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inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

square mile (mi2) 259.0 hectare (ha)
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Volume

million gallons (Mgal) 3,785 cubic meter (m3)
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acre-foot (acre-ft) 0.001233 cubic hectometer (hm3) 

Flow rate

cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
million gallons per day (Mgal/d) 0.04381 cubic meter per second (m3/s)

Radioactivity

picocurie per liter (pCi/L) 0.037 becquerel per liter (Bq/L) 

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as  
					     °F = (1.8 × °C) + 32.

Datum
Vertical coordinate information is referenced to the North American Vertical Datum of 1988 
(NAVD 88) or the National Geodetic Vertical Datum of 1929 (NGVD 29).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Supplemental Information
Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 
25 °C).

Concentrations of chemical constituents in water are in milligrams per liter (mg/L) or 
micrograms per liter (µg/L).

Densities of bacterial and viral indicators are in colony forming units per milliliter (cfu/mL) or 
per 100 milliliters (cfu/100 mL), most probable number per 100 milliliters (mpn/100 mL), or plaque 
forming units per 100 milliliters (pfu/100 mL).

Aquifer storage volume is in billion gallons (Bgal).

Turbidity is in formazin nephelometric units (FNU) or nephelometric turbidity units (NTU).

Oxidation-reduction potential is in millivolts (mV).
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Water-Quality and Geochemical Variability in the Little 
Arkansas River and Equus Beds Aquifer, South-Central 
Kansas, 2001–16

By Mandy L. Stone, Brian J. Klager, and Andrew C. Ziegler

Abstract

The city of Wichita’s water supply currently (2019) comes 
from two primary sources: Cheney Reservoir and the Equus 
Beds aquifer. The Equus Beds aquifer storage and recovery 
project was developed to help the city of Wichita meet increas-
ing future water demands. Source water for artificial recharge 
comes from the Little Arkansas River during above-base-flow 
conditions, is treated using National Primary Drinking Water 
Regulations as a guideline, and is injected into the Equus Beds 
aquifer through recharge wells or surface spreading basins for 
later use. The Equus Beds aquifer storage and recovery project 
currently (2019) consists of two coexisting phases. Phase I 
began in 2007 and captures Little Arkansas River water and 
indirect streambank diversion well water for aquifer recharge 
using 4 wells and 2 recharge basins. Phase II began in 2013 and 
currently (2019) includes a surface-water treatment facility, a 
river intake facility, eight recharge injection wells, and a third 
recharge basin. The U.S. Geological Survey, in cooperation 
with the City of Wichita, completed this study to summarize 
water-quality and geochemical variability of the Equus Beds 
aquifer. Data in this report can be used to establish baseline 
conditions before implementing artificial aquifer recharge 
further, document groundwater quality, evaluate changing con-
ditions, identify environmental factors affecting groundwater, 
provide science-based information for decision making, and 
help meet regulatory monitoring requirements.

Physicochemical properties were measured and water-
quality data were collected from 2 Little Arkansas River 
surface-water sites and 63 Equus Beds aquifer groundwater 
sites, including 38 areal assessment index wells (IWs) during 
2001 through 2016. Data collection included discrete samples 
and additional continuous measurements at selected sites. Dis-
cretely collected samples were analyzed for physicochemical 
properties, dissolved solids, primary ions, nutrients (nitrogen 
and phosphorus species), organic carbon, indicator bacteria, 
trace elements, arsenic species, organic compounds, and radio-
activity. This report focuses discussion on aquifer water quality. 
Federal drinking-water criteria were used to evaluate aquifer 
water quality. Primary drinking-water criteria are those that are 

enforceable for public drinking water. Secondary criteria are 
those that can cause aesthetics or tastes that are unpleasant.

Continuously collected data at a subset of sites included 
streamflow, groundwater levels, water temperature, specific 
conductance, pH, oxidation-reduction potential (ORP), dis-
solved oxygen, turbidity, nitrate plus nitrite, and fluorescent 
dissolved organic matter. Continuous measurement of physico-
chemical properties in near-real time allowed characterization 
of Little Arkansas River surface water and Equus Beds aquifer 
groundwater during conditions and time scales that would not 
have been possible otherwise and served as a complement to 
discrete water-quality sampling. During 2001 through 2016, 
less than 1 percent of chloride and nitrate plus nitrite, 7 per-
cent of dissolved iron, 48 percent of dissolved manganese, 
12 percent of dissolved arsenic, and 39 percent of atrazine 
detections in surface-water samples exceeded their respective 
Federal primary or secondary drinking-water criteria. None 
of the surface-water samples collected exceeded the Federal 
sulfate criterion, and every sample had detections of total 
coliform bacteria during the study.

Constituents of concern in the Equus Beds aquifer 
exceeded their respective Federal criteria throughout the 
study period and included chloride, sulfate, nitrate plus nitrite, 
Escherichia coli (E. coli), total coliforms, and dissolved iron 
and arsenic species. About 5 percent of shallow (less than 
80 feet) and 7 percent of deep (greater than 80 feet) IW chlo-
ride sample concentrations exceeded the secondary Federal 
criterion of 250 milligrams per liter (mg/L). Chloride tended 
to exceed its criterion in shallow and deep wells along the 
Arkansas River and near Burrton, Kansas, an area with past oil 
and gas activities. Chloride concentrations near Burrton were 
larger in the deep parts of the aquifer. About 18 percent of 
shallow and 13 percent of deep IW sulfate sample concentra-
tions exceeded the secondary Federal criterion of 250 mg/L. 
Mean sulfate concentrations tended to exceed the criterion in 
the central part of the study area. Shallow IW mean nitrate 
plus nitrite (hereafter referred to as “nitrate”) was substantially 
larger than mean deep IW nitrate. Geochemical conditions in 
the deeper aquifer reduced forms of nitrogen to species such as 
ammonia. About 15 percent of shallow and less than 1 percent 
of deep IW nitrate sample concentrations exceeded the Federal 
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criterion of 10 mg/L. Mean shallow IW nitrate concentrations 
exceeded the criterion in the northeastern and southeastern 
parts of the study area; on average, deep IW nitrate concentra-
tions did not exceed the criterion. E. coli and fecal coliform 
bacteria detections were usually at or near the detection limit. 
E. coli was detected in 3 percent of shallow and deep IWs, and 
fecal coliform bacteria were detected in 8 percent of shallow 
and 6 percent of deep IWs. Total coliforms were detected in 
24 percent of shallow and 12 percent of deep IWs. E. coli 
coliphage was detected in two shallow IW samples (1 percent 
of samples) at the detection limit and was not detected in deep 
IW samples.

Dissolved iron was detected in 51 percent of shallow and 
62 percent of deep IW samples. Dissolved iron concentra-
tions exceeded the secondary Federal criterion of 0.3 mg/L 
in 38 percent of shallow and 46 percent of deep IW samples. 
Mean dissolved iron concentrations were largest mostly in the 
central and northwest part of the study area corresponding to 
an area of the aquifer where aquifer material is more clay-rich. 
The distribution of large dissolved iron concentrations was 
similar to that of large sulfate concentrations. About 55 per-
cent of shallow and 92 percent of deep IW dissolved man-
ganese samples exceeded the secondary Federal criterion of 
0.05 mg/L. Almost all samples from the central and northern 
parts of the study area had mean dissolved manganese con-
centrations that exceeded the Federal criterion in the shallow 
part of the aquifer. Mean dissolved manganese concentrations 
in the shallow part of the aquifer were substantially large 
(greater than 1,000 micrograms per liter [µg/L]) in wells near 
the Little Arkansas River and in the central part of the study 
area because of chemically reducing conditions in the aquifer 
that likely related to larger percentages of clay in the aquifer 
material.

Concentrations of dissolved arsenic species generally 
were larger in the deep parts of the aquifer. Arsenite was the 
dominant form of arsenic on average in shallow (52 percent) 
and deep (55 percent) IWs. About 12 percent of shallow and 
34 percent of deep IW dissolved arsenic sample concentrations 
exceeded the Federal primary drinking criterion of 10 µg/L. 
Shallow IW dissolved arsenic concentrations were larger near 
the Little Arkansas River and the center of the study area; 
large shallow IW dissolved arsenic concentrations (10–
50 µg/L) in the center of the study area correspond to areas 
that have had the most water-level recovery since the historical 
low in 1993. Mean ORP in shallow IWs generally decreased 
with increasing water-level depths and were inversely related 
to mean dissolved arsenic concentrations because of more 
reducing conditions (smaller ORP) at larger depths below the 
land surface. Larger dissolved arsenic concentrations in the 
shallow parts of the aquifer were associated with decreases in 
water levels and a subsequent decrease in ORP and thus more 
reducing conditions.

Atrazine was detected in about 58 percent of shallow and 
28 percent of deep IWs and did not exceed the primary Fed-
eral criterion of 3 µg/L in any groundwater samples. Atrazine 
concentrations in shallow IWs generally were largest in the 

northwest part of the study area near the North Branch Kisiwa 
Creek, and atrazine concentrations in deep IWs generally were 
largest most often in the southern part of the study area. Gross 
α radioactivity concentrations exceeded the primary Federal 
criterion of 15 picocuries per liter in 4 percent of shallow IW 
samples. Gross α and gross β radioactivity concentrations gen-
erally were larger in the southern third of the aquifer.

Most groundwater-sample-simulated minerals satura-
tion indices (SIs) were consistently negative (undersaturated). 
Minerals that had SI values that were consistently or typically 
positive (oversaturated) included iron oxide, hydroxide, and 
quartz-group minerals. Several SI values for arsenic- and 
manganese-bearing minerals were consistently negative. Some 
manganese-bearing mineral SI values ranged from undersatu-
rated to oversaturated in shallow and deep IWs during the 
study. Several carbonate minerals in shallow and deep IWs 
varied across their equilibrium state. Calcite SI values were 
larger more often in the deep parts of the aquifer and did not 
show a clear distributional pattern. Mean and median calcite 
SI values for shallow and deep IWs were negative (undersatu-
rated) indicating the potential for calcite dissolution if calcite 
is present for a substantial part of the study period. However, 
some individual calcite SI values in this study indicated 
saturation and subsequent calcite precipitation may occur in 
the study area, potentially resulting in formation of calcite 
mineral deposits that may reduce efficiency of injection wells. 
SI values with respect to iron hydroxide varied across their 
equilibrium states. Mean and median SI values with respect to 
iron hydroxide were undersaturated in shallow and deep IWs; 
however, some samples had positive SI values indicating there 
is potential for iron hydroxide precipitation, possibly caused 
by leaching and oxidation of iron-containing minerals, like 
pyrite, in the aquifer material.

Introduction

The city of Wichita’s water supply currently (2019) 
comes from two primary sources: Cheney Reservoir, which 
was completed between 1962 and 1965, and the Equus Beds 
aquifer (fig. 1) Wichita well field, which was completed in the 
1950s. An Integrated Local Water Supply (ILWS) Plan was 
developed by the City of Wichita’s Water Utilities Department 
(Warren and others, 1995) because future water demands were 
expected to exceed supply. A major component of the ILWS 
Plan was to increase the city of Wichita’s available water 
supply for future water demands through 2050 by artificial 
recharge of the Equus Beds aquifer (City of Wichita, 1993). 
The Equus Beds aquifer storage and recovery (ASR) project, 
as part of the ILWS Plan, pumps water out of the Little Arkan-
sas River (fig. 1) during above-base-flow conditions, treats 
it using the National Primary Drinking Water Regulations 
(U.S. Environmental Protection Agency, 2009) as a guideline, 
and either injects it or recharges it through spreading basins 
into the Equus Beds aquifer for later use.
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The U.S. Geological Survey (USGS), in cooperation with 
the City of Wichita, completed this study to summarize water-
quality and geochemical variability in the Equus Beds aquifer 
(fig. 1). To complete this objective, physicochemical and 
biological data were collected for the Equus Beds aquifer and 
the Little Arkansas River during 2001 through 2016. Numer-
ous studies summarizing Equus Beds aquifer water quality 
and its relation to the city of Wichita’s ASR efforts have been 
completed, including Schmidt and others (2007), Ziegler and 
others (2010), Garinger and others (2011), Tappa and others 
(2015), and Stone and others (2016).

Equus Beds Aquifer Storage and Recovery 
Project

The city of Wichita, Kansas, uses the Equus Beds aquifer 
as a primary municipal water-supply source. Historically, 
the volume of water that has been pumped out of parts of the 
Equus beds aquifer by irrigators, industries, and municipali-
ties has exceeded its natural recharge rate; thus, aquifer water 
levels have decreased substantially (Hansen and others, 2014; 
Whisnant and others, 2015; Klager, 2016). The lowest water 
levels were recorded in 1993 and were as much as 50 feet 
(ft) lower than predevelopment (1940) water levels in some 
parts of the aquifer (Hansen and Aucott, 2001, 2003; Hansen, 
2007). The easternmost area of the aquifer is susceptible to 
saltwater contamination from the Arkansas River and saltwater 
intrusion from existing upgradient contamination plumes near 
Burrton, Kans., caused by oil field evaporation pits remaining 
from the 1930s (fig. 1; Whittemore, 2007; Klager and others, 
2014). The Equus Beds ASR project was created to help the 
city of Wichita meet increasing future water demands. As an 
added benefit, the ASR project also can help inhibit saltwater 
encroachment into the easternmost part of the aquifer (Ziegler 
and others, 2010; Klager and others, 2014).

The City of Wichita implemented the Equus Beds Ground-
water Recharge Demonstration Project (GRDP) in 1995 to 
investigate the feasibility of using Little Arkansas River water 
to artificially recharge the aquifer. Ziegler and others (1999) 
indicated that the Little Arkansas River and Equus Beds aquifer 
had compatible water quality, and Ziegler and others (2001) 
documented minimal changes in aquifer water quality after 
3 years of artificial recharge associated with the GRDP. Primary 
constituents of concern were arsenic, atrazine, chloride, iron, 
manganese, nitrate, sodium, and total coliform bacteria (Ziegler 
and others; 1999, 2001). Ziegler and others (1999), Ziegler and 
others (2010), and Garinger and others (2011) provided detailed 
descriptions of GRDP site locations and permit regulations for 
recharge operations associated with the Equus Beds GRDP.

The City of Wichita proceeded with the Equus Beds ASR 
project after successfully implementing artificial recharge of 
the aquifer during the GRDP. The Equus Beds ASR project 
currently (2019) consists of two coexisting phases. Phase I 
began in 2007 and has a capacity to capture 10 million gallons 
per day (Mgal/d) of Little Arkansas River (fig. 1) water and 

indirect streambank-diversion well (diversion well sites; fig. 1) 
water for recharge activity with water injection in 4 wells 
(phase I well sites, two shown; fig. 1) and 2 recharge basins 
(not shown). Directly diverted stream water is treated using 
membrane filtration and advanced oxidation to reduce sedi-
ment and remove organic materials before being recharged 
to the aquifer through the two recharge basins; water pumped 
from streambank diversion wells does not receive additional 
treatment before being recharged to the aquifer through the 
phase I injection wells or recharge basins (Garinger and oth-
ers, 2011). Phase II began in 2013 and provides, in addition 
to phase I, a 30 Mgal/d surface-water treatment facility (not 
shown), a 60 Mgal/d river intake facility (not shown) currently 
(2019) equipped to divert 30 Mgal/d and treat 15 Mgal/d, eight 
recharge-injection wells (phase II well sites; fig. 1), and a third 
recharge basin (not shown). The city of Wichita has a National 
Pollutant Discharge Elimination System permit to discharge 
waste from the ASR phase II surface-water treatment facility 
to the Little Arkansas River. The city of Wichita was appro-
priated a 60 Mgal/d diversion when permit requirements are 
met (Kansas Department of Agriculture and Kansas Geologi-
cal Survey, 2017). The phase II ASR facility diversion permit 
requires that 30 cubic feet per second (ft3/s) or greater is main-
tained downstream in the Little Arkansas River at the USGS 
streamgage at Valley Center, Kans. (site 07144200; not shown). 
The current phase II ASR facility capacity of 30 Mgal/d 
(46.4 ft3/s) requires a streamflow of about 100 ft3/s or greater at 
the USGS streamgage near Sedgwick, Kans. (site 07144100; 
Sedgwick surface-water site on fig. 1), to operate. Phase II 
water is directly diverted from the Little Arkansas River at the 
intake structure when streamflow exceeds about 100 ft3/s at this 
site. The ASR facilities have an operational period of April 15 
through October 15 because of climatological restrictions 
related to the potential for freezing conditions. Total phase I 
and II recharged water was about 3.2 billion gallons during 
2007 through 2016 (Stone, 2017). Phase I and II recharge water 
volumes are available online at https://www.usgs.gov/centers/
kswsc/science/equus-beds-recharge-project?qt-science_center_
objects=7#qt-science_center_objects.

