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Foreword

Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems 
depends on the availability of sound water-resources data and information to develop effective, 
science-based policies. Effective management of water resources also brings more certainty and 
efficiency to important economic sectors. Taken together, these actions lead to immediate and 
long-term economic, social, and environmental benefits that make a difference to the lives of 
the almost 400 million people projected to live in the United States by 2050. 

In 1991, Congress established the National Water-Quality Assessment (NAWQA) to address 
where, when, why, and how the Nation’s water quality has changed, or is likely to change in 
the future, in response to human activities and natural factors. Since then, NAWQA has been 
a leading source of scientific data and knowledge used by national, regional, State, and local 
agencies to develop science-based policies and management strategies to improve and protect 
water resources used for drinking water, recreation, irrigation, energy development, and ecosys-
tem needs (https://water.usgs.gov/nawqa/applications/). Plans for the third decade of NAWQA 
(2013–21) address priority water-quality issues and science needs identified by NAWQA 
stakeholders, such as the Advisory Committee on Water Information and the National Research 
Council. The plans are designed to meet increasing challenges related to population growth, 
increasing needs for clean water, and changing land-use and weather patterns.

Federal, State, and local agencies have invested billions of dollars to reduce the amount of 
pollution entering rivers and streams that millions of Americans rely on for a variety of water 
needs and biota rely on for habitat. Understanding the sources and transport of pollution is 
crucial for designing strategies to improve water quality. The U.S. Geological Survey’s (USGS) 
Spatially Referenced Regressions on Watershed Attributes (SPARROW) model was developed 
to aid in the understanding of sources and transport of pollution across large spatial scales. 
The SPARROW model is estimated by statistically relating watershed sources and transport-
related properties to monitoring-based water-quality load estimates. This report describes the 
water-quality and streamflow monitoring data, methods of estimating streamflow and loads, 
and estimates considered for use in regional SPARROW models (using 2012 as the base year). 
Monitoring data used in streamflow and load estimates were collected by more than 130 organi-
zations from approximately 5,200 streamflow and 4,000 water-quality sites and cover the period 
from 1999 through 2014.

The authors hope this publication will provide insights and information to meet water-resource 
needs and will foster increased citizen awareness and involvement in the protection and 
restoration of our Nation’s waters. The information in this report is intended primarily for those 
interested or involved in resource management and protection, conservation, regulation, and 
policy making at the regional and national levels.

Donald W. Cline 
Associate Director for Water 
U.S. Geological Survey

https://water.usgs.gov/nawqa/applications/
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Estimates of Long-Term Mean Daily Streamflow and 
Annual Nutrient and Suspended-Sediment Loads 
Considered for Use in Regional SPARROW Models of the 
Conterminous United States, 2012 Base Year

By David A. Saad, Gregory E. Schwarz, Denise M. Argue, David W. Anning, Scott W. Ator, Anne B. Hoos, 
Stephen D. Preston, Dale M. Robertson, and Daniel R. Wise

Abstract
Streamflow, nutrient, and sediment concentration data 

needed to estimate long-term mean daily streamflow and 
annual constituent loads were compiled from Federal, State, 
Tribal, and regional agencies, universities, and nongovern-
mental organizations. The streamflow and loads are used 
to develop Spatially Referenced Regressions on Watershed 
Attributes (SPARROW) models. SPARROW models help 
describe the distribution, sources, and transport of streamflow, 
nutrients, and sediment in streams throughout five regions of 
the conterminous United States. After the data were screened, 
approximately 5,200 streamflow, 3,000 sediment, and 3,300 
nutrient sites, sampled by 137 agencies and organizations were 
identified as having suitable data for calculating the long-term 
mean daily streamflow and annual nutrient and sediment 
loads required for SPARROW model estimation. These sites 
are representative of a wide range in terms of watershed size, 
contaminant source types, and land-use and other important 
watershed characteristics. The methods used to estimate 
long-term mean annual loads include the Beale ratio estimator 
and Fluxmaster regression method with Kalman smoothing.

Introduction
Excessive nutrients and sediment are a persistent problem 

in streams and estuaries throughout the United States (How-
arth and others, 1996; Carpenter and others, 1998; U.S. Envi-
ronmental Protection Agency, 2000a; Howarth and others, 
2002; Phillips, 2002; Bricker and others, 2007; Heimann, 
Sprague, and Blevins, 2011; Lee and Glysson, 2013). Exces-
sive loading of phosphorus and nitrogen from anthropogenic 
sources has been linked to excessive macrophyte and phyto-
plankton growth in rivers and streams (U.S. Environmental 
Protection Agency, 1998), harmful algal blooms in parts of 
the Great Lakes (Michalak and others, 2013), and hypoxia 
in the Gulf of Mexico (U.S. Environmental Protection 

Agency, 2007). The U.S. Environmental Protection Agency 
identified sediment as the most common impairment to rivers 
and streams in the United States (U.S. Environmental Protec-
tion Agency, 2000b). To help improve understanding of the 
distribution, origins, and sources of these constituents, nutri-
ents (total nitrogen [TN] and total phosphorus [TP]), and sus-
pended sediment (SS), Spatially Referenced Regressions on 
Watershed Attributes (SPARROW) water-quality models are 
planned to be developed for five regions (Midwest, Northeast, 
Pacific, Southeast, and Southwest) of the conterminous United 
States (fig. 1), in part by using the load estimates described in 
this report.

SPARROW models simulate long-term mean annual 
constituent loads in streams and rivers over large geographic 
areas (Smith and others, 1997; Schwarz and others, 2006; 
Preston and others, 2009). The models describe the distribu-
tion of loads and yields and can be used to help understand the 
origin and transport of water-quality constituents. The regional 
SPARROW models will use readily available source and 
watershed characteristic spatial datasets, a digital representa-
tion of the stream network based on the National Hydrography 
Dataset Plus (NHDPlus) version 2 (Moore and Dewald, 2016), 
and long-term (1999-2014) mean daily streamflow and annual 
loads described in this report. Some functions of SPARROW 
models rely on estimates of long-term mean daily stream-
flow for each stream reach. SPARROW models designed to 
simulate long-term mean daily streamflows are also planned 
to generate a set of streamflow estimates, for each model 
region, that are coincident with the long-term mean constituent 
load estimates.

SPARROW models are estimated by relating long-term 
mean estimates of flow and load to the upstream watershed 
characteristics of the flow and load monitoring locations. 
Estimates of long-term mean flows and constituent loads 
require extended periods of data collection. A large set of 
flow and load monitoring sites, representing a wide range of 
watershed characteristics, is required to develop the model 
objectives (commonly referred to as “calibration targets”) used 
in the regional SPARROW models. Data from numerous water 
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monitoring agencies were compiled and evaluated to develop 
these model objective datasets.

In this report, the detailed approach for assembling, pro-
cessing, and utilizing available streamflow and water-quality 
data needed to compute long-term mean daily streamflow and 
annual load is described. Constituent loads were estimated, 
and the final set of loads considered for use in the regional 
SPARROW models were selected from the greater dataset. 
The distribution of streamflow, TN, TP, and sediment in 
streams throughout the conterminous United States was esti-
mated from the final data. All streamflow, water-quality data, 
and load model inputs and outputs are published in Saad and 
others (2019).

Streamflow and Water-Quality Data 
Used to Estimate Long-Term Mean 
Daily Streamflow and Annual Loads

The dependent variable in SPARROW models is long-
term mean streamflow, or constituent load normalized (or 
detrended) to a specific base year (Schwarz and others, 2006; 
Preston and others, 2009). The base year for the planned 
regional SPARROW models is 2012; this year was selected so 
that estimated loads would coincide with available geospatial 
datasets that describe constituent sources and environmental 
characteristics. Mean annual constituent loads were esti-
mated using data derived from discrete water-quality samples 
and continuous (daily) measures of streamflow for each 
monitoring site. 

Streamflow Data

Mean daily streamflow data were compiled for approxi-
mately 24,000 stream monitoring sites in the United States. 
The data from sites that have mean daily streamflow values 
available from October 1, 1999, to September 30, 2014, were 
used to compute the mean streamflow volumes and constituent 
loads considered for use in the SPARROW models. These data 
were compiled primarily from the U.S. Geological Survey 
(USGS) National Water Information System (NWIS) database 
(U.S. Geological Survey, 2019). Additional flow data used in 
load calculations were obtained from several other sources, 
including the U.S. Army Corps of Engineers (https://www.
usace.army.mil/), the Colorado Division of Water Resources 
(https://dwr.state.co.us/), and a cooperative streamgaging 
network operated by the Minnesota Department of Natural 
Resources (https://www.dnr.state.mn.us/) and the Minnesota 
Pollution Control Agency (https://www.pca.state.mn.us/) for 
the Midwest, the International Boundary and Water Commis-
sion (https://www.ibwc.gov/home.html) for the Southwest, 
and the Oregon Water Resources Department (https://www.
oregon.gov/OWRD/) for the Pacific.

Water-Quality Data

Previous evaluations of SPARROW models determined 
that increasing the number of monitoring sites with esti-
mated loads that represent a range in watershed attributes 
increases the level of certainty in SPARROW model predic-
tions for streams throughout the modeled basin (Schwarz 
and other, 2006; Preston and others, 2009; Saad and others, 
2011). To maximize the number of monitoring sites that could 
be included in the 2012 regional SPARROW models, an 
expansive effort was made to inventory, evaluate, and com-
pile discrete water-quality monitoring data from numerous 
water-resource agencies and organizations, including Federal, 
State, Tribal, and regional government agencies as well as 
nongovernmental organizations and universities. The founda-
tions for this national inventory were NWIS (U.S. Geological 
Survey, 2019) and the U.S. Environmental Protection Agency 
Storage and Retrieval System (STORET; U.S. Environmen-
tal Protection Agency, 2018), which are among the largest 
national databases of water-quality records available in the 
United States. All historical water-quality records for streams 
and rivers publicly housed in the NWIS and STORET data-
bases were initially obtained in March 2013 and September 
2013, respectively; however, both datasets were updated to 
include all available water-quality data from those databases 
as of March 2015. The updated data were obtained through the 
Water Quality Portal (http://www.waterqualitydata.us), which 
is a publicly available access point for all NWIS and STORET 
water-quality data.

In addition to NWIS and STORET, data were also 
compiled from numerous regional and local, publicly avail-
able water-quality data delivery systems. The effort to 
inventory water-quality data also included working directly 
with water resource agencies in each of the 48 contiguous 
States to acquire relevant digital water-quality records that 
were not being housed in NWIS, STORET, or other public 
databases (app. 1).

Nutrient and suspended-sediment data from October 1, 
1999, to September 30, 2014, were identified in the inventory 
and created the subset to be used in SPARROW modeling 
efforts. For the initial compilation, data from 488 different 
agencies and organizations were obtained, and the final com-
piled nutrient and suspended-sediment dataset includes stream 
water-quality data from 137 different agencies and organiza-
tions (app. 1). The initial compilation included more than 
30 million water-quality records from approximately 237,000 
stream sites. NWIS and STORET contributed more than 
90 percent of the nutrient and suspended-sediment records in 
this dataset; however, efforts to obtain additional data through 
direct communication with water-resource agencies proved to 
be useful because that effort filled temporal and spatial data 
gaps as well as important metadata gaps. For many monitoring 
sites, filling in these data gaps created a more robust nutri-
ent and suspended-sediment monitoring history from which 
a monitoring site could be evaluated for use in the regional 
SPARROW models.

http://www.waterqualitydata.us
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A relatively short list of basic metadata elements was 
required for a water-quality record to be considered suitable 
for use in the regional SPARROW modeling efforts. These 
metadata elements describe site and water-quality sample 
information and included a station identifier, a station name 
(which minimally had to include the name of the monitored 
stream), and locational coordinates. Monitoring sites were 
indexed to sites in the NHDPlus digital stream network, which 
was only possible if location coordinates and station name 
information were available. Required water-quality sample 
information included the name of the sampled water-quality 
constituent, sample collection date, numerical value of the 
analysis, reporting units associated with the numerical value 
(typically milligrams per liter), remark codes indicating the 
quality of the measured value or values censored to the labora-
tory reporting limit, sample fraction (filtered or unfiltered), and 
weighted units (molecular or elemental—for example, nitrate 
can be reported as molecular NO3

− or as elemental nitrogen 
[N]). If any of these water-quality sample metadata were miss-
ing, the sample could not be used in load estimation.

Another important consideration in evaluating monitor-
ing sites for use in the regional SPARROW models was the 
unification of water-quality records that were collected at the 
same sampling site by multiple agencies under a single unique 
identifier. Creating an inventory that was “site-centric” was 
critical in identifying sites that had long-term monitoring for 
selected parameters. Unifying water-quality records under a 
single identifier made it possible to evaluate all the data from 
a site regardless of any changes to the monitoring agency or 
the repository that housed the data. In some cases, unifying 
records for a site under a single identifier resulted in substan-
tial gains in the period of record for a site.

Three techniques were used to unify sites under a single 
unique identifier: (1) some agencies provided a table that 
cross-walked their site identifier to USGS or other agency 
identifiers; (2) some agencies provided cross-walks of site 
identifiers used by different bureaus within the same agency; 
(3) station names in the original datasets that included refer-
ence to a USGS station were reviewed to identify other agency 
sampling sites that were colocated with USGS sampling sites 
or streamgages. When multiple site identifiers needed to be 
unified under a single identifier, three general rules were used 
for selecting the final site identifier: (1) the USGS site identi-
fier was selected if available, (2) the most recent site identifier 
used in a public database was selected, and (3) the site identi-
fier with the longest period of record was selected.

Unifying water-quality records provided an improved 
dataset to be used for SPARROW modeling. However, not all 
instances where data could be combined were captured by this 
initial effort. Many of the sites in each region were investi-
gated more closely, and the data from the sites were combined 
with additional water-quality records where it was deemed 
appropriate. Multiple sites on the same stream reach where it 
was expected that water-quality was not likely to be different 
were combined and used as a single site. It was assumed that 
data for sites sampled by different agencies but located on 

the same stream reach (or to a lesser extent, on nearby stream 
reaches for the Southwest; fig. 1), with no intervening point 
sources, no distinct changes in land use, and not on headwa-
ter reaches would be suitable for combining. Where multiple 
sites were on the same stream reach but had intervening point 
sources, distinct changes in land use, or were on headwater 
reaches, only the downstream-most site was retained. In the 
Northeast (fig. 1), sites on the same reach deemed to be on 
different sampling locations were not combined; however, 
they were retained for load calculations where appropriate. 
The data were not pared down for this phase of the study; the 
decision about which of those sites to keep in the SPARROW 
models will be done during model estimation.

The data used in nutrient load calculations were the 
concentrations of unfiltered TN as nitrogen and unfiltered 
TP as phosphorus, both expressed in units of milligrams per 
liter. If a TN value was not available, it was calculated as the 
sum of particulate and dissolved (filtered) forms of measured 
nitrogen, if those data were available. Where total or particu-
late and dissolved measurements of nitrogen were unavail-
able, TN was calculated as the sum of the concentrations of 
ammonium, organic nitrogen, and nitrite plus nitrate (or just 
nitrate) where possible. TP was based primarily on TP values 
reported as phosphorus; however, some TP data were reported 
as phosphate (PO4

3−) and converted to phosphorus. The spe-
cific constituents considered when estimating values for the 
concentrations of TN and TP and the protocols for combining 
those concentrations are described in Saad and others (2011, 
supporting information Data S1).

The constituents used in suspended-sediment load cal-
culations were suspended sediment (SS) and total suspended 
solids (TSS) concentrations, expressed in milligrams per liter. 
Both of these constituents are used to quantify concentrations 
of suspended solid-phase materials in surface water (Gray and 
others, 2000). The analytical methods to determine concentra-
tions of these two constituents differ. The SS measurement 
involves evaporating the entire amount of water in a sample, 
whereas the TSS method analyzes only an aliquot of the 
water-sediment sample. Paired samples of both constituents 
show that SS values tend to be increasingly larger than TSS 
values as the amount of sand-size material increases (Gray 
and others, 2000). Loads were calculated separately for SS 
and TSS. If sufficient data for both of these constituents were 
available at a single monitoring site, loads were calculated 
separately for each constituent. Most of the sediment loads 
considered for use in the regional SPARROW models are 
based on TSS; however, some spatial data gaps exist unless SS 
loads are included.

Protocol for Screening Streamflow and Water-
Quality Sites

After the streamflow and water-quality datasets were 
compiled, a screening process was performed to identify 
monitoring sites with sufficient data for computing long-term 
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mean daily streamflow and annual loads. Screening criteria 
included minimum requirements for availability of streamflow 
and water-quality data, the ability to confirm the location of 
the site and index it to the digital stream network used in the 
models, and for loads, the ability to associate the water-quality 
site with a nearby streamgage. 

The data requirements for streamgages used for load 
calculations included that the record must have a minimum 
length of 10 years of daily streamflow values (with no data 
gaps) and must include data for 2012 (the base year). For 
streamgages used to calculate long-term mean streamflows, 
the daily streamflow data requirements were similar, except 
that the minimum record length was 13 years. Because the 
period of record for most of the available streamflow data for 
International Boundary and Water Commission streamgages 
in the Southwest ended in 2011, the streamgage requirements 
described above were altered to require data from 2011 for 
load calculations and a minimum 12-year record length for 
calculating long-term mean daily streamflows.

The minimum water-quality data requirements for 
computing loads at a site included a minimum record length 
of 3 years, at least 24 samples, and at least 3 samples in each 
season. For this effort, seasons were defined by groupings 
of the month in which data were collected (winter, Decem-
ber to February; spring, March to May; summer, June to 
August; and fall, September to November). The water-quality 
period of record also had to be within 2 years of the 2012 
base year. These minimum requirements were evaluated 
using the data available at a site from October 1, 1999, to 
September 30, 2014. Sites meeting the minimum requirements 
are referred to as “potential load sites.” The location of each 
potential load site was manually checked and verified on the 
digital stream networks used in the models. If a site loca-
tion could not be reasonably verified, the site was excluded 
from further consideration.

Protocol for Matching a Water-Quality Site 
to a Streamgage

Estimates of load require extended periods of coinciding 
constituent concentrations and streamflow data. Matching a 
potential load site to a nearby streamgage initially involved 
identifying gages that met minimum data requirements for 
flow and then selecting the streamgage with streamflow 
characteristics that best represented those at the water-quality 
monitoring location. Load calculations are ideally done using 
colocated water-quality and streamflow sites; however, use of 
a nearby streamgage is a common approach. Where colocation 
was not possible, the following criteria were used to identify 
suitable streamgages for a nearby water-quality site:

•	 overlap between water-quality and streamflow data had 
to be at least 2 years;

•	 the ratio of watershed areas between the water-quality 
site and streamflow site is between 0.75 and 1.33; and

•	 in general, the water-quality and streamflow site had to 
be on the same stream.

In the Midwest, Northeast, and Southeast (fig. 1), these 
additional criteria were also used to match a water-quality site 
to a streamgage:

•	 if the watershed area of the water-quality site was less 
than 260 square kilometers, then the streamgage 
could be on a nearby stream; and

•	 the streamgage must be within a reasonable distance 
(aerial distance less than or equal to 40 kilometers) 
of the water-quality site to represent similar environ-
mental conditions.

If a potential load site had multiple, nearby, suitable 
streamgages, priority for selection was given to streamgages 
with the longest period of data overlap, watershed area ratios 
closest to 1, and the shortest distance to the water-quality site 
(Saad and others, 2011).

Methods for Estimating Long-Term 
Mean Daily Streamflows and 
Annual Loads

SPARROW models require long-term, mean daily 
streamflow or annual loads for estimation that do not reflect 
year-to-year variability or transient spatial patterns in rainfall 
that occur during any single year. To accomplish this, mean 
daily streamflow or load is calculated at all sites using a long 
period of record to limit year-to-year variability at a given site. 
In some cases, sites have long-term trends in either flow or 
concentration that could bias the estimation of long-term mean 
flow or load. In these cases, long-term trends in flow, concen-
tration, or both can be removed statistically so that long-term 
means can be estimated that only account for year-to-year 
variability (Schwarz and others, 2006). This process (called 
“detrending”) is usually performed relative to a base year that 
is consistent with geospatial data (such as land use) that rep-
resent that specific year; for the regional SPARROW models, 
2012 was the year chosen. 

