfate 
concentrations.

Of 100 grid sites, 98 had sufficient data for redox 
classification (appendix table 1–3). Tap sites were not 
assigned a redox classification because sufficient data 
for classification were not available. An automated Excel 
workbook program was used to assign redox classification to 
each sample (Jurgens and others, 2009). This workbook uses 
the framework proposed by McMahon and Chapelle (2007) to 

classify samples according to redox conditions in groundwater. 
Samples were classified as oxic, anoxic, or mixed. Anoxic 
conditions were further subdivided into suboxic, nitrate-
reducing, manganese-reducing, iron-reducing, or sulfate-
reducing conditions. Constituent concentrations used to 
classify samples and the resulting redox classifications are 
shown in appendix table 1–3.

Redox conditions generally evolve along a well-
documented sequence of terminal electron acceptor processes 
(TEAP), where one TEAP predominates at a particular 
time and aquifer location (Chapelle and others, 1995; 
Chapelle, 2001). The predominant TEAPs are oxygen-
reduction, nitrate-reduction, manganese-reduction, iron-
reduction, sulfate-reduction, and carbon dioxide-reduction or 
methanogenesis. The presence of redox-sensitive chemical 
species characteristic of more than one TEAP can indicate 
mixed water from different redox zones upgradient of the 
site, a site screened across more than one redox zone, or 
spatially heterogeneous microbial activity in the aquifer. 
Different redox elements (for example, iron) tend not to reach 
overall equilibrium in most natural water systems (Lindberg 
and Runnels, 1984); therefore, a single redox measurement 
usually cannot represent the system, further complicating the 
assessment of redox conditions.

Of groundwater samples collected in the MS-SA 
study unit, 67 percent were classified as oxic, 26 percent 
as anoxic, and 7 percent as mixed (appendix table 1–3). 
The Pajaro Valley study area had the highest frequency of 
samples classified as oxic (73 percent), and the Santa Cruz 
study area had the highest frequency of samples classified 
as anoxic (67 percent). Many samples classified as anoxic 
also were in the southern part of the study unit (fig. 8B). The 
DO concentrations were available for 98 of the 100 grid-
site samples. The DO concentrations ranged from less than 
0.2 to 9.5 milligrams per liter (mg/L), with a median DO 
concentration of 2.15 mg/L. Redox classifications and DO 
were used to help explain the distribution and concentrations 
of selected inorganic constituents in the shallow aquifer 
systems of the MS-SA. 

The pH of groundwater influences the behavior of 
dissolved constituents by altering the charge characteristics 
of molecules and the variably charged surfaces of minerals 
and amorphous phases that compose aquifer matrices. As 
groundwater increases in pH (becomes more alkaline), 
the variable surface charge of aquifer matrices becomes 
increasingly negative (Stumm, 1992). A particle that has 
a predominantly negatively charged surface inhibits the 
adsorption and promotes desorption of dissolved anionic 
constituents in groundwater, such as arsenic (HAsO4

2–), while 
promoting the adsorption of dissolved cationic constituents, 
such as copper (Cu2+). Values of pH were available for 
samples from all grid sites and 68 of the 70 tap sites. Values 
of pH in samples from the MS-SA study unit ranged from 
6.0 to 8.2, with a median value of 7.2 (appendix table 1–3). 
The median pH values for samples from all the study areas 
were 7.2, except for samples from the MS-P study area, which 
had a median value of 7.4. Only two grid samples and one 
tap sample had a pH value greater than or equal to 8.0. The 
pH values for samples collected in the MS-SA study unit are 
shown in appendix table 1–3.
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Figure 8.  Location of sites in the Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring 
Assessment Priority Basin Project, October 2012 to May 2013, by A, groundwater-age classification, and B, oxidation-reduction 
classification.
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Figure 8.  —Continued
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Other Explanatory Factors

Some potential explanatory factors evaluated did not 
have any statistically significant relation with concentrations 
of water-quality constituents in this study unit. These factors 
included the distance to nearest sources of halite, oil and gas 
fields, faults, and anthropogenic perchlorate as well as the 
density of leaky underground fuel tanks (LUFTs; appendix 
table 1–4). Data for halite sources was obtained January 10, 
2012, from the USGS Mineral Resources Data System website 
(http://tin.er.usgs.gov/mrds/). Oil and gas information was 
obtained September 1, 2005, from the California Division 
of Oil, Gas, and Geothermal Resources (http://www.consrv.
ca.gov/DOG). Fault data were extracted from the California 
State geologic map (Jennings and others, 1977; Saucedo 
and others, 2000). The LUFT data were obtained from the 
California Environmental Protection Agency (2001). Sources 
of perchlorate were compiled in 2007 from data obtained 
from the SWRCB’s GeoTracker database (http://geotracker.
waterboards.ca.gov/), a 2005 draft report from the California 
Department of Toxic Substances Control workshop on 
Perchlorate Best Management Practices (https://www.dtsc.
ca.gov/HazardousWaste/Perchlorate/BMP_Workshops.cfm), 
and a list of perchlorate manufacturers and users, obtained 
from the U.S. Environmental Protection Agency.

Correlations Between Explanatory 
Factors

Apparent correlations between an explanatory factor 
and a water-quality constituent could be erroneous, resulting 
from correlations between two explanatory factors, rather than 
a causative relation between the explanatory factor and the 
water-quality constituent. For example, detections of VOCs 
could be inversely correlated to urban land use in a given 
area because well depths in urban areas tend to be deeper and 
the water tapped pre-modern, not because of a low incidence 
of VOCs in urban settings. For this reason, it is important to 
identify significant correlations among explanatory variables. 
Relations among explanatory factors are shown in tables 5 
and 6.

Several potential explanatory factors used in this report 
had a significant correlation with another explanatory factor. 
Land use around grid sites was related to geology because 
most of the urban and agricultural land uses were in alluvial 
deposits, and natural land uses were primarily in non-alluvial 

deposits. Samples collected from sites in agricultural 
areas were correlated to oxic redox conditions and modern 
groundwater ages, whereas samples collected from sites in 
natural areas were correlated to anoxic and mixed redox 
conditions and to pre-modern groundwater ages (table 5). In 
addition, the percentage of agricultural land use was positively 
correlated to DO concentration and the percentage of modern 
carbon-14 (table 6). Agricultural land use was negatively 
correlated and urban land use was positively correlated with 
the density of septic tanks and with the aridity index (table 6).

As might be expected, well depth was significantly 
correlated with the depth to the top of the uppermost opening 
(table 6). Because of the strong correlation between these 
depth variables, only well depth, for which there were more 
measurements, is discussed in the understanding assessment 
section of this report. Well depth was negatively correlated 
with the percentage of modern carbon-14, and sites with 
pre-modern age groundwater were generally deeper than 
sites with modern-age groundwater (fig. 9). Samples 
collected from sites classified with pre-modern groundwater 
age had lower DO concentrations and higher pH values; 
conversely, samples classified with modern groundwater 
had higher DO concentrations and lower pH values. As the 
contact time between groundwater and the aquifer materials 
increases, pH values generally rise as acid is consumed by 
weathering reactions of silicate minerals and dissolution of 
carbonate minerals, if present (Stumm and Morgan, 1996). 
Similarly, the percentage of modern carbon-14 was positively 
correlated with DO concentrations and negatively with pH 
values. Groundwater from alluvial deposits (Q) had a higher 
percentage of modern carbon-14 than that from non-marine 
(Qpc) and marine (TK) sediments. Septic tank density was 
greater in areas of marine sediments (TK) than in areas of non-
marine sediments (Qpc).

The aridity index was negatively correlated to the 
percentage of agricultural land use and positively correlated 
to urban land-use percentages. These correlations reflect that 
urban land use is primarily in the northern part of the study 
unit, where the climate is wetter, rather than a causative 
relation. The positive correlation of the aridity index to 
the density of septic tanks was most likely a result of the 
correlation of septic systems with urban land use. The aridity 
index was negatively correlated to pH and DO concentrations, 
and a higher aridity index was associated with anoxic redox 
conditions. A higher aridity index was also associated with 
marine geology (TK) compared to non-marine and alluvial 
deposits (Qpc, Q).

http://tin.er.usgs.gov/mrds/
http://www.consrv.ca.gov/DOG
http://www.consrv.ca.gov/DOG
http://geotracker.waterboards.ca.gov/
http://geotracker.waterboards.ca.gov/
https://www.dtsc.ca.gov/HazardousWaste/Perchlorate/BMP_Workshops.cfm
https://www.dtsc.ca.gov/HazardousWaste/Perchlorate/BMP_Workshops.cfm
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Table 6.  Results of nonparametric analysis for correlations (Spearman’s rho method) between selected potential explanatory factors 
for grid sites, Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin 
Project, October 2012 to May 2013.

[Results are given only for those correlations with a p value less than or equal to (≤) 0.05 (significant correlation). Abbreviations: ns, correlation not significant; 
<, less than]

Potential 
explanatory 

factor

Depth 
to top of 

perforation

Density 
of 

septic 
tanks

Distance 
to nearest 

geothermal 
site

Aridity 
index

pH
Dissolved 

oxygen

Percentage 
of modern 
carbon-14

Percentage 
of 

agricultural 
land use

Percentage 
of natural 
land use

Percentage 
of urban 
land use

Depth of well 0.835
<0.001 ns ns ns ns ns –0.264

0.010 ns ns ns

Depth to top of 
perforation ns ns ns ns ns ns ns ns ns

Density of septic tanks ns 0.755
<0.001 ns ns ns –0.292

0.003 ns 0.511
<0.001

Distance to nearest geothermal site 0.348
<0.001 ns ns ns –0.255

0.011
0.242
0.015 ns

Aridity index ns –0.218
0.031 ns –0.525

<0.001
0.236
0.018

0.268
0.007

pH ns –0.304
0.002 ns ns ns

Dissolved oxygen 0.334
0.001

0.239
0.018 ns ns

Percentage modern carbon-14 0.372
<0.001

–0.340
<0.001 ns
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Figure 9.  Groundwater-age classification in the Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient 
Monitoring Assessment Priority Basin Project, October 2012 to May 2013, relative to A, depth to top of perforations, and B, well depth.
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Status and Understanding of Water 
Quality

The following discussion of the status and understanding 
assessment results is divided into inorganic, organic, and 
special-interest constituents. The status assessment begins 
with a survey of how many constituents were detected at 
any concentration compared to the number analyzed and 
with a graphical summary of the relative concentrations of 
constituents detected in the grid-site samples. Aquifer-scale 
proportions are presented for constituent classes and the subset 
of constituents that were present at high or moderate relative 
concentrations. Finally, results of statistical tests for relations 
between water quality and potential explanatory factors are 
presented for constituents that met criteria for selection for 
additional evaluation based on relative concentration or, for 
organic or special-interest constituents, detection frequency.

Inorganic Constituents

Inorganic constituents generally are natural in 
groundwater, although the concentrations can be influenced 
by human activities. Of the 42 inorganic constituents analyzed 
by the GAMA-PBP, 27 had regulatory or non-regulatory 
health-based benchmarks, 4 had non-regulatory aesthetic-
based secondary maximum contaminant level (SMCL) 
benchmarks, and 11 had no established benchmarks. Of the 
41 constituents detected, 16 inorganic constituents with health-
based benchmarks and 4 inorganic constituents with secondary 
maximum contaminant levels (SMCLs) were detected at 
moderate or high relative concentrations in one or more grid 
sites sampled in the MS-SA study unit (figs. 10, 11; table 4A). 
The other 21 inorganic constituents detected either had no 
established benchmarks or were only detected at low RCs 
(table 4B).

Aquifer-scale proportions for inorganic constituent 
classes with health-based benchmarks and SMCLs are 
summarized in table 7A for the MS-SA study unit and the 
three study areas that coincide with the MS-PA study unit. 
Aquifer-scale proportions for inorganic constituent classes 
are summarized in table 7B for the four study areas. Aquifer-
scale proportions for individual inorganic constituents are 
summarized in table 8A for the MS-SA study unit and in 
table 8B for each study area. Inorganic constituent classes 
include trace elements, radioactive constituents, nutrients, and 
salinity indicators.

Inorganic constituents with health-based benchmarks, 
as a group, were present at high relative concentrations in 
51 percent of the shallow aquifer system and at moderate 
relative concentrations in 19 percent (table 7A). The 
proportion of the shallow aquifer system having high 
relative concentrations of inorganic constituents with health-
based benchmarks was highest for the Highlands study 
area and lowest for the Pajaro Valley study area (table 7B). 

Inorganic constituents with SMCL benchmarks (metals and 
salinity indicators), as a group, were present at high relative 
concentrations in 40 percent of the primary aquifer system and 
at moderate relative concentrations in 33 percent (table 7A).

Salinity Indicators
The class of constituents with SMCL benchmarks 

included salinity indicators (TDS, sulfate, and chloride) 
and the trace element iron. These constituents can affect the 
aesthetic properties of water, such as taste, color, and odor, or 
can create technical problems, such as scaling and staining. 
The SMCL benchmarks are based on these aesthetic and 
technical concerns and are not health-based benchmarks. 
Iron is discussed in the “Trace Elements” section. One or 
more salinity indicators with SMCLs were detected at high 
relative concentrations in 38 percent of the MS-SA study 
unit and at moderate relative concentrations in 36 percent 
(table 7A). The Highlands and Salinas Valley study areas, 
had the highest proportions of high relative concentrations 
at 43 and 31 percent, respectively (table 7B; fig. 11B). Total 
dissolved solids, chloride, and sulfate were detected at high 
relative concentrations in more than 6 percent of the study 
unit (table 8A).

Understanding Assessment for Total Dissolved Solids 
Total dissolved solids (TDS) were detected at high 

relative concentrations in 38 percent of the MS-SA study 
unit and at moderate relative concentrations in 36 percent 
(table 8A); the SMCL-CA for TDS is 1,000 mg/L. High 
relative concentrations were detected in all study areas, but 
the Highlands study area had the greatest aquifer proportions 
of high relative concentrations at 43 percent, followed 
by the Salinas Valley study area at 31 percent (figs. 11B, 
12A; table 8B). Aquifer proportions for moderate relative 
concentrations also were greatest in the Highlands and 
Salinas Valley study areas (table 8B). Correlation of TDS 
with potential explanatory variables indicated natural and 
anthropogenic sources could both be primary contributors to 
elevated TDS in groundwater. 

Natural sources of TDS include mixing of groundwater 
with deep saline groundwater (connate water) that is 
influenced by interactions with deep marine or lacustrine 
sediments, concentration of salts by evaporation in discharge 
areas, or water-rock interactions. Stable isotopes of water, 
δ2H and δ18O (Goldrath and others, 2016), can be used to 
determine whether there has been fractionation through 
evaporation. Isotopic values plotting to the right of the global 
meteoric water line are indicative of evaporative processes. 
Several samples from the MS-SA study unit showed evidence 
of evaporative processes (fig. 13). These samples were 
primarily from the Highlands and Salinas Valley study areas. 
Evaporative processes were indicated throughout the range of 
TDS concentrations, although most of the high concentrations 
plot to the right of the global meteoric water line. 
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Figure 10.  Maximum relative concentration of constituents detected in samples from grid sites, by constituent class, Monterey-Salinas 
Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.
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Figure 11.  Relative concentrations of inorganic constituents in samples from grid sites, Monterey-Salinas Shallow Aquifer study 
unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013: A, with health-based 
benchmarks, and B, with secondary maximum contaminant levels.
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Figure 11.  —Continued

Table 7A.  Aquifer-scale proportions for constituent classes in the Monterey-Salinas shallow aquifer study unit, California 
Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.

[Aquifer-scale proportions are based on samples collected at 100 grid and 70 tap sites from October 2012 to May 2013. The benchmarks are given in tables 4A 
and 4B. Abbreviations: High, concentrations greater than the water-quality benchmark; moderate, concentrations greater than or equal to 0.1 of the benchmark, 
but less than or equal to the benchmark for organic constituents (the threshold for inorganic constituents is 0.5 of the benchmark); low, concentrations less 
than or equal to 0.1 of the benchmark for organic constituents (the threshold for inorganic constituents is 0.5 of the benchmark); SMLC, secondary maximum 
contaminant level; TDS, total dissolved solids]

Constituent class

Aquifer-scale proportion  
for the MS-SA study unit1 

(percent)

Aquifer-scale proportion  
for the Santa Cruz, Pajaro Valley, and 

Salinas Valley study areas2 
(percent)

High Moderate Low High Moderate Low
Inorganics with health-based benchmarks

Trace elements 37 13 51 16 11 73
Radioactive 19 20 61 2.5 14 83
Nutrients 16 19 65 28 11 60
Any inorganic with health-based benchmarks 51 19 30 39 24 37

Inorganics with SMCL benchmarks
Salinity indicators (TDS, sulfate, chloride) 38 36 27 25 34 40
Any inorganic with SMCL benchmarks 40 33 26 27 33 39

Organics with health-based benchmarks
Trihalomethanes3 0 0 100 0.0 0.0 100
Pesticides (including fumigants) 0 0.7 99 0.0 2.0 98
Any organic with health-based benchmarks 0 0.7 99 0.0 2.0 98

Constituents of special interest
N-nitrosodimethylamine and (or) perchlorate 2.0 36 62 5.9 42.2 52.0

1Aquifer-scale proportion is calculated by summing the area-weighted average for each individual study area. Area weights for each study area are Santa Cruz 
= 0.03, Pajaro Valley = 0.04, Salinas Valley = 0.26, and Highlands = 0.67.

2Aquifer-scale proportion is calculated by summing the area-weighted average for each of the alluvial fill study areas. Area weights for each study area are 
Santa Cruz = 0.08, Pajaro Valley = 0.14, Salinas Valley = 0.78.

3The MCL-US threshold for trihalomethanes is the sum of chloroform, bromoform, bromodichloromethane, and dibromochloromethane.
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Table 7B.  Aquifer-scale proportions for constituent classes for each study area in the Monterey-Salinas Shallow Aquifer assessment study unit, California Groundwater 
Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.

[Aquifer-scale proportions are based on samples collected at 100 grid and 70 tap sites from October 2012 to May 2013. The benchmarks are given in tables 4A and 4B. Abbreviations: High, concentra-
tions greater than the water-quality benchmark; Moderate, concentrations greater than or equal to 0.1 of the benchmark, but less than or equal to the benchmark for organic constituents (the threshold for 
inorganic constituents is 0.5 of the benchmark); Low, concentrations less than or equal to 0.1 of the benchmark for organic constituents (the threshold for inorganic constituents is 0.5 of the benchmark); 
MCL‑US, U.S. Environmental Protection Agency maximum contaminant level; TDS, total dissolved solids]

Constituent class

Aquifer-scale proportion
(percent)

Highlands Santa Cruz Pajaro Valley Salinas Valley

High Moderate Low High Moderate Low High Moderate Low High Moderate Low

Inorganics with health-based benchmarks

Trace elements 47 13 40 40 13 47 3.3 6.7 90 15 12 73
Radioactive 27 23 50 6.7 6.7 87 0 0 100 2.5 18 80
Nutrients 10 23 66 0.0 0.0 100 20 17 63 33 11 56
Any inorganic with health-based benchmarks 57 17 27 40 13 47 20 27 53 43 25 33

Inorganics with aesthetic benchmarks

Salinity indicators (TDS, sulfate, chloride) 43 37 20 6.7 33 60 6.7 17 77 31 37 32
Any inorganic with aesthetic-based benchmarks 47 33 20 27 27 47 6.7 17 77 31 37 32

Organics with health-based benchmarks

Trihalomethanes1 0.0 0.0 100 0.0 0.0 100.0 0.0 0.0 100 0.0 0.0 100
Pesticides (including fumigants) 0.0 0.0 100 0.0 0.0 100.0 0.0 0.0 100 0.0 2.5 98
Any organic with health-based benchmarks 0.0 0.0 100 0.0 0.0 100.0 0.0 0.0 100 0.0 2.5 98

Constituents of special interest

N-nitrosodimethylamine and (or) perchlorate 0.0 33 67 0.0 6.7 94 0.0 33 67 7.5 48 45
1The MCL-US threshold for trihalomethanes is the sum of chloroform, bromoform, bromodichloromethane, and dibromochloromethane.
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Table 8A.  Aquifer-scale proportions and raw detection frequencies for constituents detected in the Monterey-Salinas Shallow Aquifer 
study unit (October 2012 to May 2013) that had (1) high or moderate values in samples collected from grid or tap sites or (2) organic or 
special-interest constituents detected in more than 10 percent of the grid sites sampled, California Groundwater Ambient Monitoring 
Assessment Priority Basin Project.