Purpose and Scope

The purpose of this report is to document water-quality 
and geochemical variability in the Equus Beds aquifer during 
2001 through 2016. The data in this report can be used to 
establish baseline conditions before further implementation 
of artificial aquifer recharge. In addition, data from this report 
can be used to document surface- and groundwater quality, 
evaluate changing conditions, identify environmental factors 
affecting groundwater, provide science-based information for 
decision making, and help meet regulatory monitoring require-
ments. Physicochemical conditions during January 2001 
through December 2016 were quantified using sample data 
collected from 63 groundwater and 2 surface-water sites, com-
bined with groundwater geochemical modeling. Nationally, 
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results presented in this report contribute to understanding 
the potential effects related to ASR activities on surface- and 
groundwater resources.

Description of Study Area and Background 
Information

The study area includes about 117 square miles in south-
central Kansas northwest of Wichita in Harvey and Sedgwick 
counties (fig. 1). The study area is bounded by the Arkansas 
River to the southwest and the Little Arkansas River to the 
northeast (fig. 1). The Little Arkansas River drainage basin 
is about 1,200 square miles of primarily agricultural (corn, 
sorghum, soybeans, and wheat) land. Fertilizers containing 
nitrogen, phosphorus, and herbicides (such as alachlor and 
atrazine) are commonly applied in the drainage basin (Kansas 
Department of Agriculture, 2016). Cattle and hogs are the pri-
mary livestock raised in the area (Kansas Department of Agri-
culture, 2016). Long-term mean annual precipitation (1900 
through 2016) in the study area, based on data recorded near 
Mount Hope, Kans. (fig. 1; National Oceanic and Atmospheric 
Administration, 2017), was 30.1 inches (table 1). During the 
study period (2001 through 2016) mean annual precipitation 
was 33.3 inches (table 1).

The study area is underlain by the Equus Beds aquifer, 
which is part of the easternmost extent of the larger High 
Plains aquifer (fig. 1) in Kansas. The Equus Beds aquifer 
is named for Pleistocene horse fossils in its sediments. Up 
to about 300 ft in thickness, the aquifer consists of alluvial 
deposits of sand and gravel interbedded with clay or silt that 
lay on top of the shale in the Wellington Formation (Ziegler 
and others, 2010). The aquifer is an important source of 
groundwater because of its water quality, shallow depth 
to the water table, and large saturated thickness (Williams 
and Lohman, 1949). Groundwater in the study area gener-
ally moves to the east-northeast except where the hydraulic 
gradient (not shown) is altered by pumping wells and near a 
low-head dam on the Little Arkansas River at Halstead, Kans. 
(fig. 1; Klager, 2016). The primary surface-water drainage for 
the Equus Beds aquifer is the Little Arkansas River (fig. 1). 
The Equus Beds aquifer is one of the primary sources of water 
for the city of Wichita and surrounding area, and numerous 
irrigation wells also withdraw aquifer water within the bound-
aries (not shown) of Equus Beds Groundwater Management 
District Number 2 (Equus Beds Groundwater Management 
District No. 2, 1990), which contain the study area boundary. 
Historically, water withdrawals exceeding natural recharge of 
the Equus Beds aquifer have resulted in water-level declines 
of as much as 50 ft and exacerbated the threat of saltwater 
contamination from oil production activities in the 1930s, 
the Arkansas River, or both (Hansen and Aucott, 2003, 2010; 
Hansen, 2007; Klager and others, 2014). Water quality in 
the study area is controlled by the geology of the underlying 
bedrock and aquifer materials, hydraulic permeability (poros-
ity), geochemical (oxidation and reduction) properties, effects 

Table 1.  Annual total and mean annual precipitation during 
2001 through 2016 and mean annual precipitation during 1900 
through 2016 at the “MT HOPE” (Global Historical Climatology 
Network–Daily: USC00145539) station.

[Data are from the National Centers for Environmental Information’s 
Global Historical Climatology Network available at https://www.ncdc.
noaa.gov/data-access/land-based-station-data/land-based-datasets/ 
global-historical-climatology-network-ghcn]

Year or period Precipitation, in inches

Total precipitation

2001 28.2
2002 33.6
2003 30.6
2004 39.8
2005 36.8
2006 25.9
2007 36.7
2008 38.5
2009 31.4
2010 34.5
2011 20.3
2012 23.6
2013 45.1
2014 25.0
2015 42.0
2016 41.5

Mean annual precipitation

2001–16 33.3
1900–2016 30.1

related to past oil and gas activities, and effects related to 
agricultural activities.

The Kansas Department of Health and Environment 
has listed several streams in the Little Arkansas River drain-
age basin as impaired waterways under section 303(d) of the 
1972 Clean Water Act (Kansas Department of Health and 
Environment, 2016). Impairments for streams in or near the 
study area include arsenic and chloride for water supply; 
dissolved oxygen, selenium, total suspended solids, atrazine, 
copper, total phosphorus, biology, and sediment for aquatic 
life; and Escherichia coli (E. coli) bacteria for recreation 
(Kansas Department of Health and Environment, 2014, 2016). 
Main pollutants of concern listed in the Little Arkansas River 
Watershed Restoration and Protection Strategy were atrazine, 
sediment, nutrients, and fecal coliform bacteria (Kansas State 
University Research and Extension and others, 2011). The Lit-
tle Arkansas River has total maximum daily loads for atrazine; 
effect on aquatic life by nutrients, sediment, and low dissolved 
oxygen; chloride; fecal coliform bacteria; and total suspended 
solids (Kansas Department of Health and Environment, 2000a, 
2000b, 2000c, 2006a, 2006b, 2008, 2014).

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
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Recent Investigations

Kelly and others (2013) and Klager and others (2014) 
developed Wichita well field numerical groundwater mod-
els. Kelly and others (2013) characterized groundwater flow 
and quantified artificial recharge in the Equus Beds aquifer. 
The Kelly and others (2013) model can be used to quantify 
artificial and natural recharge, well pumping, and streamflow 
change effects on groundwater; and simulate changes in water 
withdrawals, water levels caused by drought or pumping, 
and natural and artificial aquifer recharge. Klager and others 
(2014) simulated chloride transport scenarios in the Equus 
Beds aquifer between the Arkansas and Little Arkansas Riv-
ers (fig. 1) near the Wichita Equus Beds aquifer well field. 
Simulated scenario results indicated that the chloride plume 
near Burrton, Kans., which originated from previous oil and 
gas activities, will continue moving eastward toward the well 
field regardless of pumping in that area at an average rate of 
about 1 foot per day. Increased recharge across the study area 
or decreased pumping along the Arkansas River will slow 
chloride movement to the east and northeast.

Hansen and others (2014), Whisnant and others (2015), 
and Klager (2016) documented water levels and storage vol-
umes in the Equus Beds aquifer. Water levels in the aquifer 
during 1993 through 2016 increased in the central part of the 
Equus Beds aquifer study area because the city of Wichita 
decreased water use from the aquifer by about 40 percent 
and increased precipitation and infiltration after an all-time 
low in water levels was measured in 1993. Storage volumes 
in the aquifer were determined to be about 95 percent of the 
total aquifer storage (Hansen and others, 2014; Whisnant and 
others, 2015; Klager, 2016). About 62 percent of the stor-
age volume lost between predevelopment and 1993 has been 
recovered (Klager, 2016).

Tappa and others (2015) summarized Equus Beds 
aquifer (fig. 1) water quality before (1995 through 2006) and 
concurrent with (2007 through 2012) ASR phase I recharge. 
Groundwater chloride concentrations exceeded the U.S. Envi-
ronmental Protection Agency (EPA) secondary maximum 
contaminant level (SMCL) in 6 and 7 percent of shallow and 
deep samples, respectively, primarily near Burrton, Kans., 
and along the Arkansas River. Groundwater nitrate concentra-
tions exceeded the EPA maximum contaminant level (MCL) 
in 16 percent of shallow samples and rarely in deep samples. 
Several trace elements including arsenic, iron, and manganese 
often exceeded drinking-water criteria in shallow and deep 
aquifer samples. Phase I recharge activities did not result 
in substantial effects on groundwater quality in the Equus 
Beds aquifer study area, likely because the total amount of 
recharged water was small (1 billion gallons) compared to 
aquifer storage volume (greater than [>] 990 billion gallons 
[3,038,200 acre-feet] in winter 2012; Tappa and others, 2015). 
Artificial recharge at phase I recharge locations likely slowed 
eastward movement of the Burrton chloride plume. Concen-
trations and densities of water-quality constituents of concern 
(primary ions, nutrients, trace elements, triazine herbicides, 

and indicator bacteria) did not increase substantially and were 
likely more affected by climatological (for example, natural 
recharge by precipitation) and natural processes (for example, 
geochemical reactions and metabolic and decay rates) than 
artificial recharge. Arsenic remained a constituent of concern 
because of natural, persistent concentrations exceeding the 
Federal MCL of 10 micrograms per liter (µg/L), particularly 
in the deeper aquifer.

Stone and others (2016) quantified ASR phase II activ-
ity effects on Little Arkansas River and Equus Beds aquifer 
water quality using data collected before (2011–13) and after 
(2013–14) the phase II facility began operating. Phase II 
recharge activities did not result in substantial changes in 
Little Arkansas River or Equus Beds aquifer water qual-
ity. Most Little Arkansas River water-quality constituent 
changes after phase II activities began were attributable to 
hydrology and effects of higher streamflows, dilution, and 
runoff. Groundwater physicochemical changes concurrent 
with the beginning of phase II recharge operations were more 
pronounced in shallow groundwater. Constituent concen-
trations in the postrecharge period compared to the pre-
recharge period did not increase to concentrations exceeding 
drinking-water regulations; however, nitrate concentrations 
decreased significantly postrecharge. Total solids, nitrate, 
slime-forming bacteria, and selenium significantly decreased, 
and potassium, chloride, nickel, arsenic, fluoride, phospho-
rus, carbon species, and gross β levels significantly increased 
after phase II operation began. These substantial changes in 
shallow groundwater concentrations were likely caused by 
the artificial recharge of treated surface water and natural 
infiltration of precipitation.

Methods
Data collection efforts followed protocols (Ziegler and 

Combs, 1997; Stone and others, 2012) developed for the 
Equus Beds ASR project. In addition to Ziegler and Combs 
(1997) and Stone and others (2012), numerous studies detail-
ing Equus Beds aquifer water-quality sampling, processing, 
and analysis have been completed, including Ziegler and 
others (2010), Garinger and others (2011), Tappa and others 
(2015), and Stone and others (2016).

Sampling Sites

Data were collected from 114 groundwater wells 
(including 50 pairs of wells consisting of 1 shallow well and 
1 deep well clustered together; appendix table 1.1) during 
2001 through 2016 to quantify and characterize geochemi-
cal variability in the aquifer. The USGS has collected data 
from numerous (>300) wells throughout the lifetime (since 
the 1920s) of the Equus Beds study. An exhaustive list of 
groundwater and surface-water sites associated with the Equus 
Beds aquifer ASR project is available at https://www.usgs.

https://www.usgs.gov/media/files/equus-beds-site-table
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gov/media/files/equus-beds-site-table. For this study, wells 
were selected that were sampled for at least 50 percent of the 
years during 2001 through 2016. These included 38 pairs of 
areal assessment index wells (herein referred to as index wells 
[IWs]; each with a shallow and deep well), 6 background 
wells, 6 diversion wells, 1 pair of 2 recharge wells (each with 
a shallow and deep well), 3 pairs of phase I wells (each with 
a shallow and deep well), and 8 pairs of phase II wells (each 
with a shallow and deep well; appendix table 1.1). Data also 
were collected from two surface-water sites along the Little 
Arkansas River (appendix table 1.1).

Groundwater wells were divided into two groups by 
depth: shallow wells were at depths below land surface equal 
to or less than 80 ft and deep wells were at depths below land 
surface greater than 80 ft. Detailed descriptions of back-
ground, recharge, phase I, and phase II well types are provided 
by Ziegler and others (1999), Schmidt and others (2007), 
Ziegler and others (2010), Tappa and others (2015), and Stone 
and others (2016). The 38 pairs of IWs were established by the 
city of Wichita throughout the study area in 2001. Statistical 
summaries of groundwater chemistry presented and discussed 
in detail in this report are restricted to samples collected in the 
IW network. All IWs were constructed of polyvinyl chloride 
pipe, and the screened interval was typically in the lowermost 
10 to 20 ft of the borehole.

Data Collection

Continuous streamflow and water-quality data were 
collected at two Little Arkansas River surface-water sites that 
bracketed a substantial part of the easternmost part of the 
Equus Beds aquifer (fig. 1). Continuous water levels were 
measured at 11 wells, and continuous water-quality data were 
collected at 3 wells (appendix table 1.1). Discrete water-qual-
ity data also were collected from the 2 Little Arkansas River 
surface-water sites and 114 groundwater wells. About 4,700 
surface and groundwater samples were collected and analyzed 
for more than 300 water-quality constituents. Data collected 
by the USGS are stored in the USGS National Water Informa-
tion System database (U.S. Geological Survey, 2017).

Continuous Water-Quality Monitoring
Detailed method descriptions for continuous water-

quality monitoring by the USGS Kansas Water Science 
Center are presented in Bennett and others (2014) and Putnam 
and Hansen (2014). Continuous streamflow was measured 
at two Little Arkansas River sites (fig. 1): Little Arkan-
sas River at Highway 50 near Halstead, Kans. (upstream 
surface-water site, 07143672, hereafter “Hwy 50 site”), 
and Little Arkansas River near Sedgwick, Kans. (down-
stream surface-water site, 07144100, hereafter “Sedgwick 
site;” appendix table 1.1). Continuous groundwater levels 
were measured at the shallow and deep wells of 2 IW pairs 

(375814097324701, IW16S; 375814097324702, IW16D; 
and 375642097385304, IW18S; 375642097385305, IW18D), 
1 background well (375259097252901, Sedg), the shallow 
and deep wells of 1 phase I well pair (375954097363801, 
RB1S; and 375954097363802, RB1D), and the shallow 
and deep wells of 2 phase II well pairs (375327097285401, 
S11; 375332097284801, S13; and 375327097285402, S10; 
375332097284802, S14; appendix table 1.1).

Streamflow was measured using standard USGS methods 
(Sauer and Turnipseed, 2010; Turnipseed and Sauer, 2010). 
Streamgages were installed on the Little Arkansas River at the 
Hwy 50 site in May 1995 and the Sedgwick site in November 
1993. Each surface-water site also was equipped with a Yellow 
Springs Incorporated (YSI) 6600 Extended Deployment Sys-
tem water-quality monitor to continuously measure specific 
conductance, pH, water temperature, dissolved oxygen (YSI 
optical dissolved oxygen sensor), and turbidity (YSI 6136 
optical turbidity sensor). Specific conductance, pH, water tem-
perature, and dissolved oxygen were measured beginning in 
June 1998, and turbidity was measured beginning in July 2004 
at the surface-water sites. A nitrate sensor (HACH® Nitratax 
plus sc) was installed at the Sedgwick site in March 2012. The 
nitrate sensor does not differentiate between nitrate and nitrite 
(Pellerin and others, 2013); therefore, all nitrate sensor data 
include nitrite and are reported as nitrate plus nitrite concen-
trations in this report. Surface-water monitors were installed 
near the centroid of the stream cross section to best represent 
conditions across the width of the stream and were maintained 
in accordance with standard USGS procedures (Wagner and 
others, 2006; Rasmussen and others, 2008; Pellerin and others, 
2013; Bennett and others, 2014).

Continuous water levels were measured with submers-
ible pressure transducers that were operated according to 
standard USGS methods (Cunningham and Schalk, 2011). YSI 
600OMS water-quality monitors equipped with water temper-
ature, specific conductance, pH/oxidation-reduction potential 
(ORP), and dissolved oxygen (YSI optical dissolved oxygen) 
sensors were installed at the phase II groundwater sites S10 
and S11 (abbreviated well cluster MW7, fig. 1) and S13 and 
S14 (abbreviated well cluster MW8, fig. 1). Groundwater 
monitors were installed in the well screen and were main-
tained in accordance with standard USGS procedures (Wagner 
and others, 2006; Bennett and others, 2014).