The combination of detrending and calculating a 
long-term mean provides objective data for the model that 
are representative of conditions during the base year and are 
representative of average hydrologic conditions. Average 
streamflow can vary widely from year to year, so a sufficiently 
long period of record (20 years or more) is needed to identify 
long-term trends that are not masked by short-term meteo-
rological variations. For this analysis, the 15-year period of 
record, used for the streamflow and load estimates described 
in this report, was considered too short for detrending stream-
flow. For this reason, streamflows were not detrended when 
estimating long-term mean daily streamflow, and detrended 
long-term mean annual loads were computed using only 
detrended concentrations.
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Estimating Long-Term Mean Daily Streamflows

Long-term mean daily streamflow (in cubic feet per 
second) was computed as the average daily streamflow for the 
period of record for a streamgage, which ranged from 13 to 
15 years. The long-term mean daily streamflow estimates and 
other associated information for each site are included in Saad 
and others (2019).

Estimating Long-Term Mean Annual Loads

A variety of methods are available to estimate long-term 
mean annual loads (in kilograms). Lee and others (2016) 
evaluated 11 methods for estimating long-term mean annual 
loads for five constituents, including TN, TP, and SS. Of the 
methods evaluated by Lee and others (2016), the Beale ratio 
estimator (BRE; Cochran, 1977) performed the best out of a 
variety of sampling strategies and constituents. Five-parameter 
regression with Kalman smoothing (Lee and others, 2016) 
and weighted regression (Hirsch and others, 2010) methods 
also did reasonably well. Only two of the programs evaluated, 
Fluxmaster (Schwarz and others, 2006; Lee and others, 2016) 
and Weighted Regressions on Time, Discharge, and Season 
(WRTDS; Hirsch and others, 2010), were capable of estimat-
ing detrended, long-term, mean annual loads. A limiting factor 
with WRTDS is that this method generally requires extensive 
water-quality data (at least 100 values) for long periods of 
time (greater than 10 years) to produce accurate estimates of 
load. Many of the sites used in this effort do not have enough 
data or do not cover a period long enough to consider using 
WRTDS. Only one of the programs, Fluxmaster, estimates 
loads using both the BRE and regression methods from a sin-
gle dataset. Therefore, loads considered for use in the regional 
SPARROW models were estimated using the Fluxmaster 
program. The Fluxmaster program uses a Kalman-smoothing 
algorithm that differs from the version described in Lee and 
others (2016). The Kalman-smoothing algorithm used for this 
effort can handle censored data, whereas the version used in 
Lee and others (2016) did not (app. 2 and app. 3). 

For this effort, long-term mean annual loads for each 
site and constituent, were estimated using the BRE and 
Fluxmaster-K five-parameter regression (F5K) algorithms. For 
sites with a significant trend in load (α=0.05), the F5K load 
estimates were also detrended. The BRE algorithm was 
implemented in stratified form as described in Cochran (1977). 
In this application, as many as eight strata were formed by 
subdividing the record into two classes based on stream 
discharge (delineated by the 80th percentile of streamflow) 
and four seasons (January through March, April through June, 
July through September, and October through December) after 
combining all data among years. If the number of samples 
within any stratum was less than 10, then the strata were col-
lapsed by following the protocol described in Lee and others 
(2016). The Beale ratio of a given stratum is the ratio of the 
stratum sample means of load to streamflow (Lee and others, 

2016, eq. 1). The estimate of load within a stratum for all days 
is given by the sum of measured daily loads plus the product 
of the estimated Beale ratio for the stratum multiplied by the 
total streamflow for all unsampled days in the stratum. The 
summation of these estimates across all strata then gives the 
BRE load estimate for all days in the prediction period. The 
BRE algorithm, as implemented here, produces nondetrended, 
long-term, mean annual loads.

When trends were detected, detrended long-term mean 
annual loads were computed using regression methods devel-
oped by Cohn (2005) and implemented in Fluxmaster. The 
regression-based load estimates are based on a five-parameter 
water-quality model (eq. 1) that relates the logarithm of 
concentration at time t (ct) to the logarithm of daily stream-
flow (qt), a decimal time term (Tt), sine and cosine functions 
of decimal time to account for seasonal variation, and a 
model residual (et):

	 ct = b0 + bqqt+ bTTt + bssin(2πTt) + bccos(2πTt) + et,	 (1)

where
 		  b0, bq, bT, bs, and bc are coefficients estimated 

for each site by the ordinary least squares 
method, or by the adjusted maximum 
likelihood method (Cohn, 2005) if any 
of the ct measurements are censored. The 
residuals et are assumed to be independent 
and normally distributed with mean=0 and 
variance=σe

2.
Because of the relatively short (less than 20 years) 

streamflow record used for load estimation, only concentra-
tion data were detrended as part of the F5K load-estimation 
method. The logarithms of detrended daily concentrations 
were computed using equation 1 with Tt=2012.5, which 
represents June 30 of the base year (2012). The logarithms of 
detrended daily concentrations were then added to the loga-
rithms of daily streamflow to obtain the detrended logarithms 
of daily load. A serial correlation structure was used to apply 
the Kalman smooth to the daily load estimates (app. 2). These 
load estimates were then converted from logarithmic space 
to real space using methods described by Cohn (2005) and 
Schwarz and others (2006). For both the BRE and F5K load 
estimates, the long-term mean annual load was computed by 
identifying those years included in the analysis period that 
had no days with missing streamflows, summing the daily 
load estimates for those years, and dividing by the number 
of included years to obtain mean annual load in kilograms 
per year.

Load estimates were evaluated for trend, precision, and 
bias prior to finalizing selected loads considered for inclu-
sion as model objectives in the regional SPARROW models. 
In part, the appropriate load estimate was selected for a site 
based on the presence of a statistically significant trend in load 
(α=0.05). If there was no significant trend, the BRE long-term 
mean annual load was selected as the final load. If there was a 
significant trend in load (p<0.05), the detrended F5K estimate 
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was used as the final load. The only instance detrended 
F5K load was not used when the trend was significant was 
when the water-quality period of record was centered near the 
base year (anytime within 2012).

Detrending essentially pivots the load estimates for the 
period of record around the base year (Schwarz and others, 
2006, fig. 1.6). If the base year is near the beginning or end of 
the period of record, the detrended mean annual load can be 
quite different from the mean annual load. When the period 
of record is centered near the 2012 base year, the detrended 
mean annual load should be similar to the mean annual load. 
In the case of a site with a significant trend but with a period 
of record that is centered near the base year, the BRE and 
detrended F5K methods should both produce load estimates 
that are acceptable for SPARROW modeling. In these cases, 
the BRE algorithm is preferred because of better overall per-
formance in estimating long-term mean annual loads (Lee and 
others, 2016).

In addition to trend, load estimates were evaluated for 
precision (all sites) and bias (for sites with significant trend 
in load) prior to final selection for consideration as regional 
SPARROW model objectives. Sites with poor precision 
and large bias were excluded from consideration for use in 
regional SPARROW models. The exclusion was iterative, and 
supervisory oversight of provisional models was used. The 
standard error of a load model estimate provides a measure of 
the precision of the load model predictions. Standard errors 
within 50 percent of the mean load estimate were considered 
acceptable and are consistent with the level used in previous 
SPARROW modeling studies (Saad and others, 2011).

Bias provides a description of whether the predicted loads 
are systematically too high or too low relative to the observed 
loads. Methods of load estimation done in log space, such 
as many of the regression methods including F5K, can have 
biased results when the estimations are converted back into 
real space because of one or both of the following reasons: 
(1) heteroscedasticity in the residuals from the model and 
(2) the statistical relation between streamflow and concentra-
tion overestimating or underestimating concentrations for 
certain streamflow regimes.

One of the underlying assumptions of log-based regres-
sion models is that the residuals are normally distributed and 
have a constant variance (Runkel and others, 2004). If the 
residuals do not have constant variance (for example, they 
have a heteroscedastic distribution), then the retransformation 
process (converting predictions from log space into real space) 
can lead to biased predictions (Hirsch, 2014).

The computations using the BRE algorithm are done in 
arithmetic space and will not produce biased results associated 
with retransformation. In addition to retransformation, there 
can be a variety of reasons for biased predictions, and the BRE 
algorithm is generally robust to handle many of them (Lee 
and others, 2016). For this reason, comparing the F5K load 
to the BRE load should be an effective way of evaluating 
bias in the F5K load. Bias was only evaluated for sites with 
a significant trend in load where the F5K load estimate was 

being considered as the final load. Bias (R) in a F5K regres-
sion estimate, calculated as the BRE load estimate divided 
by the F5K load estimate, was considered minimal when R is 
near 1.0; an R between 0.66 and 1.5 was considered accept-
able. The selection of this range was chosen to be similar in 
magnitude to the 50-percent criterion used for model preci-
sion. For detrended loads, R can deviate from 1.0 even if the 
load estimate has no bias. The amount of deviation depends 
on the magnitude of the trend in load and the proximity of 
the water-quality period of record compared to the base year. 
For sites with significant trends, an adjustment to the accept-
able bias range was required to account for this deviation. 
The trend-adjusted acceptable bias range was increased by a 
factor m, as follows:

	 m = e(k×yrdif),	 (2)

where
	 k	 is equal to the absolute value of the trend in 

the load (expressed as a fraction of the 
mean load estimate per year) and

	 yrdif	 is equal to the absolute value of 2012.5 minus 
the midyear point of the water-quality 
period of record.

Therefore, R could fall within a range between m÷1.5 
and m×1.5. As the magnitude of the trend gets smaller and the 
midyear of the water-quality record approaches the base year 
(2012.5), m≈1.0. This adjustment assumes that the water-qual-
ity samples were approximately equally spaced throughout the 
sample period, which is not always the case.

For each site and constituent, the following decision steps 
summarize the process of deciding which load estimate should 
be considered for inclusion in the regional SPARROW load 
models:

1.	 Is the trend in load significant and the water-quality 
period of record not centered within the 2012 base 
year?

2.	 If the answer to step 1 is “no,” then evaluate the BRE 
load estimate for this site. If the standard error for the 
BRE load estimate is <0.5, then consider including 
this load in the SPARROW model; if the standard 
error is ≥0.5, then exclude the load from this site 
from the SPARROW model objective dataset.

3.	 If the answer to step 1 is “yes,” then evaluate the 
detrended F5K regression load estimate for this 
site. If the standard error for the F5K load is <0.5 
and the bias is within the acceptable range of m÷1.5 
to m×1.5, then consider including this load in the 
SPARROW model objective dataset; otherwise, 
exclude this load.

The final load estimates for TN, TP, and sediment, load 
model coefficients, and other associated information for each 
site are included in Saad and others (2019).



8    Estimates of Streamflow and Annual Nutrient and Suspended-Sediment Loads in Regional SPARROW Models, 2012 Base Year

Final Streamflow and Load Estimates 
Considered for Use in the 2012 
Regional SPARROW Models

The initial compilation of streamflow data consisted 
of measurements from approximately 24,000 sites. Only 
about 21 percent of the streamflow sites evaluated (5,180 of 
24,171) passed the screening process (table 1). Sites consid-
ered for inclusion in 2012 SPARROW streamflow models are 
described in Saad and others (2019), along with the estimated 
long-term mean daily streamflow from those sites.

The initial compilation of suspended-sediment (table 2) 
and nutrient (table 3) data consisted of more than 30 mil-
lion water-quality observations from approximately 237,000 
sites, collected by 488 sampling agencies. The process of 
identifying sites that met minimum water-quality screening 
criteria, could be matched to a streamgage, and produced load 
estimates that passed evaluation reduced the number of sites 
considerably. In general, only about 1 to 3 percent of moni-
tored stream sites had enough suspended-sediment or nutrient 
data and a suitable, nearby streamgage to be considered for 

Table 1.  Daily streamflow sites considered for inclusion in 
2012 regional Spatially Referenced Regressions on Watershed 
Attributes (SPARROW) streamflow models for the conterminous 
United States.

Model region
Sites with daily 
streamflow data

Sites considered for 
inclusion in regional 

SPARROW streamflow 
models

Midwest 11,575 2,057
Northeast 2,233 766
Pacific 2,457 817
Southeast 3,121 629
Southwest 4,785 911

Table 2.  Suspended-sediment water-quality sites considered for inclusion in 2012 regional Spatially Referenced Regressions on 
Watershed Attributes (SPARROW) sediment models for the conterminous United States.

[SPARROW, Spatially Referenced Regressions on Watershed Attributes; SS, suspended sediment; TSS, total suspended solids; USGS, U.S. Geological Survey]

Model region
Sites with TSS or SS 
stream water-quality 

data

Sites with TSS or SS 
data that meet 

minimum water-quality 
screening criteria

Sites with TSS or SS 
water-quality data 
matched to a USGS 

streamgage

Sites with load 
data considered for 

inclusion in regional 
SPARROW sediment 
models (TSS sites)

Sites with load 
data considered for 

inclusion in regional 
SPARROW sediment 

models (SS sites)

Midwest 60,360 2,853 1,370 1,085 177
Northeast 15,628 988 535 411 53
Pacific 11,933 741 298 218 53
Southeast 32,016 2,169 896 587 47
Southwest 15,179 1,043 445 329 68

load estimation and inclusion in 2012 regional SPARROW 
models. The final sediment and nutrient load sites that meet 
minimum water-quality screening criteria accounted for water-
quality observations from approximately 3,000 stream sites for 
sediment and 3,300 stream sites for nutrients, sampled by 137 
different agencies and organizations (app. 1). The sites consid-
ered for inclusion in the regional 2012 SPARROW sediment 
and nutrient models are described in Saad and others (2019), 
along with estimated long-term mean annual loads and associ-
ated load model coefficients.

Most of the final load estimates considered for use in 
the 2012 regional SPARROW nutrient and sediment models 
were based on the BRE algorithm. Approximately 70, 75, 
and 82 percent of the TN, TP, and TSS or SS load estimates, 
respectively, considered for use in the regional models were 
based on the BRE algorithm. Although the maximum allow-
able standard error was 50 percent, the average error ranged 
from 8 percent for TN to 20 percent for TSS and SS; the 
average standard error for TP was approximately 14 percent. 
Additionally, although the acceptable range for R was about 
0.66 to 1.5, the average, for sites with a significant trend in 
load, ranged from 1.06 for TN to 1.25 for TSS and SS; the 
average bias for TP was 1.20. This indicates that BRE load 
estimates were, on average, higher than detrended F5K load 
estimates for sites with significant trend in load. This is consis-
tent with the average trend in load, which was negative for all 
constituents.

Streamflow and Constituent Yields for 
Sites Considered for Use in the 2012 
Regional SPARROW Models

Flow and constituent yields were calculated as mean 
daily streamflow and annual load, respectively, divided by 
the watershed area of the monitoring location. Streamflow 
yields are in millimeters per year (fig. 2). Constituent yields 
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Table 3.  Nutrient water-quality sites considered for inclusion in 2012 regional Spatially Referenced Regressions on Watershed 
Attributes (SPARROW) nutrient models for the conterminous United States.

[SPARROW, Spatially Referenced Regressions on Watershed Attributes; USGS, U.S. Geological Survey; TN, total nitrogen; TP, total phosphorus]

Model region
Sites with nutrient 

stream water-quality 
data

Sites with nutrient 
data that meet mini-
mum water-quality 
screening criteria

Sites with nutrient 
water-quality data 
matched to a USGS 

streamgage

Sites with load 
data considered for 

inclusion in regional 
SPARROW nutrient 
models (TN sites)

Sites with load 
data considered for 

inclusion in regional 
SPARROW nutrient 
models (TP sites)

Midwest 93,994 3,137 1,470 1,344 1,346
Northeast 28,210 875 522 483 279
Pacific 26,889 733 265 140 243
Southeast 47,746 3,418 1,271 834 815
Southwest 24,842 1,128 495 307 428

are in kilograms per square kilometer or metric tons per square 
kilometer (figs. 3–6). Yield ranges shown on maps represent 
quantile distributions.

Streamflow Yields

Approximately 5,200 streamflow sites qualified to be 
considered for inclusion in the 2012 regional SPARROW 
streamflow models (fig. 2). The distribution of flow sites cov-
ers the entire country, with generally higher site density in 
the eastern parts and lower site density in the western parts. 
Streamflow yield from these sites range from less than (<) 
0.004 to greater than (>) 10,000 millimeters per year (mm/yr). 
The highest yields are for several large springs with relatively 
small (and inaccurately defined) watershed areas that were 
included in the streamflow dataset. The highest yield for a 
stream or river is approximately 4,400 mm/yr. Extensive areas 
of high streamflow yield are in the northeastern and northwest-
ern United States. Additional areas of high streamflow yield 
are scattered throughout the mountain areas of the western and 
the southeastern United States. Areas of lowest streamflow 
yield are in the west-central and southwestern parts of the 
United States.

Total Suspended Solids and Suspended 
Sediment Yields

Approximately 2,600 TSS and 400 SS sites qualified to 
be considered for inclusion in 2012 regional SPARROW sedi-
ment models (figs. 3 and 4). The distribution of TSS and SS 
load sites, combined, covers most of the country, with high-
est site densities in the eastern half. The distribution of each 
constituent separately shows some large spatial data gaps. 
Whereas the number of TSS sites are considerably higher than 
SS sites across the country, there are some large areas with no 
TSS sites suitable for load estimation. The States of Maine, 
Montana, New Hampshire, New Mexico, and Wyoming have 
few to no TSS sites. Outside of the northeastern United States, 

most States have at least a few SS load sites. TSS yield from 
these sites ranges from <1 to approximately 400 metric tons 
per square kilometer (t/km2); SS yield ranges from <1 to 
approximately 1,100 t/km2. The highest sediment yields are in 
much of the eastern half of the United States and the Pacific 
Northwest. Additional areas of high sediment yield are scat-
tered over the Dakotas and the southwestern United States. 
The lowest sediment yields are scattered over the western and 
north-central United States, Florida, and the coastal areas of 
Georgia and the Carolinas.

Total Nitrogen and Total Phosphorus Yields

Approximately 3,300 TN and TP load sites qualified to be 
considered for inclusion in 2012 regional SPARROW nutri-
ent models (figs. 5 and 6). The distribution of TN and TP load 
sites covers most of the United States; however, site density is 
highest in the eastern half. There are some noticeable spatial 
data gaps in the extreme northeastern and southeastern United 
States; however, similar or larger gaps in western areas are 
more common. TN yield ranges from <1 to >4,200 kilograms 
per square kilometer (kg/km2); TP yield ranges from <1 to 
>520 kg/km2. The most extensive area of high TN and TP 
yields is in the Midwest, where agriculture is the primary 
land use. Additional areas of high TN yield include the Mid-
Atlantic and the Pacific Northwest near the coast. Additional 
areas of high TP yield include much of the Pacific coastline, 
the Florida gulf coast, and agricultural areas of the southern 
and eastern United States. TP yields in Florida are some of 
the highest in the country and are generally associated with 
natural phosphorus deposits and related mining operations 
(Terziotti and others, 2009). Some of the highest TN and TP 
yields are also in urban areas, where wastewater discharge 
and urban runoff can produce relatively high loads in rela-
tively small watersheds. The lowest yields for both TN and TP 
include most of the western and southwestern United States, in 
areas of low streamflow yield or nonagricultural or nonurban 
land use.
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Summary
Streamflow, nutrient, and sediment concentration data 

needed to estimate long-term mean daily streamflow and 
annual constituent loads were compiled from Federal, State, 
Tribal, and regional agencies, universities, and nongovernmen-
tal organizations. The streamflow and loads are planned to be 
used to develop Spatially Referenced Regressions on Water-
shed Attributes (SPARROW) models. SPARROW models help 
describe the distribution, sources, and transport of streamflow, 
nutrients, and sediment in streams throughout five regions 
(Midwest, Northeast, Pacific, Southeast, and Southwest) of the 
conterminous United States. A screening process was applied 
to reduce nearly 24,000 streamflow sites and more than 
237,000 water-quality sites to a select set of approximately 
5,200 streamflow, 3,000 sediment, and 3,300 nutrient sites. 
For these final sites, streamflow and concentration data were 
of sufficient quality and quantity to be suitable for estimation 
of long-term mean daily streamflow and annual loads. Esti-
mates from these suitable sites will be considered for use as 
model objectives in the 2012 (base year) regional SPARROW 
models. The methods used to estimate long-term mean annual 
loads include the Beale ratio estimator and Fluxmaster regres-
sion method with Kalman smoothing.

