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Abstract
Bulletin 17C (B17C) recommends fitting the log-Pearson 

Type III (LP−III) distribution to a series of annual peak flows 
at a streamgage by using the method of moments. The third 
moment, the skewness coefficient (or skew), is important 
because the magnitudes of annual exceedance probability 
(AEP) flows estimated by using the LP−III distribution are 
affected by the skew; interest is focused on the right-hand tail 
of the distribution, which represents the larger annual peak 
flows that correspond to small AEPs. For streamgages having 
modest record lengths, the skew is sensitive to extreme events 
like large floods, which cause a sample to be highly asymmet-
rical or “skewed.” For this reason, B17C recommends using a 
weighted-average skew computed from the station skew for a 
given streamgage and a regional skew. This report generates 
an estimate of regional skew for a study area encompassing 
most of the Great Lakes Basin (hydrologic unit 04) and 
part of the Ohio River Basin (hydrologic unit 05). A total of 
551 candidate streamgages that were unaffected by extensive 
regulation, diversion, urbanization, or channelization were 
considered for use in the skew analysis; after screening for 
redundancy and pseudo record length (PRL) greater than 36 
years, 368 streamgages were selected for use in the study. 
Flood frequencies for candidate streamgages were analyzed by 
employing the Expected Moments Algorithm (EMA), which 
extends the method of moments so that it can accommodate 
interval, censored, and historic/paleo flow data, as well as the 
Multiple Grubbs-Beck test to identify potentially influential 
low floods in the data series. Bayesian weighted least squares/
Bayesian generalized least squares regression was used to 
develop a regional skew model for the study area that would 
incorporate possible variables (basin characteristics) to explain 
the variation in skew in the study area. Twelve basin charac-
teristics were considered as possible explanatory variables; 
however, none produced a pseudo coefficient of determination 
(pseudo R

2 �) greater than 5 percent; as a result, these character-
istics did not help to explain the variation in skew in the study 
area. Therefore, a constant model having a regional skew coef-
ficient of 0.086 and an average variance of prediction (AVPnew ) 

(which corresponds to the mean square error [MSE]) of 0.13 
at a new streamgage was selected. The AVPnew corresponds to 
an effective record length of 54 years, a marked improvement 
over the Bulletin 17B national skew map, whose reported 
MSE of 0.302 indicated a corresponding effective record 
length of only 17 years.

Introduction
Flood-frequency analysis of annual peak flows at stream-

flow-gaging stations (hereafter referred to as “streamgages”) 
provides engineers, hydrologists, and many others estimates of 
the magnitudes and frequencies of floods for planning, design, 
and management of infrastructure along rivers and streams. 
The Subcommittee on Hydrology of the Federal Advisory 
Committee on Water Information recently published Bulletin 
17C (herein referred to as “B17C,” England and others, 2018), 
which comprises updated guidelines for flood-frequency anal-
ysis. The bulletin recommends use of the log-Pearson Type III 
(LP−III) distribution to fit a time series of annual peak flows 
measured by a streamgage to obtain estimates of flows cor-
responding to various annual exceedance probabilities (AEP). 
In the case of flood-frequency analysis, the LP−III distribution 
is described by three moments: the mean, the standard devia-
tion, and the skewness coefficient of the logarithms of the 
flows. The third moment, the skewness coefficient (hereafter 
referred to as the “skew”), is a measure of the asymmetry of 
the distribution as shown by the thicknesses of the tails of the 
distribution. In flood-frequency analysis, the skew is important 
because the magnitudes of AEP flows estimated by using the 
LP−III distribution are affected by the skews of the annual 
peak flows at specific streamgages (hereafter referred to as 
“station skew”); interest is focused on the right-hand tail of the 
distribution, which represents annual peak flows correspond-
ing to small AEPs of the larger flood flows.

For streamgages having modest record lengths, approxi-
mately in the range of 25 to 100 years, the skewness coeffi-
cient is sensitive to unusually large or small annual peak flows 
because they cause a sample of such flows to be asymmetrical 
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or skewed (Griffis and Stedinger, 2007). Thus, B17C guide-
lines recommend using a weighted-average skew that is com-
puted from the skew of the station’s annual peak flows and 
the regional skew. Using the weighted-average skew reduces 
the sensitivity of the station skew to extreme events, particu-
larly for streamgages with short record lengths of less than 
approximately 25 years.