Some equipment was upgraded throughout the life of 
the project. A YSI EXO2 water-quality monitor equipped 
with water temperature, specific conductance, pH, dissolved 
oxygen, turbidity, and YSI EXO f﻿luorescent dissolved organic 
matter (fDOM) sensors was installed at the Sedgwick site in 
September 2014. Xylem EXO1 water-quality monitors that 
were equipped with water temperature, specific conductance, 
pH/ORP, dissolved oxygen, and fDOM sensors were installed 
at the S11 and S13 groundwater sites in June 2014. Continu-
ous streamflow, water-level, and water-quality data were 
recorded at hourly intervals. Continuous data for Kansas are 
available at https://waterdata.usgs.gov/ks/nwis.

https://www.usgs.gov/media/files/equus-beds-site-table
https://waterdata.usgs.gov/ks/nwis
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Discrete Water-Quality Sampling
About eight discrete surface-water water-quality samples 

were collected annually (at minimum six times annually) 
at each site across a range of Little Arkansas River (fig. 1) 
streamflows during 2001 through 2016 using USGS equal-
width increment methods (U.S. Geological Survey, 2006; 
Stone and others, 2012; Rasmussen and others, 2014). 
Groundwater samples typically were collected biannually (at 
minimum annually) at each site during 2001 through 2016 
using standard USGS methods (U.S. Geological Survey, 
2006). Surface-water and groundwater samples were analyzed 
for physicochemical properties, dissolved solids, primary ions, 
nutrients (nitrogen and phosphorus species), organic carbon, 
indicator bacteria, trace elements, arsenic species, organic 
compounds, and radioactivity.

Analyses for physicochemical properties and concen-
trations of dissolved solids, primary ions, nutrients, organic 
carbon, trace elements, coliform bacteria, and pesticides 
followed methods described by Ziegler and Combs (1997), 
Ziegler and others (1999, 2010), Tappa and others (2015), 
and Stone and others (2016). Arsenic speciation data were 
collected and analyzed using methods described in Garbarino 
and others (2002). Fecal- and viral-indicator-bacteria analy-
ses were done using methods described by Myers and others 
(2014), Bushon (2003), and the U.S. Environmental Protec-
tion Agency (2000a, 2001a, 2006a, and 2006b). Methods used 
to analyze biological activity reaction tests were described 
by Droycon Bioconcepts, Inc. (2004). The biological activ-
ity reaction test for iron-related and sulfate-reducing bacteria 
were used to evaluate aquifer-material plugging and well-
fouling potential.

Dissolved solids, primary ion, nutrients and carbon spe-
cies, and trace element samples were analyzed by the City of 
Wichita Municipal Water and Wastewater Laboratory (Wich-
ita, Kans.). Bacteria and viral-indicator samples were analyzed 
by the USGS Kansas Water Science Center (Lawrence, Kans.). 
Arsenic species and organic compound samples were analyzed 
by the USGS National Water Quality Laboratory (Denver, 
Colorado). Triazine and glyphosate samples were analyzed 
by the USGS Organic Geochemistry Research Laboratory 
(Lawrence, Kans.). Samples were analyzed by ALS Environ-
mental Laboratories in Fort Collins, Colo., for gross α and 
gross β radioactivity (U.S. Environmental Protection Agency 
and Environmental Monitoring and Support Laboratory, 
1980). Further information regarding data-collection methods, 
preservation, sample holding times, analytical methods, and 
reporting levels are presented in Ziegler and Combs (1997) 
and Stone and others (2012). Discrete water-quality data are 
available at https://waterdata.usgs.gov/ks/nwis.

Data Analysis

Water-chemistry data were summarized for the Little 
Arkansas River and the shallow and deep parts of the 
Equus Beds aquifer during 2001 through 2016. Federal 

drinking-water criteria were used to evaluate aquifer water 
quality. Interpolated water-quality maps were generated. 
Water-quality constituents of interest also were quantified and 
compared with water-level data. Groundwater data were geo-
chemically modeled to describe the potential for precipitation 
and dissolution of minerals.

Water-Chemistry Data

Water-quality conditions in the Little Arkansas River and 
the Equus Beds aquifer were measured during 2001 through 
2016, and summary statistics were computed for water-quality 
data. Some water-quality constituents had censored values. 
Summary statistics (means and medians) for constituents that 
had censored values were calculated using regression on order 
statistics (Helsel and Cohn, 1988) for datasets with sample 
sizes less than (<) 50 and having as much as 80 percent 
censored data and datasets with sample sizes greater than or 
equal to 50 and having as much as 50 percent censored data 
(Helsel, 2005; Bolks and others, 2014). Summary statistics for 
constituents that had censored values were calculated using 
maximum likelihood estimation (Helsel and Cohn, 1988) 
for datasets that had sample sizes greater than or equal to 50 
and having between 50 and 80 percent censored data (Helsel, 
2005; Bolks and others, 2014). Summary statistics were not 
computed when >80 percent of data were censored. Statisti-
cal summaries of groundwater samples were computed using 
R 3.4.1 (R Core Team, 2017). Select shallow and deep IW 
water-quality constituent concentrations were interpolated for 
mapping using the ArcGIS tool “Topo to Raster” (Esri, 2017) 
in a geographic information system. Where applicable, water-
quality data were compared to EPA national drinking-water 
regulations (U.S. Environmental Protection Agency, 2009), 
which include the following types: MCL, SMCL, maximum 
contaminant level goal (MCLG), treatment technique (TT) 
and maximum residual disinfectant level (MRDL). An MCL 
is the highest permissible level of a contaminant in water that 
is delivered to any user of a public water system. The SMCLs 
were established as guidelines to assist public water-supply 
systems in managing their drinking water for aesthetic consid-
erations such as taste, color, and odor. An MCLG is the level 
of a contaminant in drinking water below which there is no 
known or expected risk to human health. A TT is a required 
process intended to reduce the level of a contaminant in drink-
ing water. An MRDL is the highest level of a disinfectant 
allowed in drinking water.

Geochemical Modeling

Changes in groundwater chemistry because of artificial 
recharge and water withdrawals may result in precipitation or 
dissolution of minerals causing physical plugging or changes 
in the aquifer and its properties. Mineral precipitation could 
adversely affect water yield by clogging aquifer pores, and dis-
solution of certain minerals may mobilize harmful constituents 

https://waterdata.usgs.gov/ks/nwis
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like arsenic into the aquifer. To describe the potential for 
precipitation and dissolution of various minerals, PHREEQC 
(Parkhurst and Appelo, 2013) geochemical modeling soft-
ware, executed using R (R Core Team, 2017; Charlton and 
Parkhurst, 2011) with the wateq4f.dat database file derived 
from Ball and Nordstrom (1991) and distributed with the 
PHREEQC software (Parkhurst and Appelo, 2013), was used 
to calculate ion speciation and saturation indices (SIs) for 
discrete groundwater and surface-water samples. About 1,300 
groundwater chemistry samples were geochemically modeled. 
Input for PHREEQC computations included discrete sample 
data for water temperature, pH, alkalinity, water level, and 
dissolved concentrations of oxygen, calcium, magnesium, 
sodium, potassium, chloride, sulfate, nitrite, nitrate, ortho-
phosphate, fluoride, silica, arsenic, iron, and manganese. ORP 
values were used to approximate electron potential following 
Kalin (1995):

	
2.30

hE FpE
RT

= 	 (1)

where
	 pE	 is the electron potential;
	 Eh	 is the ORP;
	 F	 is the Faraday constant;
	 R	 is the gas constant; and
	 T	 is the absolute temperature.
PHREEQC was run once per sample. Out of 1,972 samples, 
only 8 (<1 percent) samples had cation-anion balances that 
exceeded 20 percent. All samples were retained in the dataset 
regardless of cation-anion balances and presence of left-cen-
sored data. Left-censored data values were arbitrarily replaced 
with one-half of the censoring level.

The SI is a dimensionless measure of the departure 
from equilibrium of the water with respect to various mineral 
phases. A solution near equilibrium has an SI value of zero. 
Positive SI values indicate oversaturation and the potential 
for the mineral to precipitate; conversely, negative SI values 
indicate the potential for mineral dissolution. In addition to 
the equilibrium state, determined by the SI, other factors that 
affect precipitation and dissolution reactions include kinetics 
and the presence of the mineral at available reaction sites. A SI 
is calculated as the logarithm of the ion-activity product of a 
solution (water sample), divided by the solubility product for 
the mineral, such as for calcite:

	 ( )

2 2
3log
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Ca CO
SI

K

+ −      = 	 (2)

where
	 [Ca2+]	 is the activity of the calcium ion,
	 [CO3

2−]	 is the activity of the carbonate ion, and
	 Ksp(calcite)	 is the solubility product of calcite.

Quality Assurance and Quality Control

Quality-assurance and quality-control (QA/QC) samples 
routinely were collected to identify, quantify, and document 
bias and variability in data that resulted from collecting, 
processing, handling, and analyzing samples (U.S. Geologi-
cal Survey, 2006). The QA/QC samples included replicate, 
blank, and standard reference samples for discretely collected 
water-quality samples. Relative percentage difference (RPD) 
was used to evaluate differences in analyte concentrations 
detected in replicate water samples. The RPD was calculated 
by dividing the difference between replicate pairs by the mean 
and multiplying that value by 100, creating a value that rep-
resents the percent difference between replicate samples (Zar, 
1999). RPDs were not calculated for replicate pairs that had 
consistent nondetections (both values in the replicate pair were 
censored) or inconsistent detections (one value in the replicate 
pair was a detected value and the other value was censored; 
Mueller and others, 2015).

The water temperature, pH, specific conductance, and 
dissolved-oxygen sensors have wide ranges of operation (for 
example, pH sensors measure from 0 to 14 units; Wagner and 
others, 2006) that were not exceeded in this study. Ground-
water fDOM sensors frequently (51 and 38 percent at the S11 
and S13 sites, respectively) measured less than zero. Data 
that exceeded the minimum operation value were retained in 
datasets and classified as poor. The upper bound of individual 
turbidity sensor concentration ranges differ: the manufacturer 
specifications for the YSI 6136 optical turbidity sensor indi-
cate the maximum turbidity concentration is 1,000 formazin 
nephelomeric units (FNU) and the specifications for the EXO 
Turbidity Smart Sensor indicate the maximum turbidity con-
centration is 4,000 FNU, which was never exceeded during 
the study. Individual turbidity sensors differ in actual maxi-
mum readings. The maximum turbidity reading recorded at 
the surface-water sites was 1,640 FNU at the Hwy 50 site and 
1,250 FNU at the Sedgwick site (appendix table 1.2; fig. 1). 
Less than 0.01 percent of continuously measured turbidity 
data exceeded 1,000 FNU. Data that exceeded the maximum 
operation value were retained in datasets and classified as 
poor. Monitors equipped with YSI 6136 optical turbidity and 
EXO Turbidity Smart Sensors were deployed concurrently 
at the Sedgwick site during September 2014 through March 
2015 to measure differences in sensor readings. Ordinary least 
squares regression analyses were performed on the concurrent 
turbidity measurements to compare sensor measurements. The 
ordinary least squares regression shows the relation between 
the YSI 6136 optical turbidity and EXO Turbidity Smart 
sensors and explains 99 percent of the variance in turbidity 
readings (fig. 2). EXO turbidity sensor measurements were, on 
average, 6 percent smaller than YSI turbidity sensor measure-
ments (appendix table 1.3).

Comparison of field cross-sectional measurements col-
lected during high- and low-flow conditions at the surface-
water sites provided verification that bias in continuous data 
because of monitor location within the stream cross section 
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Yellow Springs Incorporated 6136 optical turbidity sensor (YSI) measurements,
in formazin nephelometric units
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Figure 2.  Relation between the 
Yellow Springs Incorporated 6136 
optical turbidity and EXO Turbidity 
Smart sensor measurements at 
the Little Arkansas River near 
Sedgwick, Kansas (Sedgwick site; 
station 07144100), September 2014 
through March 2015.

was minimal. The RPDs between continuous and field moni-
tors were <4 percent except for turbidity, which had median 
RPDs of <7 percent at both sites compared to field cross-
sectional data. Larger differences between continuous and 
field-monitor values commonly happened when conditions 
were changing rapidly.

Continuous data during the study period generally required 
corrections (such as computations to account for instrument 
fouling or calibration drift) of <10 percent. Continuous water-
quality data were missing or deleted because of equipment 
malfunction, excessive sensor fouling, and, for the surface-
water sites, low-flow conditions. During the study period, 
<1 percent of the streamflow records and less than or equal 
to (≤) 10 percent of the specific conductance, water tempera-
ture, dissolved oxygen, nitrate plus nitrite, and fDOM records 
were missing or deleted from the surface-water sites (appendix 
table 1.2). Turbidity data were missing from 31 to 37 percent of 
the surface-water sites (appendix table 1.2). Groundwater levels 
were missing ≤3 percent of the study period and ≤33 percent of 
groundwater water temperature, specific conductance, pH, ORP, 
dissolved-oxygen, and fDOM records were missing or deleted 
(table 2). The fDOM data for the surface-water sites were tem-
perature- and turbidity-corrected following protocols described 
by Downing and others (2012).

About 10 percent of discrete water-quality samples 
were QA/QC samples. Sequential, split, and concurrent 
replicate water-quality samples were collected during the 
study period among the sampling sites and over a range of 
streamflow conditions for surface-water sites. Replicate 
comparisons included 3,985 dissolved-solids and primary-ion 
pairs, 2,358 nutrient- and carbon-species pairs, 907 indicator-
bacteria pairs, 3,067 trace-element pairs, 536 arsenic-species 
pairs, 3,022 organic-compound pairs, and 76 radioactivity 
pairs (appendix table 1.4). Replicate pairs with an RPD within 
10 percent were considered acceptable for inorganic constitu-
ents (Ziegler and Combs, 1997). Replicate pairs with an RPD 
within 20 percent were considered acceptable for nutrient 
and organic constituents, and RPDs within 50 percent were 
considered acceptable for bacterial analysis. Replicate pair 
RPDs were not calculated for pairs that had censored data for 
one or both data values. Primary ions had 115 replicate pairs 
with values that were both left-censored and 12 replicate pairs 
that had 1 value that was left-censored. Nutrient and carbon 
species had 703 replicate pairs with values that were both 
left-censored and 252 replicate pairs that had 1 value that was 
left-censored. Bacteria had 417 replicate pairs with values that 
were both censored and 74 replicate pairs that had 1 value that 
was censored. Trace elements had 1,152 replicate pairs with 
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values that were both left-censored and 330 replicate pairs 
that had 1 value that was left-censored. Arsenic species had 
149 replicate pairs with values that were both left-censored 
and 23 replicate pairs that had 1 value that was left-censored. 
Organic compounds had 2,627 replicate pairs with values that 
were both left-censored and 35 replicate pairs that had 1 value 
that was left-censored. Radioactivity values had 3 replicate 
pairs with values that were both censored and 9 replicate pairs 
that had 1 value that was censored.

Nearly all inorganic constituent replicate pairs had 
median RPDs that were <10 percent (appendix table 1.4). 
Primary-ion constituent RPD medians were all <3 percent 
except for fluoride (7 percent) (appendix table 1.4). All nutri-
ent- and carbon-species replicate pairs had median RPDs 
that were ≤14 percent (appendix table 1.4). Four bacteria 
constituent RPD medians were 0 percent, and the remaining 
bacteria constituents had RPD medians that were ≤35 per-
cent (appendix table 1.4). Bacteria RPDs were often larger 
when densities were at or near the censoring level. Trace-
element constituent median RPDs were <10 percent except 
for aluminum (11 percent), zinc (12 percent), and selenium 
(15 percent); arsenic-species median RPDs were <7 percent; 
organic-compound median RPDs were ≤10 percent except for 
3,4-Dichloroaniline (13 percent) and Simazine (67 percent); 
and radioactivity median RPDs were ≤22 percent (appendix 
table 1.4). Primary sources of larger RPDs in the study area 
recorded during 1999 through 2004 and 2005 through 2012 
are discussed in Ziegler and others (2010) and Tappa and oth-
ers (2015), respectively.

Blank samples were collected to measure the magnitude 
of contaminant concentration that might have been intro-
duced into samples because of sampling, processing, and 
analytical procedures (U.S. Geological Survey, 2006). Blank 
samples consisted of deionized water, inorganic blank water, 
or pesticide-grade blank water depending on analyses. During 
2001 through 2016, 187 blank samples were collected. Over-
all, primary ions were detected in 6 percent of samples, and 
detections were generally at or near the detection limit except 
for five dissolved-solids detections that ranged from 29 to 
61 mg/L. Individual primary ions that had more than 10 per-
cent detections in blank samples included dissolved solids 
and fluoride (12 detections each; appendix table 1.4). Overall, 
nutrients were detected in 6 percent of blank samples, and 
detections were at or near the detection limit. Individual nutri-
ent constituent detections did not exceed 10 percent (appendix 
table 1.4). Dissolved and total organic carbon were detected 
in 48 and 43 percent of blank samples, respectively (appendix 
table 1.4); however, nearly all organic carbon detections were 
at or near the detection limit. Some organic carbon detections 
were traced to potentially contaminated blank water used 
for the samples. Overall, indicator bacteria were detected in 
8 percent of blank samples, and most bacteria detections were 
at or near the detection limit. E. coli coliphage was detected 
in 13 percent and total coliforms were detected in 17 percent 
of blank samples (appendix table 1.4). Overall, trace elements 
were detected in <1 percent of blank samples, and detections 

were at or near the detection limit. Individually, one trace 
element, nickel, was detected in more than 10 percent of 
blanks (four detections; appendix table 1.4). Overall, organic 
compounds were detected in 2 percent of blank samples, 
and detections were generally at or near the detection limit. 
Individual organic compounds that were detected in more than 
10 percent of blanks included atrazine (2 detections), meto-
lachlor (2 detections), and toluene (3 detections; appendix 
table 1.4).