The resulting set of qualified streamflow, total nitrogen, 
total phosphorus, and sediment concentration data represents 
a significant byproduct of the streamflow- and load-estimation 
effort—a byproduct that could be useful in other national, 
regional, or local water-quality assessments. The final stream-
flow and load sites considered for use in regional SPARROW 
models represent a wide range in watershed sizes; nitrogen, 
phosphorus, and sediment sources; and land-use and water-
shed characteristics in the conterminous United States. The 
distribution of streamflow and load sites covers most of the 
United States, but the density of sites is generally greater in 
the eastern half. The highest streamflow, total nitrogen, total 
phosphorus, and sediment yields were observed in the humid 
areas of the Eastern and Pacific Northwest United States. The 
lowest yields were generally in the west-central and south-
western parts of the country.
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Appendix 1.  Sampling Agencies Associated with 
Water-Quality Data Used To Compute Mean Annual 
Load Estimates Considered for Use in 2012 Regional 
SPARROW Models

Table 1.1.  Agencies that provided data to be used to compute mean annual load estimates considered for use 
in the 2012 regional Spatially Referenced Regressions on Watershed Attributes (SPARROW) models.

Abbreviation Agency name
AL DEM Alabama Department of Environmental Management
AR DEQ Arkansas Department of Environmental Quality
AZ DEQ Arizona Department of Environmental Quality
AZ TCOCOPAH Cocopah Indian Tribe Environmental Protection Office, Arizona
CA CEDEN California Environmental Data Exchange Network
CA DWR California Department of Water Resources
CA ESJWQC East San Joaquin Water Quality Coalition, California
CA RWB California Environmental Protection Agency, Regional Water Boards
CA SJCDWQC San Joaquin County and Delta Water Quality Coalition, California
CA TYUROKTEP Yurok Tribe, California
CA WSSJRWC Westside San Joaquin River Watershed Coalition, California
CO CBS CBS Operations Incorporated, Colorado
CO CRWWN The Rivers of Colorado Water Watch Network
CO CSUTL Colorado Springs Utilities, Colorado
CO CWSD Centennial Water and Sanitation District, Colorado
CO DPHE Colorado Department of Public Health and Environment
CO MWRD Metropolitan Waste Water Reclamation District, Colorado
CO SACWSD South Adams County Water and Sanitation District, Colorado
CO SWQC Summit Water Quality Committee, Colorado
CO THORN City of Thornton, Colorado
CT DEEP Connecticut Department of Energy and Environmental Protection
DC DDOE District of Columbia Department of the Environment
DE DGS Delaware Geological Survey

DE DNREC
Delaware Department of Natural Resources and Environmental 

Control
FL BCEPD Broward County Environmental Protection Department, Florida
FL BCSUD Brevard County Stormwater Utility Department, Florida
FL CCC City of Cape Coral, Florida
FL CCPC Collier County Pollution Control, Florida
FL CPG City of Punta Gorda, Florida
FL DEP Florida Department of Environmental Protection
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Abbreviation Agency name
FL HLCE Hillsborough County Environmental, Florida
FL LCPW Leon County Public Works, Florida
FL LCRM Lake County Water Resource Management, Florida
FL LRD Loxahatchee River District, Florida
FL LW Florida Lakewatch
FL MCEMD Manatee County Environmental Management Department, Florida
FL MCGL McGlynn Laboratories Incorporated, Florida
FL NWFWMD Northwest Florida Water Management District
FL OCEP Orange County Environmental Protection, Florida
FL PCDEM Pinellas County Department of Environmental Management, Florida
FL SEMC Seminole County, Florida
FL SFWMD South Florida Water Management District
FL SJWMD Saint John’s Water Management District, Florida
FL SRWMD Suwannee River Water Management District, Florida
FL SWFWMD Southwest Florida Water Management District
FL VCEHL Volusia County Environmental Health Lab, Florida
GA DNR Georgia Department of Natural Resources
IA DMWW Des Moines Water Works, Iowa
IA DNR Iowa Department of Natural Resources
IA GSWSP Iowa Geological Survey Watershed Snapshots
IA ISUCOE Iowa State University, Des Moines River Water Quality Network
IA VWMP Iowa Volunteer Water Monitoring Program
ID DEQ Idaho Department of Environmental Quality
IL EPA Illinois Environmental Protection Agency
IL MWRDGC Metropolitan Water Reclamation District of Greater Chicago, Illinois
IL SWS Illinois State Water Survey
IN CEG Indianapolis Citizen Energy Group, Indiana
IN DEM Indiana Department of Environmental Management
IN EPWU City of Elkhart Public Works and Utilities, Indiana
IN MBWQ Muncie Bureau of Water Quality, Indiana
IN WREC Wabash River Enhancement Corporation, Indiana
KS DHE Kansas Department of Health and Environment

KY DEP
Kentucky Department for Natural Resources and Environmental 

Protection
LA DEQ Louisiana Department of Environmental Quality
MA DEP Massachusetts Department of Environmental Protection
MA MRWA Massachusetts Rural Water Association
MD DNR Maryland Department of Natural Resources
MD DOE Maryland Department of the Environment
MI DEQ Michigan Department of Environmental Quality
MI TLRBOI Little River Band of Ottawa Indians, Michigan
MN DA Minnesota Department of Agriculture
MN MCES Metropolitan Council Environmental Services, Minnesota
MN PCA Minnesota Pollution Control Agency
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Abbreviation Agency name
MN TRLDNR Red Lake Division of Natural Resources, Minnesota
MO DNR Missouri Department of Natural Resources
MO MACT Mactec Incorporated, Missouri
MO MEC Midwest Environmental Consultants, Missouri
MO VRSR Versar Incorporated, Missouri
MS DEQ Mississippi Department of Environmental Quality
NC DENR North Carolina Department of Environment and Natural Resources
NC TEBCI Eastern Band of Cherokee Indians, North Carolina
ND DOH North Dakota Department of Health
NE DEQ Nebraska Department of Environmental Quality
NH DES New Hampshire Department of Environmental Services
NJ BTMUA Brick Township, New Jersey Municipal Utilities Authority
NJ DEP New Jersey Department of Environmental Protection
NJ HDG New Jersey Harbor Discharges Group
NJ MCHD Monmouth County, New Jersey Health Department
NJ RCEWRP Rutgers University Cooperative Extension, New Jersey

NM ISC LRG COMP
New Mexico Interstate Stream Commission Lower Rio Grande 

Compendium
NM TPJ Pueblo of Jemez, New Mexico
NM TPT Pueblo of Taos, New Mexico
NV DECNR Nevada Department of Conservation and Natural Resources

NV SNWA
Southern Nevada Water Authority (Environmental Monitoring and 

Management)
NY COMSI Community Science Institute, New York
NY DEC New York Department of Environmental Conservation
OH EPA Ohio Environmental Protection Agency

OH HDLBG
Heidelberg University, National Center for Water Quality Research, 

Ohio
OH MCD Miami Conservancy District, Ohio
OH NEORSD Northeast Ohio Regional Sewer District
OK CONC Oklahoma Conservation Commission
OK DEQ Oklahoma Department of Environmental Quality
OK TKN Kaw Nation of Oklahoma
OK TSFN Sac and Fox Nation, Oklahoma
OK TWN Wyandotte Nation, Oklahoma
OK WRB Oklahoma Water Resources Board
OR DEQ Oregon Department of Environmental Quality
OR KTRS Klamath Tribes Natural Resources Department, Oregon
OR PWB Portland Bureau of Environmental Services, Oregon
PA DEP Pennsylvania Department of Environmental Protection
RG3 SJRWI Saint Joseph River Watershed Initiative
RG3 SRBC Susquehanna River Basin Commission
RG3 TSWQC Tri-State Water Quality Council
RG4 DRBC Delaware River Basin Commission
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Abbreviation Agency name
RG8 ORSANCO Ohio River Valley Water Sanitation Commission (ORSANCO)
SC DHEC South Carolina Department of Health and Environmental Control
SD DENR South Dakota Department of Environment and Natural Resources
TN DEC Tennessee Department of Environment and Conservation
TX CEQ Texas Commission on Environmental Quality
TX MCWE Meadows Center for Water and the Environment, Texas
US ACE U.S. Army Corps of Engineers
US BR Bureau of Reclamation
US DA U.S. Department of Agriculture
US EPA U.S. Environmental Protection Agency
USGS U.S. Geological Survey
US NPS National Park Service
UT DEQ Utah Department of Environmental Quality
UT USU Utah State University
VA DEQ Virginia Department of Environmental Quality
VT DEC Vermont Department of Environmental Conservation
WA SDE Washington State Department of Ecology
WA TK NRD Kalispel Tribe Natural Resources Department, Washington
WI DNR Wisconsin Department of Natural Resources
WI GBMSD Green Bay Metropolitan Sewerage District, Wisconsin
WI THCN Ho-Chunk Nation, Wisconsin
WI TSMC Stockbridge-Munsee Community, Wisconsin
WV DEP West Virginia Department of Environmental Protection



Appendix 2: A Kalman-Smoothing Estimate of Water-Quality 
Loads Based on Simulated Maximum Likelihood Estimation 
for Censored Data: the Fluxmaster-K Algorithm  

This appendix describes a statistical method for estimating a water-quality model of the 
type described by Cohn (2005) with the added feature that residuals of the model can be serially 
correlated according to a first-order autoregressive (AR(1)) process. The complication arising 
from such a model is that water-quality measurements are often censored, causing substantial 
complication for maximum likelihood methods commonly used to estimate the model. The 
Simulated Maximum Likelihood Estimation (SMLE) method (Lee, 1999) provides a viable 
approach to estimation. Various properties of the estimates are established using concepts 
developed in Schendler (2005). 

The utility of the AR(1) water-quality model is that predictions of load can be improved 
using Kalman smoothing methods whereby load predictions can be conditioned directly on the 
water-quality measurements (Harvey, 1989). For models without serially correlated residuals, such 
conditioning results in simply replacing the prediction of load for a day containing an observation 
with the monitored value, all other non-monitored days being unaffected by the conditioning 
information; however, with serially correlated residuals the conditioning implies predictions for 
intervening days between observations can be optimally smoothed to improve the precision of the 
predictions. The complication of incorporating censored information into these predictions can be 
assuaged using the same simulation methods employed in model estimation. The method is further 
extended to obtain a conditioned estimate of detrended mean annual load. The uncertainty of the 
estimate is evaluated using a parametric bootstrap approach, as described in Schwarz (2006). The 
load estimation algorithm presented here extends to censored data the previously described 
Fluxmaster-K method for uncensored data appearing in Lee and others (2016). 

Model Estimation 
Consider a model of daily water quality in which the logarithm of contaminant 

concentration for day 𝑡𝑡, denoted 𝑦𝑦𝑡𝑡, is linearly related to a 1 × 𝐾𝐾 row vector of predictor variables, 
𝑋𝑋𝑡𝑡, a 𝐾𝐾 × 1 vector of associated coefficients, 𝛽𝛽, and a residual error term, 𝑣𝑣𝑡𝑡, according to 

𝑦𝑦𝑡𝑡 = 𝑋𝑋𝑡𝑡𝛽𝛽 + 𝑣𝑣𝑡𝑡 . (2.1) 
The error term in (1) is assumed to follow an AR(1) process, such that 

𝑣𝑣𝑡𝑡 = 𝜌𝜌𝑣𝑣𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, (2.2) 

where 𝜌𝜌 is the daily serial correlation coefficient, with 0 ≤ 𝜌𝜌 ≤ 1, and 𝜀𝜀𝑡𝑡 is an independent, 
normally distributed random innovation to the random 𝑣𝑣𝑡𝑡 process, with mean equal to 0 and 
variance, 𝜎𝜎𝜀𝜀2. 

Additional structure is added to the model to address the fact that water quality is typically 
measured infrequently. Let the water-quality sample consist of 𝑁𝑁 measurements, ordered over 
time and sequentially indexed by 𝑖𝑖 = 1 …𝑁𝑁, and let 𝑑𝑑𝑖𝑖 refer to the number of days between 
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successive measurements 𝑖𝑖 − 1 and 𝑖𝑖, so that 𝑑𝑑𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1, where 𝑡𝑡𝑖𝑖 refers to the time period for 
observation 𝑖𝑖. Equations 2.1 and 2.2 can then be combined to yield 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝑋𝑋𝑡𝑡𝑖𝑖𝛽𝛽 + 𝜌𝜌𝑑𝑑𝑖𝑖�𝑦𝑦𝑡𝑡𝑖𝑖−1 − 𝑋𝑋𝑡𝑡𝑖𝑖−1𝛽𝛽� + 𝑒𝑒𝑡𝑡𝑖𝑖 , (2.3) 

where equation 2.2 is recursively applied 𝑑𝑑𝑖𝑖 times to account for the gap in days between 
observations 𝑖𝑖 and 𝑖𝑖 − 1, this recursion leading to the 𝑑𝑑𝑖𝑖 exponent on 𝜌𝜌, 𝑣𝑣𝑡𝑡𝑖𝑖  and 𝑣𝑣𝑡𝑡𝑖𝑖−1 being 
replaced using equation 2.1 evaluated at 𝑡𝑡 equal to 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖−1, and 𝑒𝑒𝑡𝑡𝑖𝑖 corresponds to the 
exponentially weighted sum of innovations, 𝜀𝜀𝑡𝑡, over the period 𝑡𝑡 = 𝑡𝑡𝑖𝑖−1 + 1 to 𝑡𝑡 = 𝑡𝑡𝑖𝑖, causing 𝑒𝑒𝑡𝑡𝑖𝑖 
to be an independent (across 𝑖𝑖), normally distributed random error having zero mean and variance 
𝜎𝜎𝑖𝑖2 = 𝜎𝜎𝜀𝜀2(1 − 𝜌𝜌2𝑑𝑑𝑖𝑖) (1 − 𝜌𝜌2)⁄ . Note that for the first observation of the sample, 𝑑𝑑𝑖𝑖 is infinity, 
implying 𝜌𝜌𝑑𝑑1 = 0, and 𝜎𝜎12 = 𝜎𝜎𝜀𝜀2 (1 − 𝜌𝜌2)⁄ . 

It is further assumed that water quality is observed only through measurement, and that 
measurements may be censored. Let the measurement of the logarithm of concentration for 
observation i be denoted 𝜔𝜔𝑖𝑖, where 𝜔𝜔𝑖𝑖 = 𝑦𝑦𝑡𝑡𝑖𝑖 if 𝑦𝑦𝑡𝑡𝑖𝑖 exceeds the censoring threshold for that 
observation, denoted 𝑦𝑦�𝑡𝑡𝑖𝑖; otherwise, if 𝑦𝑦𝑡𝑡𝑖𝑖 < 𝑦𝑦�𝑡𝑡𝑖𝑖 , the measurement is censored and 𝜔𝜔𝑖𝑖 = 𝑦𝑦�𝑡𝑡𝑖𝑖. In the 
sequel the subscripted time notation is dropped and observations are referred to solely by their 
order through time, so that 𝑦𝑦𝑖𝑖 ≡ 𝑦𝑦𝑡𝑡𝑖𝑖 . 

The existence of censoring implies maximum likelihood is an appropriate methodology for 
the estimation of the (𝐾𝐾 + 2) × 1 vector of model parameters, 𝜃𝜃 = {𝛽𝛽′,𝜌𝜌,𝜎𝜎𝜀𝜀}′. However, the 
presence of serially correlated errors makes this a non-standard estimation problem. To understand 
the complication, consider the log-likelihood for the 𝑁𝑁 measurements comprising the sample, 
Ω𝑁𝑁 = {𝜔𝜔𝑖𝑖: 𝑖𝑖 = 1, … ,𝑁𝑁}, which can be expressed via Bayes rule (Amemiya, 1985) as the sum of N 
conditional log likelihoods 

𝐿𝐿 ≡ ln Pr(Ω𝑁𝑁|𝜃𝜃) = � ln Pr(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
, (2.4) 

where Ω𝑖𝑖 = �𝜔𝜔𝑗𝑗: 𝑗𝑗 = 1, … , 𝑖𝑖�, and Pr𝑖𝑖(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃) is the probability of obtaining measurement 𝜔𝜔𝑖𝑖 
conditioned on the parameters and measurements up through observation 𝑖𝑖 − 1. If observation 𝑖𝑖 is 
uncensored, so that 𝜔𝜔𝑖𝑖 = 𝑦𝑦𝑖𝑖, then Pr𝑖𝑖(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃) represents a probability density function; 
otherwise, if observation 𝑖𝑖 is censored, with 𝜔𝜔𝑖𝑖 = 𝑦𝑦�𝑖𝑖, then Pr𝑖𝑖(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃) is a cumulative 
probability of observing the event 𝑦𝑦𝑖𝑖 ≤ 𝑦𝑦�𝑖𝑖. Without serial correlation the conditional probabilities 
could be written as Pr𝑖𝑖(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃) = Pr𝑖𝑖(𝜔𝜔𝑖𝑖|𝜃𝜃), which has no dependence on past measurements. 
Conversely, with no censoring, the AR(1) process implies the conditional probability could be 
restricted to Pr𝑖𝑖(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃) = Pr𝑖𝑖(𝜔𝜔𝑖𝑖|𝜔𝜔𝑖𝑖−1,𝜃𝜃), and the previous measurement would then suffice 
for all the information from the past.  

A more complicated situation arises if observations are serial correlated and some 
observations are censored. In this case the censored measurement is no longer sufficient for all 
past information, and the conditioning information pertinent to observation 𝑖𝑖 includes all past 
measurements back to the most recent previously observed uncensored measurement, or to the 
beginning of the sample, whichever comes first. Thus, if the most recent previous uncensored 
measurement pertains to observation 𝑖𝑖 − ℎ, then the conditional probability for observation 𝑖𝑖 is 
given by 

Pr𝑖𝑖(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃) =
Pr(𝜔𝜔𝑖𝑖, … ,𝜔𝜔𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)

Pr(𝜔𝜔𝑖𝑖−1, … ,𝜔𝜔𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃) = 
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∫ ⋯∫ Pr𝑖𝑖(𝜔𝜔𝑖𝑖|𝑦𝑦𝑖𝑖−1∗ ,𝜃𝜃)𝑝𝑝𝑖𝑖−1(𝑦𝑦𝑖𝑖−1∗ |𝑦𝑦𝑖𝑖−2∗ ,𝜃𝜃)⋯𝑝𝑝𝑖𝑖−ℎ+1(𝑦𝑦𝑖𝑖−ℎ+1∗ |𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)𝑑𝑑𝑦𝑦𝑖𝑖−1∗ ⋯𝑑𝑑𝑦𝑦𝑖𝑖−ℎ+1∗𝑦𝑦�𝑖𝑖−1
−∞

𝑦𝑦�𝑖𝑖−ℎ+1
−∞

∫ ⋯∫ 𝑝𝑝𝑖𝑖−1(𝑦𝑦𝑖𝑖−1∗ |𝑦𝑦𝑖𝑖−2∗ ,𝜃𝜃)⋯𝑝𝑝𝑖𝑖−ℎ+1(𝑦𝑦𝑖𝑖−ℎ+1∗ |𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)𝑑𝑑𝑦𝑦𝑖𝑖−1∗ ⋯𝑑𝑑𝑦𝑦𝑖𝑖−ℎ+1∗𝑦𝑦�𝑖𝑖−1
−∞

𝑦𝑦�𝑖𝑖−ℎ+1
−∞

 ,     (2.5) 

where 𝑝𝑝𝑗𝑗(𝑎𝑎|𝑏𝑏) is the marginal probability of variable 𝑎𝑎 conditioned on information 𝑏𝑏 in period 𝑗𝑗, 
and the 𝑦𝑦∗ variables in the last term are the surrogates for the 𝑦𝑦 variables that are integrated over 
their feasible range given by the upper censoring limit. Note that with equation 2.5 inserted into 
equation 2.4, and if successive observations 𝑖𝑖 − 1 and 𝑖𝑖 are censored, then the logarithm of the 
numerator of observation 𝑖𝑖 − 1 cancels with the logarithm of the denominator of observation 𝑖𝑖. 
Consequently, all censored observations, except possibly for the last observation of the sample if it 
is censored, are dropped from the log likelihood in equation 2.4, leaving only the logarithms of the 
numerators of equation 2.5 for which the observation is uncensored (except for the last 
observation in the sample if it is censored). Because the numerical stability of the algorithm is 
improved with probabilities expressed as in equation 2.5, terms for all observations, both censored 
and uncensored, are retained in computing the log likelihood.  