[Aquifer-scale proportions are based on samples collected at 100 grid and 70 tap sites from October 2012 to May 2013. The benchmarks are given in tables 4A 
and 4B. Abbreviations: High, concentrations greater than the water-quality benchmark; Moderate, concentrations greater than or equal to 0.1 of the benchmark, 
but less than or equal to the benchmark for organic constituents (the threshold for inorganic constituents is 0.5 of benchmark); MCL-US, U.S. Environmental 
Protection Agency maximum contaminant level]

Constituent

Raw detection frequency1

(percent)

Aquifer-scale proportion 
for the MS-SA study unit1 

(percent)

Aquifer-scale proportion 
for the Santa Cruz, Pajaro 
Valley, and Salinas Valley 

study areas2

(percent)
Number 
of sites

High Moderate
Number 
of cells

High Moderate 
Number 
of cells

High Moderate 

Trace and minor elements
Arsenic 170 4.1 8.2 100 3.9 15 70 4.9 6.3
Beryllium 170 0.0 2.8 100 0.0 2.9 70 0.0 1.9
Boron 170 2.2 0.0 100 2.2 0.0 70 0.0 0.0
Chromium 170 0.0 1.8 100 0.0 0.4 70 0.0 1.4
Fluoride 165 0.0 7.2 98 0.0 7.1 69 0.0 0.7
Iron 170 8.8 3.5 100 13 1.2 70 6.0 3.4
Manganese 170 7.1 4.7 100 6.4 1.7 70 5.7 5.1
Molybdenum 170 14 11 100 14 11 70 2.6 7.5
Selenium 170 2.8 0.5 100 3.2 0.5 70 2.9 1.6
Strontium 170 9.5 3.2 100 9.5 3.1 70 1.6 2.7
Vanadium 170 0.0 2.4 100 0.0 6.9 70 0.0 0.6

Radioactive constituents
Adjusted gross alpha radioactivity, 72-hour count 93 13 20 93 13 14 67 0.5 11
Gross beta radioactivity, 72-hour count 93 2.6 7.7 93 2.5 7.7 67 0.0 0.0
Radon-222 96 0.0 8.0 96 0.0 8.1 66 0.0 4.1
Uranium 170 7.5 6.7 100 7.6 6.7 70 2.6 6.8

Nutrients
Nitrate 170 14 20 100 14 19 70 28 11
Ammonia 100 1.0 0.0 100 2.2 0.0 70 0 0.0

Salinity indicators
Chloride 170 7.0 12.1 100 6.6 12 70 6.3 9.2
Sulfate 170 26 5 100 26 4.7 70 12 7.4
Total dissolved solids (TDS) 170 37 36 100 38 36 70 26 33

Trihalomethanes
Chloroform (trichloromethane)3 100 0.0 0.0 100 0.0 0.0 70 0.0 0.0

Fumigant
1,2-Dichloropropane (1,2-DCP) 100 0.0 0.7 100 0.0 0.7 70 0.0 2.0

Herbicides
Simazine 100 0.0 0.0 100 0.0 0.0 70 0.0 0.0

Constituents of special interest
Perchlorate 100 1.0 33.0 100 0.7 35 70 2.0 37.8
N-nitrosodimethylamine (NDMA) 100 3.0 3.0 100 2.0 1.5 70 5.9 4.4

1Raw detection frequency and aquifer-scale proportions for the study unit are calculated by summing the area-weighted average for each individual study area. 
Area weights for each study area are Santa Cruz = 0.03, Pajaro Valley = 0.04, Salinas Valley = 0.26, and Highlands = 0.67.

2The aquifer-scale proportion is calculated by summing the area-weighted average for each alluvial fill study area. The area weights for each study area are 
Santa Cruz = 0.08, Pajaro Valley = 0.14, and Salinas Valley = 0.78.

3The MCL-US threshold for trihalomethanes is the sum of chloroform, bromoform, bromodichloromethane, and dibromochloromethane.
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Table 8B.  Aquifer-scale proportions for constituents detected in the four study areas that had (1) high or moderate values in samples collected from grid sites, or (2) organic 
or special-interest constituents detected in more than 10 percent of the grid sites sampled. Aquifer-scale proportions were based on samples collected in each study area from 
October 2012 to May 2013, Monterey-Salinas Shallow Aquifer assessment study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project.

[Aquifer-scale proportions are based on samples collected at 100 grid and 70 tap sites from October 2012 to May 2013. The benchmarks are given in tables 4A and 4B. Abbreviations: High, concentrations 
greater than the water-quality benchmark; Moderate, concentrations greater than or equal to 0.1 of the benchmark but less than or equal to the benchmark for organic constituents (the threshold for inorganic 
constituents is 0.5 of the benchmark)]

Constituent

Aquifer-scale proportion
(percent)

Santa Cruz Pajaro Valley Salinas Valley Highlands

Number 
of sites

High Moderate 
Number 
of cells

Number 
of sites

High Moderate 
Number 
of cells

Number 
of sites

High Moderate 
Number 
of sites

High Moderate 

Trace and minor elements

Arsenic 15 6.7 0.0 15 30 3.3 3.3 40 95 5.0 7.5 30 3.3 20
Beryllium 15 0.0 6.7 15 30 0.0 3.3 40 95 0.0 1.2 30 0.0 3.3
Boron 15 0.0 0.0 15 30 0.0 0.0 40 95 0.0 0.0 30 3.3 0.0
Chromium 15 0.0 0.0 15 30 0.0 10.0 40 95 0.0 0.0 30 0.0 0.0
Fluoride 15 0.0 0.0 15 30 0.0 0.0 39 91 0.0 0.9 29 0.0 10
Iron 15 27 20 15 30 6.7 3.3 40 95 3.8 1.7 30 17 0.0
Manganese 15 33 13 15 30 10.0 3.3 40 95 2.1 4.6 30 6.7 0.0
Molybdenum 15 0.0 0.0 15 30 0.0 0.0 40 95 3.3 9.6 30 20 13
Selenium 15 0.0 0.0 15 30 0.0 0.0 40 95 3.8 2.1 30 3.3 0.0
Strontium 15 0.0 0.0 15 30 0.0 3.3 40 95 2.1 2.9 30 13 3.3
Vanadium 15 0.0 0.0 15 30 0.0 0.0 40 95 0.0 0.8 30 0.0 10.0

Radioactive constituents

Adjusted gross alpha radioactivity, 
72-hour count

15 6.7 6.7 14 14 0.0 0.0 38 38 0.0 13.2 26 19 15

Gross beta radioactivity, 72-hour 
count

15 0.0 0.0 14 14 0.0 0.0 38 38 0.0 0.0 26 3.8 12

Radon-222 14 0.0 0.0 14 14 0.0 0.0 38 38 0.0 5.3 30 0.0 10.0
Uranium 15 0.0 0.0 15 30 0.0 0.0 40 95 3.3 8.8 30 10.0 6.7

Nutrients

Nitrate 15 0.0 0.0 15 30 23.3 16.7 40 95 32.1 11.2 30 6.7 23
Ammonia 15 0.0 0.0 15 15 0.0 0.0 40 40 0.0 0.0 30 3.3 0.0

Salinity indicators

Chloride 15 0.0 0.0 15 30 3.3 3.3 40 95 7.5 11 30 6.7 13
Sulfate 15 0.0 13 15 30 0.0 3.3 40 95 16 7.5 30 33 3.3
Total dissolved solids (TDS) 15 6.7 33 15 30 6.7 13 40 95 31 37 30 43 37
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Constituent

Aquifer-scale proportion
(percent)

Santa Cruz Pajaro Valley Salinas Valley Highlands

Number 
of sites

High Moderate 
Number 
of cells

Number 
of sites

High Moderate 
Number 
of cells

Number 
of sites

High Moderate 
Number 
of sites

High Moderate 

Trihalomethanes

Chloroform (trichloromethane)1 15 0.0 0.0 15 15 0.0 0.0 40 40 0.0 0.0 30 0.0 0.0
Fumigant

1,2-Dichloropropane (1,2-DCP) 15 0.0 0.0 15 15 0.0 0.0 40 40 0.0 2.5 30 0.0 0.0
Herbicides

Simazine 15 0.0 0.0 15 15 0.0 0.0 40 40 0.0 0.0 30 0.0 0.0
Constituents of special interest

Perchlorate 15 0.0 0.0 15 15 0.0 33 40 40 2.5 42.5 30 0.0 33
N-nitrosodimethylamine 15 0.0 6.7 15 15 0.0 0.0 40 40 7.5 5.0 30 0.0 0.0

1The MCL-US threshold for trihalomethanes is the sum of chloroform, bromoform, bromodichloromethane, and dibromochloromethane.

Table 8B.  Aquifer-scale proportions for constituents detected in the four study areas that had (1) high or moderate values in samples collected from grid sites, or (2) organic 
or special-interest constituents detected in more than 10 percent of the grid sites sampled. Aquifer-scale proportions were based on samples collected in each study area from 
October 2012 to May 2013, Monterey-Salinas Shallow Aquifer assessment study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project.—Continued

[Aquifer-scale proportions are based on samples collected at 100 grid and 70 tap sites from October 2012 to May 2013. The benchmarks are given in tables 4A and 4B. Abbreviations: High, concentrations 
greater than the water-quality benchmark; Moderate, concentrations greater than or equal to 0.1 of the benchmark but less than or equal to the benchmark for organic constituents (the threshold for inorganic 
constituents is 0.5 of the benchmark)]
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Figure 12.  Concentrations of salinity indicators for samples collected from grid and tap sites, Monterey-Salinas Shallow Aquifer study 
unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013: A, total dissolved solids; 
B, chloride; and C, sulfate.
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Figure 12.  —Continued
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Figure 12.  —Continued
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Potential anthropogenic sources of TDS to groundwater 
in the MS-SA study unit include evaporation residues from 
agricultural and urban irrigation, disposal of wastewater and 
industrial effluent, seawater intrusion induced by pumping 
of production wells, and leaking water and sewer pipes. 
Despite a positive correlation to the percentage of agricultural 
land use and a negative correlation to the percentage of 
urban land use (table 9), concentrations of TDS in samples 
from agricultural land were not significantly different from 
those in samples from areas of urban land use (table 10). 
This indicates that factors other than land use could have 
contributed TDS to groundwater. The TDS concentrations also 
were negatively correlated to the aridity index, indicating that 
higher concentrations of TDS were found in drier climates, 
where evaporative processes could be a cause of elevated 
TDS concentrations. The correlation of TDS concentrations to 
agricultural land use could be a result of the covariance of the 
aridity index with agricultural land use (table 6).

The TDS concentrations were not greater for marine 
sediments, which indicates that connate marine water had been 
replaced by fresh water in most of the shallow aquifer. The 
TDS concentrations also were negatively correlated to DO 
concentrations and pH, indicating that concentrations of TDS 
were higher where conditions were anoxic or pH was lower.

Water type was examined to help explain the distribution 
of TDS observed in the MS-SA study unit. Groundwater 
samples were classified by major-ion content according to 
whether or not an ion composed greater than 50 percent of the 
total cations or anions, on a milliequivalent basis, in a sample; 
if no single ion was greater than 50 percent of the total, the 
groundwater was classified as mixed. A Piper diagram (Piper, 
1944) categorized by TDS concentration (fig. 14) showed 
sample water types were primarily demarcated by anionic 
composition. Samples with low TDS concentrations (less than 
or equal to 500 mg/L) were primarily classified as a mixed 
cationic and bicarbonate-type water, whereas the samples with 
moderate concentrations (501–1,000 mg/L) were classified 
primarily as mixed cationic and mixed anionic-type water. 
Samples with high concentrations (more than 1,000 mg/L) of 
TDS were primarily mixed cationic and sulfate-type water.

Total dissolved solids concentrations were strongly 
correlated to sulfate, chloride, and bicarbonate (table 11); 
sulfate anionic water types generally had higher concentrations 
of TDS, whereas bicarbonate water types generally had lower 
concentrations of TDS (Kruskal-Wallis and Dunn’s multiple 
comparison tests, p<0.001). Samples with sulfate-type water 
were mostly collected from sites in the interior parts of the 
Salinas Valley and Highland study areas (21 of 23). Of the 
sulfate-type samples, 45 percent were collected from domestic 
sites in primarily natural areas (the rest were from areas of 
agricultural land use), where sewer systems do not exist, 
indicating that septic-tank discharge could be contributing 
TDS to groundwater in these areas. Concentrations of TDS 
were negatively correlated to septic-tank density (table 9); 
however, this would be expected in the natural land uses, 
where houses, and the associated septic systems, are separated 
by long distances.

Chloride-type water composed 24 percent of samples 
with high concentrations of TDS. Almost half of these 
samples (four of nine) were collected from sites along the 
coastal parts of the Pajaro Valley and Salinas Valley study 
areas. Samples from these sites had high calcium and low 
sodium concentrations (fig. 14) and were likely groundwater 
that had been affected by older (connate) seawater (Hanson, 
2003; Brown and Caldwell, 2014). Other samples consisting 
of chloride-type water and high concentrations of TDS were 
collected from sites in the interior of the Salinas Valley 
study area or in the Highlands study area and, thus, were not 
likely to have been affected by seawater intrusion. High TDS 
concentrations in these samples could be due to evaporative 
concentration of salts in recharge water, leaching of built-up 
salts in soil by irrigation-return water, or both (fig. 13).
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Table 9.  Results of non-parametric (Spearman’s rho method) analysis for correlations between selected water-quality constituents and potential explanatory factors for grid 
sites, Monterey Salinas Shallow Aquifer study area, 2010, California Groundwater Ambient Monitoring Assessment Priority Basin Project.

[All tests were done on dataset consisting of the 100 grid sites sampled by the U.S. Geological Survey for the study unit. Tabled values are the test results, as Spearman’s rho above the associated p value; results 
are given only for those correlations with a p value less than or equal to (≤) 0.05 (significant correlation). Abbreviations: ns, correlation not significant; <, less than]

Constituent
Depth of 

well

Depth to 
top of 

perforation
pH

Density 
of septic 

tanks

Distance 
to nearest 

geothermal site

Aridity 
index

Dissolved 
oxygen

Percentage 
of modern 
carbon-14

Percentage 
of 

agricultural 
land use

Percentage 
of natural 
land use

Percentage 
of urban 
land use

Inorganic constituents

Trace elements 

Arsenic ns ns 0.204
0.042

–0.247
0.013

–0.295
0.003

–0.354
<0.001

0.224
0.027 ns ns ns ns

Boron ns ns ns –0.443
<0.001 ns –0.488

<0.001
–0.279
0.006

–0.236
0.019 ns ns –0.312

0.002

Iron ns ns –0.237
0.017 ns 0.213

0.034
0.383

<0.001
–0.372
<0.001

–0.227
0.024

–0.340
<0.001

0.222
0.027 ns

Manganese ns ns ns 0.230
0.022 ns 0.383

<0.001
–0.605
<0.001

–0.251
0.012

–0.410
<0.001

0.270
0.007 ns

Molybdenum ns ns ns –0.505
<0.001

–0.232
0.020

–0.477
<0.001 ns –0.220

0.029
0.220
0.028 ns –0.212

0.035

Selenium ns ns ns –0.538
<0.001

–0.356
<0.001

–0.610
<0.001

0.417
<0.001

0.220
0.029

0.518
<0.001

–0.265
0.009 ns

Strontium ns ns ns –0.542
<0.001 ns –0.393

<0.001 ns –0.217
0.031 ns ns –0.289

0.004
Radioactive constituents

Adjusted gross alpha 
radioactivity, 72-hour count ns ns ns –0.310

0.003 ns –0.281
0.006 ns –0.286

0.006 ns ns ns

Uranium ns 0.257
0.029 ns –0.592

<0.001
–0.276
0.006

–0.678
<0.001

0.247
0.014 ns 0.504

<0.001 ns –0.273
0.006

Nutrients

Nitrate ns ns ns –0.245
0.014 ns –0.411

<0.001
0.610

<0.001
0.506

<0.001
0.467

<0.001
–0.333
<0.001 ns

Salinity indicators

Chloride ns ns –0.388
<0.001

–0.301
0.002 ns –0.336

<0.001 ns ns ns ns ns

Sulfate –0.256
0.012 ns ns –0.433

<0.001 ns –0.368
<0.001

–0.277
0.006 ns 0.311

0.002 ns –0.206
0.040

Total dissolved solids (TDS) ns ns –0.360
<0.001

–0.454
<0.001 ns –0.361

<0.001
–0.221
0.029 ns 0.210

0.036 ns –0.228
0.023
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Constituent
Depth of 

well

Depth to 
top of 

perforation
pH

Density 
of septic 

tanks

Distance 
to nearest 

geothermal site

Aridity 
index

Dissolved 
oxygen

Percentage 
of modern 
carbon-14

Percentage 
of 

agricultural 
land use

Percentage 
of natural 
land use

Percentage 
of urban 
land use

Organic constituents

Number of volatile organic 
compound (VOC) detects ns ns ns 0.208

0.038 ns ns ns ns ns ns ns

Chloroform 
(trichloromethane) ns ns ns 0.203

0.043 ns ns ns ns ns ns ns

Number of pesticide detects ns ns ns –0.203
0.043

–0.220
0.028

–0.426
<0.001 ns 0.322

0.001
0.431

<0.001
–0.337
<0.001 ns

Simazine –0.249
0.015 ns ns –0.286

0.004
–0.209
0.037

–0.463
<0.001 ns 0.327

<0.001
0.386

<0.001
–0.240
0.016 ns

Special interest constituents

N-nitrosodimethylamine 
(NDMA) ns ns ns ns ns –0.227

0.023 ns ns ns –0.234
0.019 ns

Perchlorate ns ns ns –0.290
0.004 ns –0.347

<0.001
0.608

<0.001
0.285
0.004

0.292
0.003 ns ns

Table 9.  Results of non-parametric (Spearman’s rho method) analysis for correlations between selected water-quality constituents and potential explanatory factors for grid 
sites, Monterey Salinas Shallow Aquifer study area, 2010, California Groundwater Ambient Monitoring Assessment Priority Basin Project.—Continued

[All tests were done on dataset consisting of the 100 grid sites sampled by the U.S. Geological Survey for the study unit. Tabled values are the test results, as Spearman’s rho above the associated p value; results 
are given only for those correlations with a p value less than or equal to (≤) 0.05 (significant correlation). Abbreviations: ns, correlation not significant; <, less than]
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Table 10.  Results of non-parametric analysis (Kruskal-Wallis and multiple comparison tests) for differences in selected water-quality 
constituents among categories of potential explanatory factors for grid sites, Monterey-Salinas Shallow Aquifer study unit, California 
Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.

[Results are shown only for those correlations with a p value less than (<) 0.05. Only results with p values less than or equal to (≤) 0.05 are considered 
significant in this study. A positive value indicates positive correlations; negative values indicate negative correlations. Abbreviations: Ag, agricultural; 
An-mix, anoxic and mixed oxidation-reduction classifications; grMz-m, Mesozoic granitic rocks and metamorphic rocks; H, Highlands; Mix, groundwater 
having both modern and pre-modern groundwater; Mod, modern groundwater primarily recharged after 1953; Nat, natural; ns, not significant; P, Pajaro Valley; 
preM, pre-modern groundwater primarily recharged before 1953; Q, Holocene alluvial and sand dune deposits; Qpc, Plio-Pleistocene and Pliocene non-marine 
sediments; SC, Santa Cruz; SV, Salinas Valley; TK, Tertiary (Pliocene, Miocene, and Paleocene) marine sediment and Cretaceous metasediments; Urb, urban; 
>, greater than; —, not applicable]

Constituent

Kruskal-Wallis with Dunn’s multiple comparison test
p value

significant differences

Land-use 
category 

(Ag, Nat, Urb)1

Study 
area 

(SC ,P, SV,H)

Geology 
(Q, Qpc, TK, grMz-m)

Oxidation-
reduction class 
(Oxic, An-mix)

Groundwater-
age class 

(Mod, Mix, PreM)

Inorganic constituents

Trace elements 

Arsenic ns 0.007
SV,H>SC

0.001
Qpc>TK,Q

<0.001
Oxic>An-mix ns

Boron 0.025
Nat>Urb

0.018
H>P ns ns ns

Iron 0.038
Urb,Nat>Ag

0.006
SC>SV,P

0.004
TK>Q

<0.001
An-mix>Oxic ns

Manganese 0.027
Nat,Urb>Ag

<0.001
SC>SV,P,H

<0.001
TK>Q,Qpc

<0.001
An-mix>Oxic

0.013
preM,Mix>Mod

Molybdenum ns <0.001
H>SV>P,SC

0.048
Qpc>grMz-m ns ns

Selenium <0.001
Ag>Urb,Nat

<0.001
SV,H,P>SC

<0.001
Qpc,Q>TK

<0.001
Oxic>An-mix ns

Strontium ns <0.001
H>SV,P,SC ns ns ns

Radioactive constituents

Adjusted gross alpha radioactivity, 
72-hour count ns 0.015

H>P ns ns 0.047
Mix>Mod

Uranium <0.001
Ag>Nat>Urb

<0.001
SV,H>SC,P

0.001
Qpc,Q>TK

<0.001
Oxic>An-mix ns

Nutrients

Nitrate <0.001
Ag>Nat

<0.001
SV,P,H>SC

<0.001
Q,Qpc, grMz-m>TK

<0.001
Oxic>An-mix

<0.001
Mod>preM,Mix

Salinity indicators

Chloride ns <0.001
SV,H>SC: SV>P ns ns ns

Sulfate 0.009
Ag>Urb

0.016
H>P ns 0.028

An-mix>Oxic ns

Total dissolved solids (TDS) ns <0.001
H, SV>P; H>SC ns 0.020

An-mix>Oxic
0.035

Mix>preM
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Table 10.  Results of non-parametric analysis (Kruskal-Wallis and multiple comparison tests) for differences in selected water-quality 
constituents among categories of potential explanatory factors for grid sites, Monterey-Salinas Shallow Aquifer study unit, California 
Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[Results are shown only for those correlations with a p value less than (<) 0.05. Only results with p values less than or equal to (≤) 0.05 are considered 
significant in this study. A positive value indicates positive correlations; negative values indicate negative correlations. Abbreviations: Ag, agricultural; 
An-mix, anoxic and mixed oxidation-reduction classifications; grMz-m, Mesozoic granitic rocks and metamorphic rocks; H, Highlands; Mix, groundwater 
having both modern and pre-modern groundwater; Mod, modern groundwater primarily recharged after 1953; Nat, natural; ns, not significant; P, Pajaro; 
preM, pre-modern groundwater primarily recharged before 1953; Q, Holocene alluvial and sand dune deposits; Qpc, Plio-Pleistocene and Pliocene non-marine 
sediments; SC, Santa Cruz; SV, Salinas Valley; TK, Tertiary (Pliocene, Miocene, and Paleocene) marine sediment and Cretaceous metasediments; Urb, urban; 
>, greater than; —, not applicable]

Constituent

Kruskal-Wallis with Dunn’s multiple comparison test
p value

significant differences

Land-use 
category 

(Ag, Nat, Urb)1

Study 
area 

(SC ,P, SV,H)

Geology 
(Q, Qpc, TK, grMz-m)

Oxidation-
reduction class 
(Oxic, An-mix)

Groundwater-
age class 

(Mod, Mix, PreM)

Organic constituents

Number of volatile organic 
compound (VOC) detects ns ns ns ns ns

Chloroform (trichloromethane) ns ns ns ns ns

Number of pesticide detects <0.001
Ag>Urb,Nat

<0.001
SV>SC,P,H

0.005
Q>TK ns 0.010

Mod>PreM

Simazine 0.001
Ag>Nat

0.001
SV>SC

0.028
Q>TK ns 0.001

Mod>preM
Special interest constituents

N-nitrosodimethylamine (NDMA) ns ns ns ns ns

Perchlorate ns <0.001
SV,H,P>SC

<0.001
Qpc,grMz-m,Q>TK

<0.001
Oxic>An-mix ns

1 Land-use percentages are within a radius of 500-meters from each well included in analysis.
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Figure 14.  Major-ion content of grid and tap samples by total dissolved solids concentration range category for the Monterey-Salinas 
Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.
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Table 11.  Results of non-parametric (Spearman’s rho method) tests for correlations between concentrations of selected water-quality constituents for grid sites, Monterey-
Salinas Shallow Aquifer assessment study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.