Standard reference samples were analyzed by the Wichita 
Municipal Water and Wastewater laboratory and analytical 
results submitted to the USGS Branch of Quality Systems 
at least annually and oftentimes biannually for laboratory-
performance evaluation. Standard reference sample data are 
available at https://bqs.usgs.gov/srs/. Reported values usually 
were within 10 percent of the most probable value during 2001 
through 2016. Median RPDs between laboratory results and 
most probable values indicated that laboratory data generally 
were consistent and unbiased.

Water Quality of the Little Arkansas 
River

Continuous measurement of physicochemical properties 
in near-real time allowed characterization of Little Arkan-
sas River surface water during conditions and time scales 
that would not have been possible otherwise and served as 
a complement to discrete water-quality sampling. Similar 
future data-collection efforts will provide data during differ-
ent conditions and may identify new and changing trends. 
Surface-water physicochemical properties and water-quality 
constituents that frequently exceeded EPA Federal drinking 
water-quality criteria and those that are of potential inter-
est or concern for artificial recharge operations are briefly 
discussed in this report to characterize the quality of poten-
tial aquifer recharge water. These data include streamflow, 
chloride, sulfate, nitrate plus nitrite, total coliform bacteria, 
iron, manganese, arsenic, and atrazine. Statistical summaries 
for these data are presented for the two surface-water monitor-
ing sites on the Little Arkansas River (Hwy 50 and Sedgwick 
sites; fig. 1) in appendix tables 1.2 and 1.5. Ziegler and others 
(2010) and Tappa and others (2015) provided detailed descrip-
tions of Little Arkansas River surface-water physicochemical 
properties and water-quality constituents for the Hwy 50 and 
Sedgwick sites.

Little Arkansas River Streamflow

Stream ecosystem structure and function are largely 
affected by streamflow (Allan and Castillo, 2007). Annual 
differences in streamflow can be attributed to differences in 
precipitation. The Equus Beds ASR project operations are lim-
ited to above-base-flow conditions. Streamflow at the Hwy 50 

https://bqs.usgs.gov/srs/
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and Sedgwick sites ranged from <1 to 11,023 ft3/s and <1 to 
16,735 ft3/s, respectively, during 2001 through 2016 (appen-
dix table 1.2). Mean and median streamflow at the Hwy 50 
site was 183 and 19 ft3/s, respectively, and mean and median 
streamflow at the Sedgwick site was 325 and 47 ft3/s, respec-
tively, during the study period. Little Arkansas River stream-
flow values during the study were within the ranges reported 
during 1995 through 2012 by Tappa and others (2015).

Discrete Little Arkansas River Water Quality

The Little Arkansas River has highly variable chloride 
concentrations that can exceed drinking-water standards 
(Ziegler and others, 1999). The EPA SMCL for chloride is 
250 milligrams per liter (mg/L; U.S. Environmental Protec-
tion Agency, 2009) for aesthetics, including taste and odor, 
and was exceeded in <1 percent of samples from the two Little 
Arkansas River surface-water sites. Chloride concentrations 
ranged from <5 to 530 mg/L (appendix table 1.5) and did not 
exceed the range of values previously reported during 1995 
through 2012 by Tappa and others (2015). Sulfate concentra-
tions ranged from <5 to 170 mg/L (appendix table 1.5) and 
did not exceed the range of values previously reported during 
1995 through 2012 by Tappa and others (2015).

Little Arkansas nitrate concentrations can exceed the EPA 
MCL of 10 mg/L (U.S. Environmental Protection Agency, 
2009; Ziegler and others, 2010; Tappa and others, 2015; Stone 
and others, 2016). Surface-water nitrate plus nitrite concentra-
tions ranged from <0.02 to 11.7 mg/L during 2001 through 
2016 (appendix table 1.5), exceeded the MCL in <1 percent 
of samples, and did not exceed the range of values previously 
reported during 1995 through 2012 (Tappa and others, 2015). 
The EPA has a MCLG for total coliforms of 0 colony form-
ing units per 100 milliliters (cfu/100 mL; U.S. Environmental 
Protection Agency, 2013). Total coliforms are commonly 
detected in the Little Arkansas River (Tappa and others, 2015; 
Stone and others, 2016). Little Arkansas River surface-water 
total coliform densities ranged from 30 to 36,000 most prob-
ably number per 100 milliliters (mpn/100 mL), and every 
water sample collected had total coliform detections (appendix 
table 1.5). The range of surface-water total coliform densities 
during this study did not exceed the ranges previously reported 
during 1995 through 2012 by Tappa and others (2015).

The SMCL for iron (300 µg/L; U.S. Environmental Pro-
tection Agency, 2009) is often exceeded in the Little Arkansas 
River (Ziegler and others, 2010; Tappa and others, 2015; Stone 
and others, 2016). Surface-water iron concentrations ranged 
from <4 to 620 µg/L during the study (appendix table 1.5) 
and exceeded the SMCL in 7 percent of samples. Surface-
water iron concentrations did not exceed the range of values 
previously reported during 1995 through 2012 by Tappa and 
others (2015). The SMCL for manganese (50 µg/L; U.S. Envi-
ronmental Protection Agency, 2009) is often exceeded in 
the Little Arkansas River (Ziegler and others, 2010; Tappa 
and others, 2015; Stone and others, 2016). Surface-water 

manganese concentrations ranged from <1 to 826 µg/L during 
the study (appendix table 1.5), exceeded the SMCL 48 percent 
of the time, and did not exceed the range of values previously 
reported during 1995 through 2012 (Tappa and others, 2015). 
The MCL for arsenic (10 µg/L; U.S. Environmental Protection 
Agency, 2009) is frequently exceeded in the Little Arkansas 
River (Ziegler and others, 2010; Tappa and others, 2015; Stone 
and others, 2016). Little Arkansas River surface-water arsenic 
concentrations ranged from <1 to 16.2 µg/L during 2001 
through 2016 (appendix table 1.5) and exceeded the MCL in 
about 12 percent of samples. Surface-water arsenic concentra-
tions did not exceed the range of values previously reported 
for these sites during 1995 through 2012 (Tappa and others, 
2015).

The MCL for atrazine (3.0 µg/L; U.S. Environmental 
Protection Agency, 2009) is often exceeded in Little Arkansas 
River surface-water samples (Ziegler and others, 2010; Tappa 
and others, 2015; Stone and others, 2016). Surface-water 
atrazine concentrations ranged from <0.025 to 48.0 µg/L 
(appendix table 1.5) and 39 percent of samples exceeded the 
MCL during 2001 through 2016. The range of surface-water 
atrazine concentrations measured in this study did not exceed 
that previously reported during 1995 through 2012 (Tappa and 
others, 2015).

Water Quality and Geochemistry of the 
Equus Beds Aquifer

Groundwater physicochemical properties and water-
quality constituents that frequently exceeded EPA drinking 
water-quality criteria and those that are of potential interest or 
concern for artificial recharge operations are discussed in this 
report to characterize Equus Beds aquifer water quality. These 
data include groundwater levels, specific conductance, ORP, 
dissolved solids, bromide, chloride, sulfate, select nutrients, 
bacterial (fecal coliform, E. coli, and total coliforms) and viral 
(E. coli coliphage) indicators, iron, manganese, arsenic specia-
tion, atrazine, and radioactivity. Statistical summaries for these 
data are presented for the shallow and deep IW Equus Beds 
aquifer sites in tables 3–10. Equus Beds aquifer IW geo-
chemical equilibria are discussed to characterize groundwater 
geochemistry and are presented in table 11. Statistical sum-
maries for additional groundwater sites (background, diver-
sion, recharge, phase I, and phase II wells) are presented in 
appendix tables 1.7 through 1.14 and are not discussed further 
in this report.

Equus Beds Aquifer Physicochemical Properties

Historically, groundwater levels in the Equus Beds 
aquifer have substantially declined because of city and irriga-
tion withdrawals; these declines are likely to cause increased 
movement of brine from past oil and gas production near 

Water Quality and Geochemistry of the Equus Beds Aquifer
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Burrton, Kans., and natural saline water from the Arkansas 
River (fig. 1; Whisnant and others, 2015). Groundwater-level 
rises in the aquifer are likely because of the city of Wichita 
withdrawal reductions, less pumping by irrigators, more 
recharge because of increased precipitation, and introduc-
tion of artificial recharge (Whisnant and others, 2015; Klager, 
2016). Groundwater levels in the two continuously monitored 
IWs (sites IW16S and IW16D; and IW18S and IW18D) 
ranged from 1,372 to 1,392 ft above the North American Verti-
cal Datum of 1988 (NAVD 88) and 1,419 to 1,429 ft above the 
NAVD 88 during 2001 through 2016, respectively (table 2). 
Discretely measured groundwater levels ranged from 1,342 to 
1,473 ft above the NAVD 88 in shallow IWs and 1,342 to 
1,433 ft above the NAVD 88 in deep IWs (table 3). During 
2001 through 2016, the median shallow IW altitude relative to 
the NAVD 88 was 1,386 ft and the median deep IW altitude 
was 1,384 ft (table 3).

Specific conductance is an indirect measure of dissolved 
solids in water (Hem, 1992). Previous studies in the Little 
Arkansas River developed simple linear regression relations 
between specific conductance and water-quality constituents 
of interest, including sulfate and chloride, to continuously 
compute water-quality constituents of interest at the two sur-
face-water sites (Christensen and others, 2000, 2003; Rasmus-
sen and others, 2016). Ziegler and others (2010) developed 
regression relations for the Equus Beds aquifer IWs between 
specific conductance and the water-quality constituents of 
interest, sulfate and chloride.

Specific conductance measurements in water samples 
collected from shallow IWs ranged from 89 to 2,310 micro-
siemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C; 
mean equals 897 µS/cm) and measurements from deep IWs 
ranged from 32 to 4,520 µS/cm (mean equals 966 µS/cm; 
table 3). Large specific conductance (>1,000 µS/cm) was mea-
sured along Kisiwa Creek and near the Arkansas River in the 
shallow and deep parts of the Equus Beds aquifer (figs. 3A, B). 
Large specific conductance measurements are associated with 
past oil and gas activities (Williams and Lohman, 1949; Whit-
temore, 2007) and were in the shallow and deep parts of the 
aquifer near Burrton, Kans. (fig. 1), primarily at IW08D in the 
deep part of the aquifer (fig. 3B). Specific conductance means 
were smallest in the northeast part of the study area in the 
shallow and deep parts of the aquifer (figs. 3A, B). Hathaway 
and others (1981), Ziegler and others (2010), and Tappa and 
others (2015) reported similar specific conductance distribu-
tion in the aquifer during 1979 through 1980, 1995 through 
2005, and 2006 through 2012, respectively.

ORP is a measurement of a solution’s tendency to gain 
or lose electrons and indicates a water-quality constituent’s 
ability to undergo oxidation or reduction reactions. ORP 
measurements are useful for monitoring basic oxidation-
reduction changes: larger ORP values indicate an increased 
oxidation potential (tendency to gain electrons), and smaller 
ORP values indicate increased reducing potential (tendency 
to lose electrons). Groundwater with an increased oxidation 

potential (ORP >250 millivolts [mV]) indicates ferric iron as 
the dominant iron species in groundwater, which may lead to 
chemical precipitation of ferric iron oxides or hydroxides in 
aquifer material and decrease effective porosity (Schmidt and 
others, 2007). Groundwater with an increased reducing poten-
tial (ORP values <250 mV) may result in dissolution of iron, 
manganese, and arsenic in aquifer materials. Greater reducing 
conditions that involve geochemical and biological processes 
that convert dissolved sulfate to hydrogen sulfide gas are 
associated with smaller ORP values than those that result in 
dissolution of iron, manganese, and arsenic. Communities of 
iron-related and sulfate-reducing bacteria thrive under differ-
ent ORP conditions (Cullimore, 2007), and large densities of 
these bacteria may potentially plug or foul groundwater wells.

Measurements of ORP averaged 324 mV (ranged from 
−70 to 730 mV) in shallow IWs and 234 mV (ranged from 
−160 to 640 mV) in deep IWs (table 3). Mean shallow IW 
ORP indicated more oxidizing conditions (>250 mV) in the 
northern and southern parts (near the Arkansas River) of the 
study area and more reducing conditions (<250 mV) along the 
Little Arkansas River and the downstream part of Kisiwa Creek 
(fig. 4A). Mean deep IW ORP were indicative of more oxidiz-
ing conditions in the southern one-third of the study area and 
more reducing conditions in the northern part of the aquifer 
(fig. 4B). Larger deep IW ORP means tended to correspond to 
parts of the aquifer that contained sandy aquifer materials (had 
larger effective porosity; Ziegler and others, 2010; Tappa and 
others, 2015). Ziegler and others (2010) and Tappa and others 
(2015) reported similar ORP distribution in the aquifer during 
1995 through 2005 and 2006 through 2012, respectively.

Solids and Primary Ions

The primary constituents of dissolved ions come from 
decomposing rocks and soils and generally include calcium, 
magnesium, sodium, potassium, bicarbonate, carbonate, chlo-
ride, and sulfate ions (Hem, 1992). However, primary sources 
of chloride in the study area are from past oil and gas activi-
ties near Burrton, Kans., the Arkansas River, and municipal 
wastewater and industrial discharges (Whittemore, 2007). 
Equus Beds aquifer groundwater is predominantly a calcium 
bicarbonate type that changes to a sodium chloride type near 
the Arkansas River (Leonard and Kleinschmidt, 1976).

Constituents of concern in drinking water include major 
ions because large concentrations of ions may cause physi-
ological effects, unpalatable mineral tastes, and greater costs 
because of corrosion or additional treatment needs (U.S. Envi-
ronmental Protection Agency, 2009). Sodium, chloride, and 
sulfate frequently exceed water-quality criteria in the study 
area (Ziegler and others, 2010; Tappa and others, 2015; Stone 
and others, 2016); of these, sulfate and chloride are of particu-
lar concern because of the potential for saltwater migration 
from the Burrton oil field and the Arkansas River into the 
Wichita well field.

Water Quality and Geochemistry of the Equus Beds Aquifer
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Dissolved solids often are used as a general indicator of 
salinity as pertaining to water quality. The EPA has established a 
drinking water dissolved-solids SMCL of 500 mg/L (U.S. Envi-
ronmental Protection Agency, 2009). Shallow IW dissolved 
solids ranged from 74 to 2,700 mg/L (mean equals 587 mg/L), 
and deep IW dissolved solids ranged from 5 to 3,230 mg/L 
(mean equals 615 mg/L; table 4). IW dissolved-solids means for 
shallow (587 mg/L) and deep (615 mg/L) wells exceeded the 
SMCL (table 4). About 54 percent of shallow IW and 56 percent 
of deep IW dissolved-solids sample concentrations exceeded the 
SMCL during 2001 through 2016. Index well dissolved-solids 
concentrations during this study did not exceed the ranges previ-
ously reported (Ziegler and others, 2010).

Bromide is a constituent of interest in the Equus Beds 
aquifer because of its potential for conversion to brominated 
organics of concern through drinking-water treatment pro-
cesses. Bromate, a known carcinogen, can form during disin-
fection processes that oxidize drinking water to kill pathogens 
when the water contains bromide (Xie, 2003; U.S. Environ-
mental Protection Agency, 2009). Shallow IW bromide ranged 
from <0.02 to 1.40 mg/L (mean equals 0.14 mg/L), and deep 
IW bromide ranged from <0.02 to 5.30 mg/L (mean equals 
0.22 mg/L; table 4). Bromide concentrations were largest 
near Burrton, particularly in the deep parts of the Equus Beds 
aquifer (figs. 5A, B).