The maximum dimension of the integrals appearing in equation 2.5, across all 
observations, depends on the maximum number of successive censored observations in the 
sample. Standard numerical methods can be used for evaluating integrals up to three dimensions 
(Press and others, 1986). For integrals of greater dimension, however, a feasible approach is 
integration by a Monte Carlo simulation. Advances in these methods have greatly improved the 
accuracy and efficiency with which large dimensioned integrals are evaluated.  

In published econometrics literature, the problem of parameter estimation with serial 
correlation and censored data has been studied by Lee (1999) using a variant of the Gibbs sampler 
(Robert and Casella, 1999) to generate simulated values of the unobserved censored observations, 
with the random samples selected efficiently to conform with censoring thresholds. The evaluation 
of a likelihood function via this approach is SMLE. 

The basic idea of the simulation method is to randomly draw 𝑆𝑆 sequences, indexed by 𝑠𝑠 =
1, … , 𝑆𝑆, of the dependent variable for all observations that are censored. The dependent variables 
are drawn from conditional probability distributions that depend only on the random draw of the 
dependent variable for the previous observation for the same sequence, s. Lee (1999) proposed 
imposing an additional restriction that the distribution generating the random values conform with 
the known censoring threshold for the observation 𝑦𝑦�𝑖𝑖. In this way, all simulated values of the 
dependent variable are acceptable in terms of being consistent with the actual observed data. In the 
vernacular of Monte Carlo simulation, the Gibbs sampler is a variant of the more general 
Metropolis-Hastings algorithm in which the acceptance probability of the simulated value equals 
one. Generally, a higher acceptance probability improves the numerical efficiency of the 
simulation algorithm. 

The simulated conditional probability for the case where the previous observation is 
censored is given by 

Pr�𝑖𝑖(𝜔𝜔𝑖𝑖|Ω𝑖𝑖−1,𝜃𝜃) = 𝑆𝑆−1� Pr𝑖𝑖
𝑆𝑆

𝑠𝑠=1
�𝜔𝜔𝑖𝑖�𝑦𝑦�𝑖𝑖−1

(𝑠𝑠) ,𝜃𝜃�𝑤𝑤𝑖𝑖−1
(𝑠𝑠) , (2.6) 

where 𝑦𝑦�𝑖𝑖−1
(𝑠𝑠)  is a simulated value of the dependent variable, randomly drawn from a conditional 

distribution (described in the next paragraph), and 𝑤𝑤𝑖𝑖−1
(𝑠𝑠)  is an appropriately selected weight that 

unbiases the sampling method.  
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A critical element of the simulation algorithm concerns the generation of the simulated 
𝑦𝑦�𝑗𝑗

(𝑠𝑠), for some censored observation 𝑗𝑗. As discussed above, Lee (1999) advocates a Gibbs sampler 
that imposes the information that observation being simulated is censored at 𝑦𝑦�𝑗𝑗 and is correlated 
with the previous simulated value. Consequently, 𝑦𝑦�𝑗𝑗

(𝑠𝑠) is drawn from a truncated distribution with 
probability density 

𝑦𝑦�𝑗𝑗
(𝑠𝑠)~ 𝑝𝑝𝑗𝑗�𝑦𝑦��𝑦𝑦�𝑗𝑗−1

(𝑠𝑠) ,𝜃𝜃� 𝑃𝑃𝑗𝑗�𝑦𝑦�𝑗𝑗�𝑦𝑦�𝑗𝑗−1
(𝑠𝑠) ,𝜃𝜃�,� (2.7) 

where 𝑃𝑃𝑗𝑗�𝑦𝑦�𝑗𝑗�𝑦𝑦�𝑗𝑗−1
(𝑠𝑠) ,𝜃𝜃� corresponds to the cumulative probability for the event 𝑦𝑦� ≤ 𝑦𝑦�𝑗𝑗, conditioned 

dynamically on the previous value 𝑦𝑦�𝑗𝑗−1
(𝑠𝑠) , and normalizes the distribution to have unit probability 

over the range 𝑦𝑦� ≤ 𝑦𝑦�𝑗𝑗. Given the assumptions of the innovation term in equation 2.2, the 
distribution in equation 2.7 is truncated normal, a distribution from which random values are 
readily generated, as shown below in equation 2.13.  

The expectation of equation 2.6 given the sampling scheme described in equation 2.7 is 
given by 

𝐸𝐸 �𝑆𝑆−1� Pr𝑖𝑖
𝑆𝑆

𝑠𝑠=1
�𝜔𝜔𝑖𝑖�𝑦𝑦�𝑖𝑖−1

(𝑠𝑠) ,𝜃𝜃�𝑤𝑤𝑖𝑖−1
(𝑠𝑠) � = 

∫ ⋯∫ Pr𝑖𝑖(𝜔𝜔𝑖𝑖|𝑦𝑦𝑖𝑖−1∗ ,𝜃𝜃)𝑝𝑝𝑖𝑖−1(𝑦𝑦𝑖𝑖−1∗ |𝑦𝑦𝑖𝑖−2∗ ,𝜃𝜃)⋯𝑝𝑝𝑖𝑖−ℎ+1(𝑦𝑦𝑖𝑖−ℎ+1∗ |𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)𝑤𝑤𝑖𝑖−1
(𝑠𝑠) 𝑑𝑑𝑦𝑦𝑖𝑖−1∗ ⋯𝑑𝑑𝑦𝑦𝑖𝑖−ℎ+1∗𝑦𝑦�𝑖𝑖−1

−∞
𝑦𝑦�𝑖𝑖−ℎ+1
−∞

𝑃𝑃𝑖𝑖−1(𝑦𝑦�𝑖𝑖−1|𝑦𝑦𝑖𝑖−2∗ ,𝜃𝜃)⋯𝑃𝑃𝑖𝑖−1(𝑦𝑦�𝑖𝑖−ℎ+2|𝑦𝑦𝑖𝑖−ℎ+1∗ ,𝜃𝜃)𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃) .    (2.8) 

The sampling scheme results in an unbiased estimate of equation 2.5 if  

𝑤𝑤𝑖𝑖−1
(𝑠𝑠) =

𝑃𝑃𝑖𝑖−1�𝑦𝑦�𝑖𝑖−1�𝑦𝑦�𝑖𝑖−2
(𝑠𝑠) ,𝜃𝜃�⋯𝑃𝑃𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+1

(𝑠𝑠) ,𝜃𝜃�𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)

∫ ⋯∫ 𝑝𝑝𝑖𝑖−1(𝑦𝑦𝑖𝑖−1∗ |𝑦𝑦𝑖𝑖−2∗ ,𝜃𝜃)⋯𝑝𝑝𝑖𝑖−ℎ+1(𝑦𝑦𝑖𝑖−ℎ+1∗ |𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)𝑑𝑑𝑦𝑦𝑖𝑖−1∗ ⋯𝑑𝑑𝑦𝑦𝑖𝑖−ℎ+1∗𝑦𝑦�𝑖𝑖−1
−∞

𝑦𝑦�𝑖𝑖−ℎ+1
−∞

. (2.9) 

The denominator of equation 2.9 is a multi-dimensioned integral, complicating its 
evaluation. Simulation methods using the same sampling scheme in equation 2.7 can be used to 
approximate the denominator by computing the average,  

𝑆𝑆−1� 𝑃𝑃𝑖𝑖−1�𝑦𝑦�𝑖𝑖−1�𝑦𝑦�𝑖𝑖−2
(𝑠𝑠) ,𝜃𝜃�⋯𝑃𝑃𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+1

(𝑠𝑠) ,𝜃𝜃�𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)
𝑆𝑆

𝑠𝑠=1
, (2.10) 

which, using the derivation of equation 2.8 as a guide, has an expectation that can be shown to 
equal the denominator of equation 2.9. Under general conditions, the limit of equation 2.10 as 𝑆𝑆 
approaches infinity equals its expectation (Amemiya, 1985), implying that in the limit the weights 
will exactly generate the theoretical likelihood. 

Thus, the simulated weights, denoted 𝑤𝑤�𝑖𝑖
(𝑠𝑠), take the form 

𝑤𝑤�𝑖𝑖
(𝑠𝑠) =

𝑃𝑃𝑖𝑖�𝑦𝑦�𝑖𝑖�𝑦𝑦�𝑖𝑖−1
(𝑠𝑠) ,𝜃𝜃�⋯𝑃𝑃𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+1

(𝑠𝑠) ,𝜃𝜃�𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)

𝑆𝑆−1 ∑ 𝑃𝑃𝑖𝑖�𝑦𝑦�𝑖𝑖�𝑦𝑦�𝑖𝑖−1
(𝑠𝑠) ,𝜃𝜃�⋯𝑃𝑃𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+2�𝑦𝑦�𝑖𝑖−ℎ+1

(𝑠𝑠) ,𝜃𝜃�𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃)𝑆𝑆
𝑠𝑠=1

. (2.11) 

The weights in equation 2.11 have an average of 1 across all simulations, a property that improves 
numerical stability in evaluating the likelihood function (Lee, 1999). Moreover, the last term in 
both the numerator and denominator of equation 2.11 is 𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃), which does not 
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vary with simulation sequence and therefore can be canceled from the ratio. Consequently, if ℎ =
1, implying observation 𝑖𝑖 − 1 is uncensored, then the only term included in either the numerator 
or denominator is the last term, making 𝑤𝑤� (𝑠𝑠)

𝑖𝑖 = 1 for all 𝑆𝑆 simulation sequences. In addition, if 
observation 𝑖𝑖 − ℎ + 1 references the first observation in the sample (that is, 𝑖𝑖 = ℎ = 1), then there 
is no prior conditioning information and 𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝑦𝑦𝑖𝑖−ℎ,𝜃𝜃) = 𝑃𝑃𝑖𝑖−ℎ+1(𝑦𝑦�𝑖𝑖−ℎ+1|𝜃𝜃) continues to 
be a constant across simulation sequences. In this way, the weights can accommodate any 
sampling outcome, including cases in which the first observation is either censored or uncensored.  

The estimated weights, described by equation 2.11 and subsequently inserted into equation 
2.6, can be constructed recursively according to the relation 

(𝑠𝑠)
⎧ 𝑃𝑃𝑗𝑗�𝑦𝑦�𝑗𝑗�𝑦𝑦� ,𝜃𝜃�
⎪

𝑗𝑗−1
𝑤𝑤� (𝑠𝑠) if 𝑖𝑖 − ℎ + 1 < 𝑗𝑗 ≤ 𝑖𝑖 − 1,

(𝑠𝑠) Pr�𝑗𝑗�𝜔𝜔𝑗𝑗�Ω𝑗𝑗−1,𝜃𝜃� 𝑗𝑗−1
𝑤𝑤�𝑗𝑗 =

⎨
(2.12) 

⎪
⎩ 1 if 𝑗𝑗 = 𝑖𝑖 − ℎ + 1.

The weight for the case where 𝑗𝑗 = 𝑖𝑖 − ℎ + 1 is one because the conditional distribution for y*
i−h+1  

is solely a function of yi−h , which is uncensored and thus requires no simulation to evaluate the 
conditional likelihood. As observations are processed sequentially, each time the observation is 
uncensored the weights are re-initialized to 𝑤𝑤� (𝑠𝑠)

𝑗𝑗 = 1, a consequence of conditioning for the AR(1) 
process in which the most recent uncensored observation is sufficient for all prior information.  

The estimation of the coefficient vector 𝜃𝜃 requires iterative methods, implying the full 
likelihood given in equation 2.4 must be repeatedly simulated for each iteration. To assure 
stability across iterations, it is necessary that changes in the likelihood be attributed to changes in 
the underlying coefficients rather than from random variations arising from different draws of the 
random sequences. To achieve this stability, a single 𝑁𝑁 × 𝑆𝑆 matrix 𝑈𝑈 of random variables, with 
elements 𝑢𝑢(𝑠𝑠)

𝑖𝑖 , is independently drawn from the uniform [0,1] distribution. Given that the 
underlying errors of the water-quality model are normally distributed, the conditional sequence 
𝑦𝑦�(𝑠𝑠)
𝑗𝑗  for an observation censored at 𝑦𝑦�𝑗𝑗 is generated according to a truncated normal random 

number generating function 

𝑦𝑦�(𝑠𝑠) = 𝑧𝑧(𝑠𝑠) + 𝜎𝜎 Φ−1 �𝑢𝑢(𝑠𝑠)
𝑗𝑗 𝑗𝑗 𝑗𝑗 𝑗𝑗 Φ ��𝑦𝑦� )

𝑗𝑗 − 𝑧𝑧(𝑠𝑠
𝑗𝑗 ��𝜎𝜎𝑗𝑗�� , 𝑠𝑠 = 1, … 𝑆𝑆, (2.13) 

where 𝑧𝑧(𝑠𝑠)
𝑗𝑗 = 𝑋𝑋𝑗𝑗𝛽𝛽 + 𝜌𝜌𝑑𝑑𝑗𝑗�𝑦𝑦�(𝑠𝑠)

𝑗𝑗−1 − 𝑋𝑋𝑗𝑗−1𝛽𝛽�, Φ(∙) is the standard normal cumulative distribution 
function, and Φ−1(∙) is the inverse standard normal (Lee, 1999). 

The algorithm for estimating the log likelihood (eq. 2.4) using simulation methods is 
detailed in the “Algorithm for the Evaluation of the Log-Likelihood Function Using the 
Simulation Method” section of this appendix. The determination of the parameter vector θ that 
maximizes the simulated log likelihood is referred to as SMLE. The algorithm is designed such 
that if the sample includes no censored observations, then the method reverts to standard 
maximum likelihood. 

The likelihood function defined by equation 2.5 is not a standard likelihood function in that 
integrating it over its support 𝑦𝑦𝑖𝑖 ∈ (−∞,∞) rather than equaling 1, as with a standard likelihood 
function, is not defined due to the presence of the cumulative distribution term if observation 𝑖𝑖 is 
censored, a function that does not vary with 𝑦𝑦𝑖𝑖 causing the integral to be infinite (Amemiya, 1973, 
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Davidson and MacKinnon, 1993). Consequently, asymptotic properties of the standard maximum 
likelihood estimators cannot be assumed. Amemiya (1973) has verified the standard maximum 
likelihood estimator asymptotic properties of consistency, asymptotic normality, and asymptotic 
efficiency for the Tobit model, the model of independent censored values. Schnedler (2005) has 
extended Amemiya’s result to include models in which the observations consist of a vector of 
censored values, the values within the vector being dependent but the vectors across observations 
being independent. This result would suffice for the present analysis if a record of 𝑁𝑁 concentration 
values was interpreted as a single observation on a vector of 𝑁𝑁 dependent values and asymptotic 
samples were assumed to consist of independent draws of 𝑁𝑁-value records; however, this is not 
quite consistent with the assumed data-generation process in which extensions of the record 
cannot be assumed to be independent.  

Gallant and White (1988) established large-sample properties of consistency and 
asymptotic normality for the coefficients of non-linear optimization problems with serially 
dependent observations. The requirements for these results are general, restricting the dependence 
between observations to meet mixing and near epoch dependence (NED) conditions, and placing 
regularity conditions on the objective function. The homoscedastic Gaussian AR(1) data-
generating process assumed for 𝜈𝜈𝑡𝑡 (the residual in eq. 2.1) conforms with strong mixing (Gallant 
and White, 1988). If the random components of the 𝑋𝑋𝑡𝑡 explanatory data, which is principally 
streamflow, are a stationary Gaussian autoregressive moving average (ARMA) process, then these 
components are also strong mixing (Gallant and White, 1988).  

Near epoch dependence is the condition that the log-likelihood for any given observation 
has a dependence on past values of 𝜈𝜈𝑡𝑡 and 𝑋𝑋𝑡𝑡 that diminishes at a sufficient rate, a condition that is 
trivially established if the log-likelihoods for all observations depend on only a finite number of 
lagged values of these variables (Gallant and White, 1988). Under NED conditions, a function of a 
mixing process effectively behaves as a mixing process. If the variability of the observation log-
likelihood is sufficiently bounded, a condition that limits the ability to incorporate trend into the 
analysis, the log-likelihood can be shown to converge pointwise to its expected value. An 
additional constraint on the continuity of the observation log-likelihood ensures convergence is 
uniform in the model coefficients, implying the coefficient estimates converge to the true values 
(consistency), almost surely. 

Andrews (1992) provides simpler conditions that assure consistency in probability, a 
weaker convergence condition than ‘almost surely,’ but acceptable for establishing asymptotic 
properties. As explained by Davidson (1994), the mixing and NED conditions from Gallant and 
White (1988) that restrict dependence are retained, but the additional conditions suggested by 
Andrews (1992) can be met by a generally valid restriction on the partial derivatives of the 
objective function with respect to the model coefficients. The same derivative conditions can be 
used to establish asymptotic normality (Andrews, 1992). Andrews and McDermott (1995) show 
that consistency and asymptotic normality are retained even if the model includes deterministically 
trending variables. 

A complication in applying these conditions for the present analysis is that an observation 
of the log likelihood is not strictly defined. As explained above, the log likelihood given in 
equation 2.4 is essentially the sum of log-transformed values of the numerator of equation 2.5 for 
uncensored observations.  This term consists of lagged values of the mixing variables, but the 
number of lags depends on the number of successive censored observations that precede the 
uncensored observation, which is the outcome of a random process. Progress can be made by 
adopting the approach of Schnedler (2005), which defines “visibility states” based on the pattern 
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of uncensored or censored observations observed for a given sample (see appendix 3 for a 
description of visibility states and their application in proving regularity conditions for the log-
likelihood function and efficiency properties of the coefficient estimates). Under this approach it is 
necessary to assume that certain visibility states occur with zero probability; for example, if the 
number of uncensored observations in an infinite sample is finite, then it would not be possible for 
coefficients to converge on their true values. Such a situation could occur if there was a downward 
trend in concentration with a fixed censoring threshold. If such states are excluded, the remaining 
states are those for which an infinite sample contains an infinite number of uncensored 
observations, and the number of lags for any given observation is necessarily finite. It would then 
be necessary to show that the conditions of Gallant and White (1988) and Andrews (1992) hold 
for any arbitrary visibility state in which there are an infinite number of uncensored observations 
in a sample of infinite observations.  

A formal proof of the consistency and asymptotic normality properties is beyond the scope 
of this report. For the purposes of the discussion in this appendix, the dependency conditions 
proposed by Gallant and White (1988), along with the differentiability conditions described by 
Davidson (1994) are assumed to be met. Such an assumption is justified in this case because it is 
straightforward to show that these conditions are met if there are an infinite number of uncensored 
observations and all censored observations are simply eliminated from the sample. 

If the conditions proposed by Gallant and White (1988) or Davidson (1994) are met, then 
the coefficients maximizing the log-likelihood function described by equations 2.4 and 2.5, 
denoted 𝜃𝜃�, are consistent, meaning that the estimates go to the true values 𝜃𝜃0 in probability as 
sample size 𝑁𝑁 approaches infinity, and that they have an asymptotic normal distribution, 

lim
𝑁𝑁→∞

√𝑁𝑁�𝜃𝜃� − 𝜃𝜃0�~𝑁𝑁(0,𝐴𝐴−1𝐵𝐵𝐵𝐵−1), (2.14) 

where 𝐴𝐴 is the (𝐾𝐾 + 2) × (𝐾𝐾 + 2) matrix 𝐴𝐴 = lim
𝑁𝑁→∞

𝐸𝐸[𝑁𝑁−1𝐿𝐿𝜃𝜃𝜃𝜃′(Ω,𝜃𝜃0)], assumed to be 
nonsingular to permit the existence of the inverse matrix 𝐴𝐴−1, and 𝐵𝐵 is the (𝐾𝐾 + 2) × (𝐾𝐾 + 2) 
matrix 𝐵𝐵 = lim

𝑁𝑁→∞
𝐸𝐸[𝑁𝑁−1𝐿𝐿𝜃𝜃(Ω,𝜃𝜃0)𝐿𝐿𝜃𝜃′(Ω,𝜃𝜃0)]; the (𝐾𝐾 + 2) × 1 vector 𝐿𝐿𝜃𝜃(Ω,𝜃𝜃0) and the 

(𝐾𝐾 + 2) × (𝐾𝐾 + 2) matrix 𝐿𝐿𝜃𝜃𝜃𝜃′(Ω,𝜃𝜃0) are the first- and second-order partial derivatives of the 
log-likelihood function given by equations 2.4 and 2.5 evaluated at the true values of the 
parameters. Continuity and identifiability conditions that imply 𝜃𝜃0 is an unconstrained maximum 
of the expectation of the log-likelihood function imply that the maximum occurs at a concave 
section of the expected log-likelihood, making 𝐴𝐴 negative definite.  