The B17C guidelines recommend using the Bayesian 
weighted least squares/Bayesian generalized least squares 
(B−WLS/B−GLS) method to estimate regional skew (England 
and others, 2018, p. 30). Using this procedure, the regional 
skew is estimated based on the station skew of the logarithms 
of annual peak-flow data. The B−WLS/B−GLS procedure 
first uses an ordinary least squares (OLS) regression analysis 
to generate an initial regional-skew model that is used to 
compute the variance of the station skew for each streamgage. 
Next, B−WLS is used to generate estimators of the regional 
skew model parameters. Finally, B−GLS is used to estimate 
the precision of the B−WLS parameter values, to estimate 
the model error variance and its precision, and to compute 
some diagnostic statistics. The B−WLS/B−GLS method can 
account for the complexities introduced by the Expected 
Moments Algorithm (hereinafter referred to as “EMA,” Cohn 
and others, 1997), the B17C recommended generalization of 
the method of moments approach for flood-frequency analy-
sis of the annual peak flows from streamgages, and the cross 
correlation between annual peak flows at pairs of streamgages 
(Veilleux, 2011; Veilleux and others, 2011).

To date, the B−WLS/B−GLS method has been used 
to generate estimates of regional skew for several regions 
around the Nation (Parrett and others, 2011; Eash and others, 
2013; Olson, 2014; Paretti and others, 2014; Southard and 
Veilleux, 2014; Curran and others, 2016; Mastin and others, 
2016; Wagner and others, 2016). In this study, the B−WLS/
B−GLS procedure was used to estimate skew for a region 
encompassing parts of the Great Lakes and Ohio River Basins 
(hydrologic units 04 and 05, respectively; see fig. 1A at 
https://doi.org/10.3133/sir20195105) to improve estimates of 
regional skew and flows corresponding to various AEPs across 
the region.

Purpose and Scope

The purpose of this report is to present the results of 
a B−WLS/B−GLS analysis of regional skew for parts of 
the Great Lakes and Ohio River Basins (fig. 1A). The scope 
of the project includes 368 streamgages, 187 in the Great 
Lakes Basin (hydrologic unit 04) and 181 in the Ohio River 
Basin (hydrologic unit 05) located in the States of Illinois, 
Indiana, Kentucky, Michigan, Minnesota, New York, Ohio, 
Pennsylvania, Vermont, West Virginia, and Wisconsin (see 
fig. 1B at https://doi.org/10.3133/sir20195105). Flood-
frequency analyses for the 368 streamgages were based on 
annual peak-flow data through water year 2013 (a water year 
is described as the period October 1–September 30, named 
for the year in which it ends) and were performed using the 

U.S. Geological Survey (USGS) peak-flow analysis software 
(PeakFQ version 7.2, Veilleux and others, 2014). The results 
were used to analyze the regional skew. Streamgages in 4-digit 
hydrologic units 0511 and 0513 in Kentucky and Tennes-
see and in Canada were not considered because USGS Water 
Science Center offices only in the States of Illinois, Michigan, 
Minnesota, New York, Ohio, Pennsylvania, and Wisconsin 
actively participated in the study.

A summary of output from the flood-frequency analyses 
for each streamgage used in the regional skew analysis and a 
description of the basin characteristics considered as potential 
explanatory variables in the study are provided in the tables 
in this report. Peak-flow input files (.txt), PeakFQ setup files 
(.psf), and PeakFQ output (.PRT) files for the 368 streamgages 
used in the analysis and corresponding metadata are provided 
in a data release associated with this report (Wagner and 
Veilleux, 2019).

Description of Study Area

The study area encompasses most of the Great Lakes 
Basin (hydrologic unit 04) and part of the Ohio River Basin 
(hydrologic unit 05) and includes the States of Indiana, 
Michigan, and Ohio, and parts of the States of Illinois, 
Minnesota, New York, Pennsylvania, and Wisconsin (fig. 1A). 
The study area spans approximately 1,600 kilometers from 
east to west from northeastern Minnesota to the New York-
Vermont border and approximately 1,200 kilometers from 
north to south from northeastern Minnesota near Lake Supe-
rior to the Ohio River on the southern boundary of Illinois.