Equus Beds aquifer chloride sources include underlying 
rocks and past disposal of oil-field brines. Natural, uncon-
solidated aquifer water usually has chloride concentrations 
less than 100 mg/L; however, large concentrations (100 to 
500 mg/L) are common in the western part of the study area 
and along the Arkansas River (fig. 1; Ziegler and others, 2010; 
Klager and others, 2014; Tappa and others, 2015). Mean 
Arkansas River chloride concentration was about 600 mg/L 
during 1988 through 1991 (Myers and others, 1996) and about 
500 mg/L during 1997 through 2006 between Hutchinson and 
Maize, Kans. (Kansas Department of Health and Environment, 
2006a). Underlying Permian salt-bed brine upwells and enters 
tributaries upstream from Hutchinson, Kans., that flow into the 
Arkansas River (Kansas Department of Health and Environ-
ment, 2006a; Whittemore, 2007). Western Colorado irrigation 
practices increase and prolong the exposure of water to the 
surface, thereby increasing evaporation, which increases the 
dissolved-ion concentration in water reentering the Arkansas 
River (Whittemore, 2007). Little Arkansas River chloride 
sources include contamination from past oil and gas activity 
near McPherson, Kans., and industrial and municipal waste-
water discharges (Leonard and Kleinschmidt, 1976; Kansas 
Department of Health and Environment, 2006b; Schmidt and 
others, 2007; Whittemore, 2007).

The SMCL for chloride is 250 mg/L (U.S. Environmental 
Protection Agency, 2009). Drinking-water consumers detect a 
salty taste and bleach-like odor when chloride concentrations 
exceed 250 mg/L. Large chloride concentrations can contrib-
ute to corrosion and staining of plumbing and fixtures. Irriga-
tion water with chloride exceeding 350 mg/L is likely to have 
adverse effects on crops (Bauder and others, 2007). Chloride 

is of particular concern in the Equus Beds aquifer because of 
the chloride plume estimated to be moving toward the city 
of Wichita’s well field at a rate of as much as 1,150 feet per 
year and is expected to continue moving toward the well field 
regardless of pumping in the area (Klager and others, 2014). 
Chloride concentrations, which significantly doubled in shal-
low parts of two phase II recharge wells after the onset of 
artificial recharge, were likely caused by treated and artificially 
recharged treated surface water (Stone and others, 2016).

Shallow IW chloride ranged from <5 to 773 mg/L 
(mean equals 67.0 mg/L), deep IW chloride ranged from 
<5 to 1,460 mg/L (mean equals 110 mg/L; table 4), and about 
5 percent of shallow and 7 percent of deep IW chloride sample 
concentrations exceeded the SMCL during 2001 through 
2016. Shallow and deep wells near the downstream part of the 
Arkansas River and near Burrton, Kans., had mean chloride 
concentrations that exceeded the SMCL (figs. 6A, B). Myers 
and others (1996), Ziegler and others (2010), and Tappa and 
others (2015) reported similar chloride distribution in the 
aquifer during 1989 through 1990, 1995 through 2005, and 
2006 through 2012, respectively. Chloride concentrations near 
Burrton were larger in the deep parts of the aquifer (figs. 6A, 
B) likely because of saltwater migration downward from 
disposal brines in surface pits during 1910 through the 1940s 
(Whittemore, 2007). Larger chloride concentrations in deep 
parts of the aquifer also could be caused by upward move-
ment of saltwater in wells or natural fractures in bedrock or 
the result of rainfall infiltration (Leonard and Kleinschmidt, 
1976). Deep saltwater flushing from the aquifer may take 
many centuries (Whittemore, 2007). IW chloride concentra-
tions during this study did not exceed the ranges previously 
reported (Ziegler and others, 2010; Tappa and others, 2015).

Natural sources of sulfate in surface water and ground-
water are rock weathering, oxidation of sulfide minerals, and 
biological processes (Hem, 1992). Anthropogenic sources of 
sulfate in water include atmospheric deposition from coal and 
petroleum combustion products (Hem, 1992) and irrigation-
return flows (Ziegler and others, 2010). The EPA SMCL for 
sulfate is 250 mg/L (U.S. Environmental Protection Agency, 
2009). Sulfate is a constituent of concern for artificial recharge 
and often exceeds the SMCL of 250 mg/L in the Equus Beds 
aquifer (Ziegler and others, 2010; Tappa and others, 2015). 
Wells with mean sulfate concentrations exceeding the SMCL 
generally were in the central part of the study area (figs. 7A, B).

Average sulfate concentrations exceeding the SMCL were 
mostly in the central part of the study area (figs. 7A, B). Index 
well sulfate concentrations in this study did not exceed the 
ranges previously reported and exhibited similar distribution 
in the aquifer to those that were reported during 1995 through 
2005 (Ziegler and others, 2010) and 2006 through 2012 (Tappa 
and others, 2015). Shallow IW sulfate concentrations ranged 
from <5 to 770 mg/L (mean equals 152 mg/L), and deep IW 
sulfate ranged from <5 to 720 mg/L (mean equals 111 mg/L; 
table 4). About 18 percent of shallow and 13 percent of deep 
IW sulfate-sample concentrations exceeded the SMCL dur-
ing 2001 through 2016. Areas of largest sulfate concentrations 
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are where the aquifer is the thickest and generally associated 
with areas that were substantially dewatered between about 
1940 through 1993 and have subsequently recovered (Ziegler 
and others, 2010; Tappa and others, 2015). Equus Beds aquifer 
sulfate concentrations increased from 1980 to 2012 (Hathaway 
and others, 1981; Ziegler and others, 2010; Tappa and others, 
2015) likely because of dewatering and subsequent oxidation 
of aquifer material during water-level minima during the early 
1990s (Ziegler and others, 2010). However, the mean overall 
sulfate average during 2013 through 2016 for this study was not 
substantially larger (137 mg/L) as compared to 141 mg/L during 
2001 through 2012 (Tappa and others, 2015) and 129 mg/L dur-
ing 1995 through 2005 (Ziegler and others, 2010).

Additional primary ions and constituents of concern 
for the Equus Beds aquifer are fluoride and chlorine, both of 
which were detected in IW samples during 2001 through 2016. 
The EPA fluoride SMCL of 2.0 mg/L (U.S. Environmental 
Protection Agency, 2009) was not exceeded during this study, 
although fluoride was detected in nearly all (about 99 percent) 
IW samples (table 4). Stone and others (2016) reported a 
substantial fluoride increase in shallow parts of two phase II 
recharge wells after the onset of artificial recharge that was 
likely caused by the artificially recharged, treated surface 
water (Stone and others, 2016). Several IW fluoride concentra-
tions during this study (18 shallow and 23 deep during 2009 
through 2014) throughout the aquifer exceeded the maximum 
reported by Ziegler and others (2010) during 1995 through 
2005: shallow IW fluoride concentrations exceeded the maxi-
mum by about 8 to 48 percent (1.0 to 1.5 mg/L), and deep 
IW fluoride concentrations exceeded the maximum by about 
3 to 40 percent (0.75 to 1.1 mg/L). The MRDL for chlorine is 
4.0 mg/L (U.S. Environmental Protection Agency, 2009), and 
chlorine was detected in about 6 percent of shallow IWs but 
did not exceed the MRDL during the study.

Nutrients and Carbon

Nutrients, particularly nitrogen and phosphorus, have been 
identified as a primary cause of water-quality degradation in 
Kansas and the Nation (U.S. Environmental Protection Agency, 
2000b, 2006c; Kansas Department of Health and Environment, 
2004; Dubrovsky and others, 2010). Nutrients are associated 
with agricultural activities because they are present in fertiliz-
ers and animal waste and can percolate into groundwater. Other 
sources of nutrients in water include wastewater treatment 
plants, sewage lagoons, domestic septic tanks, and organic-
matter decomposition. Ammonia and dissolved phosphorus are 
not persistent or mobile enough to affect groundwater concen-
trations substantially under most conditions (Dubrovsky and 
others, 2010) and are not discussed in this report.

Nitrogen is present as ammonia, nitrate, nitrite, and as 
part of organic compounds. Most algae use dissolved forms of 
inorganic nitrogen (Hem, 1992); of those, nitrate is the form 
of nitrogen most easily used by plants and algae and is the 
most common ion in many oxygen-rich waters because the 

nitrite ion is more unstable than nitrate and is easily oxidized 
to nitrate. The large increase in use of nitrogen fertilizers on 
agricultural land in recent decades prompted concern about 
nitrate-concentration increases in surface- and groundwater 
(Hem, 1992). Nitrate contamination of groundwater used for 
drinking water, particularly shallow wells in agricultural areas 
with large amounts of fertilizer and manure applications, is a 
human-health concern (Dubrovsky and others, 2010). Large 
(>10 mg/L) nitrate concentrations in drinking water can cause 
adverse health effects for humans, such as methemoglobin-
emia, a condition also known as “blue baby syndrome.” This 
condition restricts the oxygen-carrying capacity of the blood in 
infants and may be fatal (Walton, 1951; Camargo and Alonso, 
2006; U.S. Environmental Protection Agency, 2009). Con-
sumption of nitrate and nitrite in drinking water also has been 
implicated in other human-health problems, including specific 
cancers and reproductive problems; however, more research 
is needed to confirm associations (Ward and others, 2005; 
Dubrovsky and others, 2010). Nitrate is the primary nutrient of 
most concern for the Equus Beds aquifer (Ziegler and others, 
1999) and often exceeds the EPA MCL of 10 mg/L (U.S. Envi-
ronmental Protection Agency, 2009; Ziegler and others, 2010; 
Tappa and others, 2015; Stone and others, 2016). Nitrate 
in two phase II recharge wells in the study area decreased 
substantially from a prerecharge exceedance of the MCL to a 
postrecharge nonexceedance (Stone and others, 2016).

Mean shallow IW nitrate plus nitrite (hereafter referred 
to as “nitrate” for consistency with previous studies) was sub-
stantially larger (3.79 mg/L) than mean deep IW nitrate (0.48 
mg/L; table 5), which is common in the Equus Beds aquifer 
and the central High Plains aquifer (Spruill, 1982; Townsend 
and Young, 2000; Pope and others, 2001, 2002; Ziegler and 
others, 2010; Tappa and others, 2015; Stone and others, 2016). 
Shallow IW nitrate ranged from <0.02 to 42.6 mg/L and deep 
IW nitrate ranged from <0.02 to 11.3 mg/L (table 5). About 
15 percent of shallow and <1 percent of deep IW nitrate-
sample concentrations exceeded the MCL during 2001 through 
2016. Mean shallow IW nitrate concentrations exceeding the 
MCL were in the northeastern and southeastern parts of the 
study area (fig. 8A); mean deep IW nitrate concentrations 
did not exceed the MCL during 2001 through 2016 (fig. 8B). 
Shallow IW nitrate distribution in the Equus Beds aquifer 
was similar to that reported in Ziegler and others (2010) and 
Tappa and others (2015) during 1995 through 2005 and 2006 
through 2012, respectively. Larger mean nitrate concentrations 
that were in the southeastern part of the study area are in the 
area having larger effective porosity (Ziegler and others, 2010; 
Tappa and others, 2015) and were likely the result of more 
rapid percolation from agricultural land uses and geochemical 
controls. Nitrate from fertilizer runoff, feedlots, and sewage 
lagoons is more likely to increase concentrations in the shal-
low parts of the aquifer. Reducing conditions for microbial 
denitrification (conversion of nitrate to nitrogen gas; ORP 
<50 mV) are rare in the shallow parts of the aquifer on average 
(fig. 4A; Tappa and others, 2015). Smaller nitrate concentra-
tions in the deeper parts of the aquifer may be a result of more 
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Figure 5.  Mean bromide concentrations in the Equus Beds aquifer, 2001–16, south-central Kansas. A, shallow (depths below land 
surface less than or equal to 80 feet) wells. B, deep (depths below land surface greater than 80 feet) wells.
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Figure 6.  Mean chloride concentrations in the Equus Beds aquifer, 2001–16, south-central Kansas. A, shallow (depths below land 
surface less than or equal to 80 feet) wells. B, deep (depths below land surface greater than 80 feet) wells.
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Figure 7.  Mean sulfate concentrations in the Equus Beds aquifer, 2001–16, south-central Kansas. A, shallow (depths below land 
surface less than or equal to 80 feet) wells. B, deep (depths below land surface greater than 80 feet) wells.
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Figure 8.  Mean nitrate plus nitrite concentrations in the Equus Beds aquifer, 2001–16, south-central Kansas. A, shallow (depths 
below land surface less than or equal to 80 feet) wells. B, deep (depths below land surface greater than 80 feet) wells.
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reducing conditions (smaller ORP values); however, the mean 
ORPs in the study area were still above 50 mV in all IWs 
(figs. 4B and 9A, B). One shallow IW nitrate concentration 
(42.6 mg/L) in well IW33S (fig. 8A; table 5) in 2016 exceeded 
the range reported by Ziegler and others (2010) during 1995 
through 2005 by 56 percent. Five deep IW nitrate concentra-
tions (9.98 to 11.3 mg/L) during this study exceeded the range 
reported by Ziegler and others (2010) by about 4 to 16 percent 
and all in IW36D (fig. 8B).

Nitrite is unstable in oxygenated water and generally 
constitutes a small fraction of the dissolved nitrogen species. 
Nitrite has an EPA MCL of 1 mg/L and also is associated 
with potential health effects including “blue baby syndrome” 
(U.S. Environmental Protection Agency, 2009; ingested nitrate 
is reduced to nitrite, which binds to hemoglobin to form met-
hemoglobin and interferes with the oxygen-carrying capacity 
of blood). Nitrite was detected in 7 percent of shallow and 
deep IWs during the study period (table 5). Shallow IW nitrite 
ranged from <0.02 to 3.52 mg/L (table 5) and exceeded the 
MCL in two samples from 2002 (<1 percent of samples). Deep 
IW nitrite ranged from <0.01 to 0.48 mg/L and never exceeded 
the MCL (table 5). Two deep IW nitrite concentrations during 
2001 through 2016 exceeded the range reported by Ziegler and 
others (2010) during 1995 through 2005 by 64 and 82 percent 
in IW29D and IW33D (fig. 1), respectively, in 2012.

Organic material in natural water is composed of liv-
ing and senescent organisms, cellular exudates, and degraded 
detrital material (Aiken, 2002). An important artificial-recharge 
concern is the introduction of potentially reactive organic 
material into an aquifer (Aiken, 2002). Organic carbon is a 
constituent of interest for ASR operations because of its role in 
trihalomethanes formation during the water-treatment process. 
Trihalomethanes are disinfection byproducts that are formed 
when naturally existing inorganic and organic materials in 
water react with the disinfectants chlorine and chloramine. 
Trihalomethanes can cause liver, kidney, and central nervous 
system problems and are cancer-causing agents (U.S. Environ-
mental Protection Agency, 2005; Pyne and others, 1996). An 
additional concern regarding organic-carbon concentration is 
the potential for decreased oxygen because of higher respira-
tion rates that subsequently lead to increased arsenic concentra-
tions in groundwater. Dissolved and total organic carbon sig-
nificantly increased in two Equus Beds aquifer phase II wells 
after the onset of recharge activity (Stone and others, 2016), but 
the increased concentrations were within the range of concen-
trations for organic carbon reported for the aquifer (Tappa and 
others, 2015). Mean organic carbon concentrations were larger 
in the shallow parts of the aquifer. Mean shallow IW dissolved 
and total organic-carbon concentrations were 53 percent larger 
than deep IW concentrations (table 5). Shallow and deep 
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IW dissolved organic carbon ranged from 0.40 to 10.8 mg/L 
(mean equals 1.15 mg/L) and <0.3 to 1.7 mg/L (mean equals 
0.75 mg/L; table 5), respectively. Shallow and deep IW dis-
solved total organic carbon ranged from 0.30 to 10.8 mg/L 
(mean equals 1.10 mg/L) and <0.2 to 4.3 mg/L (mean equals 
0.72 mg/L; table 5), respectively. Two shallow IW total 
organic-carbon concentrations from IW04S (fig. 1) in 2014 and 
2016 exceeded the range previously reported by Ziegler and 
others (2010) during 1995 through 2005 by 23 and 17 percent 
in 2014 and 2016, respectively.

Coliform Bacteria and Viral Indicators

E. coli and fecal coliform bacteria are types of coliform 
bacteria that are generally specific to fecal material from 
homeotherms and are common types of bacteria used as patho-
gen indicators. The presence of E. coli, fecal coliform bacteria, 
or both indicates that water may be contaminated with human 
or animal wastes and may indicate that other harmful bacteria or 
viruses are present (Dufour and others, 1981; Dufour, 1984) and 
are often called indicator bacteria. The presence of these indica-
tor bacteria implies the potential for pathogens that may cause 
diarrhea, nausea, headaches, and abdominal cramps and may 
pose a particular health risk for infants, young children, and 
people with compromised immune systems (U.S. Environmen-
tal Protection Agency, 2009). Indicator bacteria are transported 
into water from a variety of sources including farms, yards, 
septic systems, sewer pipes, and wastewater treatment plants.