[All tests were done on dataset consisting of the 100 grid sites sampled by the U.S. Geological Survey for the study unit. Tabled values are the test results, as Spearman’s rho above the associated p value; results 
are given only for those p values less than threshold value (α) of 0.05 are considered significant: black text, positive correlation; red text, negative correlation. Abbreviations: ns, not significant; <, less than]

Constit-
uent

Boron Iron Manganese Molybdenum Selenium Strontium

Adjusted 
gross alpha 

radioactivity, 
72-hour count

Uranium Nitrate Chloride Sulfate

Total 
dissolved 

solids 
(TDS)

Bicarbonate Perchlorate

Arsenic ns –0.407
<0.001

–0.316
0.001

0.430
<0.001

0.467
<0.001 ns ns 0.450

<0.001
0.252
0.012 ns ns ns ns 0.305

0.002

Boron ns ns 0.480
<0.001

0.250
0.012

0.531
<0.001

0.330
0.001

0.430
<0.001 ns 0.368

<0.001
0.495

<0.001
0.536

<0.001
0.413

<0.001 ns

Iron 0.691
<0.001 ns –0.449

<0.001 ns ns –0.348
<0.001

–0.545
<0.001 ns ns ns ns –0.450

<0.001

Manganese ns –0.532
<0.001 ns ns –0.392

<0.001
–0.649
<0.001 ns ns ns 0.221

0.027
–0.589
<0.001

Molybdenum 0.374
<0.001

0.315
0.001

0.216
0.037

0.553
<0.001 ns ns 0.342

<0.001
0.243
0.015

0.240
0.016 ns

Selenium 0.319
0.001 ns 0.654

<0.001
0.690

<0.001
0.272
0.006 ns 0.252

0.012 ns 0.681
<0.001

Strontium 0.486
<0.001

0.467
<0.001 ns 0.615

<0.001
0.687

<0.001
0.842

<0.001
0.479

<0.001 ns

Adjusted gross alpha radioactivity, 72-hour count 0.307
0.003 ns 0.404

<0.001
0.395

<0.001
0.434

<0.001 ns ns

Uranium 0.445
<0.001 ns 0.414

<0.001
0.349

<0.001
0.281
0.004

0.395
<0.001

Nitrate 0.209
0.037 ns ns –0.238

0.018
0.840

<0.001

Chloride 0.341
<0.001

0.777
<0.001 ns 0.354

<0.001

Sulfate 0.764
<0.001

0.433
<0.001 ns

Total dissolved solids 0.450
<0.001 ns
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Understanding Assessment for Chloride
Chloride was detected at high relative concentrations in 

6.6 percent of the MS-SA study unit and at moderate relative 
concentrations in 12 percent (table 8A); the SMCL-CA for 
chloride is 500 mg/L. High relative concentrations were 
detected in samples from all except the Santa Cruz study 
area (table 8B; figs. 11B, 12B). The Salinas Valley study area 
had the greatest proportion of the shallow aquifer with high 
relative concentrations of chloride at 7.5 percent, followed by 
the Highlands study area at 6.7 percent (table 8B). Moderate 
relative concentrations were detected in all study areas, 
except Santa Cruz. Chloride is likely to have natural and 
anthropogenic sources in the study unit. 

Despite the lack of correlation with marine geology, 
the Pliocene and Miocene marine sediments in the Coast 
Ranges are likely sources of chloride in the interior of the 
Salinas Valley study area and the Highlands study area 
(fig. 12B). Natural sources of chloride include the dissolution 
of sedimentary rocks, particularly evaporates, and the 
dissolution of fine grained marine shale (Hem, 1985). Chloride 
is also present in precipitation as a result of entrainment of 
marine salts into the air at the ocean’s surface. Similar to 
TDS, chloride was negatively correlated to the aridity index, 
indicating higher concentrations generally in drier climates 
(table 9). Concentration of chloride as a result of evaporative 
concentration, similar to TDS, could also partially explain 
elevated chloride in the interior of the Salinas Valley study 
area.

Potential anthropogenic sources include agricultural 
practices, where irrigation-return water can leach chloride 
salts in soils into groundwater, and seawater intrusion 
induced by pumping near the coast. As discussed in the TDS 
understanding section, elevated concentrations of chloride in 
samples collected from sites in the coastal areas of the Salinas 
Valley and Pajaro Valley study areas could be due to older 
seawater intrusion (fig. 12B).

Understanding Assessment for Sulfate
Sulfate was detected at high relative concentrations in 

26 percent of the MS-SA study unit and at moderate relative 
concentrations in 4.7 percent (table 8A); the SMCL-CA 
for sulfate is 500 mg/L. High relative concentrations were 
detected only in the Highlands and Salinas Valley study 
areas (figs. 11B, 12C). The Highlands study area had the 
greatest proportion of the shallow aquifer with high relative 
concentrations, at 33 percent, and the Salinas Valley study area 
had 16 percent (table 8B). Moderate relative concentrations 
were detected in all study areas. Natural and anthropogenic 
sources are likely to have contributed to elevated sulfate 
concentrations in the study unit.

Natural sources of sulfate include the dissolution of 
natural sulfur and its oxidation to the anion sulfate, the 

biochemical oxidation of sulfide minerals and pyrites, 
atmospheric deposition from volcanic activity, or entrained 
from sea water (Hem, 1985; Drever, 1997; Fenn and others, 
2013). Sulfate was negatively correlated to DO (table 9), and 
sulfide was detected in some samples (Goldrath and others, 
2016), providing evidence for sulfur dissolution and oxidation 
in the study unit. Sulfate is in evaporites, such as gypsum or 
anhydrite, and in soils in arid and semi-arid environments, 
and it commonly exceeds concentrations of 1 mg/L in rainfall 
(Hem, 1985). Sulfate was negatively correlated to the aridity 
index, which indicated that sulfate concentrations, similar 
to those of TDS and chloride, were higher in drier climates 
(table 9). Similar to chloride, the Pliocene and Miocene 
marine sediments in the Coast Ranges are likely sources of 
sulfate in the interior portions of the Salinas Valley study area 
and the Highlands study area (fig. 12C).

Sulfate concentrations were positively correlated 
to the percentage of agricultural land use and negatively 
correlated to well depth (table 9). These correlations indicate 
that agricultural practices could be contributing to sulfate 
concentrations in groundwater and that shallow wells were 
most likely to have concentrations above the benchmarks. 
Anthropogenic sources include sulfuric acid used to lower the 
pH of irrigation water to assist with nutrient uptake in some 
agriculture and atmospheric deposition of sulfuric oxides 
from combustion of fossil fuels. A study by Oren and others 
(2004) identified sulfate as a primary constituent contributing 
to increased groundwater salinity in irrigated fields in an arid 
environment. Ammonium sulfate is used on a wide variety 
of crops in the Monterey and San Luis Obispo Counties 
(California Department of Pesticide Regulation, 2014). Excess 
sulfate can be leached to the groundwater through irrigation 
recharge.

Trace Elements
The trace elements constituent class included a variety 

of metallic and non-metallic constituents that typically are 
present in groundwater at concentrations less than 1 mg/L 
(Hem, 1985). Trace elements with health-based benchmarks, 
as a class, were detected at high relative concentrations (for 
one or more constituents) in 37 percent of the MS-SA study 
unit, moderate relative concentrations in 13 percent, and low 
relative concentration in 51 percent (table 7A). Trace elements 
were most frequently detected at high relative concentrations 
in the Highlands and Santa Cruz study areas (table 7B).

Trace elements detected at high relative concentrations 
in more than 2 percent of the shallow aquifer included 
arsenic, boron, iron, manganese, molybdenum, selenium, and 
strontium (table 8A). These seven trace elements are discussed 
in more detail in following sections. Four other trace elements 
only detected at moderate relative concentrations included 
beryllium, chromium, fluoride, and vanadium. 
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Understanding Assessment for Arsenic
Arsenic was detected at high relative concentrations 

in 3.9 percent of the MS-SA study unit and at moderate 
relative concentrations in 15 percent of the shallow aquifer 
(table 8A); the MCL-US for arsenic is 10 micrograms per 
liter (μg/L). High relative concentrations were detected in 
at least one sample collected from each of the study areas, 
but were detected most frequently at high and moderate 
relative concentrations in samples from the Salinas Valley 
and Highlands study areas (fig. 11A, 15A; tables 8B, 10). The 
MCL-US for arsenic was lowered from 50 µg/L to 10 µg/L in 
2002, and chronic exposure to arsenic concentrations between 
10 and 50 µg/L in drinking water has been linked to increased 
cancer risk and to non-cancerous effects including skin 
damage and circulatory problems (National Research Council, 
2001; U.S. Environmental Protection Agency, 2007). Sources 
of arsenic in the shallow aquifer are likely to be natural.

Arsenic is a semi-metallic trace element that is found 
naturally in the environment. Potential sources of arsenic to 
groundwater are natural and anthropogenic. Natural sources 
include the dissolution of arsenic-rich minerals such as 
arsenopyrite (FeAsS), a common constituent of shales, and 
apatite, a common constituent of phosphorites. Arsenic is used 
as a wood preservative and a pesticide, in glass production, 
paints, dyes, metals, drugs, soaps, semi-conductors, and the 
mining of copper and gold (Welch and others, 2000). The 
MS-SA study unit has had relatively little mining activity 
compared to other areas of the State (http://tin.er.usgs.gov/
mrds/); thus, arsenic concentrations were not likely to be 
elevated because of mining activities.

Previous investigations and literature reviews of 
arsenic have indicated two mechanisms that increase arsenic 
concentrations in groundwater: (1) release of arsenic by 
reductive dissolution of iron or manganese oxyhydroxides 
under anoxic conditions and (2) desorption of arsenic 
from these oxyhydroxides under high-pH, oxic conditions 
(Welch and others, 2000; Smedley and Kinniburgh, 2002; 
Stollenwerk, 2003). Arsenic concentrations were significantly 
higher in samples classified as oxic than in samples classified 
as anoxic or mixed, were positively correlated to DO 
concentrations, and were negatively correlated to manganese 
concentrations (tables 9, 10, 11). Arsenic concentrations 
also had a significant positive correlation with pH. Under 
oxic redox conditions, arsenic likely exists in an oxyanionic 
form (for example, HAsO4

2–). In this form, arsenic would be 
more mobile in alkaline (higher pH) groundwater because 
the predominately negative surface charge of particles would 
promote desorption, and inhibit adsorption, of negatively 
charged molecules (Stumm, 1992). This indicates that 
the mechanism of desorption from iron and manganese 
oxyhydroxides under high-pH, oxic conditions could be one 

source of arsenic in groundwater. This does not fully explain 
the moderate and high concentrations of arsenic in the study 
unit, however, which indicate other sources of arsenic. 

Arsenic concentrations were generally higher in 
samples from non-marine sediments (Qpc) than from marine 
sediments (TK) or recent alluvium (Q) (table 10), but were 
not correlated to groundwater age (table 9). Of the 14 grid 
sites from which samples had high or moderate concentrations 
of arsenic, 7 were in non-marine sediments, and 3 were in 
recent alluvium where sediments could have originated from 
non-marine rocks (fig. 15A). It is possible that the non-marine 
sediments could be the one source of the high and moderate 
arsenic concentrations. Other sources of arsenic could be 
present that were not evaluated in this report, however.

Arsenic solubility increases with increasing water 
temperature, such that hydrothermal fluids often have high 
arsenic concentrations (Ballantyne and Moore, 1988; Webster 
and Nordstrom, 2003), as does older groundwater that has 
had extended exposure to arsenic-bearing minerals. Arsenic 
was negatively correlated with distance to geothermal sources 
(table 9), indicating arsenic concentrations were higher near 
geothermal sources. Arsenic was not correlated to water 
temperature (Spearman’s rho = 0.189, p=0.066), however, 
which indicates either geothermal sources were not an 
important source of arsenic in the study unit or geochemical 
factors such as redox conditions or pH kept arsenic in solution 
as water moved away from geothermal sources and cooled. 

Unlike many other the GAMA-PBP study units, arsenic 
showed no significant relations with measures of well 
depth or groundwater age (table 9). The lack of correlation 
between arsenic concentration and well depth was expected, 
given the lack of significant correlations between redox 
conditions or values of DO and pH with measures of well 
depth (tables 5, 6).

Arsenic concentrations were positively correlated to 
nitrate (table 11), but not to the percentage of agricultural land 
use (tables 9, 10); in addition, there was no registered use 
of arsenical pesticides (California Department of Pesticide 
Regulation, 2014) in the study unit, indicating that agricultural 
practices did not significantly contribute to the moderate or 
high concentrations of arsenic. 

Understanding Assessment for Boron
Boron was detected at high relative concentrations in 

2.2 percent of the shallow aquifer (table 8A); the HBSL for 
boron is 6,000 µg/L. The high concentration was in a sample 
from the Highlands study area (fig. 11A) near Paso Robles 
(fig. 15B). In general, boron concentrations were higher in 
the Highlands study area than in the Pajaro Valley study area 
(table 10). Sources of boron in the study unit are likely to be 
natural.

http://tin.er.usgs.gov/mrds/
http://tin.er.usgs.gov/mrds/
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Figure 15.  Concentrations of selected trace elements in water samples collected from grid and tap sites in the Monterey-Salinas 
Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013: 
A, arsenic; B, boron; C, iron; D, manganese; E, molybdenum; F, selenium; and G, strontium.
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Figure 15.  —Continued
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Figure 15.  —Continued
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Figure 15.  —Continued
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Boron is an essential nutrient for plants, but is toxic to 
many plants at concentrations above the NL-CA of 1,000 µg/L 
(Grieve and others, 2011). At concentrations greater than 
the HAL-US of 5,000 µg/L, boron can adversely affect 
fetal development (U.S. Environmental Protection Agency, 
2008). Boron is a semi-metallic element that is natural in 
the environment and highly soluble in water. Boron can be 
found in wastewater because borax is a component of many 
detergents. Other anthropogenic uses of boron compounds 
include borosilicate glass, boric acid insecticide, chemical 
reagents, semi-conductors, and fertilizers. 

Higher concentrations of boron were detected in 
samples with older groundwater, as indicated by the negative 
correlation to the percentage of modern carbon-14, which, 
together with negative correlations to the density of septic 
tanks and the percentage of urban land use (table 9), indicate 
boron concentrations were not likely to be elevated as a 
result of anthropogenic sources. The negative correlation to 
the percentage of modern carbon-14 indicates that longer 
exposure to boron-bearing marine sediments could contribute 
to elevated boron concentrations. 

Natural sources of boron to groundwater include 
dissolution of evaporate minerals, such as borax, ulexite, 
and colemanite, and boron-bearing silicate minerals, such 
as tourmaline, that are primarily found in igneous rocks 

(Hem, 1985; Klein and Hurlbut, 1993). Seawater contains 
approximately 4,500 μg/L of boron; thus, interactions with 
marine sediments, connate fluids, or seawater also can be 
natural sources of boron to groundwater. Boron concentrations 
were positively correlated to salinity factors (chloride, 
sulfate, and TDS, table 11). This indicates that interaction 
with marine sediments could be a source of boron. Although 
boron concentrations were not significantly higher in marine 
sediments than in non-marine sediments and rocks in the study 
unit (table 10), the generally low concentrations of boron were 
higher in samples from sites in the Salinas Valley study area 
just south of King City (fig. 15B), where the alluvium could be 
influenced by marine deposits in the adjacent Highland areas. 

Boron generally is associated with thermal springs and 
volcanic activity (Hem, 1985). In the MS-SA study-unit, 
boron concentrations were not correlated to distance from 
geothermal sites (table 9); however, boron concentrations 
were positively correlated to water temperature (fig. 16; 
Spearman’s rho = 0.368, p<0.001). In fact, the sample with a 
high boron concentration (H14) had a water temperature over 
30 degrees Celsius (°C), indicating the influence of a thermal 
spring, even though a thermal spring at the site was not in the 
compilation referenced by National Oceanic and Atmospheric 
Administration (Berry and others, 1980) or the USGS Mineral 
Resources Data System (http://tin.er.usgs.gov/mrds/).
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Figure 16.  Boron concentrations in relation to the water temperature in samples for grid sites, Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013. 
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Boron, unlike arsenic, was negatively correlated to DO 
concentrations (table 9). Boron also was negatively correlated 
with the aridity index (table 9). Boron concentrations were 
higher in areas categorized as semiarid (aridity index 0.2–0.5) 
than in areas categorized as subhumid (aridity index 0.5–0.65) 
or humid (aridity index greater than 0.65). This correlation 
is more likely a result of covariance of the aridity index with 
dissolved oxygen or some other geologic explanatory factor 
not discussed in this report than of a causative relationship.

Understanding Assessment for Manganese and Iron
Manganese was detected at high relative concentrations 

in 6.4 percent of the MS-SA study unit and at moderate 
relative concentrations in 1.7 percent (table 8A). Iron was 
detected at high relative concentrations in 13 percent of the 
MS-SA study unit and at moderate relative concentrations 
in 1.2 percent. The HBSL for manganese is 300 μg/L, and 
the SMCL-CA for iron is 300 μg/L. Although iron has an 
aesthetic benchmark, it is included in this discussion because 
of its geochemical affiliation with manganese. High relative 
concentrations of these constituents were detected more 
frequently and at higher concentrations in the Santa Cruz 
study area (figs. 11A, B, 15C, D; tables 8B, 10). Sources of 
manganese and iron in the study unit are likely to be natural.

Natural sources of manganese and iron to groundwater 
include the dissolution of igneous and metamorphic rocks 
and the dissolution of various secondary minerals like 
oxyhydroxides (Hem, 1985). Rocks that contain large 
amounts of manganese and iron are composed primarily of the 
mafic minerals olivine, pyroxene, and amphibole. Potential 
anthropogenic sources of manganese and iron to groundwater 
include effluents associated with the mining industry 
(Reimann and de Caritat, 1998); however, there has been 
relatively little mining in the MS-SA study unit compared to 
other areas of the State (http://tin.er.usgs.gov/mrds/).

Redox conditions strongly influence the concentrations of 
manganese and iron in groundwater. In sediments, amorphous 
phases and oxyhydroxide minerals of manganese and iron are 
common as coatings on particle surfaces (Sparks, 1995). These 
amorphous phases and oxyhydroxide minerals are stable in 
oxygenated systems. Under anoxic conditions, the process of 
reductive dissolution destabilizes these minerals, which can 
lead to the contribution of dissolved manganese and iron to 
aquifer systems (Sparks, 1995). 