The study area contains parts of the Laurentian Upland, 
Appalachian Highlands, and Interior Plains physiographic 
divisions (Fenneman, 1938). The northwestern part of the 
study area is in the Laurentian Upland, characterized by gently 
rolling hills and small mountain remnants of the Canadian 
Shield, which is underlain by granitic rocks of Precambrian 
age (U.S. Environmental Protection Agency and Government 
of Canada, 1995). The southern part of the Great Lakes Basin 
and northern part of the Ohio River Basin in the study area are 
in a part of the Interior Plains that is characterized by rela-
tively flat glacial-till plains and glacial deposits. The eastern 
part of the Ohio River Basin and far northeastern part of the 
Great Lakes Basin, which are respectively in Pennsylvania and 
New York, are characterized by the mountainous terrain of the 
Appalachian Highlands.

The study area exhibits two climate types—humid sub-
tropical in southern Illinois, Indiana, Ohio, and Pennsylvania; 
and humid continental in the rest of the study area. Mean 
annual precipitation in the study area ranges from 40 to 
50 inches (102 to 127 centimeters) in the south near the Ohio 
River to 25 to 30 inches (64 to 76 centimeters) in northeastern 
Minnesota and northern Michigan (Arguez and others, 2012).

Based on the 2011 National Land Cover Database, 
the study area is approximately 36 percent forested, 38 
percent agricultural (crops and pasture), 11 percent devel-
oped, and 10 percent wetlands, with the remaining 5 percent 

https://doi.org/10.3133/sir20195105
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including open water, barren land, shrub/scrub, and grassland/
herbaceous categories (Homer and others, 2015).

Methods

Streamgage Selection

A suite of 551 candidate streamgages were considered 
for use in the regional skew analysis (see table 1 at 
https://doi.org/10.3133/sir20195105). Annual peak flows for 
these streamgages were obtained from the USGS National 
Water Information System (NWIS; U.S. Geological Sur-
vey, 2015). Only streamgage records unaffected by exten-
sive regulation, diversion, urbanization, or channelization 
(based on coding of annual peaks in the peak-flow files) 
and having 25 or more gaged peaks were considered for use 
in the regional skew analysis. Using these criteria, USGS 
employees who had local knowledge and experience in 
each State that participated in the study selected candidate 
streamgages. Finally, streamgages that were deemed redundant 
were then screened and removed from the larger dataset (see 
“Redundancy Screening” section for more information).

Redundancy Screening

Two streamgages may be redundant if their drainage 
basins are nested and similar in size; the drainage basins 
are considered nested if one entire drainage area is inside 
the other. If streamgages are redundant, a statistical analysis 
incorporating data from both streamgages incorrectly repre-
sents the information content in the regional dataset (Gruber 
and Stedinger, 2008). Instead of providing two spatially 
independent observations that depict how the characteristics of 
each basin are related to skew, the basins will be assumed to 
exhibit similar hydrologic responses to a given storm and thus 
represent only one spatial observation. To determine whether 
two streamgages are redundant and thus represent the same 
watershed for the purposes of developing a regional hydro-
logic model, two types of information are considered: (1) the 
standardized distance (SD) between the centroids of the basins 
and (2) the ratio of the drainage areas of the basins.

The SD between two basin centroids is used to determine 
the likelihood that the basins are redundant. SD is defined as

	 SD
D

DRNAREA DRNAREA
ij

ij

i j

�
�� �0 5.

,	 (1)

where
	 Dij	 is the distance between centroids of basin i 

and basin j, in miles; 
	DRNAREAi	 is the drainage area at streamgage i, in square 

miles; and
	DRNAREAj	 is the drainage area at streamgage j, in square 

miles.

The drainage area ratio (DAR) is used to determine if two 
nested basins are sufficiently similar in size that they represent 
the same watershed for the purposes of developing a regional 
hydrologic model (Veilleux, 2009). The DAR is defined as

	 DAR Max
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where
	 DAR	 is the Max (maximum) of the two values in 

brackets;
	DRNAREAi	 is the drainage area at streamgage i; and
	DRNAREAj	 is the drainage area at streamgage j.

Previous studies suggest that streamgage pairs having 
SD less than or equal to 0.50 and DAR less than or equal to 
5.0 are likely to be redundant for purposes of determining 
regional skew (Veilleux, 2009). If DAR is large enough, even 
nested streamgages will reflect different hydrologic responses 
because storms of different sizes and duration typically affect 
sites differently.