The EPA MCL for E. coli and fecal coliform bacteria in 
drinking water requires repeated samples if a sample contains 
E. coli or fecal coliform bacteria; an acute MCL violation 
occurs if any repeat sample contains total coliform bacteria 
(U.S. Environmental Protection Agency, 2009). The EPA MCL 
for total coliform bacteria requires that no more than 5 percent 
of samples test positive during 1 month for water systems that 
collect at least 40 routine samples per month (U.S. Environ-
mental Protection Agency, 2009). The EPA also has an MCLG 
for total coliforms of 0 cfu/100 mL (U.S. Environmental Pro-
tection Agency, 2013). E. coli was detected in 3 percent of shal-
low and deep IWs and had maxima of 37 and 130 cfu/100 mL, 
respectively (table 6). Most E. coli detections were at or near 
the detection limit. Fecal coliforms were detected in 8 percent 
of shallow IWs and 6 percent of deep IWs and had maxima of 
360 and 81 cfu/100 mL, respectively (table 6). Most fecal coli-
form detections were at or near the detection limit. Total coli-
forms were detected in 24 percent of shallow IWs and 12 per-
cent of deep IWs and had maxima of 370 and 84 cfu/100 mL, 
respectively (table 6). Bacteria detections in the first samples 
collected from the wells after they were developed may be 
related to drilling and bacteria may be detected more com-
monly in water from wells associated with recharge sites. Some 
E. coli and fecal coliform bacteria detections exceeded the 
ranges reported by Ziegler and others (2010); however, bacteria 
reaching groundwater are expected to die off because of lower 
concentrations of dissolved oxygen in groundwater.

E. coli coliphage is a viral indicator because it is a virus 
that infects coliform bacteria and, therefore, is an indicator 
of possible fecal contamination. Large densities of E. coli 
coliphage have been detected in treated surface water used 
for ASR project recharge (Garinger and others, 2011). E. coli 
coliphage was detected in two shallow IW samples (1 percent 
of samples) at the detection limit and was not detected in deep 
IW samples during 2001 through 2016.

Iron-Related, Slime-Forming, and Sulfate-
Reducing Bacteria

Iron-related, slime-forming, and sulfate-reducing bacteria 
(Cullimore, 2007) are a natural part of the environment and 
multiply under suitable growth conditions. These bacteria are 
of interest because they may enter an aquifer through wells 
or other surface interactions. Iron-related bacteria use iron 
in their metabolism and grow optimally in water with large 
iron content. Iron-related bacteria tend to colonize on well 
and pump surfaces, can cause slime and unpleasant odors and 
tastes, and may deposit iron oxide on surfaces or produce cor-
rosive acids. Many iron-related bacteria can grow in aerobic or 
anaerobic environments by substituting nitrate for oxygen dur-
ing metabolism. Slime-forming bacteria can produce extracel-
lular polysaccharide polymers that act as a foundation for bio-
film (slime) formation. The biofilm supports iron-related and 
sulfate-reducing bacterial growth. Sulfate-reducing bacteria 
reduce sulfate for energy primarily in anaerobic and reducing 
conditions. Hydrogen sulfide is a byproduct of sulfate-reduc-
ing bacteria metabolism (Cullimore, 2007). Iron-related bac-
teria and sulfate-reducing bacteria were commonly detected 
in Equus Beds aquifer phase I and II wells, and slime-forming 
bacteria substantially increased in two phase II recharge wells 
after the onset of ASR activity (Garinger and others, 2011; 
Stone and others, 2016). Differences in water-quality microbi-
ology may lead to changes in dominant bacterial populations 
that may subsequently lead to formation and expansion in 
populations that cause bioplugging and other unwanted effects.

Bacteria detections commonly were larger in the shallow 
part of the Equus Beds aquifer (Garinger and others, 2011; 
Stone and others, 2016). Mean iron-related, slime-forming, 
and sulfate-reducing bacteria densities in shallow IWs were 
87, 64, and 919 percent larger, respectively, than mean 
densities in deep IWs during the study. Iron-related bacteria 
were detected in 93 percent of shallow IWs and 85 percent 
of deep IW samples and ranged from <1 to 35,000 colony 
forming units per milliliter (cfu/mL) for shallow (mean 
equals 8,910 cfu/mL) and deep (mean equals 4,760 cfu/
mL) IWs (table 6). Slime-forming bacteria were detected in 
96 percent of shallow and 92 percent of deep IW samples 
and ranged from <1 to 1,800,000 cfu/mL for shallow (mean 
equals 286,700 cfu/mL) and deep (mean equals174,880 cfu/
mL) IWs (table 6). Sulfate-reducing bacteria were detected in 
40 percent of shallow and 28 percent of deep IW samples and 
ranged from <1 to 700,000 cfu/mL in shallow (mean equals 
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17,910 cfu/mL) and <1 to 100,000 cfu/mL in deep (mean 
equals 1,760 cfu/mL) IWs (table 6).

Trace Elements and Associated Compounds

Iron, manganese, and arsenic are trace elements of particu-
lar concern in the Equus Beds aquifer (Ziegler and others, 2010; 
Tappa and others, 2015; Stone and others, 2016). Concentra-
tions of iron, manganese, and arsenic frequently exceeded Fed-
eral criteria in the study area (Ziegler and others, 2010; Tappa 
and others, 2015; Stone and others, 2016). Iron and manganese 
precipitates can plug wells and give water an undesirable taste 
and color, and arsenic is a carcinogen. Infiltration of stream or 
treated water into the Equus Beds aquifer by artificial recharge 
operations could cause precipitation of iron and manganese 
minerals from groundwater and affect the mobility of dissolved 
arsenic. Nickel significantly increased and selenium signifi-
cantly decreased in two Equus Beds aquifer phase II wells after 
the onset of ASR activity (Stone and others, 2016).

Trace Element Detections and Exceedances
Trace elements that were detected in 20 percent or more 

of the groundwater samples included barium, cadmium, iron, 
manganese, nickel, strontium, zinc, boron, and selenium 
(table 7). Several trace elements with EPA MCLs, SMCLs, or 
TTs were detected during the study. Those that were detected 
but did not exceed their respective criteria were barium, cad-
mium, chromium, copper, lead, mercury, silver, thallium, zinc, 
antimony, and selenium (table 7). The MCL for beryllium 
is 4 µg/L; potential health effects include intestinal lesions 
(U.S. Environmental Protection Agency, 2009). Beryllium was 
detected in 2 percent of samples, ranged from <0.6 to 9 µg/L 
in shallow IWs (table 7), and exceeded the MCL in 6 samples 
in shallow and deep IWs in the southern part of the study area.

Iron
Iron in water is derived from rocks and soils (Hem, 

1992). Water with excessive concentrations of iron is unpal-
atable because of odor, a metallic taste, and rusty color. The 
EPA SMCL for iron is 300 µg/L (U.S. Environmental Protec-
tion Agency, 2009). Iron forms red oxyhydroxide precipitates 
in water that can stain laundry and plumbing fixtures and 
causes corrosion at concentrations exceeding the SMCL. Iron 
becomes more soluble in water at low pH and ORP values. 
Bacterial activity may also affect iron concentrations (Hem, 
1992) and can be a concern for artificial-recharge activi-
ties. Adding oxygenated water could favor bacterial activity 
that could produce biofilms, clog well screens, and decrease 
injection-well efficiency (Schmidt and others, 2007).

Dissolved iron concentrations are commonly larger in 
the shallow part of the Equus Beds aquifer than in the deep 
part (Ziegler and others, 2010; Tappa and others, 2015). 
Iron was detected in 51 percent of shallow IW samples and 

62 percent of deep IW samples during 2001 through 2016 
(table 7). Dissolved iron concentrations ranged from <5 to 
40,700 µg/L (mean equals 2,437 µg/L) in shallow IWs and 
<5 to 17,900 µg/L (mean equals 1,441 µg/L) in deep IWs 
during 2001 through 2016 (table 7) and were within the 
ranges reported by Ziegler and others (2010) and Tappa and 
others (2015). Dissolved iron concentrations exceeded the 
SMCL in 38 percent of shallow IWs and 46 percent of deep 
IWs. Dissolved-iron concentrations were largest mostly in 
the central and northwest part of the study area (figs. 10A, B). 
Hathaway and others (1981), Ziegler and others (2010), and 
Tappa and others (2015) reported similar iron distribution in 
the aquifer during 1979 through 1980, 1995 through 2005, and 
2006 through 2012, respectively.

Dissolved iron in the Equus Beds aquifer most likely is 
present naturally from pyrite oxidation in aquifer clay (Ziegler 
and others, 2010). Substantially large (>3,000 µg/L) iron 
concentrations in the shallow parts of the aquifer are associ-
ated with areas of larger water-level declines and subsequent 
recovery (Tappa and others, 2015) and have been attributed to 
oxidation of the aquifer material during the drawdown period. 
Ferric oxyhydroxides formed during dewatering are likely 
reduced after an increase in water levels, thereby increasing 
dissolved-iron concentrations (Tappa and others, 2015). The 
distribution of large iron concentrations (fig. 10A) was similar 
to that of large sulfate concentrations (fig. 6A), indicating 
likely pyrite oxidation during dewatering.

Manganese
Manganese originates from rocks and soil (Hem, 1992). 

The EPA SMCL for manganese is 50 µg/L (U.S. Environmen-
tal Protection Agency, 2009). Drinking water may have a bitter 
metallic taste, a black-to-brown color, and cause black staining 
on plumbing fixtures at manganese concentrations larger than 
the SMCL (U.S. Environmental Protection Agency, 2009). 
Dissolved manganese concentrations in the Equus Beds aqui-
fer concentrations often exceed the SMCL (Ziegler and others, 
2010; Tappa and others, 2015) and increased substantially in 
two phase II deep wells after the onset of phase II recharge 
activities in the study area (Stone and others, 2016).

Shallow IW dissolved manganese concentrations ranged 
from <1 to 1,660 µg/L (mean equals 279 µg/L), and deep 
IW dissolved manganese concentrations ranged from <1 to 
1,640 µg/L (mean equals 440 µg/L) during 2001 through 
2016 (table 7). About 55 percent of shallow IW samples and 
92 percent of deep IW samples exceeded the SMCL during the 
study period. Shallow and deep IWs had dissolved manga-
nese concentrations that exceeded those recorded in Ziegler 
and others (2010) and Tappa and others (2015): shallow IW 
dissolved-manganese concentrations (1,630 to 1,660 µg/L) 
exceeded previously reported maxima by about 9 to 11 per-
cent, and deep IW dissolved-manganese concentrations 
(1,580 to 1,640 µg/L) exceeded previously reported maxima 
by about 7 to 11 percent (Ziegler and others, 2010; Tappa 
and others, 2015). Almost all the central and northern parts 
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of the study area had mean dissolved-manganese concentra-
tions that exceeded the SMCL in the shallow parts of the 
aquifer (fig. 11A). Mean dissolved-manganese concentrations 
in the shallow part of the aquifer were substantially large 
(>1,000 μg/L) in wells near the Little Arkansas River and 
in the central part of the study area (fig. 11A). Most of the 
study area had mean dissolved manganese concentrations that 
exceeded the SMCL in the deep part of the aquifer (fig. 11B). 
Mean dissolved manganese concentrations in the deep part 
of the aquifer were substantially large (>1,000 μg/L) in wells 
along the Little Arkansas River, in the central part of the study 
area, and near Burrton, Kans. (fig. 11B). Manganese-concen-
tration distributions in the shallow and deep parts of the Equus 
Beds aquifer are similar to those reported in Ziegler and others 
(2010) and Tappa and others (2015).

Arsenic Species
Arsenic is present naturally in clay layers associated with 

iron sulfide minerals (Hem, 1992) and is also a health concern 
in drinking water because it causes skin damage, affects the 
circulatory system, increases cancer risk, and is linked with 
diabetes and H1N1 viral susceptibility (Kozul and others, 
2009; U.S. Environmental Protection Agency, 2009). The EPA 
MCL for arsenic is 10 µg/L (U.S. Environmental Protection 
Agency, 2009). Concentrations of arsenic in groundwater are 
widespread and large (>10 μg/L) in aquifers in the western 
United States, the Great Lakes region, and New England 
(Ryker, 2003). Nationally, arsenic in groundwater exceeded 
the MCL in 10 percent of samples, and these exceedances 
were more frequent in the western United States (Welch and 
others, 2000). Arsenic mobility is generally controlled by 
adsorption and desorption reactions and solid-phase pre-
cipitation and dissolution reactions (Hem, 1992; Hinkle and 
Polette, 1999; Smedley and Kinniburgh, 2002; McMahon and 
Chapelle, 2008). These processes are affected by pH, oxida-
tion/reduction reactions, and competing anion presence, all of 
which could be altered because of artificial recharge activities. 
Groundwater pH often naturally increases with time because 
of free hydrogen ion consumption during water-bedrock inter-
actions, particularly in systems with long residence times.

The oxidation state in which arsenic occurs has an impor-
tant effect on its mobility and toxicity. Arsenic is generally 
present in most groundwaters as arsenate or arsenite (Stol-
lenwerk, 2003). Arsenate (pentavalent arsenic oxidative state; 
As5+; H2AsO4

−) is dominant under oxidizing conditions and pH 
values between 3 and 7. Arsenite (trivalent arsenic oxidative 
state; As3+; HAsO2) is dominant under more moderately reduc-
ing conditions. Arsenite is considered more toxic and more 
difficult to remove from water than arsenate (U.S. Environ-
mental Protection Agency, 2001b). If conditions are favorable, 
biomethylation can form a variety of methylated species of 
arsenate and arsenite, including the most toxic species of arse-
nic dimethylarsinate and monomethylarsonate.

Arsenic is a constituent of concern in the Equus Beds 
aquifer and commonly is present at concentrations that exceed 

the MCL in the shallow and deep parts of the aquifer (Ziegler 
and others, 2010; Tappa and others, 2015). Ziegler and others 
(2010) developed linear regression relations between IW arse-
nic and ORP in the study area; ORP was useful in estimating 
dissolved arsenic concentrations and explained about 60 per-
cent of the variability in dissolved arsenic concentrations in 
groundwater. Dissolved arsenic concentrations did not seem 
to be affected by phase I recharge activities (Garinger and oth-
ers, 2011); however, dissolved arsenic concentrations in two 
shallow phase II wells increased significantly after the onset of 
phase II ASR activity (Stone and others, 2016).

Arsenic-species concentrations generally were larger 
in the deep parts of the aquifer during the study (table 8). 
Shallow IW dissolved arsenic concentrations ranged from 
<1.0 to 55.0 µg/L (mean equals 3.83 µg/L), and deep IW dis-
solved arsenic concentrations ranged from <1.0 to 23.9 µg/L 
(mean equals 7.43 µg/L) during 2001 through 2016 (table 8). 
Dissolved arsenic concentrations did not exceed the ranges 
reported by Ziegler and others (2010) and Tappa and others 
(2015). About 12 percent of shallow IW dissolved arsenic 
concentrations and 34 percent of deep IW dissolved arsenic 
concentrations exceeded the MCL. Shallow IW dissolved arse-
nic concentrations were larger near the Little Arkansas River 
and the center of the study area (fig. 12A). Large shallow IW 
dissolved arsenic concentrations in the central part of the study 
area correspond to areas that have had the most water-level 
recovery since the historical low in 1993 (Hansen and others, 
2014; Whisnant and others, 2015; Klager, 2016). Deep IW 
dissolved arsenic concentrations were larger near the central 
western part of the study area and near the eastern side of the 
study area along the Little Arkansas River (fig. 12B).

Behavior of stable forms of arsenic (arsenate and arsenite 
oxyanions) is related to pH and ORP (Hem, 1992). Arsenite 
tends to be the dominant form in the Midwest (Korte, 1991; 
Kim and others, 2003; Sorg and others, 2014) and was the 
dominant form on average in shallow (52 percent) and deep 
(55 percent) IWs in this study. Mean arsenate percent domi-
nance was 40 percent in shallow IWs and 39 percent in deep 
IWs. Dissolved arsenite concentrations increased with increas-
ing depths to water levels in shallow IWs (fig. 9B). Mean dis-
solved arsenic concentration exceeded the MCL at water-level 
depths greater than 40 ft (fig. 9B). Dissolved arsenate concen-
trations remained relatively small (<1.5 µg/L) at water-level 
depths less than 40 ft and increased to greater than 5.0 µg/L 
at water-level depths greater than 40 ft (fig. 9B). Dimethyl-
arsinate was detected in 11 percent of shallow IW samples and 
20 percent of deep IW samples, and monomethylarsonate was 
detected in 10 percent of shallow IW samples and 15 percent 
of deep IW samples (table 8), suggesting some small amount 
of arsenic methylation in the Equus Beds aquifer.