In the MS-SA study unit, manganese and iron both 
showed significant negative correlation to DO content (table 9; 
fig. 17), and concentrations were higher in anoxic redox 
conditions (table 10). These results indicate that the reductive 
dissolution of amorphous phases and oxyhydroxide minerals 
are important mechanisms contributing dissolved manganese 
and iron to groundwater. The high manganese and iron 
concentrations in the Santa Cruz study area were likely related 
to the low DO content of the groundwater sampled in this 
area. Manganese concentrations were higher in pre-modern 
groundwater than in modern groundwater, and manganese 

and iron concentrations were higher in samples with low 
percentages of modern carbon-14 (tables 9, 10), which 
indicates reductive dissolution over a long time contributed to 
the elevated manganese concentrations in older groundwater.

Manganese and iron concentrations were higher in areas 
of marine rocks rather than areas of alluvium or non-marine 
rocks (table 10) and were lower in areas of agricultural 
land use (table 9). Both these factors were correlated to 
redox conditions and DO concentrations (tables 5, 6), so the 
correlations to manganese and iron might not be causative, 
but reflect covariance among the factors instead. Manganese 
and iron are were not correlated with well depth, most likely 
because well depth was not correlated to redox conditions 
or DO.

Understanding Assessment for Molybdenum
Molybdenum was detected at high relative concentrations 

in 14 percent and at moderate relative concentrations in 
11 percent of the MS-SA study unit (table 8A). The HBSL 
for molybdenum is 40 µg/L, and it is included on the EPA’s 
“Contaminant Candidate List 3” (U.S. Environmental 
Protection Agency, 2009a). The high and moderate relative 
concentrations primarily were in samples from the Highlands 
study area (table 8B; figs. 11A, 15E). High and moderate 
relative concentrations also were detected in samples from 
the Salinas Valley study area. The sources of elevated 
molybdenum in the study unit are likely to be natural.
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Figure 17.  Relations of manganese and iron to dissolved oxygen 
in samples collected from grid sites, Monterey-Salinas Shallow 
Aquifer study unit, California Groundwater Ambient Monitoring 
Assessment Priority Basin Project, October 2012 to May 2013.
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High levels of molybdenum in animals (including 
humans) can interfere with uptake of copper. Molybdenum 
is a metallic trace element found in ore deposits associated 
with porphyry granite or quartz monzonite plutons; the 
primary ore mineral is the sulfide mineral molybdenite 
(MoS2: for example, Misra, 2000). Molybdenum can readily 
accumulate in vegetation and is an essential trace nutrient for 
nitrogen-fixing plants and can even be a limiting nutrient in 
molybdenum-poor environments (Goldman, 1960; Evans and 
Barabash, 2010).

Molybdenum is more soluble in oxic conditions than in 
anoxic conditions (Drever, 1997; Reimann and de Caritat, 
1998). The major soluble species of molybdenum at pH 
values greater than 5 is the molybdenum (VI) oxyanion 
MoO4

–2 (Evans and Barabash, 2010). In the MS-SA study-unit 
samples, unlike other GAMA study units (Fram and Belitz, 
2012; Fram and Shelton, 2015; Fram, 2016), molybdenum 
concentrations were not significantly greater in oxic samples 
than in anoxic or mixed samples (table 10). Molybdenum was 
not correlated to DO concentrations (table 9) because of the 
parabolic relationship of molybdenum and DO concentrations 
in samples from the MS-SA study unit (fig. 18A). Like other 
metal oxyanions, MoO4

–2 can sorb to iron oxyhydroxides and 
clays, and the sorption is increasingly inhibited as pH values 
increase (Evans and Barabash, 2010). In the study unit overall, 
molybdenum was not correlated to pH (table 9); however, 
this correlation was observed under oxic redox conditions. 
Among the 33 samples with anoxic or mixed redox conditions, 
molybdenum was not correlated with pH (Spearman’s rho = 
–0.251, p=0.158), whereas among the 67 samples with oxic 
conditions, molybdenum showed a positive correlation with 
pH (fig. 18B; Spearman’s rho = 0.407, p<0.001).

Molybdenum concentrations did not differ significantly 
between groundwater-age classes; however, molybdenum 
concentrations were negatively correlated to the percentage 
of modern carbon-14, indicating higher concentrations in 
older groundwater (table 9). Molybdenum concentrations, like 
arsenic and boron, were negatively correlated with the aridity 
index, indicating that concentrations were generally higher in 
samples from semiarid climates (aridity index 0.2–0.5) than 
from subhumid (aridity index 0.5–0.65) or humid (aridity 
index greater than 0.65) climates. This correlation was most 
likely a result of correlation of the aridity index with geology, 
or some other explanatory factor not discussed in this report 
rather than a causative relationship. 

Potential anthropogenic sources to groundwater include 
the manufacture and use of molybdenum-steel alloys, dry 
lubricants, and other industrial products and the surface 
application of biosolids (Evans and Barabash, 2010). The 
higher concentrations of molybdenum in older groundwater, 
as indicated by its negative correlation to the percentage of 
modern carbon-14 and percentage of urban land use, indicate 
that anthropogenic sources of molybdenum associated with 
urban land use were not an important source of molybdenum.
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Figure 18.  Relation of molybdenum concentrations in samples 
from the Monterey-Salinas Shallow Aquifer study unit, California 
Groundwater Ambient Monitoring Assessment Priority Basin 
Project, October 2012 to May 2013, to A, dissolved oxygen, and 
B, pH under oxic redox conditions for grid sites.
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Understanding Assessment for Selenium
Selenium was detected at high relative concentrations in 

3.2 percent of the MS-SA study unit (table 8A); the MCL-US 
for selenium is 50 μg/L. High relative concentrations were 
detected in samples from the Salinas Valley and Highlands 
study areas (table 8B; figs. 11A, 15F). Moderate relative 
concentrations were detected only in tap sites in the Salinas 
Valley study area (fig. 15F). Natural and anthropogenic 
sources are both likely to have contributed to elevated 
selenium concentrations in the study unit. 

Selenium is an essential nutrient at low concentrations, 
but long-term exposure to concentrations above the MCL-US 
can cause damage to nervous and circulatory systems, hair 
and fingernail loss, and damage to kidney and liver tissue 
(U.S. Environmental Protection Agency, 1995). Selenium is 
found primarily in sedimentary rocks, particularly in shale, 
and to a much lesser extent in igneous rocks (Burau, 1985; 
Hem, 1985). In the western San Joaquin Valley, the source 
of selenium in these soils and sediments is likely Cretaceous 
marine shale that is found throughout the California Coast 
Ranges (Presser and others, 1990; Presser, 1994; Fram, 2016). 

Selenium was not correlated to marine geology in 
the MS-SA; however, the surficial non-marine sediments 
(Qpc) in the Paso Robles area (fig. 4) were underlain by the 
marine Monterey Formation (Durham, 1974), which could 
be a source of selenium. Two of the three detections of high 
concentrations of selenium were in samples from the Paso 
Robles area (fig. 15F). 

Selenium is used in agriculture as a component in 
pesticide formulations and as a nutritional feed additive for 
poultry and livestock. Selenium was significantly correlated to 
agricultural land use (table 9), and concentrations were higher 
in samples from areas of agricultural land than in urban or 
natural land (table 10; fig. 19). These correlations indicate that 
agricultural practices could be a source of selenium or could 
mobilize naturally present selenium, as was determined in the 
western San Joaquin Valley. High selenium concentrations 
observed in shallow groundwater in the western San Joaquin 
Valley have been attributed to the leaching by irrigation-return 
water of selenium naturally present in soils and sediments 
under oxic conditions (Presser and others, 1990; Dubrovsky 
and others, 1993; Fram, 2016). Selenium is most mobile 
in its most oxidized state (McNeal and Balistrieri, 1989). 
Selenium was positively correlated to DO concentrations 
(table 9; fig. 19), and concentrations were higher in oxic 
than anoxic groundwater (table 10). Selenium was positively 
correlated to nitrate (oxic conditions) and negatively 
correlated to manganese (reduced conditions; table 11); 
therefore, it is a reasonable assumption that the same process 
contributing selenium to shallow groundwater in the western 
San Joaquin Valley could also be contributing selenium to 
groundwater in the MS-SA study unit. Also, agricultural 
land use and oxic groundwater conditions were positively 
correlated (tables 5, 6).

Understanding Assessment for Strontium
Strontium was detected at high relative concentrations in 

9.5 percent of the MS-SA study unit and at moderate relative 
concentrations in 3.1 percent (table 8A); the HAL-US for 
strontium is 4,000 μg/L. Relative concentrations of strontium 
were highest in samples from the Highlands study area and 
lowest in those from the Santa Cruz and Pajaro Valley study 
areas (tables 8B, 10). The high relative concentrations of 
strontium were detected mostly in samples collected in the 
southern parts of the Highlands and Salinas Valley study areas 
(fig. 15G). High relative concentrations of strontium in the 
Salinas Valley study area were mostly detected in samples 
collected near the border with the Highlands study area, rarely 
in the valley trough. Except for one sample collected at a 
site in the Pajaro Valley study area, moderate concentrations 
of strontium were only detected in samples collected in 
the Highlands and Salinas Valley study areas. Sources of 
strontium in the study unit are likely to be natural.

The consumption of drinking water with concentrations 
of strontium greater than the HAL-US over a lifetime could 
affect bone and tooth growth (Alfredo and others, 2014). The 
chemistry of strontium is similar to that of calcium (Hem, 
1985). The most common natural sources of strontium to 
groundwater are weathering of silicate minerals, particularly 
feldspars; dissolution of carbonate and sulfate minerals; 
mixing with seawater (contains 7,750 µg/L strontium); and 
mixing with brines (McNutt, 2000; Faure and Mensing, 2004). 
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Figure 19.  Relation of selenium to dissolved oxygen and land 
use for water samples from grid and tap sites, Monterey-Salinas 
Shallow Aquifer study unit, California Groundwater Ambient 
Monitoring Assessment Priority Basin Project, October 2012 to 
May 2013.
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Strontium was correlated to sulfate, chloride, and 
bicarbonate (table 11); however, strontium concentrations 
were higher in groundwater where sulfate was the dominant 
anionic water type rather than chloride or bicarbonate 
(fig. 20). Also, like most of the trace elements discussed in 
this report, strontium concentrations were not significantly 
different among groundwater age classes, but were negatively 
correlated to the percentage of modern carbon-14 (table 9), 
indicating concentrations were higher in older groundwater. 

In the United States during 2001, the primary use 
of strontium was for the manufacturing of ceramic and 
glass products (U.S. Department of Health and Human 
Services, 2004). Strontium was negatively correlated to 
the anthropogenic explanatory factors of the percentage 
of urban land use and density of septic tanks. Strontium 
relative concentrations also were higher in drier climates and 
older groundwater, based on the negative correlations to the 
aridity index and the percentage of modern carbon-14. These 
correlations indicated that elevated strontium concentrations 
were not likely to have anthropogenic sources.

Uranium and Radioactive Constituents
Most of the radioactivity in groundwater comes from 

decay of uranium and thorium that is natural in the rocks 
or sediments that compose the aquifers. Radioactive decay 
of uranium and thorium isotopes produces long series of 
radioactive daughter products, including isotopes of radium, 
uranium, and radon. These elements have different chemical 
properties, and their solubility in groundwater varies with 
geochemical conditions, water chemistry, and aquifer 
mineralogy (for example, Hem, 1985). This study included 
data for uranium, radon-222, and gross alpha- and gross beta-
particle activities, which are measures of the activities of all 
radioactive elements in the water sample that decay by alpha- 
or beta-particle emission, respectively. Gross alpha- and gross 
beta-particle activities were counted at 72 hours and at 30 days 
after sample collection. Gross alpha- and gross beta-particle 
activity in a groundwater sample can change with time after 
sample collection as a result of radioactive decay and ingrowth 
(activity can increase or decrease depending on sample 
composition and holding time; Arndt, 2010). Data from the 
72-hour counts are used in this report. The method of analysis 
used in this study for gross alpha-particle activities includes 
uranium as part of the measurement. In this report, uranium 
activities were subtracted from the gross alpha activities, 
which results in adjusted gross alpha-particle activities. 
Adjusted gross alpha-particle activities are reported because 
that is the constituent used for the MCL-US. 

Radioactive constituents were present at high relative 
concentrations in 19 percent of the MS-SA study unit and 
at moderate relative concentrations in 20 percent (table 7A). 
Radioactive constituents were detected at high relative 
concentrations most frequently in the Highlands and Santa 
Cruz study areas (table 7B). Adjusted gross alpha activity 
(72‑hour), gross beta activity (72-hour), and uranium activity 
were all detected at high relative concentrations (table 8A). 
Radon-222 was detected at moderate relative concentrations.

Gross alpha-particle activity was detected at high relative 
concentrations in samples from the Highlands and Santa Cruz 
study areas (table 8B; fig. 11A); the MCL-US is 15 picocuries 
per liter (pCi/L). Gross alpha-particle activity is used as 
a screening tool to determine whether other radioactive 
constituents must be analyzed. Gross beta-particle activity 
was detected at high concentrations only in samples from the 
Highlands study area; the MCL-CA is 50 pCi/L. Uranium 
was found at high relative concentrations in samples from 
the Highlands and Salinas Valley study areas (figs. 11A, 21); 
the MCL-US is 30 µg/L. Chronic exposure to uranium in 
drinking water at concentrations greater than the MCL-US can 
result in toxic effects to the kidneys or increased cancer risks 
(U.S. Environmental Protection Agency, 2000, 2009b). 
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Figure 20.  Strontium concentrations by the dominate anion 
water type in samples from grid and tap sites in the Monterey-
Salinas Shallow Aquifer study unit, California Groundwater 
Ambient Monitoring Assessment Priority Basin Project, 
October 2012 to May 2013.
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Figure 21.  Concentrations of uranium in water samples collected from grid and tap sites in the Monterey-Salinas Shallow Aquifer study 
unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.



Status and Understanding of Water Quality    69

Sources of uranium to groundwater include dissolution 
of uranium-bearing minerals, such as uraninite (UO2), 
zircon, and titanite, and desorption of uranium from mineral 
surfaces in the presence of bicarbonate (Hem, 1985; Jurgens 
and others, 2010). Phillips and others (1993) showed that 
uranium concentrations are relatively high in the surficial 
geology of much of the Salinas Valley and Highlands study 
areas (fig. 21). Uranium concentrations were not correlated 
with pH, groundwater age, or well depth (tables 9, 10), but 
were correlated to other explanatory factors. The positive 
correlations of uranium to bicarbonate (table 11), DO, and 
the percentage of agricultural land use (table 9) indicate that 
uranium concentrations in the MS-SA study unit could be 
elevated as a result of enhanced desorption from sediments 
and mobilization of uranium by irrigation recharge having 
high bicarbonate concentrations (fig. 22). These results were 
similar to those from a local-scale investigation in the San 
Joaquin Valley near the city of Modesto (Jurgens and others, 
2008), a regional investigation in the eastern San Joaquin 

Valley (Jurgens and others, 2010), and other GAMA-PBP 
study units (Landon and others, 2010; Burton and others, 
2012). The high concentrations of uranium in samples 
from the Highlands study area most likely result from the 
dissolution of uranium-bearing minerals.

Nitrate and Other Nutrients
Nutrients, as a class, were detected at high relative 

concentrations in 16 percent of the MS-SA study unit and 
at moderate relative concentrations in 19 percent (table 7A). 
Nutrients were detected at high relative concentrations in 
samples from the Salinas Valley, Pajaro Valley, and Highlands 
study areas (table 7B). Nitrate plus nitrite (referred to simply 
as nitrate, because nitrite concentrations were negligible 
compared to nitrate) and ammonia were the nutrients detected 
at high relative concentrations (table 8A; fig. 11A). The 
most common forms of dissolved nitrogen in groundwater 
are nitrate, nitrite, ammonium and ammonia, and dissolved 
nitrogen gas, and which form is dominant depends on redox 
conditions (for example, McMahon and Chapelle, 2007). 
In this study unit, nitrate concentrations were positively 
correlated to DO concentrations (table 9) and were higher in 
oxic groundwater than anoxic or mixed (table 10; fig. 23).
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Figure 22.  Uranium concentrations in relation to agricultural land 
use and bicarbonate concentrations for water samples from grid 
and tap sites in the Santa Cruz, Pajaro Valley, and Salinas Valley 
study areas of the Monterey-Salinas Shallow Aquifer study unit, 
California Groundwater Ambient Monitoring Assessment Priority 
Basin Project, October 2012 to May 2013.

Figure 23.  Nitrate concentrations in relation to the percentage 
of modern carbon-14 and oxidation-reduction conditions in water 
samples from grid sites, Monterey-Salinas Shallow Aquifer study 
unit, California Groundwater Ambient Monitoring Assessment 
Priority Basin Project, October 2012 to May 2013.
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Nitrate was detected at high relative concentrations in 
14 percent of the MS-SA study unit (table 8A); the MCL for 
nitrate is 10 mg/L as nitrogen (N). Nitrate was detected at high 
relative concentrations in samples from the Salinas Valley, 
Pajaro Valley, and Highlands study areas (table 8B; fig. 24), 
but was not detected or only detected at low concentrations 
in samples from the Santa Cruz study area. The greatest 
proportion of high relative concentrations were in the Salinas 
Valley study area (table 8B; fig. 24). Anthropogenic sources 
contributed to elevated concentrations of nitrate in the study 
unit.

Nitrate and other nutrients in groundwater have natural 
and anthropogenic sources (Dubrovsky and others, 2010). 
Certain bacteria and algae naturally convert nitrogen gas from 
the atmosphere into nitrate, which is an important nutrient 
for plants. Other natural sources are atmospheric deposition, 
animal waste, and dissolution of organic material in soils. 
Anthropogenic sources of nitrate include application as a 
fertilizer in agriculture and landscaping and livestock, which, 
in concentrated numbers, produce nitrogenous waste that 
can leach into groundwater. Other anthropogenic sources 
include septic system discharge, leakage from municipal 
sewage lines, and atmospheric deposition of nitrogen oxides 
from the combustion of fossil fuels (Hem, 1985). High 
concentrations of nitrate can cause “blue baby” syndrome 
(U.S. Environmental Protection Agency, 2009b).

Nitrate concentrations were positively correlated to 
the percentage of modern carbon-14 (table 9; fig. 23) and 
were significantly higher in modern groundwater than in 
pre-modern or mixed (table 10). Nitrate concentrations were 
positively correlated to agricultural land use, indicating that 
irrigation-return water could be leaching nitrogen fertilizer 
applied to crops or animal wastes into groundwater in the 
MS-SA study unit. This hypothesis is supported by the results 
of a study by Harter and others (2012), which concluded 
that agricultural fertilizers were a major source of nitrate to 
groundwater in the Salinas Valley. Nitrate is highly soluble, 
and agriculture has been in the study unit for decades; nitrate 
from agricultural practices could have had time to percolate 
throughout the shallow aquifer. Nitrate was not correlated to 
well depth (table 9), however, unlike in other studies (Landon 
and others, 2010; Burton and others, 2012; Shelton and others, 
2013), partly because well depth was not correlated to redox 
conditions or DO concentrations in this study unit.

Septic systems also can introduce nitrogenous waste 
into groundwater. Nitrate concentrations were negatively 
correlated to the density of septic systems (table 9), indicating 
that septic systems were not a significant source of elevated 
nitrate concentrations. This lack of correlation could reflect a 
lower density of septic systems in agricultural areas (table 6) 
or indicate nitrogen fertilizer was the primary source of nitrate 
in samples from the MS-SA study unit.

Organic and Special-Interest Constituents

Organic compounds are organized by constituent class, 
including volatile organic compounds (VOCs) and pesticides. 
The VOCs are characterized by their tendency to evaporate 
and are present in paints, solvents, fuels, fuel additives, 
refrigerants, fumigants, and disinfected water. VOCs typically 
persist longer in groundwater than in surface water because 
groundwater is isolated from the atmosphere. Pesticides are 
used to control weeds, fungi, or insects in agricultural and 
urban settings.

In the MS-SA study unit, 21 of the 148 organic 
constituents analyzed were detected, 19 of which had health-
based benchmarks (table 4). Organic constituents, as a class, 
were not detected at high relative concentrations in the 
MS-SA study unit, but were detected at moderate relative 
concentrations in 0.7 percent of the shallow aquifer (table 7A). 
Organic constituents were only detected at moderate 
relative concentrations in the Salinas Valley study area, with 
aquifer proportions of 2.5 percent (table 7B). The fumigant 
1,2-dichloropropane (1,2-DCP) was detected at moderate 
relative concentrations (fig. 25; table 8A). The trihalomethane 
chloroform and the herbicide simazine were detected at low 
relative concentrations in more than 10 percent of the MS-SA 
study-unit grid sites sampled (figs. 25, 26).