All possible combinations of streamgage pairs from the 
551 streamgages were considered in the redundancy analysis. 
All streamgage pairs with SD ≤ 0.5 and DAR ≤ 5.0 were 
identified as possibly redundant. The drainage area of each 
streamgage was then investigated to determine if one of the 
two drainage areas was nested inside the other; if this was 
true, the preference was generally for the streamgage having 
the smaller drainage area and the longer record length. The 
procedure identified 123 possibly redundant streamgage pairs; 
of these, 77 were found to be redundant and removed from the 
analysis, after which 474 were left for use in the regional skew 
study (table 1).

Basin Characteristics

Basin characteristics for the streamgages used in the 
skew analysis were either obtained from the USGS Geospa-
tial Attributes of Gages for Evaluating Streamflow (GAGES 
II) database or generated. The GAGES II database consists 
of a subset of USGS streamgages having at least 20 years of 
discharge record since 1950 or that were active as of water 
year 2009 and whose watersheds lie within the United States 
(Falcone, 2011). For streamgages that were used in the skew 
analysis but not in the GAGES II database, the suite of basin 
characteristics was generated by using the ArcHydro package 
in Esri ArcGIS software version 10.3.1 (Esri, 2009; Eash 
and others, 2013; Wagner and others, 2016). This procedure 
ensured that a consistent suite of basin characteristics was 
available for all 368 streamgages used in the skew analysis.

Basin characteristics selected to potentially explain the 
variation in skew in the study area included morphometric 
(drainage area, latitude and longitude of basin centroid, mean 
basin slope, mean basin elevation, and basin compactness 
ratio), climatological (basin-average mean annual precipita-
tion), and pedologic or geologic (areal percentages of open 

https://doi.org/10.3133/sir20195105
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water and forest, and average soil permeability) character-
istics (table 2). In addition to these 10 basin characteristics, 
the basin-average 24-hour, 100-year precipitation intensity 
was determined for each streamgage (National Oceanic 
and Atmospheric Administration, 2014), as was the physio-
graphic division within which the basin centroid was located 
(either the Laurentian Upland, Interior Plains, or Appalachian 
Highlands; Fenneman, 1938).

Annual Exceedance Probability Analyses

To estimate regional skew for parts of the Great Lakes 
and Ohio River Basins, a flood-frequency analysis must first 
be conducted for each streamgage to determine the station 
skew and its associated mean square error (MSE). The 
B17C guidelines recommend fitting the log-Pearson Type 
III (LP−III) distribution to a series of annual peak flows at a 
streamgage by using the method of moments (England and 
others, 2018). In doing so, it is recommended that the EMA is 
employed to extend the method of moments to accommodate 
interval, censored, and historical or paleo flood data, as well as 
the use of the Multiple Grubbs-Beck test (MGBT) to identify 
potentially influential low floods (PILFs) in the data series. In 
this study, the USGS software PeakFQ version 7.2 was used 
to analyze the flood frequencies (Veilleux and others, 2014; 
https://water.usgs.gov/software/PeakFQ/).

Hydrologists in the USGS Water Science Centers in 
Illinois, Michigan, Minnesota, New York, Ohio, Pennsylvania, 
and Wisconsin used EMA with PeakFQ version 7.2 for 
candidate streamgages in their respective States and used 
EMA with PeakFQ version 7.2 for candidate streamgages 
in Indiana, Kentucky, Vermont, and West Virginia. Flood 
frequencies were analyzed by using the station-skew option 
in PeakFQ software and, with few exceptions (such as a 
fixed threshold for PILFs that yielded a superior fit of the 
flood-frequency model to the dataset), the MGBT for PILFs. 
Historical peaks were included in the analysis; annual peak 
flows coded as urban or regulated were not. Hydrologists in 
the participating States assigned perception thresholds to the 
entire historical periods (from the start year to the end year 
of the record, including years with missing peaks and periods 
of crest-stage gage operation) and flow intervals to uncertain 
annual peak flows as appropriate.

Bayesian Weighted Least Squares/Bayesian 
Generalized Least Squares Analysis

Prior to analyzing regional skew by the B−WLS/B−GLS 
method, three preliminary steps were completed: (1) cal-
culation of the pseudo record length for each streamgage, 
given the number of censored observations and concurrent 
record lengths; (2) correction for structural bias in the esti-
mate of station skew and its MSE; and (3) development of 
a cross-correlation model of concurrent annual peak flows 
between streamgages.