Larger dissolved-arsenic concentrations in the shallow 
parts of the aquifer are associated with increased water-
level depth and a subsequent decrease in ORP (more reduc-
ing conditions; figs. 9B and 13A, B). Groundwater with an 
increased reducing potential (ORP values <250 mV) can 
result in the release of arsenic from aquifer materials, such as 
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Figure 12.  Mean dissolved arsenic concentrations in the Equus Beds aquifer, 2001–16, south-central Kansas. A, shallow (depth 
below land surface equal to or less than 80 feet) wells. B, deep (depth below land surface greater than 80 feet) wells.
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arsenic sorbed onto ferric oxyhydroxides that become unstable 
under reducing conditions. As previously mentioned, shallow 
parts of the aquifer were subjected to substantial dewatering 
between about 1940 to the early 1990s and likely resulted 
in oxidation of pyrite and formation of ferric oxyhydroxides 
(Tappa and others, 2015) that in subsequent years are being 
chemically reduced and dissolved as water levels have risen 
since 1993. The mean dissolved-arsenic concentrations above 
the 10 µg/L MCL in the central part of the study area near 
wells IW15S and IW20S (fig. 12A) generally coincide with the 
area of increased mean sulfate and dissolved-iron concentra-
tions (figs. 7A, 10A) and could be related to this same mecha-
nism. However, larger mean dissolved-arsenic concentrations 
in areas such as well IW07S and IW11S (fig. 12A) that are 
slightly smaller than the MCL are not associated with larger 
dissolved iron or sulfate concentrations; however, these well 
are near recharge well sites (fig. 1) and the increased dissolved 
arsenic could be related to artificial recharge.

Redox conditions in groundwater wells can change rapidly 
in response to groundwater withdrawals (Gotkowitz and others, 
2004) and water-level decreases caused by large or variable 
pumping can cause increases in arsenic concentrations (Ayotte 

and others, 2011, 2015). Groundwater withdrawal for irrigation 
or municipal use in the Equus Beds aquifer that decrease water 
levels likely result in larger arsenic concentrations in the shal-
low part of the aquifer because of subsequent ORP changes. 
Increased arsenic concentrations resulting from its mobilization 
because of artificial recharge have been observed in the United 
States in California, Florida, Idaho, Montana, and Wisconsin, 
as well as in Australia, China, Germany, and The Netherlands 
(Neil and others, 2012). Artificial recharge can cause arsenic 
mobilization if oxygenated water is recharged (Neil and others, 
2012). Stone and others (2016) reported increased dissolved 
oxygen in two shallow wells in the study area caused by artifi-
cial recharge of Little Arkansas River water containing larger 
dissolved-oxygen concentrations; however, elevated dissolved-
oxygen concentrations recovered to concentrations similar to 
or smaller than those before recharge began. Effects of artificial 
recharge on arsenic concentrations in the Equus Beds aquifer 
can be minimized by maintaining the ORPs near pre-ASR 
activity values (Schmidt and others, 2007). Artificial recharge 
may help ameliorate large arsenic concentrations by creating a 
less reducing geochemical environment in the deep parts of the 
Equus Beds aquifer (Ziegler and others, 2010).
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Organic Compounds

Many of the organic compounds detected in the Equus 
Beds aquifer are pesticides (Tappa and others, 2015; Stone 
and others, 2016) that infiltrate into the aquifer from field 
application. Atrazine is a primary constituent of concern in the 
study area (Ziegler and others, 1999). Atrazine is an herbi-
cide commonly used on corn and sorghum, crops commonly 
grown in the study area. Atrazine can cause cardiovascular 
system or reproductive problems (U.S. Environmental Protec-
tion Agency, 2009). The EPA MCL for atrazine is 3.0 µg/L 
(U.S. Environmental Protection Agency, 2009). Concentra-
tions of atrazine in water from some Equus Beds aquifer 
shallow groundwater wells increased minimally after artificial 
recharge but did not exceed the MCL (Ziegler and others, 
1999; Stone and others, 2016).

Organic compounds that were detected in less than 
20 percent of samples and did not exceed their MCL included 
alachlor (herbicide from chloroacetanilide family; detected 
in 2 percent of shallow and 1 percent of deep IW samples; 
MCL=2 µg/L), benzo[a]pyrene (a polycyclic aromatic 
hydrocarbon detected in 2 percent of deep IW samples; 
MCL=0.2 µg/L), carbofuran (a carbamate pesticide; detected 
in 1 percent of deep IW samples; MCL=40 µg/L), 2,4-D 
(an herbicide; detected in 1 percent of shallow and deep 
IW samples; MCL=70 µg/L), 1,2-dichloroethane (a chlo-
rinated hydrocarbon; detected in 3 percent of shallow and 
5 percent of deep IW samples; MCL=5 µg/L), glyphosate 
(an herbicide; detected in 4 percent of shallow IW samples; 
MCL=700 µg/L), picloram (an herbicide; detected in 2 per-
cent of shallow IW samples; MCL=500 µg/L), and simazine 
(a triazine herbicide parent compound; detected in 4 percent 
of shallow and 1 percent of deep IW samples; MCL=4 µg/L; 
table 9; U.S. Environmental Protection Agency, 2009). Shal-
low IW organic compounds that were detected in greater than 
20 percent of samples were herbicides and included atrazine 
(a triazine herbicide parent compound), three triazine degrada-
tion products (2-chloro-4-isopropylamino-6-amino-s-triazine 
[also known as deethylatrazine or CIAT], 2-chloro-6-ethyl-
amino-4-amino-s-triazine [also known as deisopropylatrazine 
or CEAT], and 2-hydroxy-4-isopropylamino-6-ethylamino-
s-triazine [also known as hydroxyatrazine or OIET]), and 
metolachlor (a member of the chloroacetanilide family of 
herbicides, table 9). Deep IW pesticides that were detected in 
greater than 20 percent of samples were atrazine and 2-chloro-
4-isopropylamino-6-amino-s-triazine (table 9).

Atrazine was detected in about 58 percent of shallow 
IWs and about 28 percent of deep IWs during 2001 through 
2016 (table 9). Atrazine ranged from <0.006 to 2.280 µg/L 
(mean equals 0.062 µg/L) in shallow IWs and from <0.007 to 
0.090 µg/L (mean equals 0.009 µg/L) in deep IWs (table 9). 
The MCL for atrazine was not exceeded in groundwater IWs 
during the study (table 9). One shallow IW sample from 2016 
had an atrazine concentration of 2.280 µg/L that exceeded the 
maximum reported in Ziegler and others (2010) and Tappa and 
others (2015) during 1995 through 2012 by about 66 percent. 

Atrazine concentrations in shallow IWs generally were largest 
in the northwest part of the study area near the North Branch 
Kisiwa Creek (fig. 1), and atrazine concentrations in deep IWs 
generally were largest most often in the southern part of the 
study area. Atrazine distributions in the shallow parts of the 
Equus Beds aquifer are similar to those reported in Ziegler and 
others (2010) and Tappa and others (2015).

Radioactivity

The α and gross-β activity measurements are used in 
drinking-water regulations as a general screening tool to 
indicate the need for additional analysis of specific radionu-
clides. The EPA MCL for α radioactivity is 15 picocuries per 
liter (pCi/L; U.S. Environmental Protection Agency, 2009). 
Gross-β radioactivity significantly increased after phase II 
recharge-activity onset in 2 shallow and 2 deep groundwater 
wells in the study area (Stone and others, 2016).

Radioactivity measurements generally were larger in the 
shallow part of the Equus Beds aquifer (table 10; figs. 14A, 
B). The α radioactivity (Th-230 curve) ranged from <0.1 to 
84 pCi/L (mean equals 4.5 pCi/L) in shallow IWs and <0.1 to 
15 pCi/L (mean equals 2.6 pCi/L) in deep IWs during 2001 
through 2016 (table 10). The α radioactivity measurements 
exceeded the MCL in 4 percent of shallow IW samples, 
whereas no deep IW measurements exceed the MCL during 
the study. Exceedances in α radioactivity shallow IWs were 
in the southern one-third of the study area, particularly near 
IW18S (fig. 14A). Gross-β radioactivity (Cs-137 curve) ranged 
from 0.50 to 44 pCi/L (mean equals 6.3 pCi/L) in shallow IWs 
and 1.20 to 17 pCi/L (mean equals 5.0 pCi/L) in deep IWs 
during the study (table 10). Gross-β radioactivity in shallow 
IWs generally were larger in the southern one-third of the 
study area. One shallow IW and two deep IW α radioactivity 
measurements (collected during 2008 and during 2007 and 
2009, respectively) exceeded the IW range reported by Ziegler 
and others (2010) during 1995 through 2005. Gross-β radio-
activity measurements did not exceed the ranges reported for 
IWs during 1995 through 2005 by Ziegler and others (2010). 

Geochemistry

Groundwater samples were assessed for a change in 
saturation index (SI), particularly near or across the equilibrium 
threshold of SI near zero. A mineral SI is calculated as the log 
of the ion-activity product of a water sample, divided by the 
solubility product for the mineral and indicates the extent of dis-
equilibrium with respect to the mineral (Parkhurst and Appelo, 
2013). The equilibrium state only describes the potential for dis-
solution (negative SI) and precipitation (positive SI), but reac-
tion kinetics and interaction among other constituents also affect 
whether minerals precipitate or dissolve. As such, a mineral is 
of interest if it has relatively short reaction times (fast kinet-
ics) and if the SI changes across equilibrium during the study 
period (for example, minerals for which the SI range includes 
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negative and positive numbers). Saturation equilibrium for 
many minerals is closely and positively related to pH across 
the range of sample conditions. Minerals of most importance 
determined by predominant water types for the Equus Beds 
aquifer include the carbonate minerals calcite and dolomite 
and iron hydroxides (Schmidt and others, 2007). Schmidt and 
others (2007) and Garinger and others (2011) reported chemi-
cal precipitation of calcite and iron oxyhydroxide as likely to 
occur during recharge activity in the study area and the poten-
tial increase of iron bacteria may combine to cause reduced 
efficiency of recharge wells. SI values for calcite, iron (III) 
hydroxide, iron (II) hydroxide, hydroxyapatite, and manganite 
increased during phase I and II recharge activities (Garinger 
and others, 2011; Stone and others, 2016). Chemical weather-
ing in the shallow parts of two phase II wells in the study area 
may be accelerated because of increased water temperatures 
and because the aquifer is more vulnerable to clogged pores 
and mineral dissolution as the equilibrium state is affected by 
recharge and withdrawal (Stone and others, 2016).

SI values that were strongly and consistently negative or 
positive for groundwater samples indicate no change in overall 
equilibrium status regarding those specific minerals during 
the study. Most minerals had SI values that were consistently 
negative, whereas some minerals had SI values that were con-
sistently or typically positive such as iron oxide and hydroxide 
minerals [Fe(OH)2.7Cl0.3, goethite, hematite, and magnetite] 
and quartz group minerals (chalcedony and quartz; table 11). 
Undersaturation (negative SI) of metal-bearing minerals can 
indicate potential for release of metals such as arsenic and 
manganese, which are harmful in drinking water. Several SI 
values for arsenic- (arsenolite, arsenic pentoxide, calcium 
arsenate, claudetite, and scorodite) and manganese-bearing 
[hausmannite, manganese (III) sulfate, Mn3(AsO4)2·8H2O, 
manganese (II) phosphate, manganese (II) chloride tetrahy-
drate, manganese sulfate, pyrochroite, and rhodochrosite(d)] 
minerals were consistently negative in all the shallow and 
deep IWs during 2001 through 2016 (table 11).

Several carbonate minerals in shallow and deep IWs 
varied across their equilibrium state during 2001 through 2016 
and included aragonite, calcite, dolomite, dolomite (d), sider-
ite, and siderite(d) (table 11; figs. 15A, B). Shallow IW calcite 
SI values ranged from −3.60 to 0.27 (mean equals −0.71), and 
deep IW calcite SI values ranged from −1.33 to 0.84 (mean 
equals −0.21; table 11, figs. 15A, B). Calcite SI values were 
larger more often in the deep parts of the aquifer and did not 
show a clear distributional pattern. Mean and median calcite 
SI values for shallow and deep IWs were negative (undersatu-
rated) during the study period (table 11; figs. 15A, B), indicat-
ing the potential for calcite dissolution if calcite is present for 
a substantial part of the study period. However, some individ-
ual samples had positive calcite SI values (table 11; figs. 15A, 
B), indicating that calcite precipitation may occur in the study 

area; and artificial recharge activity has been shown to cause 
aquifer geochemistry to shift toward more oversaturated cal-
cite SI values (Schmidt and others, 2007; Garinger and others, 
2011; Stone and others, 2016) potentially resulting in forma-
tion of calcite mineral deposits that may reduce efficiency of 
injection wells.

Some manganese-bearing mineral SI values ranged from 
undersaturation to oversaturation in shallow and deep IWs 
during the study; these included birnessite, bixbyite, manga-
nite, manganese (II) hydrogen phosphate, nsutite, pyrolusite, 
and rhodochrosite (table 11; figs. 15A, B). Mean and median 
manganite SI values in the shallow and deep IWs were nega-
tive (undersaturated) during 2001 through 2016 (table 11; 
figs. 15A, B). Positive manganite SI values were not reported 
previously in phase I and II recharge wells (Garinger and oth-
ers, 2011; Stone and others, 2016), but, in this study, tended 
to occur in the southeast part of the study area, and manganite 
SI values tended to be strongly negative in the northeast and 
southern part of the study area. Manganite SI values increased 
in phase I recharge wells during artificial recharge in the study 
area likely because of the introduction of recharge water (Gar-
inger and others, 2011). Should manganite SI values continue 
to increase, manganite might begin to precipitate and contrib-
ute to clogging of aquifer pores.

Several phosphate minerals in shallow and deep IWs var-
ied across their equilibrium state during the study and included 
FCO3apatite, fluorapatite, hydroxyapatite, and vivianite 
(table 11; figs. 15A, B). Phosphate mineral SI values indicated 
undersaturation most of the time in shallow and deep IWs dur-
ing the study period, except for FCO3apatite, whose SI values 
usually indicated oversaturation (table 11, figs. 15A, B). Stone 
and others (2016) reported a shift from undersaturation toward 
equilibrium of phosphate minerals in two shallow phase II 
wells in the study area. Shallow IW dolomite SI values were 
negative and ranged from negative to positive in the deep IWs 
during the study (table 11, figs. 15A, B). Schmidt and others 
(2007) and Stone and others (2016) reported groundwater 
dolomite values that were consistently negative in shallow and 
deep diversion and phase II wells in the study area.

SI values with respect to iron hydroxide varied across 
equilibria during the study and exceeded the minima and max-
ima previously recorded (table 11, figs. 15A, B; Schmidt and 
others, 2007; Garinger and others, 2011). Mean and median SI 
values with respect to iron hydroxide were undersaturated in 
shallow and deep IWs (table 11, figs. 15A, B). Positive SI indi-
ces indicated that, at times, groundwater in shallow and deep 
IWs was oversaturated with respect to iron hydroxide and 
there was potential for iron hydroxide precipitation. Schmidt 
and others (2007) determined that iron hydroxide is likely to 
chemically precipitate in the study area and that the potential 
for biofouling by iron-related bacteria exists when fully oxy-
genated treated stream water is injected into the aquifer.
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Summary and Conclusions
The city of Wichita’s water supply currently (2019) 

comes from two primary sources: Cheney Reservoir and the 
Equus Beds aquifer. The Equus Beds aquifer storage and 
recovery (ASR) project was developed to help the city of 
Wichita meet increasing future water demands. The ASR 
project pumps water out of the Little Arkansas River during 
above-base-flow conditions, treats it using National Primary 
Drinking Water Regulations as a guideline, and injects it into 
the Equus Beds aquifer for later use. The City of Wichita 
implemented the Equus Beds Groundwater Recharge Demon-
stration Project (GRDP) in 1995 to investigate the feasibility 
of using Little Arkansas River water to artificially recharge 
the aquifer. The City of Wichita proceeded with the Equus 
Beds ASR project after successfully implementing artificial 
recharge of the aquifer during the GRDP. The Equus Beds 
ASR project currently (2019) consists of two coexisting 
phases. Phase I began in 2007 and captures Little Arkansas 
River water and indirect streambank diversion well water for 
recharge activity with water injection in 4 wells and 2 recharge 
basins. Phase II began in 2013 and currently (2019) includes 
a surface-water treatment facility, a river intake facility, 
seven recharge injection wells, and a third recharge basin. 
The U.S. Geological Survey, in cooperation with the City of 
Wichita, completed this study to summarize water-quality and 
geochemical variability of the Equus Beds aquifer. Data in 
this report can be used to establish baseline conditions before 
further implementation of artificial aquifer recharge, document 
groundwater quality, evaluate changing conditions, identify 
environmental factors affecting groundwater, provide science-
based information for decision making, and help meet regula-
tory monitoring requirements.