The number of VOCs detected at a site ranged from no 
detections to five compounds. Most of the sites with more 
than one VOC detected in samples were in the Pajaro Valley 
and northern part of the Salinas Valley study areas (fig. 27A). 
The number of VOC detections per site was correlated to the 
density of septic tanks (table 9). This could reflect a causative 
relationship or the correlation of septic tanks with urban land 
use (tables 5, 6). The number of VOC detections was not 
correlated to any other explanatory factors, including land use 
(tables 9, 10).
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Figure 24.  Concentrations of nitrate plus nitrite as nitrogen in samples collected from grid and tap sites in the Monterey-Salinas 
Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.
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Figure 25.  Detection frequency and maximum relative concentration of organic and special-interest constituents detected in water 
samples from U.S. Geological Survey grid sites in the Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient 
Monitoring Assessment Priority Basin Project, October 2012 to May 2013.

Figure 26.  Results for selected organic and special-interest constituents in water samples from U.S. Geological Survey grid sites 
in the Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, 
October 2012 to May 2013: A, overall detection frequency, and B, relative concentrations by study area.

Detection frequency
0.1 1 10 100

M
ax

im
um

 re
la

tiv
e 

co
nc

en
tra

tio
n

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

Simazine

Chlorpyrifos

Atrazine

Dimethoate

Pendimethalin

Hexazinone

Chloroform

1,2-Dichloropropane (1,2-DCP)

Tetrachloroethene (PCE)

Methyl tert-butyl ether (MTBE)

Bromoform

1,1,2-Trichlorotrifluoroethane (CFC-113)

Toluene
Carbon tetrachloride

Dichlorotrifluoromethane (CFC-12)

Carbon disulfide

Trichlorofluoromethane (CFC-11)

Bromodichloromethane
Dibromochloromethane

Perchlorate

N-Nitrosodimethylamine (NDMA)HighHigh

ModerateModerate

LowLow

sac15-0561_fig 25

10-percent detection
frequency

Relative concentration, dimensionless
EXPLANATION

Study areas

A B

Santa Cruz Salinas ValleyPajaro Valley Highlands

0 10 20 30 40 50 60 70 80 90 100

Study-unit detection frequency,
in percent

0.0001 0.001 0.01 0.1 1 10

Simazine

Perchlorate

N-Nitroso-
dimethylamine

(NDMA)

Chloroform

1,2-Dichloro-
propane 1

3
5
6
1

5
1

17
12
29
1

2

13

sac15-0561_fig 26ab

HighHighModerateModerateLowLow

Number of grid
sites containing
the constituent



Status and Understanding of Water Quality    73

Figure 27.  Distribution of sites with organic constituents detected in water samples from the Monterey-Salinas Shallow Aquifer 
study unit, California Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013: A, volatile 
organic compounds (VOC) detected per site; B, pesticides detected per site; C, concentrations of the trihalomethane chloroform; 
D, concentrations of the herbicide simazine; E, concentrations of the special-interest constituent N-nitrosodimethylamine (NDMA); and 
F, concentrations of the special-interest constituent perchlorate.
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Figure 27.  —Continued
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Understanding Assessment for Trihalomethanes
Water used for drinking water and other household uses 

in domestic and public-supply systems can be disinfected 
with chlorine solutions (for example, bleach). In addition to 
disinfecting the water, the chlorine compounds react with 
organic matter to produce trihalomethanes (THMs) and 
other chlorinated or brominated disinfection byproducts (for 
example, Ivahnenko and Barbash, 2004). The THMs can 
then enter groundwater by infiltration of chlorinated water 
from septic systems or landscape irrigation. In addition, 
shock chlorination (often carried out by pouring bleach down 
a well) is a recommended procedure for treating bacterial 
contamination and odor problems in domestic drinking-
water supply wells (U.S. Centers for Disease Control and 
Prevention and U.S. Department of Housing and Urban 
Development, 2006), which could cause a reservoir of 
chlorinated water to form in the well bore and surrounding 
aquifer material. The chlorine would decay rapidly, but 
any THMs formed by reaction between the chlorine and 
organic matter could remain in the aquifer to be pumped by 
the well. The MCL-US for total trihalomethanes, 80 µg/L, 
applies to the sum of the concentrations of the four THMs: 
chloroform, bromodichloromethane, dibromochloromethane, 
and bromoform. Chloroform was the most frequently detected 
VOC in groundwater across the United States (Zogorski and 
others, 2006).

Only low relative concentrations of THMs were detected 
in 12 percent of the MS-SA study unit. The highest aquifer-
scale proportion for THMs in the shallow aquifer, 30 percent, 
was in the Pajaro Valley study area, followed by the Salinas 
Valley study area at 15 percent. Chloroform, the primary THM 
detected, was detected in 15 percent of the grid sites sampled 
in the study unit (figs. 25, 26). Chloroform, like the number 
of VOC detections per site, was positively correlated to the 
density of septic tanks, but was not significantly correlated to 
any land-use type or any other potential explanatory factors 
evaluated in this report (tables 9, 10).

Understanding Assessment for Pesticides
Pesticides include insecticides, fungicides, fumigants, 

and herbicides. Pesticides, as a class, were detected at 
moderate relative concentrations in 0.7 percent (table 7A) and 
at low relative concentrations in 18 percent of the MS-SA 
study unit. The highest aquifer-scale proportion for pesticides 
(the fumigant 1,2-dichloropropane) at moderate relative 
concentrations in the shallow aquifer was 2.5 percent in the 
Salinas Valley study area (table 7B). 

The number of pesticides detected in a sample from a 
site ranged from no detections to four (fig. 27B). Sites with 

detections generally were in the Salinas Valley study area 
(fig. 27B; table 10). Unlike VOCs, the number of pesticides 
detected per site was positively correlated to the percentage 
of agricultural land use and negatively correlated to natural 
land use (table 9). The number of pesticide detections also 
was positively correlated with the percentage of modern 
carbon-14 (table 9), and there were more detections in modern 
groundwater than in pre-modern groundwater (table 10), 
indicating the number of pesticides detected was higher in 
sites with younger groundwater. The number of pesticide 
detections per site was inversely correlated to the density of 
septic tanks (table 9). This relationship most likely reflects the 
low density of septic tanks in agricultural areas.

The herbicide simazine was the most frequently detected 
pesticide in grid samples (figs. 25, 26), but was detected 
only at low relative concentrations. Simazine was detected in 
15 percent of the samples collected in the MS-SA study unit 
(fig. 26A) and was detected most frequently (32 percent), and 
at higher concentrations, in samples from sites in the Salinas 
Valley (figs. 26B, 27D; table 10). Simazine is among the 
most commonly detected herbicides in groundwater in major 
aquifers across the United States (Gilliom and others, 2006) 
and is the most frequently detected herbicide in groundwater 
in California (Troiano and others, 2001).

Simazine was positively correlated to agricultural land 
use (table 9), and concentrations were higher in modern 
groundwater than in pre-modern groundwater (table 10), 
indicating that herbicide application to crops was a potential 
source of this constituent to groundwater sampled in the 
MS-SA study unit. Simazine was negatively correlated to 
well depth (table 9), indicating concentrations were higher in 
samples from shallower wells. 

Constituents of Special Interest
Constituents of special interest analyzed for in the MS-SA 

study unit were perchlorate and N-nitrosodimethylamine 
(NDMA). These constituents were of special interest at the 
inception of the GAMA Priority Basin Project in 2003 because 
they had been detected in, or were considered to have the 
potential to reach, drinking-water supplies (Belitz and others, 
2003; California State Water Resources Control Board, 2008a, 
b). As a class, special-interest constituents were detected at 
high relative concentrations in 2.0 percent of the MS-SA study 
unit, moderate relative concentrations in 36 percent, and low 
relative concentrations in 62 percent (table 7A). Perchlorate 
and NDMA were both detected at high relative concentrations 
(table 8A). All the high relative concentrations were in the 
Salinas Valley study area (tables 7B, 8B).
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Understanding N-Nitroso-Dimethylamine (NDMA)
The compound NDMA was detected at high relative 

concentrations in 2.0 percent of the MS-SA study unit and 
at moderate relative concentrations in 1.5 percent (table 8A); 
the NL-CA for NDMA is 0.01 µg/L. All but one detection 
was in a sample from the Salinas Valley study area (figs. 26B, 
27E). NDMA was detected in 9 of the 28 GAMA-PBP study 
units where NDMA was a measured analyte, including the 
MS-SA and MS-PA study units. NDMA was detected at high 
concentrations in two other GAMA-PBP study units other than 
the MS-SA—the Mojave study units (Mathany and Belitz, 
2009) and the Northern Sacramento Valley study unit (Bennett 
and others, 2009). 

NDMA is a semivolatile organic compound that 
belongs to the N-nitrosamine family of carcinogens 
(U.S. Environmental Protection Agency, 2014). NDMA is used 
in industries such as pesticide manufacturing, fish processing 
facilities, and rubber and tire manufacturing (Agency for 
Toxic Substances and Disease Registry, 1989). NDMA also 
is a disinfection byproduct that may form during chlorination 
of water supplies and wastewater (U.S. Environmental 
Protection Agency, 2014a). NDMA was negatively correlated 
to the aridity index (table 9), but this is not believed to be 
a causative relationship. NDMA was not correlated to any 
other explanatory factor (tables 9, 10). The source of the high 
NDMA concentrations is unknown.

Understanding Perchlorate
The MCL-CA of 6 µg/L for perchlorate was established 

in 2007, and although perchlorate is a highly soluble, 
inorganic constituent, it is classified as a special-interest 
constituent in this report for consistency with other GAMA 
Priority Basin Project reports. Perchlorate was detected at 
high relative concentrations in 0.7 percent of the MS-SA 
study unit and at moderate relative concentrations 35 percent 
(table 8A). Perchlorate was detected in 61 percent of samples 
(fig. 26A), and almost all of the detections were in the Pajaro 
Valley, Salinas Valley, and Highlands study areas (figs. 26B, 
27F). Perchlorate is a health concern because it can disrupt 
the thyroid uptake of iodine needed to produce hormones 
for normal growth and development (California State Water 
Resources Control Board, 2008a).

Perchlorate has natural and anthropogenic sources to 
groundwater. Perchlorate can be present at low concentrations 
in groundwater under natural, especially arid, conditions 
(Fram and Belitz, 2011). Perchlorate forms naturally 
in the atmosphere and is present at low concentrations 
in precipitation (Rajagopalan and others, 2006, 2009). 
Perchlorate detection frequencies in the MS-SA study unit 
generally were greater than anticipated from the distribution 
of perchlorate in California groundwater under natural 
conditions (Fram and Belitz, 2011). In the Fram and Belitz 
(2011) study, the detection frequencies of perchlorate at 

concentrations greater than threshold concentrations of 0.1 
and 0.5 μg/L were compared to the predicted probability of 
detecting perchlorate under natural conditions as a function 
of aridity index. For the MS-SA study unit, the 81 grid sites 
with perchlorate data were divided into 4 groups of 19 to 
21 sites by the aridity index, and, for each group, the average 
aridity index and the detection frequencies of perchlorate at 
concentrations greater than 0.1 μg/L and greater than 0.5 μg/L 
were calculated. The detection frequencies were greater than 
the predicted probabilities for detections greater than 0.5 µg/L. 
The detection frequencies for detections greater than 0.1 µg/L 
also tended to be greater than the predicted probabilities; 
however, the lower part of the 90-percent confidence interval 
of the detection frequencies for three of the groups was below 
the line for the predicted probability of detecting perchlorate 
(fig. 28). The results for the 0.5 µg/L threshold indicated 
that anthropogenic sources of perchlorate or anthropogenic 
processes most likely contributed to perchlorate concentrations 
in much of the MS-SA study unit.

Potential anthropogenic sources of perchlorate include 
industrial; manufacturing; or commercial uses such as rocket 
fuel, explosives, road flares, automobile air-bag systems, and 
other products. Mobilization of perchlorate naturally present in 
the unsaturated zone to the groundwater aquifer by irrigation 
recharge, an anthropogenic process, is another potential source 
(Fram and Belitz, 2011). Historical use of Chilean nitrate as a 
fertilizer also is a known source of perchlorate (Urbansky and 
others, 2001; Trumpolt and others, 2005). Import of Chilean 
nitrate into the United States for use as fertilizer began in the 
early part of the 20th century, but has declined in recent years 
(Dasgupta and others, 2006).

Perchlorate concentrations were positively correlated 
with agricultural land use, percentage of modern carbon-14 
(table 9), and nitrate concentrations (table 11). Given 
these correlations, and that nitrate concentrations were 
also positively correlated to agricultural land use (table 9), 
mobilization of naturally present perchlorate or possibly 
perchlorate from the application of Chilean nitrate fertilizer 
could be sources of the perchlorate detected in groundwater 
sampled in the MS-SA study unit. Perchlorate concentrations 
also were higher in oxic than anoxic groundwater. The 
perchlorate in oxic groundwater in the study unit could reflect 
the relation of oxic groundwater and agricultural land use 
(tables 5, 6). Also, perchlorate biodegrades under anoxic 
conditions in some aquifers (Sturchio and others, 2007). 
Perchlorate and nitrate are reduced at similar oxidation-
reduction potentials (Nozawa-Inoue and others, 2005). 
Perchlorate was not detected in 17 of the 19 samples (the 
2 detections were just above reporting levels) with manganese-
reducing or manganese- and iron-reducing redox conditions, 
which likely reflects degradation of perchlorate. Most of these 
samples were from the Santa Cruz study area (fig. 27F), where 
groundwater conditions were primarily anoxic (fig. 8B).
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Comparison of Water Quality of the 
Shallow and Public Drinking-Water 
Aquifer Systems

Study-unit characteristics (for example, well depth and 
land use) and water-quality results from the assessment of 
the groundwater resources used for public drinking water in 
the Monterey Bay and Salinas Valley (MS-PA; Kulongoski 
and Belitz, 2011) were compared to results from the MS-SA 
system assessment presented in this report. This was done 
to assess differences between water quality in the shallower 
groundwater primarily used for domestic supply and in the 
deeper groundwater primarily used for public drinking-water 
supply.

Comparison of Study-Unit Characteristics
A comparison of well-construction information verified 

that grid sites sampled for the MS-SA3 system were tapping 
a relatively shallow aquifer system compared to sites sampled 
for the MS-PA system (fig. 29A). Well depths in the MS-PA 
system were significantly deeper than well depths in the 

MS-SA3 system (Mann-Whitney rank sum test, p=0.002). 
Depth to the top of perforations in the MS-PA system also 
tended to be deeper than in the MS-SA-3 system (Mann-
Whitney rank sum test, p=0.056). Median well depths and 
depths to the top of perforations for grid sites in the MS-SA3 
system were 88 and 49 m bls, respectively, and, for grid sites 
in the MS-PA system, 143 and 70 m bls, respectively. The 
MS-SA3 system had a higher percentage of natural land use in 
the 500-m buffer (1,640 ft) around sites, whereas the MS-PA 
system had a higher percentage of urban land use around 
sites (fig. 29B). Distribution of groundwater-age classes was 
varied between the aquifer systems; the MS-SA3 system 
had slightly more sites with modern and mixed groundwater 
ages, and the deeper MS-PA system had more sites with pre-
modern groundwater age (fig. 29C). The MS-SA3 system 
had a higher percentage of sites that were oxic (70 percent) 
than the MS-PA system (55 percent). The MS-PA system had 
a higher percentage of sites that were anoxic or mixed redox 
(45 percent) than the 30 percent for the MS-SA3 system 
(fig. 29D). Both aquifer systems had pH values near or slightly 
above neutral pH (fig. 29E); however, the pH values in the 
MS-PA system tended to be slightly higher than those in the 
MS-SA3 system.

Aridity Index, dimensionless
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Predicted probability of detecting
perclorate at concentration

greater than threshold

Threshold conentration,
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Observed detection frequency of
perchlorate concentration
greater than threshold 

The 81 grid sites with perchlorate data were divided into 4 groups of 19 and 21 sites.  Horizontal error 
bars equal plus or minus one standard deviation of the average aridity index.  Vertical error bars are

the 90-percent Jeffrey’s confidence interval for the observed detection frequency
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Figure 28.  Predicted probability of detecting perchlorate in groundwater as a function of aridity index and observed detection 
frequency and average aridity index for sites grouped by aridity index, Monterey-Salinas Shallow Aquifer study unit, California 
Groundwater Ambient Monitoring Assessment Priority Basin Project, October 2012 to May 2013.
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Figure 29.  Comparison of the study-unit characteristics for the shallow and public drinking-water aquifer systems for the Monterey-
Salinas public drinking water (2005) and shallow (2012–13) aquifer system assessments, California Groundwater Ambient Monitoring 
Assessment Priority Basin Project: A, well depths and depths to top of the upper-most opening; B, land use within 500-meter buffer; 
C, groundwater-age class; D, redox class; and E, pH.
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Comparison of Inorganic Constituents

Inorganic constituents with health-based benchmarks, 
as a group, were detected at high relative concentrations 
in a larger aquifer-scale proportion of the MS-SA3 system 
than in the MS-PA system (fig. 30A). The aquifer-scale 
proportion of high and moderate relative concentrations for 
trace elements was greater in the MS-PA than in the MS-SA3. 
Radioactive constituents were mostly detected at low relative 
concentrations in both studies. The proportion of high relative 
concentrations for nutrients in the MS-SA3 system was more 
than three times higher than the proportions in the MS-PA.

The four trace elements detected at high relative 
concentrations in more than 2 percent of one or both aquifer 
systems were arsenic, manganese, molybdenum, and 
selenium. The source for all four of these trace elements 
is primarily natural for both aquifer systems. Arsenic and 
selenium were at high concentrations in higher proportions 

of the MS-SA3 system than of the MS-PA system (fig. 30B). 
However, the aquifer-scale proportion with moderate arsenic 
concentrations was higher in the MS-PA system. The greater 
proportion of aquifer area with high relative concentrations of 
arsenic and selenium in the MS-SA3 could be because these 
constituents are more mobile in oxic groundwater, which 
was more common in the MS-SA3 aquifer system (fig. 29D). 
Concentrations of arsenic in the MS-PA are not likely to 
change as a result of percolation of water having high or 
moderate concentrations of arsenic from the MS-SA3 because 
the locations of high and moderate relative concentrations 
of arsenic frequently coincided in the two aquifers (fig.15A; 
fig. 14B in Kulongoski and Belitz, 2011). Concentrations of 
selenium in the deeper system are not likely to increase above 
low relative concentrations by percolation from the shallower 
aquifer in most of the MS-PA aquifer system because the 
concentrations were low throughout most of both aquifer 
systems (fig. 31A).

Figure 30.  Comparison of aquifer-scale proportions having high, moderate, and low relative concentrations of inorganic constituents 
with health-based benchmarks in the Monterey-Salinas public drinking water (2005) and shallow (2012–13) aquifer-system assessments, 
California Groundwater Ambient Monitoring Assessment Priority Basin Project: A, by constituent class, and B, for constituents detected 
at high relative concentrations in more than 2 percent of an aquifer system.
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Figure 31.  Concentrations of selected inorganic constituents with health-based benchmarks for samples collected from grid sites in 
the Monterey-Salinas public drinking water (2005) and shallow (2012–13) aquifer system assessments, California Groundwater Ambient 
Monitoring Assessment Priority Basin Project: A, selenium; B, uranium; and C, nitrate.
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Figure 31.  —Continued
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Figure 31.  —Continued
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Proportions of high and moderate relative concentrations 
of manganese were slightly higher in the MS-PA system than 
in the MS-SA3 system (fig. 30B). Concentrations were most 
likely higher in the MS-PA because anoxic conditions were 
more common in the MS-PA system (fig. 29D). Aquifer-scale 
proportions with high relative concentrations of molybdenum 
were similar in the MS-SA3 and MS-PA systems, but 
proportions with moderate relative concentrations were higher 
in the MS-SA3 system. Correlations with explanatory factors 
evaluated in this report and in Kulongoski and Belitz (2011) 
did not provide an adequate explanation for this distribution. It 
is unlikely that concentrations of manganese or molybdenum 
would change in the deeper aquifer system of the MS-PA 
because of the downward movement of these constituents, 
unless there is a change in the geochemical conditions (for 
example, redox or pH) of the primary aquifer.

Uranium was the primary radioactive constituent detected 
at high relative concentrations in more than 2 percent of one or 
both aquifer systems. Uranium was at high concentrations in 
higher proportions of the MS-SA3 system than of the MS-PA 
system (fig. 30B); however, the proportion with moderate 
concentrations was higher in the MS-PA system. Location 
of high and moderate relative concentrations of uranium did 
not always coincide in the MS-SA3 and MS-PA aquifers 
(fig. 31B). Uranium was correlated with oxic conditions and 
mobilized by irrigation practices of agricultural land use in the 
MS-SA3 aquifer system. It is possible that concentrations of 
uranium could increase in the MS-PA aquifer in agricultural 
areas as a result of changes in pH caused by irrigation water 
interacting with bicarbonate aquifer materials as the irrigation 
water percolates down to the primary aquifer, as discussed in 
the “Uranium and Radioactive Constituents” section.