Schendler (2005) shows that, for any given vector of correlated observations, under 
standard regularity conditions for the probability density function, the expectation of the second-
order partial derivative of the log-likelihood for that vector equals the negative of the expectation 
of the outer product of the first-order partial derivative with its transpose, where all derivatives are 
evaluated at 𝜃𝜃0; (see appendix 3 for a description of Schendler’s analysis). Applying this result to 
the present analysis, with the vector interpreted as the entire record of 𝑁𝑁 observations, 
then 𝐸𝐸[𝐿𝐿𝜃𝜃𝜃𝜃′(Ω,𝜃𝜃0)] = −𝐸𝐸[𝐿𝐿𝜃𝜃(Ω,𝜃𝜃0)𝐿𝐿𝜃𝜃′(Ω,𝜃𝜃0)], implying 𝐴𝐴 = −𝐵𝐵 in the description of the 
asymptotic covariance matrix in equation 2.14, and the covariance can be expressed equivalently 
as −𝐴𝐴−1 or 𝐵𝐵−1. Thus, using the latter form the asymptotic covariance matrix is given by 

lim
𝑁𝑁→∞

𝐸𝐸 ��𝜃𝜃� − 𝜃𝜃0��𝜃𝜃� − 𝜃𝜃0�
′
� ≡ 𝐴𝐴𝐴𝐴�𝜃𝜃�� = lim

𝑁𝑁→∞
𝐸𝐸[𝑁𝑁−1𝐿𝐿𝜃𝜃(Ω,𝜃𝜃0)𝐿𝐿𝜃𝜃′(Ω,𝜃𝜃0)] . (2.15) 

Methods developed by Schendler (2005) can be used to show the asymptotic covariance matrix in 
equation 2.15 achieves the Cramer-Rao lower bound (see app. 3) implying that, assuming the 
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conditions specified by Gallant and White (1988) or Davidson (1994) are met, the maximization 
of the log-likelihood function described by equations 2.4 and 2.5 gives estimates that are 
asymptotically efficient.  

Cohn (2005) recommends an adjustment based on work of Shenton and Bowman (1977) 
that removes first-order bias in the coefficient estimates (the expected difference between the 
estimated coefficients and the true coefficients if the difference is multiplied by the number of 
observations and the sample size goes to infinity). Shenton and Bowman (1977) show that the 
first-order bias of coefficient 𝜃𝜃�𝑘𝑘, denoted 𝐵𝐵𝑘𝑘, can be expressed as 

𝐸𝐸�𝜃𝜃�𝑘𝑘 − 𝜃𝜃𝑘𝑘� ≡ 𝐵𝐵𝑘𝑘 ≅ � 𝑉𝑉𝑘𝑘𝑘𝑘 ��𝐸𝐸 �𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐 + 1
2𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎� 𝑉𝑉𝑏𝑏𝑏𝑏

𝐾𝐾+2

𝑐𝑐=1

𝐾𝐾+2

𝑏𝑏=1

𝐾𝐾+2

𝑎𝑎=1

         = �𝑉𝑉𝑘𝑘𝑘𝑘 ��𝐸𝐸 �𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐 −
1
2
(𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐 + 𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑏𝑏 + 𝐿𝐿𝑏𝑏𝑏𝑏𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏𝐿𝐿𝑐𝑐)� 𝑉𝑉𝑏𝑏𝑏𝑏

𝐾𝐾+2

𝑐𝑐=1

𝐾𝐾+2

𝑏𝑏=1

𝐾𝐾+2

𝑎𝑎=1

𝐸𝐸�𝜃𝜃�𝑘𝑘 − 𝜃𝜃𝑘𝑘� ≡ 𝐵𝐵𝑘𝑘 = −1
2� 𝑉𝑉𝑘𝑘𝑘𝑘 ��𝐸𝐸[𝐿𝐿𝑏𝑏𝑏𝑏𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏𝐿𝐿𝑐𝑐]𝑉𝑉𝑏𝑏𝑏𝑏

𝐾𝐾+2

𝑐𝑐=1

𝐾𝐾+2

𝑏𝑏=1

𝐾𝐾+2

𝑎𝑎=1

𝐸𝐸�𝜃𝜃�𝑘𝑘 − 𝜃𝜃𝑘𝑘� ≡ 𝐵𝐵𝑘𝑘 = −1
2𝑉𝑉𝑘𝑘∙𝐸𝐸[𝐿𝐿𝜃𝜃vec(𝐿𝐿𝜃𝜃𝜃𝜃′ + 𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′)′]vec(𝑉𝑉), (2.16)

 

where 𝑉𝑉𝑘𝑘𝑘𝑘 is the covariance between estimated coefficients 𝜃𝜃�𝑘𝑘 and 𝜃𝜃�𝑎𝑎 – the element in the 𝑘𝑘th row 
and 𝑎𝑎th column of the coefficient covariance matrix 𝑉𝑉�𝜃𝜃�� (see eq. 2.15), 𝑉𝑉𝑘𝑘∙ is the 𝑘𝑘th row of the 
covariance matrix, 𝐿𝐿𝑐𝑐 is the partial derivative of the log-likelihood function with respect to 
coefficient 𝜃𝜃𝑐𝑐 (𝐿𝐿𝑐𝑐 ≡ 𝜕𝜕𝜕𝜕 𝜕𝜕𝜃𝜃𝑐𝑐⁄ , evaluated at 𝜃𝜃 = 𝜃𝜃0), 𝐿𝐿𝑎𝑎𝑎𝑎 is the second-order partial deriviative of 
the log-likelihood function with respect to coefficients 𝜃𝜃𝑎𝑎 and 𝜃𝜃𝑏𝑏, (𝐿𝐿𝑎𝑎𝑎𝑎 ≡ 𝜕𝜕2𝐿𝐿 𝜕𝜕𝜃𝜃𝑎𝑎𝜕𝜕𝜃𝜃𝑏𝑏⁄ , evaluated 
at 𝜃𝜃 = 𝜃𝜃0), 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 is the third-order partial derivative of the log-likelihood function (𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 ≡
𝜕𝜕3𝐿𝐿 𝜕𝜕𝜃𝜃𝑎𝑎𝜕𝜕𝜃𝜃𝑏𝑏𝜕𝜕𝜃𝜃𝑐𝑐⁄ , evaluated at 𝜃𝜃 = 𝜃𝜃0), and vec(·) converts a square (𝐾𝐾 + 2) × (𝐾𝐾 + 2) matrix 
into a (𝐾𝐾 + 2)2 × 1 vector by stacking the columns in left to right order.  

The second equality in equation 2.16 expands the terms of 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎, eliminating the third-order 
partial derivative term through an argument similar to the one used to show 𝐴𝐴 = −𝐵𝐵 in the 
derivation of the covariance matrix (see app. 3); this simplifies 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 to consist only of first- and 
second-order partial derivatives of the log-likelihood function. The third equality follows by 
combining the 𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐 terms and then noting that these cancel with the 𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑏𝑏 term because the 
covariance matrix is symmetric, implying 𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐]𝑉𝑉𝑏𝑏𝑏𝑏 = 𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐]𝑉𝑉𝑐𝑐𝑐𝑐, and upon switching labels 
𝑏𝑏 and 𝑐𝑐, which are arbitrary in summation, yields 𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐]𝑉𝑉𝑏𝑏𝑏𝑏 = 𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑏𝑏]𝑉𝑉𝑏𝑏𝑏𝑏. The last equality 
follows because the product [𝐿𝐿𝑏𝑏𝑏𝑏 + 𝐿𝐿𝑏𝑏𝐿𝐿𝑐𝑐]𝑉𝑉𝑏𝑏𝑏𝑏 summed over all 𝑏𝑏 and 𝑐𝑐 indices is equivalent to a 
simple inner product of the vectorized square matrices 𝐿𝐿𝜃𝜃𝜃𝜃′ + 𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′ and 𝑉𝑉. The expectation 
operator forms expectations for the variance log-likelihood differential terms under alternative 
realizations of the model innovations, assuming that the censoring threshold for each observation 
day is known, with the log-likelihood being formulated to be consistent with the censoring 
threshold applied under alternative outcomes for the innovations.  
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The evaluation of the expectation terms appearing in equation 2.15 for the determination of 
the covariance matrix and in equation 2.16 for the determination of the first-order bias adjustment 
are obtained using simulation methods, where 𝑆𝑆 sequences of 𝑁𝑁 standard-normal distributed 
random variables are independently drawn to generate simulated sequences of the dependent 
variable based on the SMLE estimated values of the parameters. Censoring thresholds for each 
observation are then applied to simulate sequences of measurements. Because censoring 
thresholds for uncensored observations are not generally known, the median of the censoring 
thresholds among the censored observations is used as the censoring threshold for the uncensored 
observation days. Given each simulation sequence of measurements, the log-likelihood of that 
sequence is evaluated using the algorithm described in the “Algorithm for the Evaluation of the 
Log-Likelihood Function Using the Simulation Method” section of this appendix, and the first- 
and second-order partial derivatives of the log-likelihood function with respect to the parameter 
vector, as required in equations 2.15 and 2.16, are evaluated using the numerical central-difference 
approximation method (Conte and de Boor, 1972). In the case of sample records without any 
censored observations, a censoring threshold is not known, and the simulation of measurements 
does not apply any censoring limits to the simulated dependent variable. Consequently, the 
evaluation of the likelihood is much simpler with each of the 𝑁𝑁 terms of the log-likelihood being 
statistically independent. 

The first-order partial derivatives for each simulation sequence are substituted into 
equation 2.15 and averaged, the inverse of this average being the estimate of the covariance 
matrix. Bias is obtained using these covariances for the two covariance terms appearing in 
equation 2.16. To estimate the expectation term in equation 2.16, simulation averages of the first- 
and second-order partial derivatives of the log-likelihood function are substituted for the relevant 
terms in the brackets of the expectation term, the evaluation of which is then averaged to 
approximate the expectation term.  

The bias-adjusted coefficients are evaluated to ensure that the coefficients adhere to 
estimation bounds: the adjusted 𝜌𝜌 must be between 0 and 0.999, and the adjusted 𝜎𝜎 is required to 
be greater than 0.01. The adjustment is also evaluated to ensure it does not induce too large a 
change in the log-likelihood function, where the adjustment is rejected if the log-likelihood 
evaluated at the maximum-likelihood coefficient estimates is greater than the log-likelihood 
evaluated at the adjusted estimates by an amount greater than the 0.999999 quantile of the chi-
square distribution with 𝐾𝐾 + 2 degrees of freedom. If the adjusted coefficients violate any of these 
conditions then the model is re-estimated with the serial correlation coefficient constrained to 
equal 0 using a method that approximates the method developed by Cohn (2005), as described in 
Schwarz and others (2006). The serial correlation parameter is also set to zero if the median 
number of days between observations in the water-quality record is greater than 30; large gaps in 
the typical water-quality record make it difficult to obtain a reliable estimate of the serial 
correlation parameter. In these cases, the Kalman smoothing of predicted load cannot be 
implemented and predictions are not be interpolated between successive load observations. 

In the application of the SMLE method to compute mean annual loads for the regional 
SPARROW models, the number of simulations used to approximate the log likelihood was 1,000 
(𝑆𝑆 = 1,000). The simulated likelihood function was optimized using the quasi-Newton 
optimization method as implemented in SAS/IML software (version 12.3, SAS Institute Inc., 
2013), with an absolute gradient convergence criterion and a convergence threshold of 1×10-6. If 
there is no censoring, then the method of estimation defaults to standard maximum likelihood, 
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with the covariance matrix and bias adjustment derived under the assumption that each individual 
term in the log-likelihood function (see eq. 2.4) is independent. 

Prediction 
The prediction methodology makes use of the AR(1) correlation property of the residuals 

to obtain an estimate of load conditioned on load observations. If a concentration observation is 
uncensored, then the prediction of daily load for that observation day equals the product of daily 
flow and the observed concentration, with an adjustment for units of measurement to produce a 
load estimate in kilograms. If all observations in the sample are uncensored, then conditional 
prediction is a straightforward application of Kalman-smoothing methods, as described in Lee and 
others (2016).  

As with estimation, the conditioning of predictions on censored observations requires 
simulation methods. Random realizations of daily loads are generated depending on whether a 
prediction day contains a censored observation, in which case bounds based on the censoring 
threshold can be placed on the generating distribution, or no observation is made, implying no 
bounds are placed on the randomly generated daily load. When an uncensored value of daily load 
is observed, it then becomes possible to assess the probability of observing that value given the 
most recent past uncensored observation and the sequence of simulated daily loads generated in 
the intervening period, thereby establishing a probability for the simulated sequence of intervening 
daily loads. Multiplying the simulated daily loads by their probability conditioned on the 
observations and summing for all simulation sequences gives the expected value of daily load. The 
average annual sum of these expected daily loads over all qualifying years in the prediction period 
gives the conditional mean annual load, subject to further adjustment to account for skewed 
uncertainty in the estimate. 

In forming conditional probabilities under the assumed AR(1) correlation process, it is 
necessary to include sample information back in time only as far as the most recent uncensored 
observation, all information prior to this being superfluous. The specification of the log-likelihood 
for estimation implies that uncensored observations dictate the points in time when the probability 
of a simulated sequence of daily loads between these observations can be assessed. Therefore, 
uncensored observations define statistically independent blocks of time in which daily predictions 
are determined. 

Consider a block of days in which the first day of the block is the first prediction day 
following a day with an uncensored observation or, in the case of the first block in the prediction 
period, is the beginning of the prediction period. The last day of the block corresponds to the day 
of the next uncensored observation in the prediction period or, in the case of the last block in the 
period, the last day in the prediction period if that day is not also an uncensored observation day. 
Delineated in this way, the number of blocks 𝐵𝐵 covering a prediction period equals the number of 
uncensored observations in the prediction period, plus 1 if the last day of the prediction period is 
not an uncensored observation.  

In the following discussion, prediction blocks are indexed by 𝑏𝑏 and prediction days are 
indexed by 𝑡𝑡, where the first day of block 𝑏𝑏 is denoted 𝑇𝑇𝑏𝑏 and the last day of the block is 𝑇𝑇𝑏𝑏. 
Prediction days may contain gaps due to missing ancillary data, such as daily flow. To account for 
this, 𝑔𝑔𝑡𝑡 denotes the number of days between prediction day 𝑡𝑡 and prediction day 𝑡𝑡 − 1. 𝑇𝑇𝑏𝑏 denotes 
the set of prediction days in block 𝑏𝑏 that are not days containing an uncensored measurement, 
meaning in most cases 𝑇𝑇𝑏𝑏 excludes the last day, 𝑇𝑇𝑏𝑏, and 𝑌𝑌𝑏𝑏 = {𝑦𝑦𝑡𝑡: 𝑡𝑡 ∈ 𝑇𝑇𝑏𝑏} is the set of log-
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transformed concentrations for those days. Lastly, 𝑇𝑇𝑏𝑏𝑐𝑐 denotes the days in block 𝑏𝑏 which contain a 
censored measurement of concentration, and 𝐶𝐶𝑏𝑏 = {𝑦𝑦�𝑡𝑡:𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡 , 𝑡𝑡 ∈ 𝑇𝑇𝑏𝑏𝑐𝑐} represents the set of 
censored concentrations for those days.  

The probability of the sequence of log-transformed concentrations occurring in block 𝑏𝑏 
(𝑌𝑌𝑏𝑏) that are unconstrained by uncensored measurement, and thereby exclude the measurement 
𝑦𝑦𝑇𝑇𝑏𝑏, conditioned on the set of available information �𝑦𝑦𝑇𝑇𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� is given by Bayes rule as 

Pr�𝑌𝑌𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� =
Pr�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�

Pr�𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�
=

Pr�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�

∫ Pr�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�𝑑𝑑𝑌𝑌𝑏𝑏
, (2.17) 

where the integral in the denominator of the last term refers to multivariate integration over the 
support for 𝑌𝑌𝑏𝑏 which, in the case of the normal distribution, is the 𝑛𝑛𝑏𝑏-dimensional interval ℝ𝑛𝑛𝑏𝑏, 
where ℝ is the real line (−∞,∞) and 𝑛𝑛𝑏𝑏 is the number of elements in 𝑌𝑌𝑏𝑏. For the conditional 
probabilities appearing in equation 2.17 and the sequel the conditioning information is implied to 
include the parameter vector 𝜃𝜃. 

The numerator of equation 2.17 can be further decomposed as follows: 

Pr�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� = 𝑝𝑝𝑇𝑇𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏�𝑌𝑌𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�Pr�𝑌𝑌𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�

Pr�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� = 𝑝𝑝𝑇𝑇𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1�Pr�𝑌𝑌𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�

Pr�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� = 𝑝𝑝𝑇𝑇𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1�
Pr�𝑌𝑌𝑏𝑏 ,𝐶𝐶𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1�

Pr�𝐶𝐶𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1�

Pr�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� = 𝑝𝑝𝑇𝑇𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1�
Pr�𝐶𝐶𝑏𝑏�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1�Pr�𝑌𝑌𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1�

Pr�𝐶𝐶𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1�
, (2.18)

 

where the first equality follows from an application of Bayes rule, the second equality is a 
consequence of the AR(1) process whereby the previous prediction day suffices for conditioning 
on all prior information, and the third and fourth equalities are additional applications of Bayes 
rule. 

The probability Pr�𝐶𝐶𝑏𝑏�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� appearing in the numerator of the last equality in 
equation 2.18 has a simple representation. Given the value of concentration, 𝑦𝑦𝑡𝑡, the event 𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡 
is either true or false, implying Pr�𝐶𝐶𝑏𝑏�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� can be expressed as the product of indicator 
functions 

Pr�𝐶𝐶𝑏𝑏�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� = �𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

, (2.19) 

where 𝛿𝛿(∙) is a binary value, being equal to 1 if the argument is true and 0 if it is false. The AR(1) 
property implies the conditional probability of concentration depends only on the previous value 
of concentration, all other prior information being superfluous. Consequently, the term 
Pr�𝑌𝑌𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1� in the numerator of the last equality in equation 2.18 can be expressed as the product 
of simple conditional marginal probabilities, 

Pr�𝑌𝑌𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1� = �𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝑡𝑡∈𝑇𝑇𝑏𝑏

. (2.20) 
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Given the relations in equations 2.18 through 2.20, the probability expressed in equation 
2.17 of the sequence of daily concentrations in a block conditioned on the measurements 
�𝑦𝑦𝑇𝑇𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� has the equivalent expression 

Pr�𝑌𝑌𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� =
∏ 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)𝑇𝑇𝑏𝑏
𝑡𝑡=𝑇𝑇𝑏𝑏

∏ 𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑏𝑏
𝑐𝑐

∫∏ 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)𝑇𝑇𝑏𝑏
𝑡𝑡=𝑇𝑇𝑏𝑏

∏ 𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑏𝑏
𝑐𝑐 𝑑𝑑𝑌𝑌𝑏𝑏

. (2.21) 

Note that the term Pr�𝐶𝐶𝑏𝑏�𝑦𝑦𝑇𝑇𝑏𝑏−1� in the denominator of the last equality in equation 2.18 does not 
depend explicitly on 𝑌𝑌𝑏𝑏 and therefore cancels from the numerator and denominator of equation 
2.21. 