Physicochemical properties were measured and water-
quality data were collected from 2 Little Arkansas River 
surface-water sites that bracketed a substantial part of the 
easternmost part of the Equus Beds aquifer and 63 Equus 
Beds aquifer groundwater sites during 2001 through 2016. 
Continuous streamflow was measured at the 2 surface-water 
sites and continuous water levels were measured at the shal-
low and deep parts of 2 index wells (IWs), 1 background well, 
the shallow and deep parts of 1 Phase I well, and the shal-
low and deep parts of 2 Phase II wells. Continuous surface-
water water-quality monitors measured water temperature, 
specific conductance, pH, dissolved oxygen, and turbidity at 
both surface-water sites, and the monitor at the downstream 
surface-water site measured nitrate plus nitrite and fluorescent 
dissolved organic matter (fDOM). Continuous groundwater-
quality monitors in the two shallow and two deep Phase II 
wells measured water temperature, specific conductance, pH/
oxidation-reduction potential (ORP), and dissolved oxygen, 
and the monitors in the shallow wells also measured fDOM. 
Discrete water-quality samples were collected from the 2 sur-
face-water sites, 76 areal assessment IWs (38 pairs each with a 
shallow and deep well), 6 background wells, 4 recharge wells 
(2 pairs each with a shallow and deep well), 6 Phase I wells 

(3 pairs each with a shallow and deep well), and 16 Phase II 
wells (8 pairs each with a shallow and deep well). Discretely 
collected samples were analyzed for physicochemical prop-
erties including dissolved solids, primary ions, nutrients 
(nitrogen and phosphorus species), organic carbon, indicator 
bacteria, trace elements, arsenic species, organic compounds, 
and radioactivity. Water chemistry data summary statistics 
were computed for the Little Arkansas River and the shallow 
and deep parts of the Equus Beds aquifer. Federal drinking-
water criteria were used to evaluate aquifer water quality. 
Water-quality constituents of interest also were quantified and 
compared with water-level data. Groundwater data were geo-
chemically modeled to describe the potential for precipitation 
and dissolution of minerals.

Continuous measurement of physicochemical properties 
in near-real time allowed characterization of Little Arkan-
sas River surface water during conditions and time scales 
that would not have been possible otherwise and served as a 
complement to discrete water-quality sampling. Surface-water 
physicochemical properties and water-quality constituents that 
may exceed Federal (U.S. Environmental Protection Agency 
[EPA]) drinking-water quality criteria and those that are of 
potential interest or concern for artificial recharge operations 
included streamflow, chloride, sulfate, nitrate plus nitrite, 
total coliform bacteria, iron, manganese, arsenic, and atrazine. 
Ranges for surface-water physicochemical properties and 
water-quality constituents of interest did not exceed historical 
(1995 through 2012) ranges in the study area during the study. 
During 2001 through 2016, less than (<) 1 percent of chlo-
ride and nitrate plus nitrite, 7 percent of iron, 48 percent of 
manganese, 12 percent of arsenic, and 39 percent of atrazine 
detections in surface-water samples exceeded their respective 
Federal criteria. None of the surface-water samples collected 
exceeded the sulfate Federal criterion and every sample had 
detections of total coliform bacteria during the study.

Continuous measurement of physicochemical proper-
ties in near-real time allowed characterization of Equus Beds 
aquifer groundwater during conditions and time scales that 
would not have been possible otherwise and served as a 
complement to discrete water-quality sampling. Groundwater 
physicochemical properties and water-quality constituents that 
exceeded Federal drinking-water quality criteria and those 
that are of potential interest or concern for artificial recharge 
operations included groundwater levels, specific conductance, 
ORP, dissolved solids, chloride, sulfate, nitrate plus nitrite, 
arsenic species, iron, manganese, atrazine, and bacterial (fecal 
coliform, Escherichia coli [E. coli], and total coliforms) and 
viral (E. coli coliphage) indicators.

Large groundwater specific conductance was measured 
along Kisiwa Creek and near the Arkansas River in the shal-
low and deep parts of the Equus Beds aquifer. Largest specific 
conductances were associated with past oil and gas activities 
in the shallow and deep parts of the aquifer near Burrton, Kan-
sas, and smaller specific conductances were in the northeast 
part of the study area in the shallow and deep parts of the aqui-
fer. Shallow IW ORP mean values indicated more oxidizing 
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conditions in the northern and southern (near the Arkansas 
River) parts of the study area and more reducing conditions 
along part of the Little Arkansas River. Deep IW ORP mean 
values were indicative of more oxidizing conditions in the 
southern one-third of the study area and more reducing condi-
tions in the northern part. Larger ORP values in the deep part 
of the aquifer tended to correspond to parts of the aquifer that 
had larger effective porosity.

About 54 percent of shallow and 56 percent of deep 
IW dissolved-solids samples exceeded the EPA secondary 
maximum contaminant level (SMCL) of 500 mg/L but did 
not exceed the historical ranges reported for the study area. 
The EPA SMCL for chloride is 250 mg/L, and chloride is of 
particular concern in the Equus Beds aquifer because of the 
chloride plume moving toward the city of Wichita’s well field 
regardless of pumping in the area. About 5 percent of shal-
low and 7 percent of deep IW chloride-sample concentrations 
exceeded the Federal criterion. Chloride exceedances tended 
to occur in shallow and deep wells along the Arkansas River 
and near Burrton, Kans. Chloride concentrations near Burrton 
were larger in the deep parts of the aquifer. About 18 percent 
of shallow and 13 percent of deep IW sulfate-sample concen-
trations exceeded the EPA sulfate SMCL of 250 mg/L. Wells 
with mean sulfate concentrations exceeding the Federal crite-
rion tended to be in the central part of the study area.

Fluoride never exceeded the EPA SMCL of 2.0 mg/L dur-
ing the study but was detected in nearly all (about 99 percent) 
groundwater IW samples. Several fluoride concentrations in 
groundwater were larger than the historical range reported for 
1995 through 2005 by about 8 to 48 percent. Chlorine was 
detected in about 6 percent of shallow IWs but did not exceed 
the EPA maximum residual disinfectant level (MRDL) of 
4.0 mg/L during the study.

Mean shallow IW nitrate plus nitrite (hereafter referred to 
as nitrate) was substantially larger than mean deep IW nitrate. 
About 15 percent of shallow and <1 percent of deep IW nitrate 
sample concentrations exceeded the EPA maximum contami-
nant level (MCL) of 10 mg/L. Shallow IW mean nitrate con-
centrations that exceeded the MCL were in the northeastern 
and southeastern parts of the study area; on average, deep IW 
nitrate concentrations did not exceed the MCL. Larger mean 
nitrate concentrations that were in the southeastern part of the 
study area are in the area that has larger effective porosity and 
were likely the result of more rapid percolation from agricul-
tural land uses and geochemical controls. Nitrite was detected 
in 7 percent of shallow and deep IWs and exceeded the EPA 
MCL of 1 mg/L in two shallow IW samples. Two deep IW 
nitrite concentrations from 2012 exceeded the historical range 
reported during 1995 through 2005 by 64 and 82 percent. Two 
shallow IW total organic carbon concentrations from 2014 
and 2016 exceeded the historical range reported during 1995 
through 2005 by 23 and 17 percent, respectively.

E. coli and fecal coliform bacteria detections were usu-
ally at or near the detection limit. E. coli was detected in 
3 percent of shallow and deep IWs and had maxima of 37 and 
130 colony forming units per 100 milliliters (cfu/100 mL), 

respectively. Fecal coliform bacteria were detected in 8 per-
cent of shallow IWs and 6 percent of deep IWs and had max-
ima of 360 and 81 cfu/100 mL, respectively. Total coliforms 
were detected in 24 percent of shallow and 12 percent of deep 
IWs and had maxima of 370 and 84 most probable number per 
100 milliliters (mpn/100 mL), respectively. Bacteria detections 
that occurred in the first samples collected from the wells after 
they were developed may be related to drilling. Some E. coli 
and fecal coliform bacteria detections exceeded the historical 
ranges reported during 1995 to 2005. E. coli coliphage was 
detected in two shallow IW samples (1 percent of samples) at 
the detection limit and was not detected in deep IW samples. 
Iron-related, slime-forming, and sulfate-reducing bacteria 
densities in shallow IWs were 87, 64, and 919 percent larger, 
respectively, than densities in deep IWs during the study. Iron-
related bacteria were detected in 93 percent of shallow IWs 
and 85 percent of deep IW samples. Slime-forming bacteria 
were detected in 96 percent of shallow and 92 percent of deep 
IWs. Sulfate-reducing bacteria were detected in 40 percent of 
shallow and 28 percent of deep IW samples.

Trace elements that were detected in 20 percent or more 
of the groundwater samples included barium, iron, manganese, 
nickel, strontium, zinc, boron, and selenium. Several trace 
elements with EPA MCLs, SMCLs, or treatment techniques 
(TT) were detected. The EPA MCL for beryllium is 4 µg/L and 
was exceeded in 6 samples in the shallow and deep IWs in the 
southern part of the study area. Dissolved iron was detected 
in 51 percent of shallow and 62 percent of deep IW samples. 
Dissolved-iron concentrations exceeded the EPA SMCL of 
300 µg/L in 38 percent of shallow and 46 percent of deep IW 
samples. Mean dissolved-iron concentrations were largest 
mostly in the central and northwest part of the study area. 
The distribution of large dissolved-iron concentrations was 
similar to that of large sulfate concentrations, indicating pyrite 
oxidation during dewatering. About 55 percent of shallow and 
92 percent of deep IW dissolved-manganese samples exceeded 
the EPA SMCL of 50 µg/L. Almost all the central and northern 
parts of the study area had mean dissolved-manganese con-
centrations that exceeded the SMCL in the shallow part of the 
aquifer. Mean dissolved-manganese concentrations in the shal-
low part of the aquifer were substantially large (>1,000 μg/L) 
in wells near the Little Arkansas River and in the central 
part of the study area; most of the deep part of the aquifer in 
the study area had dissolved-manganese concentrations that 
exceeded the SMCL.

Arsenic species concentrations generally were larger in 
the deep parts of the aquifer. Arsenite was the dominant form 
on average in shallow (52 percent) and deep (55 percent) 
IWs. About 12 percent of shallow and 34 percent of deep IW 
dissolved-arsenic sample concentrations exceeded the EPA 
MCL of 10 µg/L. Shallow IW dissolved-arsenic concentra-
tions were larger near the Little Arkansas River and the center 
of the study area; large shallow IW dissolved-arsenic concen-
trations in the center of the study area correspond to areas that 
have had the most water-level recovery since the historical low 
in 1993. Mean ORP in shallow IWs generally decreased with 
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increasing water-level depths and were inversely related to 
mean dissolved-arsenic concentrations because of more reduc-
ing conditions at larger depths below the land surface. Larger 
dissolved arsenic concentrations in the shallow parts of the 
aquifer are associated with decreases in water levels and a sub-
sequent decrease in ORP and thus more reducing conditions.

Shallow IW organic compounds that were detected 
in greater than 20 percent of samples were herbicides and 
included atrazine (a triazine herbicide parent compound), three 
triazine degradation products (2-chloro-4-isopropylamino-
6-amino-s-triazine [also known as deethylatrazine or CIAT], 
2-chloro-6-ethylamino-4-amino-s-triazine [also known as 
deisopropylatrazine or CEAT], and 2-hydroxy-4-isopropyl-
amino-6-ethylamino-s-triazine [also known as hydroxyatrazine 
or OIET]), and metolachlor (a member of the chloroacetanilide 
family of herbicides). Deep IW pesticides that were detected in 
greater than 20 percent of samples were atrazine and 2-chloro-
4-isopropylamino-6-amino-s-triazine. Atrazine was detected 
in about 58 percent of shallow and 28 percent of deep IWs and 
did not exceed the EPA MCL of 3.0 µg/L. Atrazine concentra-
tions in shallow IWs generally were largest in the northwest 
part of the study area near the North Branch Kisiwa Creek, and 
the atrazine concentrations in deep IWs generally were largest 
most often in the southern part of the study area. Alpha (α) 
radioactivity measurements exceeded the EPA MCL of 15 pico-
curies per liter (pCi/L) in 4 percent of shallow IW samples, and 
deep IW measurements did not exceed the EPA MCL. α and 
gross beta (β) radioactivity measurements generally were larger 
in the southern one-third of the aquifer. One shallow and two 
deep IW α radioactivity measurements exceeded the reported 
historical range during 1995 through 2005.

Changes in groundwater chemistry can affect mineral sat-
uration, resulting in precipitation and dissolution of the miner-
als. Most groundwater minerals had saturation indices (SIs) 
that were consistently negative. Minerals that had SI values 
that were consistently or typically positive included iron oxide 
and hydroxide minerals and quartz-group minerals. Several 
SI values for arsenic- (arsenolite, arsenic pentoxide, calcium 
arsenate, claudetite, and scorodite) and manganese-bearing 
[hausmannite, manganese (III) sulfate, Mn3(AsO4)2·8H2O, 
manganese (II) phosphate, manganese (II) chloride tetrahy-
drate, manganese sulfate, pyrochroite, rhodochrosite(d)] min-
erals were consistently negative. Several carbonate minerals in 
shallow and deep IWs varied across their equilibrium state and 
included aragonite, calcite, siderite, and siderite(d). Calcite SI 
values were larger more often in the deep parts of the aqui-
fer but did not show a clear distributional pattern. Mean and 
median calcite SI values for shallow and deep IWs were nega-
tive (undersaturated) indicating the potential for calcite dis-
solution if calcite is present for a substantial part of the study 
period. However, calcite SI values in this study indicated satu-
ration and subsequent calcite precipitation may occur in the 
study area, potentially resulting in formation of calcite mineral 
deposits that may reduce efficiency of injection wells. Some 
manganese-bearing mineral SI values ranged from under-
saturation to oversaturation in shallow and deep IWs during 

the study; these included birnessite, bixbyite, manganite, 
manganese (II) hydrogen phosphate, nsutite, pyrolusite, and 
rhodochrosite. SI values with respect to iron hydroxide varied 
across equilibria. Mean and median SI values with respect to 
iron hydroxide were undersaturated in shallow and deep IWs. 
Positive SIs indicate that, at times, groundwater in shallow and 
deep IWs was oversaturated with respect to iron hydroxide 
and there is potential for iron hydroxide precipitation.
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Appendix 1

Appendix 1 tables are available for download as a Microsoft Excel® file at https://doi.
org/10.3133/sir20195026.

Table 1.1.   Data collection sites for the Equus Beds ASR project.

Table 1.2.  Summary statistics for continuously (hourly) measured physicochemical properties 
for the Little Arkansas River at Highway 50 near Halstead, Kansas (Hwy 50 site; station identifier 
07143672), and near Sedgwick, Kansas (Sedgwick site; station identifier 07144100), during 2001 
through 2016.

Table 1.3.  Summary statistics for continuously (hourly) measured turbidity data measured with 
different sensors at the Little Arkansas River near Sedgwick, Kansas (Sedgwick; station identifier 
01744100), September 2014 through March 2015.

Table 1.4.  Relative percentage differences for replicate, and detection percentages for blank 
discrete water-quality samples for the Little Arkansas River and Equus Beds aquifer sites near 
Sedgwick, Kansas, 2001–16.

Table 1.5.  Discrete sample water-quality constituent summary statistics for the Little Arkansas 
River sites near Sedgwick, Kansas, 2001–16.

Table 1.6.  Discrete sample physicochemical groundwater-quality constituent summary statistics for 
the Equus Beds aquifer near Sedgwick, Kansas, 2001–16.

Table 1.7.  Solids and primary ions summary statistics of discrete groundwater samples for the 
Equus Beds aquifer near Sedgwick, Kansas, 2001–16.

Table 1.8.  Nutrient and carbon species summary statistics of discrete groundwater samples for the 
Equus Beds aquifer near Sedgwick, Kansas, 2001–16.

Table 1.9.  Bacterial and viral indicator summary statistics of discrete groundwater samples for the 
Equus Beds aquifer near Sedgwick, Kansas, 2001–16.

Table 1.10.  Trace element summary statistics of discrete groundwater samples for the Equus Beds 
aquifer near Sedgwick, Kansas, 2001–16.

Table 1.11.  Dissolved arsenic species summary statistics of discrete groundwater samples for the 
Equus Beds aquifer near Sedgwick, Kansas, 2001–16.

Table 1.12.  Organic compound summary statistics of discrete groundwater samples for the Equus 
Beds aquifer near Sedgwick, Kansas, 2001–16.

Table 1.13.  Radioactivity summary statistics of discrete groundwater samples for the Equus Beds 
aquifer near Sedgwick, Kansas, 2001–16.

Table 1.14.  Mineral saturation indices for the Equus Beds aquifer near Sedgwick, Kansas, 2001–16.
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