Nitrate was the primary nutrient detected at high relative 
concentrations in more than 2 percent of both aquifer systems. 
High relative concentrations of nitrate were detected more 
than three times more frequently in samples collected in 
the MS-SA3 than in the MS-PA (fig. 30B). Agricultural 
land use around the sites sampled had a similar frequency 
distribution in the MS-SA3 and MS-PA (fig. 29B), indicating 
that the shallower (fig. 29A), oxic system (fig. 29D) sampled 
in the MS-SA3 study was more susceptible to the effects 
of agricultural land-use practices because it was in closer 
proximity to the agricultural sources of nitrate. Nitrate 
concentrations are likely to increase in some areas of the 
MS-PA aquifer system as a result of the downward movement 
of nitrate. Increases in nitrate concentrations in the MS-PA 
system would be most likely near King City, and farther north 
in the Salinas Valley and Pajaro Valley study areas, where the 
concentrations in the MS-SA3 system were frequently higher 
than in the MS-PA system (fig. 31C), and redox conditions 
were oxic. Because mixed and anoxic redox conditions were 
prevalent in the MS-PA aquifer system south of King City, 
however, denitrification processes could remove nitrate from 
percolating groundwater in some areas of the deeper primary 
aquifer system. In addition, the prevalence of pre-modern 
samples in the MS-PA (fig. 29E) indicates potentially fewer 
effects on groundwater quality from agricultural land-use 
practices.

Inorganic constituents with aesthetic-based benchmarks, 
as a group, were detected at high relative concentrations 
in a larger proportion of the MS-SA3 system than in the 
MS-PA system (fig. 32A). The aquifer-scale proportion with 
high relative concentrations of salinity indicators was more 
than three times higher in the MS-SA3 than in the MS-PA; 
the proportion of aquifer systems with moderate relative 
concentrations was the same for the MS-PA as for the 
MS-SA3 (fig. 32A).

Four inorganic constituents with SMCLs as benchmarks 
were detected at high relative concentrations in more than 
2 percent of one or both aquifer systems. These constituents 
are the salinity indicators chloride, sulfate, and total dissolved 
solids (TDS) and iron. All three salinity indicators were at high 
relative concentrations in higher proportions of the MS-SA3 
system than of the MS-PA system (fig. 32B). Chloride was 
at higher proportions of moderate relative concentrations 
in the MS-SA3 system than the MS-PA system; however, 
proportions with moderate relative concentrations of sulfate 
and TDS were about the same in the two aquifer systems 
(fig. 32B). The higher proportion with elevated concentrations 
of chloride in the MS-SA3 system was most likely a result of 
seawater intrusion near the coast; evaporative concentration; 
and from marine rocks, as discussed in the “Understanding 
Assessment for Chloride” section. In the coastal portion of 
the Salinas Valley and Pajaro Valley study areas, groundwater 
pumping has led to greater seawater intrusion in the relatively 
shallow 180-Foot Aquifer than in the deeper 400-Foot Aquifer 
(Brown and Caldwell, 2014). High relative concentrations of 
chloride and TDS were both detected in samples collected in 
this area of the MS-SA3.

The other salinity indicators, sulfate and TDS, were 
detected at high relative concentrations in the interior 
parts of the MS-SA3 study unit (figs. 33A, B). These high 
concentrations most likely were a result from dissolution of 
natural marine sediments and from agricultural practices. 
Sulfate and TDS were both correlated to agricultural land 
use in the MS-SA3. Sulfuric acid is used to lower the pH of 
irrigation water and to assist with nutrient uptake. Ammonium 
sulfate is used on a wide variety of crops in the Monterey and 
San Luis Obispo Counties (California Department of Pesticide 
Regulation, 2014). Sulfate has been identified as a primary 
constituent contributing to increased groundwater salinity 
in irrigated fields in an arid environment (Oren and others, 
2004). High TDS concentrations in these samples could be 
due to the leaching of built-up salts in soil by irrigation-return 
water. The distribution of sulfate and TDS concentrations in 
the aquifer systems indicated that most moderate and high 
relative concentrations in the MS-SA3 system were near areas 
where there were high and moderate relative concentrations 
in the MS-PA system (figs. 33A, B). The predominance of 
samples with high relative concentrations of salinity indicators 
in the MS-SA indicated that the shallow aquifer system was 
more susceptible than the deeper system to the effects of 
anthropogenic activities at the land surface, such as irrigated 
agriculture or the disposal of wastewater. It is possible that 
elevated concentrations of sulfate and TDS could move 
downward and increase concentrations in the MS-PA system, 
however.
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Iron was the only constituent with an SMCL detected 
at higher relative concentrations in the MS-PA than in the 
MS-SA3 system (fig. 32B). Similar to manganese, iron 
concentrations were most likely higher in the MS-PA because 
anoxic conditions were more common in the MS-PA system 
(fig. 29D). It is unlikely that concentrations of iron would 
change in the deeper aquifer system of the MS-PA from 
downward movement of dissolved iron.

Comparison of Organic Constituents

Eight organic constituents (VOCs and pesticides) 
were detected above the common censoring level in at least 
10 percent of the grid samples collected in the MS-SA3 

or MS-PA systems or were detected at moderate relative 
concentrations (fig. 34A). Most of the detections in both 
systems were at low relative concentrations and no organic 
constituents were detected at high relative concentrations. 
Organic constituents detected at moderate relative 
concentrations in the MS-PA system were the solvents 
tetrachloroethene (PCE), trichloroethene (TCE), and carbon 
tetrachloride; the gasoline additive methyl tert-butyl ether 
(MTBE); and the pesticide dieldrin. In the MS-SA3 system, 
the fumigant 1,2-DCP was the only organic constituent 
detected at moderate relative concentrations. Chloroform and 
PCE (MS-SA3 only) and simazine (both aquifer systems) were 
the only organic constituents detected at frequencies greater 
than 10 percent.

Figure 32.  Comparison of aquifer-scale proportions having high, moderate, and low relative concentrations of inorganic constituents 
with secondary maximum concentration level benchmarks in the Monterey-Salinas public drinking water (2005) and shallow (2012–13) 
aquifer system assessments, California Groundwater Ambient Monitoring Assessment Priority Basin Project: A, by constituent class, 
and B, for constituents detected at high relative concentrations in more than 2 percent of an aquifer system.
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Figure 33.  Concentrations of selected salinity indicators for samples collected from grid sites in the Monterey-Salinas public drinking 
water (2005) and shallow (2012–13) aquifer system assessments, California Groundwater Ambient Monitoring Assessment Priority Basin 
Project: A, sulfate; B, total dissolved solids.
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Figure 33.  —Continued
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Figure 34.  Organic constituents detected frequently in the Monterey-Salinas public drinking water (2005) and shallow (2012–13) 
aquifer system assessments, California Groundwater Ambient Monitoring Assessment Priority Basin Project, allowing comparison of 
A, relative concentrations (excluding censored results), and B, detection frequency.
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Five of eight organic constituents were detected in both 
systems. Trichloroethene and dieldrin were not detected in 
the MS-SA3 system (fig. 34A, B). The herbicide simazine 
was the most frequently detected organic constituent, but 
was only detected at low relative concentrations. Simazine, 
chloroform, and PCE were detected more frequently in the 
MS-SA3 system than in the MS-PA; carbon tetrachloride, 
MTBE, dieldrin, and TCE were detected more frequently in 
the MS-PA. The fumigant 1,2-DCP was detected at similar 
frequencies in both systems.

The greater detection frequency or higher concentration 
of VOCs for samples collected in the MS-PA could be because 
those samples were, on average, closer to sources. The VOC 
detections generally were in samples from urban areas, and 
the MS-PA had three times as many sites in urbanized areas 
than did the MS-SA (fig. 29B). It also is possible that changes 
at the land surface to prevent further contamination by carbon 
tetrachloride, MTBE, and TCE could have resulted in lower 
detection frequencies for the shallow aquifer. On a national 
scale, VOCs are more frequently detected in samples from 
urbanized areas (Zogorski and others, 2006). The herbicide 
simazine is used in agriculture, as well as for roadside 
weed control in urban and rural locations. Simazine was 
correlated to agricultural land use in the MS-SA3 aquifer 
system (table 9), which is more susceptible to the effects of 
agricultural land-use practices than the deeper aquifer system. 
Simazine was not correlated to land use in the MS-PA aquifer 
system (Kulongoski and Belitz, 2011).

Summary
Groundwater quality in the Monterey-Salinas Shallow 

Aquifer (MS-SA) study unit was investigated by the USGS 
in cooperation with and as part of the California State Water 
Resource Control Board’s Groundwater Ambient Monitoring 
and Assessment Program Priority Basin Project (GAMA-
PBP). The MS-SA study provides a spatially unbiased 
characterization of untreated-groundwater quality in the 
shallow aquifer system. The shallow aquifer was defined 
using wells with open or screened intervals shallower, on 
average, than those of the public-supply wells listed in the 
California State Water Resources Control Board Division of 
Drinking-Water database. The MS-SA study unit covers an 
area of approximately 7,820 square kilometers in Santa Cruz, 
Monterey, and San Luis Obispo Counties in the central coast 
region of California. 

This study reported here describes the hydrogeologic 
setting of the MS-SA study unit, assesses the status of 
groundwater quality in the shallow aquifer system in the 
Monterey-Salinas study unit, relates groundwater quality 
to natural and anthropogenic factors that could be affecting 
its status, and a compares the quality of groundwater in the 
shallow aquifer system (MS-SA study unit) with the quality of 
groundwater resources used for public drinking water (MS-PA 
study unit).

The MS-SA study unit was divided into four study 
areas. Three study areas—Santa Cruz, Pajaro Valley, and 

Salinas Valley—were based on the California Department 
of Water Resources (CDWR) basin delineations, geology, 
and geography. The fourth study area, Highlands, consists of 
areas that primarily were served by domestic wells bordering 
the Salinas Valley study area, but were mostly outside of the 
CDWR defined basins.

Two types of assessments were made for the MS-SA 
study unit: (1) a status assessment provides a spatially 
unbiased characterization of groundwater quality in the 
shallow aquifers and (2) an understanding assessment 
provides an evaluation of natural and anthropogenic 
factors that could be affecting the groundwater quality. The 
assessments were based on water-quality data collected by 
the U.S. Geological Survey (USGS) from 100 grid sites and 
70 tap sites from 2012 to 2013. Samples collected from these 
sites were analyzed for organic constituents (volatile organic 
compounds and pesticides), inorganic constituents (major ions, 
trace elements, radioactivity, and nutrients), special-interest 
constituents (perchlorate, NDMA), and geochemical and age-
dating tracers.

Relative concentrations (sample concentration divided 
by the health- or aesthetic-based benchmark concentration) 
were used to evaluate groundwater quality for those 
constituents that had Federal or California regulatory or non-
regulatory benchmarks for drinking-water quality. Relative 
concentrations greater than 1.0 were defined as high for all 
constituents. Aquifer-scale proportion was used as the primary 
metric for evaluating regional-scale groundwater quality. 
Aquifer-scale proportion is defined as the percentage of the 
shallow aquifer system where concentrations are greater than 
or less than specified relative concentrations derived from 
water-quality benchmarks; proportion is based on area rather 
than volume. 

Inorganic constituents generally were detected at high 
and moderate relative concentrations more commonly than 
organic constituents. In the MS-SA study unit, at least one 
trace element, radioactive constituent, or nutrient with health-
based benchmarks was detected at high relative concentrations 
in 51 percent of the study unit. High relative concentrations 
of trace elements and radioactive constituents were detected 
in the greatest proportion in samples from the Highlands and 
Santa Cruz study areas, whereas high relative concentrations 
of nutrients were most often detected in the Salinas Valley and 
Pajaro Valley study areas. The trace elements molybdenum, 
strontium, and boron, were detected at high relative 
concentrations in 14, 9.5, and 2.2 percent, respectively, of 
the MS-SA study unit, primarily in the Highlands study 
area. Arsenic was detected at high relative concentrations in 
3.9 percent of the study unit, primarily in the Santa Cruz study 
area. Selenium was detected at high relative concentrations 
in 3.2 percentof the study unit, primarily in the Salinas 
Valley study area. Manganese was detected in 6.4 percent of 
the study unit, primarily in the Santa Cruz study area. The 
radioactive constituents adjusted gross alpha radioactivity and 
uranium were detected at high relative concentrations in 13 
and 7.6 percent, respectively, of the study unit, primarily in 
the Highlands study area. The nutrient nitrate was detected in 
14 percent of the study unit, primarily in the Salinas Valley 
and Pajaro Valley study areas.
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Inorganic constituents with secondary maximum 
contaminant levels (SMCLs) were detected at high relative 
concentrations in 40 percent of the MS-SA study unit. Salinity 
indicators (total dissolved solids, sulfate, and chloride) were 
detected most frequently in the Highlands and Salinas Valley 
study areas. Total dissolved solids (TDS), sulfate, and chloride 
were detected at high relative concentrations in 38, 26, and 
6.6 percent, respectively, of the study unit. Iron, the remaining 
constituent with an SMCL, was detected at high relative 
concentrations in 13 percent of the study unit, primarily in the 
Santa Cruz study area.

Organic constituents (volatile organic compounds, or 
VOCs, and pesticides) were not detected at high relative 
concentrations in any of the study areas. The fumigant 
1,2-dichloropropane (1,2-DCP) was detected at moderate 
relative concentrations, but in less than 1 percent of the 
MS-SA study unit. The VOC chloroform and the herbicide 
simazine were detected in 15 percent of samples collected, but 
only at low relative concentrations.

As a class, the constituents of special-interest were 
detected at high relative concentrations in 2 percent of 
the MS-SA study unit. In the study unit, NDMA and 
perchlorate were detected at high relative concentrations in 
2 and 0.7 percent, respectively; all high detections were in 
the Salinas Valley study area. Perchlorate was detected at 
moderate relative concentrations in 35 percent of the study 
unit.

 The understanding assessment used statistical 
correlations between concentrations of constituents and values 
of selected potential explanatory factors to identify the factors 
potentially affecting the concentration and areal distribution 
of constituents found at high relative concentrations or, for 
organic constituents, with study-unit detection frequency 
greater than 10 percent. The potential explanatory factors 
evaluated were land-use characteristics (land use, septic 
systems), measures of location (study area, aridity index, well 
depths, and depth to top of perforations), geologic factors 
(aquifer lithology, distance to geothermal sites), groundwater 
age, and geochemical conditions (oxidation-reduction 
characterization, dissolved oxygen, and pH).

The salinity indicators TDS, chloride, and sulfate all 
have natural sources in the MS-SA study unit, primarily 
marine sediments. Concentrations of the constituents also 
were elevated by anthropogenic processes in the study unit. 
All three constituents could be elevated as a result of the 
evaporative concentration of irrigation water or precipitation. 
Evidence for this is indicated by stable isotope data from the 
groundwater samples collected for this study, which indicate 
many samples from the Highlands and Salinas Valley study 
areas had been affected by evaporative processes. In addition, 
chloride concentrations near the coast were affected by old 
seawater intrusion. Sulfate concentrations could be elevated 
by soil additives or fertilizer used for agriculture and leached 
to the groundwater by irrigation-return water. 

Trace elements and radioactive constituents evaluated in 
this study came from natural sources and were not elevated by 
anthropogenic sources or processes evaluated in this report, 
except for selenium and the radioactive constituent uranium. 

Arsenic was positively correlated to DO and pH, with higher 
concentrations found in oxic conditions. This indicated that 
desorption from iron and manganese oxyhydroxides in aquifer 
sediments as a result of the pH and oxic conditions could be 
the primary mechanism controlling arsenic in groundwater. 
Boron was positively correlated to salinity constituents 
and older groundwater, indicating that long exposure to 
boron-bearing marine sediments could be a source of boron. 
Geothermal springs could be a source of high concentrations 
of boron, based on the correlation of boron with water 
temperature and that the site with high concentrations of boron 
had a water temperature over 30 degrees Celsius. Manganese 
and iron were negatively correlated to DO concentrations, 
such that concentrations were higher in anoxic redox 
conditions. These results indicate that the reductive dissolution 
of amorphous phases of oxyhydroxide minerals is an 
important mechanism contributing dissolved manganese and 
iron to groundwater. Manganese concentrations were higher 
in pre-modern groundwater than in modern groundwater, 
indicating a long period of reductive dissolution. Molybdenum 
is more soluble under oxic conditions than anoxic conditions. 
Unlike other GAMA study units, molybdenum concentrations 
were not significantly greater in oxic samples than in anoxic 
or mixed samples. Molybdenum was not correlated to DO 
because of the parabolic relationship in samples from the 
MS-SA study unit. In the study unit overall, molybdenum 
was not positively correlated with pH; however, a positive 
correlation with pH was observed in samples from oxic 
redox conditions. The adsorption of molybdenum to iron 
oxyhydroxides and clays can be inhibited as pH values 
increase. Strontium concentrations were higher in groundwater 
where sulfate was the dominant anionic water type rather 
than chloride or bicarbonate. Strontium was negatively 
correlated with the percentage modern carbon-14, indicating 
concentrations are higher in older groundwater.

Selenium was the only trace element for which 
concentrations could have been elevated by anthropogenic 
sources or processes. Selenium was positively correlated 
to DO concentrations, and concentrations were higher in 
oxic than anoxic groundwater. Selenium concentrations 
were positively correlated to agricultural land use, such 
that concentrations were higher in samples from areas of 
agricultural land use than in urban or natural land use areas. 
The source of high selenium was most likely the Monterey 
Formation in the Paso Robles area, augmented by pesticides 
and feed additives used in agriculture. Selenium in soil 
and sediments was mobilized by irrigation water under the 
oxic conditions of the MS-SA study unit. The radioactive 
constituent uranium also could have been elevated by 
anthropogenic processes. Uranium comes from the dissolution 
of uranium-bearing minerals in the study unit. The positive 
correlations of uranium to bicarbonate and DO concentrations 
and the percentage of agricultural land use indicate that 
uranium concentrations in the MS-SA study unit could be 
elevated by enhanced desorption of uranium-bearing minerals 
from sediments mobilized by irrigation recharge having high 
bicarbonate concentrations.
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Unlike most trace elements, nitrate is strongly affected 
by anthropogenic processes. Nitrate was positively correlated 
with agricultural land use, indicating that irrigation-return 
water could be leaching nitrogen fertilizer and elevating 
nitrate concentrations. Nitrate was positively correlated to 
the percentage of modern carbon-14 and was significantly 
higher in modern groundwater, indicating recent inputs of 
nitrate to the shallow aquifer system. Characteristically, nitrate 
was positively correlated with DO concentrations and was at 
higher concentrations in oxic groundwater than in anoxic or 
suboxic groundwater. 

The number of VOCs detected per site ranged from 
none to five. The sites with most of the detections were in the 
Pajaro Valley and the northern part of the Salinas Valley. The 
number of VOCs detected per site was positively correlated to 
the density of septic tanks, but was not correlated to any other 
explanatory factor. The trihalomethane (THM) chloroform 
also was correlated to septic-tank density.

The number of pesticides detected per site ranged from 
none to four. Most of the detections were in the Salinas Valley 
study area. The number of pesticides detected was positively 
correlated to the percentage of agricultural land use and the 
percentage of modern C-14. Similarly, the herbicide simazine 
was positively correlated to the percentage of agricultural land 
use, and concentrations were higher in modern groundwater 
than pre-modern groundwater. The correlation of simazine 
concentrations to agricultural land use, and the lack of 
correlation to urban land use, indicates that the application 
of this herbicide to crops was the primary source of this 
constituent in groundwater.

Perchlorate, similar to nitrate, has natural and 
anthropogenic sources. Perchlorate was positively correlated 
to DO concentrations and was higher in oxic groundwater than 
anoxic groundwater. Perchlorate also was positively correlated 
to nitrate concentrations and agricultural land use. These 
correlations indicate that mobilization of naturally existing 
perchlorate, or possibly perchlorate from the application of 
Chilean nitrate fertilizer, could be a source of the perchlorate 
detected in groundwater sampled in the MS-SA aquifer 
system.

The quality of the water in the shallow aquifer system 
from this study was compared to the quality of water in the 
public drinking-water aquifer in a previous GAMA Monterey 
Bay and Salinas Valley (MS-PA) study of the same area. Only 
the Santa Cruz, Pajaro Valley, and Salinas Valley (MS-SA3) 
study areas of the MS-SA study unit were included in the 
comparison. The shallow system was more oxic, and the 
groundwater more modern than in the public drinking-water 
aquifer, which was more anoxic and had more pre-modern 
groundwater. Inorganic constituents were detected at high 
relative concentrations more frequently in the shallow system 
than the deeper one. Arsenic and selenium were found at 
high relative concentrations in a greater proportion of the 
shallow system than the deeper, public drinking water system. 
Manganese and iron were found at high relative concentrations 

in a greater proportion of the public drinking-water aquifer. 
Uranium was found at higher relative concentrations in a 
greater proportion of the shallow system, but at moderate 
relative concentrations in a greater proportion of the public 
drinking-water aquifer. Concentrations of arsenic, iron, 
manganese, and molybdenum are not likely to change as 
groundwater percolates from the shallow system to the deeper 
system because there are no anthropogenic sources affecting 
these constituents. Uranium and selenium concentrations 
in the primary system could be affected by the higher 
concentrations in the shallow system, however, because of 
agricultural practices.

High relative concentrations of nitrate relative 
concentrations were more than three times greater in the 
shallow system than in the public drinking-water aquifer. 
The high concentrations in the shallow system are likely to 
affect the concentrations in the public drinking-water aquifer, 
especially in the northern half of the Salinas Valley, because of 
agricultural practices.