If the last block in the prediction period does not terminate with a measured concentration, 
the probability for the block concentrations is 

Pr�𝑌𝑌𝐵𝐵�𝐶𝐶𝐵𝐵,𝑦𝑦𝑇𝑇𝐵𝐵−1� =
Pr�𝐶𝐶𝐵𝐵�𝑌𝑌𝑏𝑏 ,𝑦𝑦𝑇𝑇𝐵𝐵−1�Pr�𝑌𝑌𝑏𝑏�𝑦𝑦𝑇𝑇𝐵𝐵−1�

Pr�𝐶𝐶𝐵𝐵�𝑦𝑦𝑇𝑇𝐵𝐵−1�

Pr�𝑌𝑌𝑏𝑏�𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� =
∏ 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)𝑇𝑇𝐵𝐵
𝑡𝑡=𝑇𝑇𝐵𝐵 ∏ 𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑡𝑡∈𝑇𝑇𝐵𝐵

𝑐𝑐

∫∏ 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)𝑇𝑇𝐵𝐵
𝑡𝑡=𝑇𝑇𝐵𝐵

∏ 𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑡𝑡∈𝑇𝑇𝐵𝐵
𝑐𝑐 𝑑𝑑𝑌𝑌𝐵𝐵

, (2.22)

 

which matches the formulation shown in equation 2.21. Thus, equation 2.21 is valid for all blocks 
comprising the prediction period. 

The expectation of untransformed concentration 𝑦𝑦𝑘𝑘∗ for a given prediction day 𝑘𝑘 in block 𝑏𝑏 
is obtained by multiplying log-transformed concentration by the joint probability in equation 2.21 
and integrating over the elements of 𝑌𝑌𝑏𝑏, 

𝐸𝐸�𝑦𝑦𝑘𝑘∗�𝑦𝑦𝑇𝑇𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� =
∫ exp(𝑦𝑦𝑘𝑘)∏ 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)𝑇𝑇𝑏𝑏

𝑡𝑡=𝑇𝑇𝑏𝑏
∏ 𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐 𝑑𝑑𝑌𝑌𝑏𝑏

∫∏ 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)𝑇𝑇𝑏𝑏
𝑡𝑡=𝑇𝑇𝑏𝑏

∏ 𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑏𝑏
𝑐𝑐 𝑑𝑑𝑌𝑌𝑏𝑏

. (2.23) 

The same equation applies if 𝑦𝑦𝑇𝑇𝑏𝑏 is not measured in the last block, where 𝑏𝑏 = 𝐵𝐵. If k refers to a 
day with an uncensored measurement, then 𝑦𝑦𝑘𝑘 is set equal to the measurement, 𝑦𝑦𝑇𝑇𝑏𝑏.  

Because a block may contain multiple censored measurements, the integration step used 
for taking the expectation and for normalizing the probability (see the numerator and denominator 
of eq. 2.23) becomes numerically burdensome and necessitates the use of simulation methods, as 
are used in the evaluation of the likelihood function for model estimation. In generating simulated 
outcomes for concentration 𝑦𝑦�𝑡𝑡

(𝑠𝑠), two generating distributions are used. For prediction days with 
no measurement, concentrations are generated from the conditional normal probability density, 
and for days with a censored measurement a specific value of concentration is drawn from a 
conditional truncated normal distribution,  

𝑦𝑦�𝑡𝑡
(𝑠𝑠)~

⎩
⎪
⎨

⎪
⎧𝑝𝑝𝑡𝑡�𝑦𝑦�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) �, if 𝑡𝑡 ∈ 𝑇𝑇𝑏𝑏 and 𝑡𝑡 ∉ 𝑇𝑇𝑏𝑏𝑐𝑐 ,

𝛿𝛿(𝑦𝑦 ≤ 𝑦𝑦�𝑡𝑡)𝑝𝑝𝑡𝑡�𝑦𝑦�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) � 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) �� , if 𝑡𝑡 ∈ 𝑇𝑇𝑏𝑏𝑐𝑐 ,

(2.24) 
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where the delta function (𝛿𝛿(∙)) is the distribution for censored observations, which specifies that 
the probability is 1 inside the censoring range for 𝑦𝑦 and 0 outside the range. In application, the 
simulated values are generated using the standard normal probability density and the standard 
uniform density, according to 

𝑦𝑦�𝑡𝑡
(𝑠𝑠) = 𝑧̃𝑧𝑡𝑡

(𝑠𝑠) + 𝜎𝜎�𝑡𝑡

⎩
⎪
⎨

⎪
⎧𝑒𝑒𝑡𝑡

(𝑠𝑠)~𝑁𝑁(0,1), if 𝑡𝑡 ∈ 𝑇𝑇𝑏𝑏 and 𝑡𝑡 ∉ 𝑇𝑇𝑏𝑏𝑐𝑐 ,

Φ−1 �𝑢𝑢𝑡𝑡
(𝑠𝑠)Φ�

𝑦𝑦�𝑡𝑡 − 𝑧̃𝑧𝑡𝑡
(𝑠𝑠)

𝜎𝜎�𝑡𝑡
�� ,  𝑢𝑢𝑡𝑡

(𝑠𝑠)~𝑈𝑈(0,1) if 𝑡𝑡 ∈ 𝑇𝑇𝑏𝑏𝑐𝑐 ,
(2.25) 

where 𝑧̃𝑧𝑡𝑡
(𝑠𝑠) = 𝑋𝑋𝑡𝑡𝛽̂𝛽 + 𝜌𝜌�𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) − 𝑋𝑋𝑡𝑡−1𝛽̂𝛽�, 𝜌𝜌�𝑡𝑡 = 𝜌𝜌�𝑔𝑔𝑡𝑡 𝑑𝑑Median⁄ , and 𝜎𝜎�𝑡𝑡 = 𝜎𝜎��1 − 𝜌𝜌�𝑡𝑡2, and 𝛽̂𝛽, 𝜌𝜌�, and 𝜎𝜎� are 
the simulated maximum likelihood estimates of the model parameters, including the first-order 
bias adjustment. For the first prediction day in a block with a prior uncensored measurement, the 
simulated conditioning value of log concentration is given by the measured value, so that 𝑦𝑦�𝑇𝑇𝑏𝑏−1

(𝑠𝑠) =
𝑦𝑦𝑇𝑇𝑏𝑏−1, for all 𝑠𝑠 = 1, … , 𝑆𝑆. For the first prediction day of the first block (𝑏𝑏 = 1), there is no prior 
information and 𝑦𝑦�𝑇𝑇1−1

(𝑠𝑠) = 0. Additionally, for this day 𝜌𝜌�𝑡𝑡 = 0, implying that 𝜎𝜎�𝑡𝑡 = 𝜎𝜎�. The delta 
function appearing in equation 2.24 used to simulate censored observations is not required in 
equation 2.25. As pointed out by Lee (1999), an advantage of using the uniform random variable 
to simulate log concentration on days containing a censored observation is that all simulated 
values are admissible, meaning that each simulated value adheres to the censoring condition 𝑦𝑦𝑡𝑡 ≤
𝑦𝑦�𝑡𝑡. 

The estimate of the probability of the simulation sequence, analogous to the conditional 
probability shown in equation 2.21, is given by 

Pr��𝑌𝑌�𝑏𝑏
(𝑠𝑠)�𝑦𝑦𝑇𝑇𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� =

             

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑝𝑝𝑇𝑇𝑏𝑏 �𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦�𝑇𝑇𝑏𝑏−1

(𝑠𝑠) �∏ 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

𝑆𝑆−1 ∑ 𝑝𝑝𝑇𝑇𝑏𝑏 �𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦�𝑇𝑇𝑏𝑏−1
(𝑠𝑠) �∏ 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) �𝑡𝑡∈𝑇𝑇𝑏𝑏
𝑐𝑐𝑆𝑆

𝑠𝑠=1

, if 𝑦𝑦𝑇𝑇𝑏𝑏observed,

∏ 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

𝑆𝑆−1 ∑ ∏ 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐𝑆𝑆
𝑠𝑠=1

, if 𝑦𝑦𝑇𝑇𝑏𝑏not observed (𝑏𝑏 = 𝐵𝐵),

   (2.26)
 

where 𝑠𝑠 = 1, … , 𝑆𝑆, 𝑌𝑌�𝑏𝑏
(𝑠𝑠) = �𝑦𝑦�𝑡𝑡

(𝑠𝑠): 𝑡𝑡 ∈ 𝑇𝑇𝑏𝑏� is the sequence of simulated log-transformed 

concentrations in block 𝑏𝑏, 𝑝𝑝𝑡𝑡 �𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦�𝑇𝑇𝑏𝑏−1
(𝑠𝑠) � = 𝜎𝜎�𝑇𝑇𝑏𝑏

−1𝜙𝜙 ��𝑦𝑦𝑇𝑇𝑏𝑏 − 𝑧̃𝑧𝑇𝑇𝑏𝑏
(𝑠𝑠)� 𝜎𝜎�𝑇𝑇𝑏𝑏� � is a conditional normal 

probability density, and 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) � = Φ��𝑦𝑦𝑇𝑇𝑏𝑏 − 𝑧̃𝑧𝑇𝑇𝑏𝑏

(𝑠𝑠)� 𝜎𝜎�𝑇𝑇𝑏𝑏� � is the cumulative normal 
probability. Technically, to be a probability the sum across all 𝑠𝑠 should be 1, whereas the sum 
across all values of 𝑠𝑠 of equation 2.26 is 𝑆𝑆. Consequently, the probability described in equation 
2.26 is referred to as a scaled probability. The scaling by 𝑆𝑆 is used to induce numerical stability 
among the individual probability terms (Lee, 1999) and is removed in the final step of simulating 
the expectation of daily values. 
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Given the simulated scaled probability in equation 2.26, the simulated conditional 
expectation of untransformed concentration 𝑦𝑦𝑘𝑘∗ for day 𝑘𝑘, for some block 𝑏𝑏 is given by 

𝐸𝐸��𝑦𝑦𝑘𝑘∗�𝑦𝑦𝑇𝑇𝑏𝑏 ,𝐶𝐶𝑏𝑏 ,𝑦𝑦𝑇𝑇𝑏𝑏−1� =
𝑆𝑆−1 ∑ exp�𝑦𝑦�𝑘𝑘

(𝑠𝑠)�𝑝𝑝𝑇𝑇𝑏𝑏 �𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦�𝑇𝑇𝑏𝑏−1
(𝑠𝑠) �∏ 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) �𝑡𝑡∈𝑇𝑇𝑏𝑏
𝑐𝑐𝑆𝑆

𝑠𝑠=1

𝑆𝑆−1 ∑ 𝑝𝑝𝑇𝑇𝑏𝑏 �𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦�𝑇𝑇𝑏𝑏−1
(𝑠𝑠) �∏ 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) �𝑡𝑡∈𝑇𝑇𝑏𝑏
𝑐𝑐𝑆𝑆

𝑠𝑠=1

, (2.27) 

where, rather than taking a simple sum in the numerator, the normalization by 𝑆𝑆 has been removed 
by taking the average over 𝑠𝑠 of the product of simulated concentration and the simulation 
probability (the inclusion of the 𝑆𝑆−1 term in the numerator of eq. 2.27). If 𝑏𝑏 refers to the last block 
in the prediction period (𝑏𝑏 = 𝐵𝐵) and the last prediction day of the last block is not measured or is 
measured with censoring, then the conditional marginal probability 𝑝𝑝𝑇𝑇𝑏𝑏 �𝑦𝑦𝑇𝑇𝑏𝑏�𝑦𝑦�𝑇𝑇𝑏𝑏−1

(𝑠𝑠) � is dropped 
from both the numerator and the denominator. 

Under general conditions, the limits as 𝑆𝑆 approaches infinity of the averages representing 
the numerator and denominator of equation 2.27 go to their respective expectations (Amemiya, 
1985). Therefore, the approximation in equation 2.27 can be evaluated by taking the expectation 
of the numerator and denominator separately, recognizing the mechanisms by which the simulated 
values 𝑦𝑦�𝑡𝑡−1

(𝑠𝑠)  are generated (eq. 2.24), and comparing the ratio of these expectations to the 
theoretical conditional expectation given in equation 2.23. The expectation of the numerator and 
denominator terms of equation 2.27 are given by 

𝐸𝐸 �exp�𝑦𝑦�𝑘𝑘
(𝑠𝑠)��𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) �
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

� =

     ��exp(𝑦𝑦𝑘𝑘)�𝑃𝑃𝑡𝑡(𝑦𝑦�𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)

𝑃𝑃𝑡𝑡(𝑦𝑦�𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

�� � 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝑡𝑡∈𝑇𝑇𝑏𝑏∖𝑇𝑇𝑏𝑏

𝑐𝑐

�𝑑𝑑𝑌𝑌𝑏𝑏   

     = � exp(𝑦𝑦𝑘𝑘)�𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

�𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑑𝑑𝑌𝑌𝑏𝑏 , (2.28)

 

and 

𝐸𝐸 ��𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �

𝑡𝑡∈𝑇𝑇𝑏𝑏
𝑐𝑐

� =

            ���𝑃𝑃𝑡𝑡(𝑦𝑦�𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)

𝑃𝑃𝑡𝑡(𝑦𝑦�𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

�� � 𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝑡𝑡∈𝑇𝑇𝑏𝑏∖𝑇𝑇𝑏𝑏

𝑐𝑐

�𝑑𝑑𝑌𝑌𝑏𝑏

          = ��𝛿𝛿(𝑦𝑦𝑡𝑡 ≤ 𝑦𝑦�𝑡𝑡)
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑐𝑐

�𝑝𝑝𝑡𝑡(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1)
𝑡𝑡∈𝑇𝑇𝑏𝑏

𝑑𝑑𝑌𝑌𝑏𝑏 , (2.29)
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which exactly match the numerator and denominator of equation 2.23. Therefore, the simulation 
evaluation function for block 𝑏𝑏 given in equation 2.27 combined with the simulation generating 
functions for censored observation days and non-measurement days (eq. 2.25) represent a 
consistent estimate of the expectation of untransformed concentration conditioned on censored and 
uncensored sample measurements. 

As with the simulation of weights used to evaluate the likelihood function in model 
estimation, the scaled probabilities in equation 2.26 can be generated recursively. The initial 
scaled probabilities for each block 𝑏𝑏 and simulation 𝑠𝑠, denoted Pr�0𝑏𝑏

(𝑠𝑠), are set equal to 1. Cycling 
forward in time through each prediction day in block 𝑏𝑏, simulated values of 𝑦𝑦�𝑡𝑡

(𝑠𝑠) are generated 
according to equation 2.25. If a measurement day is encountered, the updated scaled probability, 
denoted Pr�𝑏𝑏

(𝑠𝑠), which becomes the new initial value Pr�0𝑏𝑏
(𝑠𝑠) for the next encountered measurement 

day, is given by 

Pr�𝑏𝑏
(𝑠𝑠) =

Pr𝑡𝑡�𝜔𝜔𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �Pr�0𝑏𝑏

(𝑠𝑠)

𝑆𝑆−1 ∑ Pr𝑡𝑡�𝜔𝜔𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �Pr�0𝑏𝑏

(𝑠𝑠)𝑆𝑆
𝑠𝑠=1

, (2.30) 

where 𝜔𝜔𝑡𝑡 is the measurement on date 𝑡𝑡, and Pr𝑡𝑡�𝜔𝜔𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) � is the conditional probability of that 

measurement given the previous prediction day’s simulated log concentration for simulation 
sequence 𝑠𝑠. If 𝜔𝜔𝑡𝑡 = 𝑦𝑦�𝑡𝑡, implying the measurement is a censored observation, then Pr𝑡𝑡�𝜔𝜔𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) � is 

set equal to the conditional normal cumulative probability 𝑃𝑃𝑡𝑡�𝑦𝑦�𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �; conversely, if 𝜔𝜔𝑡𝑡 = 𝑦𝑦𝑡𝑡, so 

that the measurement is uncensored and the observation pertains to the last observation in the 
block, then Pr𝑡𝑡�𝜔𝜔𝑡𝑡�𝑦𝑦�𝑡𝑡−1

(𝑠𝑠) � equals the conditional normal density function 𝑝𝑝𝑡𝑡�𝑦𝑦𝑡𝑡�𝑦𝑦�𝑡𝑡−1
(𝑠𝑠) �.  

Detrended Loads for SPARROW Application 
SPARROW modeling requires load estimates to be detrended to a common base year 

(Schwarz and others, 2006). There are two sources of trend in the load estimation model: trend in 
flow, and direct trend affecting water-quality concentrations for a given flow. Trend in flow 
affects trend in load in two ways: through the effect of flow on concentration, and through the 
multiplication of concentration by flow to determine load. The direct trend in concentration is 
accounted for in the estimation of the water-quality model (eq. 2.1) by including a linear time 
trend explanatory variable. In prediction, to compute a detrended load estimate, the time trend 
variable is set equal to the normalization date (June 30, 2012) for the entire prediction period. To 
correct for trend in flow, it is necessary to separately estimate a detrended flow variable, this 
variable then being substituted for the flow variables determining concentration and load.  

The detrended flow variable is obtained by regressing the logarithm of daily flow 𝑞𝑞𝑡𝑡 on a 
constant, a decimal time trend variable 𝐷𝐷𝑡𝑡, and the sine and cosine of the product of 2𝜋𝜋 and 
decimal time to account for seasonal variations in flow. The residuals of the model are assumed to 
adhere to a 30-lag autoregressive (AR(30)) correlation structure, which accounts for significant 
lagged correlation. Given estimates of the linear trend coefficient, detrended log-transformed flow 
𝑞𝑞�𝑡𝑡 for day 𝑡𝑡 is given by 

𝑞𝑞�𝑡𝑡 = 𝑞𝑞𝑡𝑡 + 𝛼𝛼𝐷𝐷(𝐷𝐷0 − 𝐷𝐷𝑡𝑡), (2.31) 
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where 𝛼𝛼𝐷𝐷 is the coefficient on decimal time in the flow equation, and 𝐷𝐷0 is the value of decimal 
time for the normalization date. 

Detrended log-transformed load for day 𝑘𝑘 is computed by replacing the 𝑦𝑦�𝑘𝑘
(𝑠𝑠) term in 

equation 2.27 with an adjusted value 𝑦𝑦��𝑘𝑘
(𝑠𝑠) given by 

𝑦𝑦��𝑘𝑘
(𝑠𝑠) = 𝑦𝑦�𝑘𝑘

(𝑠𝑠) + ln𝜅𝜅 + 𝑞𝑞�𝑘𝑘 + 𝛽𝛽𝑞𝑞(𝑞𝑞�𝑘𝑘 − 𝑞𝑞𝑡𝑡) + 𝛽𝛽𝐷𝐷(𝐷𝐷0 − 𝐷𝐷𝑘𝑘), (2.32) 

where 𝜅𝜅 is a constant that converts the units of concentration-flow to units of load, and 𝛽𝛽𝑞𝑞 and 𝛽𝛽𝐷𝐷 
are the coefficients for logarithm of flow and decimal time in the water-quality model (eq. 2.1). 
Note that the detrended flow (𝑞𝑞�𝑘𝑘) without a coefficient appearing in equation 2.32 represents the 
flow that gets multiplied by predicted concentration to determine detrended load for day 𝑘𝑘.  

For the purposes of this report, the prediction period was determined to be too short for 
flow to have a quantitatively significant effect on trends in load. Consequently, in deriving 
detrended load the detrended logarithm of flow was set to equal the logarithm of actual flow.  
Detrending with respect to decimal time in the water-quality model is done only if certain 
conditions are met in addition to those that qualify a station for inclusion in the SPARROW 
model. The additional conditions require the water-quality record to be no shorter than 3 years and 
end no more than 2.25 years before the normalization date. If these conditions are not met, then 
the decimal time variable is generally dropped from the water-quality model.  The only exception 
is if the water-quality record extends more than 50 percent of the flow record; however, in this 
case although decimal time is retained in the water-quality model the decimal-time term is 
excluded from the adjustment in equation 2.32 so that detrending directly with respect to time in 
the water-quality model is not implemented. 

Aggregation and Correction for Bias 
The detrended mean annual load estimate is obtained by aggregating the detrended daily 

load estimates described above. Not all daily load predictions over the prediction period are 
included in the aggregation. Only prediction days that are in a water year in which all days of the 
year have flow data are used in aggregation. This ensures that all days in a water year are equally 
represented in the mean annual load estimate. A water year is the 12-month period October 1 
through September 30 designated by the calendar year in which it ends. 

Although the mean annual load estimate is restricted to years with only complete flow 
records, predictions for days contained in water years with only partial flow data are not excluded 
from the prediction process. The prediction algorithm described in equation 2.27 (with detrending 
through application of eq. 2.32) includes all days in the prediction period with valid flow data. 
Gaps in the flow record are accounted for by reducing the serial correlation between successive 
observations in the flow record according to the same approach used to account for gaps between 
successive water-quality observations in estimating the water-quality model. This means that 
water-quality observations that occur in water years with an incomplete flow record are 
appropriately used to condition the load prediction, even though those observations are not 
directly included in the mean annual load estimate. As a last step, the mean annual load is obtained 
by normalizing the aggregated prediction days by the number of water years with complete flow 
records, that is, by the number of years covered by the predictions included in the aggregation.  