Salinity indicators were detected at high relative 
concentrations more than three times more frequently in the 
shallow system than in the public drinking-water aquifer. 
Elevated TDS and sulfate concentrations in the shallow system 
resulting from activities at the land surface such as irrigated 
agriculture could increase concentrations in parts of the public 
drinking-water aquifer as water from the shallow system 
percolates down to the public drinking-water.

Organic constituents were detected more frequently in the 
public drinking-water aquifer than in the shallow system. One 
reason for this result could be that more of the sites sampled 
in the public drinking-water aquifer were in urban areas than 
the sites sampled for the shallow system. Another reason could 
be that sources of contamination have decreased because of 
changes at the land surface.
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Appendix 1. Ancillary Datasets

Table 1–1.  Data for explanatory factors used for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer study unit, 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.

[grMz-m, Mesozoic granitic rocks and metamorphic rocks; km, kilometers; km2, square kilometers; na, data not available; Q, Holocene alluvial and sand 
dune deposits; Qpc, Plio-Pleistocene and Pliocene non-marine sediments; TK, Tertiary (Pliocene, Miocene, and Paleocene) marine sediment and Cretaceous 
metasediments]

GAMA site 
identification 

number 

Land use within 500 meters 
(1,640 feet) of the well

(percent)
Land-use 

classification

Density of 
septic tanks 
(tanks/km2)

Aridity 
index

Distance 
to nearest 

geothermal site
(km)

Geology

Agricultural Natural Urban

Santa Cruz study-area grid sites

S-MS-SC01 0 100 0 Natural 5.83 0.62 55 TK
S-MS-SC02 0 84 16 Natural 21.42 0.73 47 TK
S-MS-SC03 0 51 49 Natural 34.04 0.86 48 TK
S-MS-SC04 0 91 9 Natural 24.34 0.89 45 TK
S-MS-SC05 0 88 12 Natural 20.16 0.79 44 TK

S-MS-SC06 0 100 0 Natural 27.00 0.68 43 TK
S-MS-SC07 0 16 84 Urban 66.87 0.63 44 TK
S-MS-SC08 0 0 100 Urban 15.32 0.60 43 TK
S-MS-SC09 40 48 13 Mixed 18.90 0.64 42 TK
S-MS-SC10 23 48 29 Mixed 18.90 0.75 41 TK

S-MS-SC11 0 76 24 Natural 19.08 0.71 42 TK
S-MS-SC12 0 100 0 Natural 18.36 0.79 41 TK
S-MS-SC13 0 100 0 Natural 22.53 0.70 35 TK
S-MS-SC14 0 100 0 Natural 18.89 0.66 32 TK
S-MS-SC15 0 100 0 Natural 14.88 0.56 27 TK

Pajaro Valley study-area grid sites

S-MS-P01 36 26 38 Mixed 37.00 0.50 38 Q
S-MS-P02 0 80 20 Natural 19.85 0.54 36 Q
S-MS-P03 0 70 30 Natural 34.37 0.57 40 Q
S-MS-P04 2 0 98 Urban 29.29 0.55 35 Q
S-MS-P05 0 69 31 Natural 20.16 0.50 30 Q

S-MS-P06 32 67 1 Natural 5.85 0.47 36 Q
S-MS-P07 59 1 40 Agricultural 6.69 0.44 40 Q
S-MS-P08 2 53 45 Natural 28.18 0.41 38 Q
S-MS-P09 24 27 49 Mixed 6.60 0.44 37 Q
S-MS-P10 16 36 48 Mixed 17.84 0.46 33 Q

S-MS-P11 0 60 39 Natural 10.14 0.48 29 Q
S-MS-P12 97 1 2 Agricultural 1.26 0.45 27 Q
S-MS-P13 49 48 4 Mixed 25.05 0.42 30 Q
S-MS-P14 20 50 30 Natural 13.96 0.43 33 Q
S-MS-P15 0 99 1 Natural 18.92 0.45 34 grMz-m
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GAMA site 
identification 

number 

Land use within 500 meters 
(1,640 feet) of the well

(percent)
Land-use 

classification

Density of 
septic tanks 
(tanks/km2)

Aridity 
index

Distance 
to nearest 

geothermal site
(km)

Geology

Agricultural Natural Urban

Salinas Valley study-area grid sites

S-MS-SV01 51 3 46 Agricultural 2.59 0.34 102 Q
S-MS-SV02 11 74 15 Natural 1.00 0.25 91 Q
S-MS-SV03 0 47 53 Urban 13.61 0.43 28 QPc
S-MS-SV04 0 28 72 Urban 15.26 0.40 29 QPc
S-MS-SV05 0 87 13 Natural 3.47 0.39 28 Q

S-MS-SV06 0 18 82 Urban 1.37 0.36 29 TK
S-MS-SV07 69 21 9 Agricultural 0.99 0.33 45 Q
S-MS-SV08 91 0 8 Agricultural 2.44 0.31 39 Q
S-MS-SV09 50 42 7 Agricultural 9.44 0.43 33 Q
S-MS-SV10 61 17 22 Agricultural 0.61 0.23 6 Q

S-MS-SV11 96 3 1 Agricultural 0.65 0.27 5 Q
S-MS-SV12 79 21 0 Agricultural 0.36 0.27 32 Q
S-MS-SV13 0 99 1 Natural 0.16 0.23 80 Q
S-MS-SV14 0 100 0 Natural 0.16 0.23 78 Q
S-MS-SV15 87 8 6 Agricultural 0.57 0.23 54 Q

S-MS-SV16 76 21 2 Agricultural 0.36 0.24 24 Q
S-MS-SV17 82 17 1 Agricultural 0.61 0.25 7 Q
S-MS-SV18 88 8 3 Agricultural 0.92 0.25 18 Q
S-MS-SV19 54 3 43 Agricultural 1.81 0.31 40 Q
S-MS-SV20 94 4 1 Agricultural 2.37 0.32 42 Q

S-MS-SV21 52 47 1 Agricultural 11.62 0.33 44 Q
S-MS-SV22 68 18 15 Agricultural 0.87 0.24 23 Q
S-MS-SV23 85 15 0 Agricultural 0.61 0.22 11 Q
S-MS-SV24 51 7 42 Agricultural 7.87 0.23 10 Q
S-MS-SV25 80 17 3 Agricultural 1.14 0.23 18 Q

S-MS-SV26 47 37 15 Mixed 0.31 0.22 39 Q
S-MS-SV27 62 33 4 Agricultural 0.50 0.23 54 Q
S-MS-SV28 3 66 31 Natural 0.60 0.29 108 Q
S-MS-SV29 35 42 23 Mixed 0.36 0.21 31 Q
S-MS-SV30 87 12 1 Agricultural 2.25 0.22 12 Q

Table 1–1.  Data for explanatory factors used for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer study unit, 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[grMz-m, Mesozoic granitic rocks and metamorphic rocks; km, kilometers; km2, square kilometers; na, data not available; Q, Holocene alluvial and sand 
dune deposits; Qpc, Plio-Pleistocene and Pliocene non-marine sediments; TK, Tertiary (Pliocene, Miocene, and Paleocene) marine sediment and Cretaceous 
metasediments]
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GAMA site 
identification 

number 

Land use within 500 meters 
(1,640 feet) of the well

(percent)
Land-use 

classification

Density of 
septic tanks 
(tanks/km2)

Aridity 
index

Distance 
to nearest 

geothermal site
(km)

Geology

Agricultural Natural Urban

Salinas Valley study-area grid sites—Continued

S-MS-SV31 86 13 1 Agricultural 0.61 0.22 12 Q
S-MS-SV32 90 9 2 Agricultural 0.77 0.25 27 Q
S-MS-SV33 26 74 0 Natural 11.62 0.34 43 Q
S-MS-SV34 0 34 66 Urban 52.52 0.45 35 grMz-m
S-MS-SV35 0 67 33 Natural 48.30 0.42 37 Q

S-MS-SV36 83 3 14 Agricultural 1.03 0.31 35 Q
S-MS-SV37 11 89 1 Natural 0.77 0.29 30 Q
S-MS-SV38 74 26 0 Agricultural 0.61 0.23 12 Q
S-MS-SV39 33 65 2 Natural 0.77 0.23 117 Q
S-MS-SV40 38 62 0 Natural 0.60 0.23 123 Q

Highlands study-area grid sites

S-MS-H01 0 100 0 Natural 1.69 0.45 124 TK
S-MS-H02 0 100 0 Natural 2.59 0.47 114 grMz-m
S-MS-H03 47 11 42 Mixed 7.48 0.36 99 Q
S-MS-H04 60 40 0 Agricultural 11.43 0.35 93 QPc
S-MS-H05 0 100 0 Natural 0.97 0.36 78 TK

S-MS-H06 0 45 55 Urban 7.81 0.42 27 TK
S-MS-H07 14 86 0 Natural 0.92 0.37 23 grMz-m
S-MS-H08 2 98 0 Natural 0.99 0.32 15 TK
S-MS-H09 0 100 0 Natural 1.20 0.37 25 TK
S-MS-H10 60 40 0 Agricultural 0.57 0.29 63 Q

S-MS-H11 27 73 0 Natural 0.97 0.25 88 QPc
S-MS-H12 91 8 0 Agricultural 0.60 0.35 111 QPc
S-MS-H13 0 100 0 Natural 0.11 0.39 130 QPc
S-MS-H14 0 100 0 Natural 0.60 0.41 117 QPc
S-MS-H15 0 100 0 Natural 1.14 0.29 99 QPc

S-MS-H16 0 100 0 Natural 1.14 0.28 98 QPc
S-MS-H17 0 100 0 Natural 0.13 0.24 72 QPc
S-MS-H18 93 7 0 Agricultural 0.36 0.23 37 TK
S-MS-H19 10 90 0 Natural 0.77 0.31 31 grMz-m
S-MS-H20 0 100 0 Natural 0.61 0.31 19 grMz-m

Table 1–1.  Data for explanatory factors used for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer study unit, 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[grMz-m, Mesozoic granitic rocks and metamorphic rocks; km, kilometers; km2, square kilometers; na, data not available; Q, Holocene alluvial and sand 
dune deposits; Qpc, Plio-Pleistocene and Pliocene non-marine sediments; TK, Tertiary (Pliocene, Miocene, and Paleocene) marine sediment and Cretaceous 
metasediments]
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GAMA site 
identification 

number 

Land use within 500 meters 
(1,640 feet) of the well

(percent)
Land-use 

classification

Density of 
septic tanks 
(tanks/km2)

Aridity 
index

Distance 
to nearest 

geothermal site
(km)

Geology

Agricultural Natural Urban

Highlands study-area grid sites—Continued

S-MS-H21 0 100 0 Natural 0.36 0.26 38 TK
S-MS-H22 0 100 0 Natural 0.11 0.37 81 QPc
S-MS-H23 0 100 0 Natural 0.44 0.31 96 QPc
S-MS-H24 37 63 0 Natural 0.60 0.23 118 QPc
S-MS-H25 14 86 0 Natural 0.60 0.27 129 QPc

S-MS-H26 0 100 0 Natural 0.60 0.27 124 QPc
S-MS-H27 2 98 0 Natural 0.11 0.33 92 QPc
S-MS-H28 23 77 0 Natural 0.12 0.32 76 TK
S-MS-H29 48 52 0 Natural 0.17 0.32 46 Q
S-MS-H30 0 100 0 Natural 0.30 0.33 21 grMz-m

Table 1–1.  Data for explanatory factors used for grid and tap sites sampled in the Monterey-Salinas Shallow Aquifer study unit, 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.—Continued

[grMz-m, Mesozoic granitic rocks and metamorphic rocks; km, kilometers; km2, square kilometers; na, data not available; Q, Holocene alluvial and sand 
dune deposits; Qpc, Plio-Pleistocene and Pliocene non-marine sediments; TK, Tertiary (Pliocene, Miocene, and Paleocene) marine sediment and Cretaceous 
metasediments]
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Table 1–2.  Tritium, percentage of modern carbon, and age classification for samples collected from grid sites in the Monterey-Salinas 
Shallow Aquifer study unit (October 2012 to May 2013) and the Monterey Bay and Salinas Valley Groundwater Basins study unit (2005), 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project.

[Conversion factor: 1 tritium unit equals 3.19 picoCuries per liter. Abbreviations: modern, recharged after 1953; mixed, mixture of modern and pre-modern 
water; pre-modern, recharged prior to 1953; nc, not collected; <, less than; —, not applicable]

MS-SA sites MS-PA sites

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

S-MS-H01 <0.13 0.7 Pre-modern MSMB-01 0.31 nc —
S-MS-H02 0.47 38 Mixed MSMB-02 1.4 57 Mixed
S-MS-H03 1.1 81 Mixed MSMB-03 <0.13 5.4 Premodern
S-MS-H04 <0.13 24 Pre-modern MSMB-04 0.69 6 Premodern
S-MS-H05 <0.13 5.3 Pre-modern MSMB-05 1.2 nc —

S-MS-H06 <0.13 17 Pre-modern MSMB-06 0.50 nc —
S-MS-H07 1.0 106 Modern MSMB-07 0.19 nc —
S-MS-H08 0.34 22 Mixed MSMB-08 1.2 nc —
S-MS-H09 <0.13 14 Pre-modern MSMB-09 0.50 75 Mixed
S-MS-H10 0.53 83 Mixed MSMB-10 0.19 nc —

S-MS-H11 <0.13 0.5 Pre-modern MSMB-11 0.31 34 Mixed
S-MS-H12 0.84 97 Modern MSMB-12 <0.13 6 Premodern
S-MS-H13 <0.13 60 Pre-modern MSMB-13 0.19 74 Premodern
S-MS-H14 <0.13 <0.1 Pre-modern MSMB-14 0.19 nc —
S-MS-H15 <0.13 8 Pre-modern MSMB-15 0.69 nc —

S-MS-H16 <0.13 53 Pre-modern MSMB-16 0.31 60 Mixed
S-MS-H17 <0.13 39 Pre-modern MSMB-17 <0.13 15 Premodern
S-MS-H18 <0.13 28 Pre-modern MSMB-18 <0.13 57 Premodern
S-MS-H19 1.5 106 Modern MSMB-19 <0.13 nc —
S-MS-H20 1.5 109 Modern MSMB-20 0.82 78 Mixed

S-MS-H21 <0.13 99 Mixed MSMB-21 <0.13 nc —
S-MS-H22 0.28 49 Pre-modern MSMB-22 0.31 82 Mixed
S-MS-H23 0.31 74 Mixed MSMB-23 <0.13 nc —
S-MS-H24 <0.13 53 Pre-modern MSMB-24 0.31 nc —
S-MS-H25 0.50 95 Modern MSMB-25 <0.13 nc —

S-MS-H26 <0.13 11 Pre-modern MSMB-26 0.41 62 Mixed
S-MS-H27 0.56 74 Mixed MSMB-27 0.19 nc —
S-MS-H28 1.5 17 Mixed MSMB-28 0.50 99 Modern
S-MS-H29 <0.13 71 Pre-modern MSMB-29 2.8 98 Modern
S-MS-H30 <0.13 50 Pre-modern MSMB-30 <0.13 81 Premodern
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MS-SA sites MS-PA sites

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

S-MS-P01 0.15 78 Pre-modern MSMB-31 2.1 65 Mixed
S-MS-P02 <0.13 70 Pre-modern MSMB-32 0.41 nc —
S-MS-P03 <0.13 68 Pre-modern MSMB-33 0.50 55 Mixed
S-MS-P04 1.1 103 Modern MSMB-34 0.31 nc —
S-MS-P05 1.9 103 Modern MSMB-35 2.5 99 Modern

S-MS-P06 0.21 80 Pre-modern MSMB-36 0.50 nc —
S-MS-P07 1.9 98 Modern MSMB-37 <0.13 59 Premodern
S-MS-P08 <0.13 93 Mixed MSMB-38 0.60 88 Mixed
S-MS-P09 <0.13 82 Pre-modern MSMB-39 0.31 nc —
S-MS-P10 1.4 91 Modern MSMB-40 0.50 75 Mixed

S-MS-P11 <0.13 73 Pre-modern MSMB-41 3.7 nc —
S-MS-P12 <0.13 45 Pre-modern MSMB-42 2.0 nc —
S-MS-P13 1.3 86 Mixed MSMB-43 3.2 nc —
S-MS-P14 <0.13 76 Pre-modern MSMB-44 2.3 nc —
S-MS-P15 <0.13 56 Pre-modern MSMB-45 2.2 94 Modern

S-MS-SC01 0.47 41 Mixed MSMB-46 2.2 nc —
S-MS-SC02 <0.13 34 Pre-modern MSMB-47 <0.13 33 Premodern
S-MS-SC03 1.3 77 Mixed MSMB-48 1.4 nc —
S-MS-SC04 0.72 63 Mixed MSPR-01 2.2 93 Modern
S-MS-SC05 0.50 28 Mixed MSPR-02 1.4 nc —

S-MS-SC06 0.21 48 Pre-modern MSPR-03 <0.13 0.7 Premodern
S-MS-SC07 <0.13 46 Pre-modern MSPR-04 0.50 nc —
S-MS-SC08 1.2 66 Mixed MSPR-05 0.19 nc —
S-MS-SC09 <0.13 62 Pre-modern MSPR-06 0.50 nc —
S-MS-SC10 1.2 87 Mixed MSPR-07 <0.13 nc —

S-MS-SC11 1.4 106 Modern MSPR-08 0.19 49 Premodern
S-MS-SC12 1.3 94 Modern MSPR-09 <0.13 11 Premodern
S-MS-SC13 <0.13 77 Pre-modern MSPR-10 <0.13 69 Premodern
S-MS-SC14 <0.13 76 Pre-modern MSPR-11 <0.13 nc —
S-MS-SC15 0.43 nc — MSSC-01 2.4 nc —

Table 1–2.  Tritium, percentage of modern carbon, and age classification for samples collected from grid sites in the Monterey-Salinas 
Shallow Aquifer study unit (October 2012 to May 2013) and the Monterey Bay and Salinas Valley Groundwater Basins study unit (2005), 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project.—Continued

[Conversion factor: 1 tritium unit equals 3.19 picoCuries per liter. Abbreviations: modern, recharged after 1953; mixed, mixture of modern and pre-modern 
water; pre-modern, recharged prior to 1953; nc, not collected; <, less than; —, not applicable]
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MS-SA sites MS-PA sites

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

S-MS-SV01 0.78 43 Mixed MSSC-02 2.3 nc —
S-MS-SV02 1.0 82 Mixed MSSC-03 2.1 nc —
S-MS-SV03 0.37 66 Mixed MSSC-04 1.7 67 Mixed
S-MS-SV04 0.25 95 Mixed MSSC-05 <0.13 39 Premodern
S-MS-SV05 1.4 76 Mixed MSSC-06 1.4 72 Mixed

S-MS-SV06 1.2 54 Mixed MSSC-07 0.41 32 Mixed
S-MS-SV07 <0.13 45 Pre-modern MSSC-08 <0.13 59 Premodern
S-MS-SV08 0.90 56 Mixed MSSC-09 1.4 nc —
S-MS-SV09 1.5 104 Modern MSSC-10 <0.13 24 Premodern
S-MS-SV10 0.72 101 Modern MSSC-11 <0.13 1.6 Premodern

S-MS-SV11 0.18 82 Pre-modern MSSC-12 <0.13 nc —
S-MS-SV12 0.59 67 Mixed MSSC-13 4.3 nc —
S-MS-SV13 <0.13 0.8 Pre-modern MSSV-01 <0.13 9.0 Premodern
S-MS-SV14 <0.13 42 Pre-modern MSSV-02 2.1 103 Modern
S-MS-SV15 1.4 92 Modern MSSV-03 2.1 100 Modern

S-MS-SV16 1.4 100 Modern MSSV-04 0.69 nc —
S-MS-SV17 0.37 81 Mixed MSSV-05 2.0 nc —
S-MS-SV18 1.4 102 Modern MSSV-06 2.1 99 Modern
S-MS-SV19 0.18 75 Pre-modern MSSV-07 1.9 103 Modern
S-MS-SV20 0.50 90 Mixed MSSV-08 2.3 nc —

S-MS-SV21 <0.13 82 Pre-modern MSSV-09 2.0 nc —
S-MS-SV22 1.9 101 Modern MSSV-10 2.5 nc —
S-MS-SV23 1.2 100 Modern MSSV-11 2.7 93 Modern
S-MS-SV24 <0.13 33 Pre-modern MSSV-12 2.5 nc —
S-MS-SV25 1.3 102 Modern MSSV-13 1.6 nc —

S-MS-SV26 0.81 91 Modern MSSV-14 1.8 nc —
S-MS-SV27 1.3 99 Modern MSSV-15 2.2 nc —
S-MS-SV28 <0.13 18 Pre-modern MSSV-16 <0.13 76 Premodern
S-MS-SV29 0.43 79 Mixed MSSV-17 1.1 nc —
S-MS-SV30 1.6 112 Modern MSSV-18 <0.13 17 Premodern

Table 1–2.  Tritium, percentage of modern carbon, and age classification for samples collected from grid sites in the Monterey-Salinas 
Shallow Aquifer study unit (October 2012 to May 2013) and the Monterey Bay and Salinas Valley Groundwater Basins study unit (2005), 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project.—Continued

[Conversion factor: 1 tritium unit equals 3.19 picoCuries per liter. Abbreviations: modern, recharged after 1953; mixed, mixture of modern and pre-modern 
water; pre-modern, recharged prior to 1953; nc, not collected; <, less than; —, not applicable]
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Table 1–2.  Tritium, percentage of modern carbon, and age classification for samples collected from grid sites in the Monterey-Salinas 
Shallow Aquifer study unit (October 2012 to May 2013) and the Monterey Bay and Salinas Valley Groundwater Basins study unit (2005), 
California Groundwater Ambient Monitoring and Assessment Priority Basin Project.—Continued

[Conversion factor: 1 tritium unit equals 3.19 picoCuries per liter. Abbreviations: modern, recharged after 1953; mixed, mixture of modern and pre-modern 
water; pre-modern, recharged prior to 1953; nc, not collected; <, less than; —, not applicable]

MS-SA sites MS-PA sites

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

GAMA site-
identification 

number

Tritium
(tritium units)

Modern 
carbon-14
(percent)

Age 
classification

S-MS-SV31 1.8 103 Modern MSSV-19 <0.13 35 Premodern
S-MS-SV32 <0.13 91 Mixed
S-MS-SV33 <0.13 86 Pre-modern
S-MS-SV34 <0.13 61 Pre-modern
S-MS-SV35 0.21 45 Pre-modern

S-MS-SV36 1.2 104 Modern
S-MS-SV37 1.7 106 Modern
S-MS-SV38 1.2 69 Mixed
S-MS-SV39 0.31 39 Mixed
S-MS-SV40 0.62 83 Mixed
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Table 1–3.  Oxidation-reduction constituents, redox classification, and pH values for samples from the Monterey-Salinas Shallow 
Aquifer study unit, California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.