If 𝑇𝑇�𝑏𝑏 represents the set of prediction days in block 𝑏𝑏 that meet the criterion for inclusion in 
mean load, detrended mean annual load 𝐿𝐿�∗ is given by 
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𝐿𝐿�∗ = 𝑁𝑁�−1𝑆𝑆−1� � P�𝑏𝑏
(𝑠𝑠) � exp�𝑦𝑦��𝑘𝑘

(𝑠𝑠)�
𝑘𝑘∈𝑇𝑇�𝑏𝑏

𝐵𝐵

𝑏𝑏=1

𝑆𝑆

𝑠𝑠=1
, (2.33) 

where 𝑁𝑁� is the number of years in the prediction period with complete flow data, and P�𝑏𝑏
(𝑠𝑠) is the 

scaled probability, Pr�𝑏𝑏
(𝑠𝑠) (see eq. 2.26), after iterating over all water-quality observations in block 

𝑏𝑏.   
The load estimation model is a nonlinear function of the model coefficients, 𝜃𝜃. Models that 

are linear in the coefficients are unbiased (Amemiya, 1985), implying predictions are unbiased. 
The SMLE coefficient estimates 𝜃𝜃� of the nonlinear model are consistent and in large samples have 
a symmetric, normal distribution; however, due to curvature effects induced by the model 
functional form, the statistical variation of the randomly estimated coefficients do not necessarily 
balance between low and high random values of the estimates, causing prediction bias to have 
potentially greater sensitivity to sampling uncertainty in the coefficient estimates.  

To account for this bias, a method of bias correction is used based on a parametric 
bootstrap (Schwarz and others, 2006). Multiple values of the model coefficients 𝜃𝜃�(𝑟𝑟), 𝑟𝑟 = 1, … ,𝑅𝑅, 
are randomly generated using a multivariate normal distribution having a mean equal to the 
adjusted SMLE coefficient estimates and a covariance given by the SMLE asymptotic covariance 
matrix. The randomly generated coefficients are constrained according to the same constraints 
applied in model estimation (0.999 ≥ 𝜌𝜌� ≥ 0, and 𝜎𝜎� ≥ 0.01).  

The prediction algorithm described above is implemented for each set of coefficients, with 
daily predictions appropriately aggregated to obtain a mean annual load estimate, thereby giving 𝑅𝑅 
estimates of mean annual load. The same random values used to represent the model residuals are 
used for all bootstrap iterations, so the only source of variation across the 𝑅𝑅 predictions is due to 
random variations in the coefficients. For purposes of this report, the number of randomly 
generated sets of coefficients used in the bootstrap (𝑅𝑅) is the same as number of simulations (𝑆𝑆) 
used to evaluate the integrals described in equation 2.27. 

The bias adjustment applied here corrects relative bias, which is bias expressed as the ratio 
of the estimate to the actual value. This approach has the advantage that bias-corrected load 
estimates cannot become negative, unlike with an additive bias correction. A disadvantage, 
however, is that daily loads also corrected for relative bias, if averaged, do not equal the bias-
corrected mean annual load. This is a consequence of the nonlinear form of a relative bias; an 
additive bias correction would not affect the equality. Note that it is not necessary to correct for 
retransformation bias, as is done in other methods such as that described by Cohn (2005).  The 
prediction of mean annual load (𝐿𝐿�∗) produced from equation 2.27 represents an integration of 
randomly realized load expressed in real space, appropriately weighted by the probability of the 
load outcome. Thus, retransformation bias is fully accounted for in the prediction method, and no 
additional adjustment is required. 

According to the bootstrap paradigm, the relative bias ratio can be estimated as the ratio of 
the average of the 𝑅𝑅 bootstrap estimates of mean annual load to the mean annual load estimated 
from the adjusted-SMLE coefficient estimates. Thus, if 𝐿𝐿�∗(𝜃𝜃) is defined to be the untransformed 
mean detrended load expressed as a function of an arbitrary coefficient vector 𝜃𝜃, then the bias 
corrected estimated mean detrended load is 

𝐿𝐿��∗ =
𝐿𝐿�∗�𝜃𝜃��

2

𝑅𝑅−1 ∑ 𝐿𝐿�∗�𝜃𝜃�(𝑟𝑟)�𝑅𝑅
𝑟𝑟=1

. (2.34) 
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Variance Estimation 
There are two sources of error in a model prediction: model error, which is the error arising 

from the model residual 𝜀𝜀𝑡𝑡, and sampling error, which is the random error induced by basing 
estimates of model coefficients on a randomly generated finite sample. Because the model 
coefficients are consistent, the sampling error approaches 0 as sample size gets large. Conversely, 
model error is insensitive to sample size, although its importance in prediction uncertainty is 
diminished the greater the temporal aggregation of a prediction; for example, model error is more 
important for error in the prediction of daily load than in the prediction of mean annual load. In 
assessing prediction error for detrended load, a simplifying assumption is made that detrended 
flow has no uncertainty. This is not technically true because there is sampling error in the 
estimated value of the 𝛼𝛼𝐷𝐷 coefficient. However, there are two reasons to support ignoring this 
error: the flow model is based on a much larger set of observations than the water-quality model, 
and the trend coefficient in the flow model is superefficient, in the sense that the standard error of 
this coefficient approaches 0 according to the inverse of the length of the number of observations 
in the flow record as opposed to the square root of the number of observations, as is generally the 
case with non-trending variables (Schwarz and others, 2006).  

The model error component of prediction error is computed for coefficients set at the 
adjusted SMLE values. Because conditioning causes predictions between uncensored observations 
of different blocks to be independent, the variance of the aggregated daily predictions is the sum 
across blocks of the variance of the aggregation within each block, weighted by the scaled 
probability. Thus, the model error component of variance 𝑉𝑉𝑚𝑚(𝐿𝐿�∗) is given by 

𝑉𝑉𝑚𝑚(𝐿𝐿�∗) = 𝑁𝑁�−2𝑆𝑆−1� � P�𝑏𝑏
(𝑠𝑠) �� exp�𝑦𝑦��𝑘𝑘

(𝑠𝑠)�
𝑘𝑘∈𝑇𝑇�𝑏𝑏

− 𝐿𝐿�𝑏𝑏∗ �
2𝐵𝐵

𝑏𝑏=1

𝑆𝑆

𝑠𝑠=1
, (2.35) 

where 𝐿𝐿�𝑏𝑏∗ = 𝑆𝑆−1 ∑ P�𝑏𝑏
(𝑠𝑠) ∑ exp�𝑦𝑦��𝑘𝑘

(𝑠𝑠)�𝑘𝑘∈𝑇𝑇�𝑏𝑏
𝑆𝑆
𝑠𝑠=1  is the expected detrended load for valid prediction 

days contained in block 𝑏𝑏. 
The sampling error component of prediction error is assessed using a parametric bootstrap 

method, based on the same bootstrap outcomes generated to correct for nonlinear bias, as 
described in the “Aggregation and Correction for Bias” section of this appendix. The sampling 
error component variance 𝑉𝑉𝑠𝑠(𝐿𝐿�∗) is just the variance of the bootstrap outcomes of mean detrended 
load, 

𝑉𝑉𝑠𝑠(𝐿𝐿�∗) = 𝑅𝑅−1� �𝐿𝐿�∗�𝜃𝜃�(𝑟𝑟)� − 𝐿𝐿�∗�𝜃𝜃�(𝑟𝑟)������������
2𝑅𝑅

𝑟𝑟=1
, (2.36) 

where 𝐿𝐿�∗�𝜃𝜃�(𝑟𝑟)����������� = 𝑅𝑅−1 ∑ 𝐿𝐿�∗�𝜃𝜃�(𝑟𝑟)�𝑅𝑅
𝑟𝑟=1  is the average of the bootstrap load estimates. 

Combining the two components of variance, the variance of the mean annual detrended 
load estimate V(𝐿𝐿�∗) is given by 

V(𝐿𝐿�∗) = 𝑉𝑉𝑠𝑠(𝐿𝐿�∗) + 𝑉𝑉𝑚𝑚(𝐿𝐿�∗). (2.37) 

The algorithm used to form a Kalman-smoothed estimate of mean annual load and its 
variance arising from model error, conditioned on known values of the coefficients, is detailed in 
the “Algorithm for the Conditional Prediction of Detrended Mean Annual Load” section of this 
appendix.  
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Algorithm for the Evaluation of the Log-Likelihood Function Using the Simulation Method 
The log-likelihood estimation algorithm uses the following variable definitions:  
𝑁𝑁  is the number of observations;  
𝑖𝑖  is the observation index, 𝑖𝑖 = 1, … ,𝑁𝑁; 
𝑆𝑆  is the number of simulation iterations;  
𝑠𝑠  is the simulation iteration index, 𝑠𝑠 = 1, … , 𝑆𝑆;  
𝑑𝑑𝑖𝑖  is the number of days between observations 𝑖𝑖 and 𝑖𝑖 − 1; 
𝑑𝑑Med  is the median number of days between observations; 
𝑦𝑦𝑖𝑖  is the uncensored value of the logarithm of contaminant concentration;  
𝑦𝑦�𝑖𝑖  is the logarithm of the contaminant concentration censoring threshold;  
𝑋𝑋𝑖𝑖  is the 1 × 𝐾𝐾 row vector of the water-quality model explanatory variables 

(including an intercept); 
𝛽𝛽  is the 𝐾𝐾 × 1 vector of coefficients associated with the explanatory variables; 
𝜌𝜌  is the daily serial correlation parameter, to be estimated and expressed as the 

correlation over the median number of days between observations in the sample (𝑑𝑑Med); 
𝜎𝜎𝜀𝜀  is the standard deviation of the random innovation (see eq. 2.2); 
𝜎𝜎  is the standard deviation of the unconditional residual and equal to 𝜎𝜎𝜀𝜀 �1 − 𝜌𝜌2⁄ ;  
𝒓𝒓𝒊𝒊  is the serial correlation between observations 𝒊𝒊 and 𝒊𝒊 − 𝟏𝟏; 
𝝈𝝈𝒊𝒊  is the standard deviation of the concentration model residual conditioned on 

concentration in period 𝒊𝒊 − 𝟏𝟏 (unconditioned for the first observation); 
 𝑢𝑢𝑖𝑖

(𝑠𝑠)  is a random variable for observation 𝑖𝑖 and simulation iteration 𝑠𝑠, drawn from a 
uniform distribution over the range 0 to 1 (𝑈𝑈(0,1)); 

 𝑦𝑦�𝑖𝑖
(𝑠𝑠)  is the randomly generated value of the logarithm of concentration for observation 𝑖𝑖 

and simulation iteration 𝑠𝑠, simulated from a truncated normal conditional distribution for censored 
observations but initialized at the fixed value 0 and reinitialized for uncensored observations by 𝑦𝑦𝑖𝑖 
(see eq. 2.13); 

 𝑤𝑤�𝑖𝑖
(𝑠𝑠)  is the simulated value of the probability weight for observation 𝑖𝑖 and simulation 

iteration 𝑠𝑠 (see eq. 2.12); 
Pr� 𝑖𝑖  is the simulation estimate of the probability of the 𝑖𝑖-th observation, either censored 

or uncensored, conditioned on all prior observations (see eq. 2.6); and 
𝐿𝐿  is the log-likelihood. 
The algorithm used to evaluate the log-likelihood function for a given set of model 

coefficients {𝜷𝜷,𝝆𝝆,𝝈𝝈𝜺𝜺} is given by: 
Initialize: 
 𝑤𝑤�0

(𝑠𝑠) = 1 and 𝑦𝑦�0
(𝑠𝑠) = 0, 𝑠𝑠 = 1, … , 𝑆𝑆; 

 𝑢𝑢𝑖𝑖
(𝑠𝑠)~𝑈𝑈(0,1), 𝑠𝑠 = 1, … , 𝑆𝑆 and 𝑖𝑖 = 1, … ,𝑁𝑁; 

 𝐿𝐿 = 0, 𝑋𝑋0 = 0 and 𝑟𝑟1 = 0; 
 𝑟𝑟𝑖𝑖 = 𝜌𝜌𝑑𝑑𝑖𝑖 𝑑𝑑Med⁄ , 𝑖𝑖 = 2, … ,𝑁𝑁; 

 𝜎𝜎𝑖𝑖 = 𝜎𝜎�1 − 𝑟𝑟𝑖𝑖2, 𝑖𝑖 = 1, … ,𝑁𝑁; 

Do 𝑖𝑖 = 1 to 𝑁𝑁: 
 𝑧𝑧𝑖𝑖

(𝑠𝑠) = (𝑋𝑋𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑋𝑋𝑖𝑖−1)𝛽𝛽 + 𝑟𝑟𝑖𝑖𝑦𝑦�𝑖𝑖−1
(𝑠𝑠) , 𝑠𝑠 = 1, … 𝑆𝑆; 

 If observation 𝑖𝑖 is censored: 
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  𝑓𝑓(𝑠𝑠) = Φ��𝑦𝑦�𝑖𝑖 − 𝑧𝑧𝑖𝑖
(𝑠𝑠)� 𝜎𝜎𝑖𝑖� �, 𝑠𝑠 = 1, … 𝑆𝑆; 

  𝑦𝑦�𝑖𝑖
(𝑠𝑠) = 𝑧𝑧𝑖𝑖

(𝑠𝑠) + 𝜎𝜎𝑖𝑖Φ−1�𝑢𝑢𝑖𝑖
(𝑠𝑠)𝑓𝑓(𝑠𝑠)�, 𝑠𝑠 = 1, … 𝑆𝑆; 

  Pr�𝑖𝑖 = 𝑆𝑆−1 ∑ 𝑤𝑤�𝑖𝑖−1
(𝑠𝑠) 𝑓𝑓(𝑠𝑠)𝑆𝑆

𝑠𝑠=1 ; 
  𝑤𝑤�𝑖𝑖

(𝑠𝑠) = 𝑤𝑤�𝑖𝑖−1
(𝑠𝑠) 𝑓𝑓(𝑠𝑠) Pr�𝑖𝑖� , 𝑠𝑠 = 1, … 𝑆𝑆; 

 Else: 
  𝑓𝑓(𝑠𝑠) = 𝜙𝜙 ��𝑦𝑦𝑖𝑖 − 𝑧𝑧𝑖𝑖

(𝑠𝑠)� 𝜎𝜎𝑖𝑖� � 𝜎𝜎𝑖𝑖� , 𝑠𝑠 = 1, … 𝑆𝑆; 

  𝑃𝑃𝑃𝑃�𝑖𝑖 = 𝑆𝑆−1 ∑ 𝑤𝑤�𝑖𝑖−1
(𝑠𝑠) 𝑓𝑓(𝑠𝑠)𝑆𝑆

𝑠𝑠=1 ; 
  𝑦𝑦�𝑖𝑖

(𝑠𝑠) = 𝑦𝑦𝑖𝑖, 𝑠𝑠 = 1, … 𝑆𝑆; 
  𝑤𝑤�𝑖𝑖

(𝑠𝑠) = 1, 𝑠𝑠 = 1, … 𝑆𝑆; 
 𝐿𝐿 = 𝐿𝐿 + ln Pr�𝑖𝑖; 

Algorithm for the Conditional Prediction of Detrended Mean Annual Load 
The simulation method algorithm used to estimate the conditional prediction of detrended 

mean annual load uses the following variable definitions:  
𝑇𝑇 is the number of days in the prediction period with valid explanatory variable data; 
𝑡𝑡 indexes successive days with valid explanatory variable data in the prediction 

period, 𝑡𝑡 = 1, … ,𝑇𝑇; 
𝑁𝑁� is the number of valid water years containing a complete year of explanatory 

variable observations; 
𝐵𝐵 is the number of blocks of days between successive uncensored observations, plus 

1 if the last day of the prediction period is not an uncensored observation; 
𝑏𝑏 indexes blocks of days between successive uncensored observations, with 𝑏𝑏 =

1, … ,𝐵𝐵; 
𝑇𝑇𝑏𝑏 is the number of days with valid explanatory variable data in block 𝑏𝑏; 
𝑖𝑖 is the successive day of flow in a block, 𝑖𝑖 = 1, … ,𝑇𝑇𝑏𝑏; 
𝑇𝑇�𝑏𝑏 is the set of prediction days in block 𝑏𝑏 that are part of a water year with a complete flow 

record; 
𝑆𝑆 is the number of simulation iterations; 
𝑠𝑠 indexes simulations, with 𝑠𝑠 = 1, … , 𝑆𝑆; 
𝑦𝑦𝑡𝑡 is the uncensored value of the logarithm of contaminant concentration for day 𝑡𝑡, if known;  
𝑦𝑦�𝑡𝑡 is the logarithm of the contaminant concentration censoring threshold for day 𝑡𝑡 if 

day 𝑡𝑡 is an observation day containing a censored observation;  
𝑋𝑋𝑡𝑡 is the row vector of explanatory variables for day 𝑡𝑡 (including an intercept);  
𝛽𝛽 is a vector of coefficients associated with the explanatory variables;  
𝑞𝑞𝑡𝑡 is the logarithm of daily flow for day 𝑡𝑡;  
𝑞𝑞�𝑡𝑡 is the detrended logarithm of daily flow for day 𝑡𝑡;  
𝐷𝐷𝑡𝑡 is decimal time for day 𝑡𝑡;  
𝐷𝐷0 is the decimal normalization date;  
𝛽𝛽𝑞𝑞 is the water-quality model coefficient associated with the logarithm of daily flow; 
𝛽𝛽𝐷𝐷 is the water-quality model coefficient associated with the decimal time;  
𝑑𝑑Median is the median number of days between observations in the estimation sample; 
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𝑑𝑑𝑡𝑡 is the number of days between successive days 𝑡𝑡 and 𝑡𝑡 − 1 with valid explanatory 
variable data; 

𝜌𝜌 is the serial correlation parameter expressed as the correlation over the median 
number of days between observations in the sample 𝑑𝑑Median; 

𝜎𝜎 is 𝜎𝜎𝜀𝜀 �1 − 𝜌𝜌2⁄  the standard deviation of the unconditional residual, where 𝜎𝜎𝜀𝜀 is the 
standard deviation of a daily innovation to the water-quality model residual; 

𝑟𝑟𝑡𝑡 is the serial correlation between observations 𝑡𝑡 and 𝑡𝑡 − 1; 
𝜎𝜎𝑡𝑡 is the standard deviation of the concentration model residual conditioned on 

concentration in period 𝑡𝑡 − 1 (unconditioned for the first observation); 
𝑢𝑢𝑡𝑡

(𝑠𝑠) is a random variable for day 𝑡𝑡 and simulation 𝑠𝑠, drawn from a uniform distribution 
(𝑈𝑈(0,1)) if day 𝑡𝑡 corresponds to a prediction day with a censored concentration measurement, 
otherwise 𝑢𝑢𝑡𝑡

(𝑠𝑠) is drawn from a standard normal distribution; 
 𝑦𝑦�(𝑠𝑠) is the simulated daily logarithm of concentration for simulation 𝑠𝑠; 
Pr�𝑏𝑏

(𝑠𝑠) is the scaled probability for the simulation 𝑠𝑠 outcomes in block 𝑏𝑏, conditioned on 
concentration measurements in the block (see eq. 2.30); 

𝐿𝐿𝑏𝑏
(𝑠𝑠) is simulation 𝑠𝑠 accumulated load for block 𝑏𝑏; 
𝐿𝐿�𝑏𝑏∗  is accumulated detrended load for valid water-year prediction days in block 𝑏𝑏; 
𝐿𝐿�∗ is detrended mean annual load for valid water years (see eq. 2.33); and 
𝑉𝑉𝑚𝑚(𝐿𝐿�∗) is the variance of the model component of prediction error for 𝐿𝐿�∗ (see eq. 2.35). 

The algorithm for the prediction of mean annual load conditioned on infrequent censored or 
uncensored observations of concentration within the prediction period, and on a given set of 
values of the model coefficients {𝛽𝛽,𝜌𝜌,𝜎𝜎𝜀𝜀} is given by: 

Initialize: 
Pr�𝑏𝑏

(𝑠𝑠) = 1 and 𝐿𝐿𝑏𝑏
(𝑠𝑠) = 0, 𝑠𝑠 = 1, … , 𝑆𝑆 and 𝑏𝑏 = 1, … ,𝐵𝐵; 

𝑢𝑢𝑡𝑡
(𝑠𝑠)~𝑈𝑈(0,1), 𝑠𝑠 = 1, … , 𝑆𝑆, for all 𝑡𝑡 containing a censored concentration, and  𝑢𝑢𝑡𝑡

(𝑠𝑠)~𝑁𝑁(0,1), 
𝑠𝑠 = 1, … , 𝑆𝑆, for all other 𝑡𝑡; 

𝑦𝑦�(𝑠𝑠) = 0, 𝑠𝑠 = 1, … , 𝑆𝑆;  
𝑟𝑟1 = 0 and 𝑟𝑟𝑡𝑡 = 𝜌𝜌𝑑𝑑𝑡𝑡 𝑑𝑑Median⁄ , 𝑡𝑡 = 2, … ,𝑇𝑇; 
𝜎𝜎𝑡𝑡 = 𝜎𝜎�1 − 𝑟𝑟𝑡𝑡2, 𝑡𝑡 = 1, … ,𝑇𝑇; 
𝑇𝑇0 = 0.  
Do 𝑏𝑏 = 1 to 𝐵𝐵: 
Do 𝑡𝑡 = 𝑇𝑇0 + 1 to 𝑇𝑇�𝑏𝑏: 
𝑧𝑧(𝑠𝑠) = (𝑋𝑋𝑡𝑡 − 𝑟𝑟𝑡𝑡𝑋𝑋𝑡𝑡−1)𝛽𝛽 + 𝑟𝑟𝑡𝑡𝑦𝑦�(𝑠𝑠), 𝑠𝑠 = 1, …𝑆𝑆; 
If 𝑡𝑡 has no concentration measurement:  
𝑦𝑦�(𝑠𝑠) = 𝑧𝑧(𝑠𝑠) + 𝜎𝜎𝑡𝑡𝑢𝑢𝑡𝑡

(𝑠𝑠), 𝑠𝑠 = 1, … , 𝑆𝑆; 
  Else: 
         If 𝑡𝑡 has a censored concentration measurement: 
    𝑓𝑓(𝑠𝑠) = Φ��𝑦𝑦�𝑡𝑡 − 𝑧𝑧(𝑠𝑠)� 𝜎𝜎𝑡𝑡⁄ �, 𝑠𝑠 = 1, … 𝑆𝑆; 
    𝑦𝑦�(𝑠𝑠) = 𝑧𝑧(𝑠𝑠) + 𝜎𝜎𝑡𝑡Φ−1�𝑢𝑢𝑡𝑡

(𝑠𝑠)𝑓𝑓(𝑠𝑠)�, 𝑠𝑠 = 1, … 𝑆𝑆; 
   Else: 
    𝑓𝑓(𝑠𝑠) = 𝜙𝜙��𝑦𝑦�𝑡𝑡 − 𝑧𝑧(𝑠𝑠)� 𝜎𝜎𝑡𝑡⁄ � 𝜎𝜎𝑡𝑡⁄ , 𝑠𝑠 = 1, … 𝑆𝑆; 

𝑦𝑦�(𝑠𝑠) = 𝑦𝑦𝑡𝑡, 𝑠𝑠 = 1, … 𝑆𝑆; 
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   Pr�𝑏𝑏
(𝑠𝑠) = Pr�𝑏𝑏

(𝑠𝑠)𝑓𝑓(𝑠𝑠), 𝑠𝑠 = 1, …𝑆𝑆; 
Pr�𝑏𝑏

(𝑠𝑠) = P�𝑟𝑟𝑏𝑏
(𝑠𝑠) �𝑆𝑆−1 ∑ Pr�𝑏𝑏

(𝑠𝑠)𝑆𝑆
𝑠𝑠=1 �� , 𝑠𝑠 = 1, … 𝑆𝑆; 

If 𝑡𝑡 ∈ 𝑇𝑇�𝑏𝑏 then aggregate detrended daily load: 
𝐿𝐿𝑏𝑏

(𝑠𝑠) = 𝐿𝐿𝑏𝑏
(𝑠𝑠) + exp �𝑦𝑦�(𝑠𝑠) + 𝑞𝑞�𝑡𝑡 + 𝛽𝛽𝑞𝑞(𝑞𝑞�𝑡𝑡 − 𝑞𝑞𝑡𝑡) + 𝛽𝛽𝐷𝐷(𝐷𝐷0 − 𝐷𝐷𝑡𝑡)�, 𝑠𝑠 = 1, … 𝑆𝑆; 

𝑇𝑇0 = 𝑇𝑇0 + 𝑇𝑇�𝑏𝑏; 
 Complete the estimation of detrended mean annual load and its model error: 
  𝐿𝐿�𝑏𝑏∗ = 𝑆𝑆−1 ∑ Pr�𝑏𝑏

(𝑠𝑠)𝐿𝐿𝑏𝑏
(𝑠𝑠)𝑆𝑆

𝑠𝑠=1 ; 
  𝐿𝐿�∗ = 𝑁𝑁�−1 ∑ 𝐿𝐿�𝑏𝑏∗𝐵𝐵

𝑏𝑏=1 ; 

  𝑉𝑉𝑚𝑚(𝐿𝐿�∗) = 𝑁𝑁�−2𝑆𝑆−1 ∑ ∑ P𝑟𝑟�𝑏𝑏
(𝑠𝑠)�𝐿𝐿𝑏𝑏

(𝑠𝑠) − 𝐿𝐿�𝑏𝑏∗ �
2

𝐵𝐵
𝑏𝑏=1

𝑆𝑆
𝑠𝑠=1 ; 
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Appendix 3.  Derivation of Regularity Conditions Used To 
Evaluate the Covariance Matrix and Asymptotic Efficiency of 
the Estimates Produced by the Fluxmaster-K Algorithm 

This appendix uses concepts developed in Schendler (2005) to establish two main results 
referenced in appendix 2: that the multivariate likelihood function of dependent censored variables 
retains the regularity conditions of a likelihood function for uncensored variables, and the 
maximum likelihood estimates are asymptotically efficient. 

Regularity Conditions  
The visibility state 𝑠𝑠 defines a unique pattern of censored and uncensored outcomes among 

an 𝑁𝑁 × 1 vector 𝑦𝑦 = {𝑦𝑦1, … ,𝑦𝑦𝑁𝑁}′ of the dependent variable of the log-likelihood function. 𝑊𝑊𝑠𝑠 
represents the range of 𝑦𝑦 consistent with state 𝑠𝑠. Thus, if 𝑁𝑁 = 2 there are four possible states: 𝑠𝑠 =
0, in which both observations are censored and 𝑊𝑊0 = {𝑦𝑦1 ≤ 𝑦𝑦�1,𝑦𝑦2 ≤ 𝑦𝑦�2}; 𝑠𝑠 = 1, where 𝑦𝑦1 is 
censored and 𝑦𝑦2 is uncensored, making 𝑊𝑊1 = {𝑦𝑦1 ≤ 𝑦𝑦�1,𝑦𝑦2 > 𝑦𝑦�2}; 𝑠𝑠 = 2, where 𝑦𝑦1 is uncensored 
and 𝑦𝑦2 is censored, making 𝑊𝑊2 = {𝑦𝑦1 > 𝑦𝑦�1,𝑦𝑦2 ≤ 𝑦𝑦�2}; and 𝑠𝑠 = 3, where both values of 𝑦𝑦 are 
uncensored and 𝑊𝑊3 = {𝑦𝑦1 > 𝑦𝑦�1,𝑦𝑦2 > 𝑦𝑦�2}. With 𝑁𝑁 observations this implies 𝑁𝑁2 possible states. 
Note that the 𝑊𝑊𝑠𝑠 sets are disjoint in the 𝑁𝑁-tuple 𝑦𝑦 vector and that their joint union over all states 
corresponds to 𝑅𝑅𝑁𝑁, the entire space of 𝑦𝑦.  

A visibility operator 𝜈𝜈𝑠𝑠 is defined such that its application 𝜈𝜈𝑠𝑠𝑦𝑦 to the dependent variable 
vector selects just the elements of 𝑦𝑦 that are uncensored in state 𝑠𝑠. Accordingly, the complement 
operator 𝜈̅𝜈𝑠𝑠 selects only elements of 𝑦𝑦 that are censored in state 𝑠𝑠. Assume the probability density 
𝑝𝑝(𝑦𝑦,𝜃𝜃) for 𝑦𝑦 to be a continuous function of the parameter vector 𝜃𝜃 ∈ Θ, where Θ is compact. The 
likelihood function for some state, 𝑠𝑠, is given by 

𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃) = �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝜈̅𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

, (3.1) 

where ln 𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃) corresponds to the log-likelihood in equation 2.4, for some state 𝑠𝑠 consistent 
with the visibility of the observed sample. Because the 𝑊𝑊𝑠𝑠 ranges are disjointed across states, and 
their joint union comprises the entire support for 𝑦𝑦, the expected value of 𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃) over all 𝑁𝑁2 
states is 

� �𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

= � � �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝜈̅𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

� � 𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

= �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦) = 1. (3.2)

 

The probability of state 𝑠𝑠, is given by  
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Ψ𝑠𝑠 = �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦)
 

𝑊𝑊𝑠𝑠

. (3.3) 

Define 𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃) to be the probability density of the uncensored observations in state 𝑠𝑠, given 
that state 𝑠𝑠 has occurred. This probability can be expressed as  

𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃) = �𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝜈̅𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

Ψ𝑠𝑠� . (3.4) 

Under the assumption that 𝑝𝑝(𝑦𝑦|𝜃𝜃) adheres to regularity conditions, then the following 
relations apply: 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦) = �𝑝𝑝𝜃𝜃(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦) , (3.5) 

𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜃𝜃′
�𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦) = �𝑝𝑝𝜃𝜃𝜃𝜃′(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦) , (3.6) 

and  

𝜕𝜕3

𝜕𝜕𝜃𝜃𝑎𝑎𝜕𝜕𝜃𝜃𝑏𝑏𝜕𝜕𝜃𝜃𝑐𝑐
�𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦) = �𝑝𝑝𝜃𝜃𝑎𝑎𝜃𝜃𝑏𝑏𝜃𝜃𝑐𝑐(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦) . (3.7) 

The expectation of the partial derivative 𝐿𝐿𝜃𝜃, evaluated at the true coefficient values 𝜃𝜃0, is given by 

𝐸𝐸[𝐿𝐿𝜃𝜃]|𝜃𝜃=𝜃𝜃0 = � Ψ𝑠𝑠 �
𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) 𝑝𝑝𝑠𝑠

(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝐸𝐸[𝐿𝐿𝜃𝜃]|𝜃𝜃=𝜃𝜃0 = � Ψ𝑠𝑠 �
𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)

𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
Ψ𝑠𝑠

𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝐸𝐸[𝐿𝐿𝜃𝜃]|𝜃𝜃=𝜃𝜃0 = � �𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦,𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝐸𝐸[𝐿𝐿𝜃𝜃]|𝜃𝜃=𝜃𝜃0 =
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑝𝑝(𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝑦𝑦)
�����������

=1 

= 0, (3.8)

   

where the first equality evaluates the expectation based on 𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃), the probability of the 
uncensored values of 𝑦𝑦 given state 𝑠𝑠 has occurred, times Ψ𝑠𝑠, the probability of state 𝑠𝑠; the second 
equality follows because 𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃) = Ψ𝑠𝑠𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃) (substitute eq. 3.1 into eq. 3.4); the third 
equality cancels common terms; and the fourth equality follows because the 𝑊𝑊𝑠𝑠 ranges are disjoint, 
cover the entire range of 𝑦𝑦, and are not a function of 𝜃𝜃, and because of the regularity condition for 
𝑝𝑝(𝑦𝑦|𝜃𝜃) (see eq. 3.5).  

Similarly, for the expectation of the second-order partial derivative of the log-likelihood, 
has the equivalent relation 
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𝐸𝐸[𝐿𝐿𝜃𝜃𝜃𝜃′]|𝜃𝜃=𝜃𝜃0 =

       � Ψ𝑠𝑠 ��
𝑝𝑝�𝑠𝑠𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) −

𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)2 � 𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)

 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝐸𝐸[𝐿𝐿𝜃𝜃𝜃𝜃′]|𝜃𝜃=𝜃𝜃0 = � �𝑝𝑝�𝑠𝑠𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦,𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

− 𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0

𝐸𝐸[𝐿𝐿𝜃𝜃𝜃𝜃′]|𝜃𝜃=𝜃𝜃0 =
𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜃𝜃′
�𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝑦𝑦)
�����������

=1 

− 𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0 = −𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0 . (3.9)

 

The third-order partial derivative of the log-likelihood function, expressed as 
𝜕𝜕3𝐿𝐿 𝜕𝜕𝜃𝜃𝑎𝑎𝜕𝜕𝜃𝜃𝑏𝑏𝜕𝜕𝜃𝜃𝑐𝑐⁄ ≡ 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 and evaluated at the true values of the parameters, is given by 

𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎]|𝜃𝜃=𝜃𝜃0 = � Ψ𝑠𝑠 ��
𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) −

𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)2

 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

                −
𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)

𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)2 −
𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)

𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)2

                +2
𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑝𝑝�𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)

𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)3 � 𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)

𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎]|𝜃𝜃=𝜃𝜃0 = � �𝑝𝑝�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0���������������������
=0

− {𝐸𝐸[(𝐿𝐿𝑎𝑎𝑎𝑎 + 𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏)𝐿𝐿𝑐𝑐]

                −𝐸𝐸[(𝐿𝐿𝑎𝑎𝑎𝑎 + 𝐿𝐿𝑎𝑎𝐿𝐿𝑐𝑐)𝐿𝐿𝑏𝑏]− 𝐸𝐸[(𝐿𝐿𝑏𝑏𝑏𝑏 + 𝐿𝐿𝑏𝑏𝐿𝐿𝑐𝑐)𝐿𝐿𝑎𝑎] + 2𝐸𝐸[𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏𝐿𝐿𝑐𝑐]}|𝜃𝜃=𝜃𝜃0

𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎]|𝜃𝜃=𝜃𝜃0 = −{𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑐𝑐] + 𝐸𝐸[𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑏𝑏] + 𝐸𝐸[𝐿𝐿𝑏𝑏𝑏𝑏𝐿𝐿𝑎𝑎] + 𝐸𝐸[𝐿𝐿𝑎𝑎𝐿𝐿𝑏𝑏𝐿𝐿𝑐𝑐]}|𝜃𝜃=𝜃𝜃0 . (3.10)

 

Asymptotic Efficiency 
The property of asymptotic efficiency for the maximum likelihood coefficient estimates is 

established following the approach of Schendler (2005). The first step is to derive the Cramer-Rao 
lower bound for some unbiased estimator 𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦) that is based only on uncensored data. Because 
the estimator is unbiased, a valid expression for the true values of the coefficients is  

𝜃𝜃0 = 𝐸𝐸[𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦)] = � Ψ𝑠𝑠 �𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦)𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝜃𝜃0 = � �𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦)𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

. (3.11)
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Taking the first-order partial derivative, we have 

𝜕𝜕𝜃𝜃0
𝜕𝜕𝜃𝜃′

= 𝐼𝐼 = � �𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦)𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)
 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝜕𝜕𝜃𝜃0
𝜕𝜕𝜃𝜃′

= 𝐼𝐼 = � �𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦)
𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) 𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)

 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝜕𝜕𝜃𝜃0
𝜕𝜕𝜃𝜃′

= 𝐼𝐼 = � Ψ𝑠𝑠 �𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦)
𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) 𝑝𝑝𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)𝑑𝑑𝑑𝑑(𝜈𝜈𝑠𝑠𝑦𝑦)

 

𝑊𝑊𝑠𝑠

𝑁𝑁2−1

𝑠𝑠=0

𝜕𝜕𝜃𝜃0
𝜕𝜕𝜃𝜃′

= 𝐼𝐼 = 𝐸𝐸 �𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦)
𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) � . (3.12)

 

From equation 3.8, we have 𝐸𝐸[𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) 𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)⁄ ] = 0, implying we can subtract the term 
𝜃𝜃0𝐸𝐸[𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) 𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)⁄ ] from equation 3.12 without changing the result. Therefore, the 
covariance between 𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦) and 𝐿𝐿𝜃𝜃′ is given by  

𝐼𝐼 = 𝐸𝐸 �(𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦) − 𝜃𝜃0)
𝑝𝑝�𝑠𝑠𝜃𝜃′(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0)
𝑝𝑝�𝑠𝑠(𝜈𝜈𝑠𝑠𝑦𝑦|𝜃𝜃0) � = 𝐸𝐸[(𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦) − 𝜃𝜃0)𝐿𝐿𝜃𝜃′]. (3.13) 

Define 𝒯𝒯 = 𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦) − 𝜃𝜃0 to be the error in the unbiased estimate. As shown in equation 3.8, 
𝐸𝐸[𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0 = 0, and because 𝒯𝒯 is unbiased, implying 𝐸𝐸[𝒯𝒯] = 0, then both the 𝒯𝒯 and 𝐿𝐿𝜃𝜃 statistics 
have a mean of 0. Therefore, the covariance matrix between 𝒯𝒯 and 𝐿𝐿𝜃𝜃 takes the form 

𝐶𝐶𝐶𝐶𝐶𝐶(𝒯𝒯, 𝐿𝐿𝜃𝜃) = �
𝐸𝐸[𝒯𝒯𝒯𝒯′] 𝐸𝐸[𝒯𝒯𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0

𝐸𝐸[𝒯𝒯𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0
′ 𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0

� = �
𝐸𝐸[𝒯𝒯𝒯𝒯′] 𝐼𝐼

𝐼𝐼 𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0
� , (3.14) 

where 𝐸𝐸[𝒯𝒯𝒯𝒯′] is the covariance matrix for 𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦), and the second equality is due to equation 
3.13. Equation 3.14 is a valid covariance matrix, implying that 𝐶𝐶𝐶𝐶𝐶𝐶(𝒯𝒯, 𝐿𝐿𝜃𝜃) is positive 
semidefinite. Therefore, a quadratic form created from the row vector [𝑥𝑥′ −𝑥𝑥′(𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′])−1], for 
any vector 𝑥𝑥, is given by 

�𝑥𝑥′ −𝑥𝑥′�𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0�
−1� �

𝐸𝐸[𝒯𝒯𝒯𝒯′] 𝐼𝐼

𝐼𝐼 𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0
� �

𝑥𝑥

−�𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0�
−1
𝑥𝑥�

= 𝑥𝑥′ �𝐸𝐸[𝒯𝒯𝒯𝒯′] − �𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0�
−1
� 𝑥𝑥 ≥ 0, (3.15)

 

where the inequality is a consequence of the positive semidefiniteness of 𝐶𝐶𝐶𝐶𝐶𝐶(𝒯𝒯, 𝐿𝐿𝜃𝜃).  
Thus, �𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0�

−1
 represents the Cramer-Rao lower bound on the covariance 

matrix of any unbiased estimator of 𝜃𝜃0. If the unbiased estimator 𝑇𝑇(𝜈𝜈𝑠𝑠𝑦𝑦) is consistent, then its 
covariance matrix degenerates to the zero matrix as sample size approaches infinity, as does the 
covariance matrix (𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′])−1. These results can be trivially generalized to the case where the 
covariance between √𝑁𝑁𝒯𝒯 and 𝐿𝐿𝜃𝜃′ √𝑁𝑁⁄  is formed, giving the Cramer-Rao lower bound for the 
asymptotic covariance matrix 
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𝑥𝑥′ � lim
𝑁𝑁→∞

𝐶𝐶𝐶𝐶𝐶𝐶�√𝑁𝑁𝒯𝒯� − � lim
𝑁𝑁→∞

𝑁𝑁−1𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0�
−1
� 𝑥𝑥 ≥ 0. (3.16) 

Aside from being the asymptotic Cramer-Rao lower bound, as shown in equation 3.16, 

� lim
𝑁𝑁→∞

𝑁𝑁−1𝐸𝐸[𝐿𝐿𝜃𝜃𝐿𝐿𝜃𝜃′]|𝜃𝜃=𝜃𝜃0�
−1

 is also the asymptotic covariance matrix for the maximum likelihood 
estimator. Therefore, the maximum likelihood estimator is asymptotically efficient. 
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