[Fe-SO4, iron or sulfate reducing; mg/L, milligrams per liter; Mn, manganese reducing; Mn-Fe, manganese or iron reducing; na, not available; NO3, nitrate 
reducing; NO3-Mn, nitrate or manganese reducing; µg/L, micrograms per liter; <, less than; —, not applicable]

GAMA site-
identification 

number

Dissolved 
oxygen 
(mg/L)

Nitrate as 
nitrogen 

(mg/L)

Manganese 
(µg/L)

Iron 
(µg/L)

Sulfate 
(mg/L)

Redox main 
classification 

(oxic, mixed, anoxic)

Anoxic 
subclassification

pH 
(standard 

units)

S-MS-H01 0.2 <0.039 1.32 33.3 152 Anoxic Suboxic 7.9
S-MS-H02 0.2 <0.038 2700 3700 1130 Anoxic Fe-SO4 6.9
S-MS-H03 <0.2 0.643 114 <4 185 Anoxic Mn-Fe 7.2
S-MS-H04 4.3 1.23 1.07 23.2 122 Oxic — 7.0
S-MS-H05 <0.2 <0.037 3.84 13.1 658 Anoxic Suboxic 7.5

S-MS-H06 2.1 0.21 2.81 8.5 24 Oxic — 7.0
S-MS-H07 7.5 0.065 8.02 455 156 Mixed Fe-SO4 6.7
S-MS-H08 6.2 2.52 11.5 95.8 1210 Oxic — 7.1
S-MS-H09 0.2 0.044 90.3 1360 1750 Anoxic Fe-SO4 6.4
S-MS-H10 <0.2 <0.04 498 28.2 1040 Anoxic Mn 6.9

S-MS-H11 1 <0.04 15.1 <4 165 Oxic — 7.8
S-MS-H12 4.2 5.32 1.14 23.6 122 Oxic — 7.2
S-MS-H13 4.9 <0.04 37.2 870 1080 Mixed Fe-SO4 6.9
S-MS-H14 <0.2 <0.039 43.6 806 1 Anoxic Fe-SO4 6.9
S-MS-H15 0.2 0.75 9.87 <4 40 Anoxic NO3 8.2

S-MS-H16 3.1 3.93 6.54 <4 19 Oxic — 7.7
S-MS-H17 6.1 9.99 <0.15 <4 14 Oxic — 7.5
S-MS-H18 4.4 8.64 1.63 12.1 323 Oxic — 7.4
S-MS-H19 6.3 2.33 1.22 <4.8 27 Oxic — 6.9
S-MS-H20 5.8 23.5 0.85 <8 85 Oxic — 7.0

S-MS-H21 <0.2 0.456 82.9 13.5 541 Anoxic Mn 7.2
S-MS-H22 1 2.12 133 34.6 179 Mixed Mn 7.0
S-MS-H23 7.1 8.02 <0.15 <4 34 Oxic — 7.5
S-MS-H24 1.9 1.81 <0.3 10 737 Oxic — 7.0
S-MS-H25 8.3 7.67 <0.15 <4 18 Oxic — 7.5

S-MS-H26 5.9 15.4 <0.15 <4 120 Oxic — 7.6
S-MS-H27 3.1 6.52 4.23 28.2 131 Oxic — 7.1
S-MS-H28 0.6 <0.04 <0.45 <8 868 Oxic — 7.0
S-MS-H29 4.8 6.81 0.94 22.9 1320 Oxic — 7.3
S-MS-H30 5.9 0.13 4.27 <4 103 Oxic — 7.2
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GAMA site-
identification 

number

Dissolved 
oxygen 
(mg/L)

Nitrate as 
nitrogen 

(mg/L)

Manganese 
(µg/L)

Iron 
(µg/L)

Sulfate 
(mg/L)

Redox main 
classification 

(oxic, mixed, anoxic)

Anoxic 
subclassification

pH 
(standard 

units)

S-MS-P01 4.5 1.68 <0.15 <4 34 Oxic — 7.6
S-MS-P02 7 0.458 <0.15 <4 8 Oxic — 7.2
S-MS-P03 <0.2 <0.038 33.4 32.3 30 Anoxic Suboxic 8.1
S-MS-P04 6.9 5.79 1.56 7.6 23 Oxic — 7.2
S-MS-P05 3.7 5.38 <0.54 6.9 23 Oxic — 6.0

S-MS-P06 0.5 2.91 <0.15 <4 111 Mixed NO3 7.3
S-MS-P07 6.8 64.3 <0.3 6.8 209 Oxic — 7.1
S-MS-P08 8 1.19 18 11.7 6 Oxic — 6.9
S-MS-P09 <0.2 2.14 88.5 13.5 234 Anoxic NO3-Mn 7.1
S-MS-P10 7.8 11.1 <0.48 17.4 16 Oxic — 7.4

S-MS-P11 2.2 0.077 5.41 28.3 36 Oxic — 7.7
S-MS-P12 0.9 0.928 5.35 <4.4 92 Oxic — 7.6
S-MS-P13 0.6 <0.04 356 68.3 197 Mixed Mn 7.4
S-MS-P14 1.8 0.196 48.9 6.9 52 Oxic — 7.5
S-MS-P15 6 1.11 <0.56 <4 8 Oxic — 7.4

S-MS-SC01 <0.2 <0.04 398 1240 113 Anoxic Fe-SO4 7.2
S-MS-SC02 0.7 0.126 9.32 <4 78 Oxic — 7.3
S-MS-SC03 0.5 <0.038 1280 1950 368 Mixed Fe-SO4 6.7
S-MS-SC04 <0.2 0.141 427 857 248 Anoxic Fe-SO4 7.0
S-MS-SC05 0.2 <0.038 149 209 138 Anoxic Fe-SO4 7.1

S-MS-SC06 1.7 0.132 2.89 <4 37 Oxic — 7.5
S-MS-SC07 <0.2 <0.04 44.1 172 32 Anoxic Fe-SO4 7.7
S-MS-SC08 <0.2 <0.039 268 2250 399 Anoxic Fe-SO4 7.4
S-MS-SC09 0.4 0.4 12.4 9.8 107 Anoxic Suboxic 7.2
S-MS-SC10 5.2 2.68 <0.52 <5.5 24 Oxic — 6.9

S-MS-SC11 1.3 0.327 27.5 42.3 16 Oxic — 7.0
S-MS-SC12 0.3 0.233 346 38.5 32 Anoxic Mn 6.9
S-MS-SC13 0.4 0.677 72.1 15.2 46 Anoxic NO3-Mn 7.3
S-MS-SC14 <0.2 <0.04 533 207 13 Anoxic Fe-SO4 7.7
S-MS-SC15 <0.2 <0.04 190 137 32 Anoxic SO4 7.4

Table 1–3.  Oxidation-reduction constituents, redox classification, and pH values for samples from the Monterey-Salinas Shallow 
Aquifer study unit, California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.—
Continued

[Fe-SO4, iron or sulfate reducing; mg/L, milligrams per liter; Mn, manganese reducing; Mn-Fe, manganese or iron reducing; na, not available; NO3, nitrate 
reducing; NO3-Mn, nitrate or manganese reducing; µg/L, micrograms per liter; <, less than; —, not applicable]
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GAMA site-
identification 

number

Dissolved 
oxygen 
(mg/L)

Nitrate as 
nitrogen 

(mg/L)

Manganese 
(µg/L)

Iron 
(µg/L)

Sulfate 
(mg/L)

Redox main 
classification 

(oxic, mixed, anoxic)

Anoxic 
subclassification

pH 
(standard 

units)

S-MS-SV01 5.2 7.35 <0.15 <4 32 Oxic — 7.2
S-MS-SV02 0.3 1.3 0.72 <4 131 Anoxic NO3 7.3
S-MS-SV03 4.1 3.53 <0.34 <4 22 Oxic — 6.8
S-MS-SV04 0.7 2.36 263 <5.5 22 Mixed Mn 6.2
S-MS-SV05 6.2 1.46 <0.24 8.4 31 Oxic — 6.4

S-MS-SV06 6.6 0.164 37.4 31.5 62 Oxic — 7.1
S-MS-SV07 2.2 0.628 1.24 <8 89 Oxic — 7.6
S-MS-SV08 1.8 0.442 0.97 19.2 175 Oxic — 7.4
S-MS-SV09 6.2 18.1 3.54 19.8 51 Oxic — 6.5
S-MS-SV10 6.1 35.9 <0.16 <5.9 132 Oxic — 7.0

S-MS-SV11 6 0.208 1.06 10.6 74 Oxic — 7.6
S-MS-SV12 5.9 4.72 <0.15 <4 83 Oxic — 7.4
S-MS-SV13 0.4 <0.04 21.8 107 118 Anoxic Fe-SO4 7.7
S-MS-SV14 1.5 0.61 2.87 75.7 574 Oxic — 7.1
S-MS-SV15 1 1.14 <0.15 <4.3 77 Oxic — 7.5

S-MS-SV16 3 1.56 <0.27 <4 116 Oxic — 7.7
S-MS-SV17 6.8 2.5 <0.15 <4 70 Oxic — 7.5
S-MS-SV18 1.2 12.1 <0.6 <4 179 Oxic — 7.2
S-MS-SV19 1.4 0.146 5.17 19.7 149 Oxic — 7.4
S-MS-SV20 0.8 10.2 <0.36 <5.2 114 Oxic — 7.1

S-MS-SV21 na 13.5 1.14 19 28 Oxic (estimated) — 6.4
S-MS-SV22 2.3 12.5 <0.15 <4.5 239 Oxic — 7.2
S-MS-SV23 1.1 8.6 <0.32 <4 185 Oxic — 7.3
S-MS-SV24 1.1 0.207 <0.43 <4.9 126 Oxic — 7.5
S-MS-SV25 0.6 10.3 <0.15 <4 126 Oxic — 7.4

S-MS-SV26 0.3 <0.4 103 73.7 932 Anoxic Mn 7.0
S-MS-SV27 2.5 0.272 3.89 <4 61 Oxic — 7.5
S-MS-SV28 2.8 0.349 8.68 21 68 Oxic — 7.7
S-MS-SV29 4.4 30.3 1.41 <8 350 Oxic — 7.2
S-MS-SV30 3.2 70.9 <0.45 <12 1430 Oxic — 7.2

Table 1–3.  Oxidation-reduction constituents, redox classification, and pH values for samples from the Monterey-Salinas Shallow 
Aquifer study unit, California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.—
Continued

[Fe-SO4, iron or sulfate reducing; mg/L, milligrams per liter; Mn, manganese reducing; Mn-Fe, manganese or iron reducing; na, not available; NO3, nitrate 
reducing; NO3-Mn, nitrate or manganese reducing; µg/L, micrograms per liter; <, less than; —, not applicable]
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GAMA site-
identification 

number

Dissolved 
oxygen 
(mg/L)

Nitrate as 
nitrogen 

(mg/L)

Manganese 
(µg/L)

Iron 
(µg/L)

Sulfate 
(mg/L)

Redox main 
classification 

(oxic, mixed, anoxic)

Anoxic 
subclassification

pH 
(standard 

units)

S-MS-SV31 4.6 4.83 11.7 <5.3 176 Oxic — 7.5
S-MS-SV32 4.4 15.6 2.13 10.9 301 Oxic — 7.1
S-MS-SV33 na 1.11 <0.22 18.8 7 Oxic (estimated) — 6.6
S-MS-SV34 2.4 0.284 29.1 60.9 7 Oxic — 7.4
S-MS-SV35 0.3 <0.04 56 162 9 Anoxic Fe-SO4 7.3

S-MS-SV36 9.5 50.2 0.8 33.6 71 Oxic — 6.6
S-MS-SV37 6.6 3.53 <0.15 <4 27 Oxic — 6.9
S-MS-SV38 3.7 16.6 5.59 9.1 112 Oxic — 7.1
S-MS-SV39 <0.2 <0.04 149 127 528 Anoxic Fe-SO4 7.2
S-MS-SV40 4.2 4.88 <0.15 <4 256 Oxic — 7.0

1Mixed (oxic-anoxic).

Table 1–3.  Oxidation-reduction constituents, redox classification, and pH values for samples from the Monterey-Salinas Shallow 
Aquifer study unit, California Groundwater Ambient Monitoring and Assessment Priority Basin Project, October 2012 to May 2013.—
Continued

[Fe-SO4, iron or sulfate reducing; mg/L, milligrams per liter; Mn, manganese reducing; Mn-Fe, manganese or iron reducing; na, not available; NO3, nitrate 
reducing; NO3-Mn, nitrate or manganese reducing; µg/L, micrograms per liter; <, less than; —, not applicable]
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Table 1–4.  Information for other explanatory factors evaluated but not used for samples collected from grid and tap sites in the 
Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring and Assessment Priority Basin Project, 
October 2012 to May 2013.

[km2, square kilometers; km, kilometers; LUFT, leaking and formerly leaking underground fuel tank]

GAMA site-
identification 

number

Density of 
LUFTs 

(tanks/km2)

Distance to nearest 
perchlorate source

(km)

Nearest oil 
or gas field

(km)

Distance to nearest 
halite source

(km)

Nearest 
faults
(km)

S-MS-H01 0.006 58 15 240 0
S-MS-H02 0.014 72 29 243 2
S-MS-H03 0.009 80 40 254 4
S-MS-H04 0.074 89 35 246 1
S-MS-H05 0.008 102 23 231 2

S-MS-H06 0.124 12 48 109 1
S-MS-H07 0.005 31 33 127 1
S-MS-H08 0.006 66 1 162 3
S-MS-H09 0.013 77 6 173 1
S-MS-H10 0.003 112 5 211 2

S-MS-H11 0.016 100 25 236 7
S-MS-H12 0.003 80 37 240 4
S-MS-H13 0.001 64 24 216 1
S-MS-H14 0.003 81 36 233 7
S-MS-H15 0.007 98 32 244 12

S-MS-H16 0.007 99 31 242 12
S-MS-H17 0.002 117 5 217 9
S-MS-H18 0.001 81 9 181 7
S-MS-H19 0.003 26 28 119 12
S-MS-H20 0.014 43 20 142 2

S-MS-H21 0.001 81 12 181 10
S-MS-H22 0.003 121 17 222 3
S-MS-H23 0.002 107 29 238 12
S-MS-H24 0.001 91 33 226 7
S-MS-H25 0.001 93 20 213 1

S-MS-H26 0.001 90 28 220 2
S-MS-H27 0.002 112 27 234 9
S-MS-H28 0.003 115 14 216 3
S-MS-H29 0.001 85 14 186 10
S-MS-H30 0.014 41 22 140 2

S-MS-P01 0.056 29 22 73 6
S-MS-P02 0.102 25 22 69 3
S-MS-P03 0.500 28 21 64 5
S-MS-P04 0.030 23 22 64 1
S-MS-P05 0.188 20 17 68 1
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GAMA site-
identification 

number

Density of 
LUFTs 

(tanks/km2)

Distance to nearest 
perchlorate source

(km)

Nearest oil 
or gas field

(km)

Distance to nearest 
halite source

(km)

Nearest 
faults
(km)

S-MS-P06 0.084 27 18 75 4
S-MS-P07 0.052 23 20 80 5
S-MS-P08 0.055 21 16 85 7
S-MS-P09 0.052 24 16 81 6
S-MS-P10 0.120 24 12 80 2

S-MS-P11 0.837 20 13 71 1
S-MS-P12 0.020 22 8 76 2
S-MS-P13 0.054 19 8 81 2
S-MS-P14 0.255 21 11 82 1
S-MS-P15 0.026 17 11 87 0

S-MS-SC01 0.033 42 23 63 2
S-MS-SC02 0.094 34 16 59 8
S-MS-SC03 0.119 35 14 56 5
S-MS-SC04 0.041 30 5 49 1
S-MS-SC05 0.078 31 11 55 3

S-MS-SC06 0.024 30 13 57 4
S-MS-SC07 0.164 31 18 61 7
S-MS-SC08 0.263 31 20 63 7
S-MS-SC09 0.024 29 16 59 4
S-MS-SC10 0.024 28 15 58 3

S-MS-SC11 0.024 29 12 55 2
S-MS-SC12 0.056 28 9 52 0
S-MS-SC13 0.030 22 18 59 1
S-MS-SC14 0.030 19 22 63 3
S-MS-SC15 0.071 16 16 67 0

S-MS-SV01 0.015 79 38 253 1
S-MS-SV02 0.008 97 28 240 4
S-MS-SV03 0.019 14 41 114 2
S-MS-SV04 0.019 12 40 113 2
S-MS-SV05 0.047 8 43 110 0

S-MS-SV06 3.081 8 44 107 1
S-MS-SV07 0.043 9 27 94 6
S-MS-SV08 0.047 9 31 103 2
S-MS-SV09 0.018 16 35 113 1
S-MS-SV10 0.005 49 14 143 2

Table 1–4.  Information for other explanatory factors evaluated but not used for samples collected from grid and tap sites in the 
Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring and Assessment Priority Basin Project, 
October 2012 to May 2013.—Continued

[km2, square kilometers; km, kilometers; LUFT, leaking and formerly leaking underground fuel tank]
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GAMA site-
identification 

number

Density of 
LUFTs 

(tanks/km2)

Distance to nearest 
perchlorate source

(km)

Nearest oil 
or gas field

(km)

Distance to nearest 
halite source

(km)

Nearest 
faults
(km)

S-MS-SV11 0.006 57 6 152 3
S-MS-SV12 0.001 80 1 178 4
S-MS-SV13 0.006 109 15 227 8
S-MS-SV14 0.006 113 12 224 12
S-MS-SV15 0.003 100 3 199 1

S-MS-SV16 0.009 72 7 170 7
S-MS-SV17 0.005 48 15 143 2
S-MS-SV18 0.014 36 28 131 2
S-MS-SV19 0.191 11 30 104 3
S-MS-SV20 1.146 11 28 101 5

S-MS-SV21 0.072 14 22 92 8
S-MS-SV22 0.028 33 32 126 5
S-MS-SV23 0.007 45 19 139 5
S-MS-SV24 0.006 57 5 153 8
S-MS-SV25 0.003 65 5 163 8

S-MS-SV26 0.001 84 9 183 5
S-MS-SV27 0.003 99 3 199 2
S-MS-SV28 0.011 91 41 239 10
S-MS-SV29 0.001 76 7 175 8
S-MS-SV30 0.006 56 7 154 10

S-MS-SV31 0.005 48 15 144 8
S-MS-SV32 0.028 31 33 122 6
S-MS-SV33 0.103 16 20 93 8
S-MS-SV34 0.060 17 12 88 0
S-MS-SV35 0.032 16 14 92 3

S-MS-SV36 0.010 25 27 114 9
S-MS-SV37 0.003 28 30 119 10
S-MS-SV38 0.005 47 16 143 8
S-MS-SV39 0.001 95 30 225 5
S-MS-SV40 0.001 87 33 223 6

Table 1–4.  Information for other explanatory factors evaluated but not used for samples collected from grid and tap sites in the 
Monterey-Salinas Shallow Aquifer study unit, California Groundwater Ambient Monitoring and Assessment Priority Basin Project, 
October 2012 to May 2013.—Continued

[km2, square kilometers; km, kilometers; LUFT, leaking and formerly leaking underground fuel tank]
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