Calculating Pseudo Record Length
The pseudo record length of the annual peak-flow series 

at each streamgage is used in the regional skew study in 
several steps, including unbiasing the station skew and its 
mean square error, determining the concurrent record length 
between two streamgages, and computing the cross cor-
relation of the station skews. Because the dataset includes 
censored data and historical information, the effective record 
length used to compute the precision of the skewness estima-
tors is no longer simply the number of annual peak flows at a 
streamgage. Instead, a more complex calculation based on the 
availability of historical information and censored values is 
used. Whereas historical information and records of censored 
peaks provide valuable information, they often provide less 
information than records of an equal number of years of gaged 
peaks (Stedinger and Cohn, 1986). The calculations described 
in the following paragraphs yield a pseudo record length (PRL) 
associated with skew, which appropriately accounts for all 
types of peak-flow data available from a streamgage. If no 
interval, censored, historical data are present in the annual 
peak-flow record of a streamgage, PRL is equal to the gaged 
record length.

The PRL is defined as the number of years of gaged record 
that would be required to yield the same mean square error of 
the skew (MSE G� � � ) as would the combination of the histori-
cal and gaged records actually available at a streamgage; thus, 
the PRL of the skew is a ratio of the MSE of the station skew 
when only the gaged record is analyzed (MSE GS� �) to the 
MSE of the station skew when the entire record, including 
historical and censored data, is analyzed (MSE GC� �):

	 P
P MSE G

MSE GRL
S S

C

�
� �

� �
� 



�

�
 ,	 (3)

where
	 PRL	 is the pseudo length of the entire record at the 

streamgage, in years;
	 PS	 is the number of years with gaged peaks in the 

record;
	 MSE GS� � 	 is the estimated MSE of the skew when only 

the gaged record is analyzed; and
	 MSE GC� � 	 is the estimated MSE of the skew when the 

entire record, including historical and 
censored data, is analyzed.

Because the PRL is an estimate, the following conditions 
must also be met to ensure a valid approximation. The PRL 
must be nonnegative. If PRL is greater than PH (the length of the 
historical period), then PRL should be set to equal PH. Also, if 
PRL is less than PS, then PRL is set to PS. This ensures that the PRL 
will not be larger than the complete PH or less than the PS.

As stated in B17C, the station skew is sensitive to 
extreme events; therefore, accurate estimates of skew 
require longer periods of record, typically 50 years or 
greater; however, 50 years of record are not available for 
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Table 2.  Basin characteristics considered for use as explanatory variables in the regional skew analysis.

[GIS, geographic information system; DEM, digital elevation model; NAD83, North American Datum of 1983; NHD, National Hydrography Dataset; NLCD, 
National Land Cover Database; NOAA, National Oceanic and Atmospheric Administration; PRISM, Parameter Regression on Independent Slopes Model]

Basin characteristic Units Source

Drainage area of streamgage basin, 
delineated by using GIS

square kilometers Derived from 30-meter NHDPlus data, http://www.horizon-
systems.com/nhdplus/.

Latitude of basin centroid decimal degrees NAD83 Determined from zonal statistics of grids derived from basin 
polygons in Esri ArcGIS, version 10.3.1.

Longitude of basin centroid decimal degrees, NAD83 Determined from zonal statistics of grids derived from basin 
polygons in Esri ArcGIS, version 10.3.1.

Mean basin elevation meters Determined from 10-meter DEM, National Elevation Dataset, 
https://www.usgs.gov/core-science-systems/national-
geospatial-program/national-map.

Mean basin slope percent Derived from 100-m resolution National Elevation Dataset, 
https://www.usgs.gov/core-science-systems/national-geospa-
tial-program/national-map, or obtained from USGS GAGES 
II database (Falcone, 2011).

Basin compactness ratio (area/
perimeter^2×100); higher number 
indicates more compact shape

unitless Calculated in Esri ArcGIS, version 10.3.1, by using drainage 
area and perimeter of GIS-delineated basin polygons.

Basin-averaged mean annual 
precipitation for the 30-year period 
1971 to 2000

centimeters 800-meter PRISM data, Oregon State University, 
http://www.prism.oregonstate.edu/.

Basin-averaged soil permeability inches per hour Wolock, 1997 (http://water.usgs.gov/GIS/metadata/usgswrd/
XML/muid.xml) and U.S. Department of Agriculture, 2008 
(http://www.soils.usda.gov/survey/geography/statsgo/).

Percentage of streamgage basin in 
forested land use categories

percentage of streamgage basin 
surface area

2006 NLCD, sum of classes 41, 42, and 43, 
https://www.mrlc.gov/data?f%5B0%5D=year%3A2006.

Percentage of streamgage basin in open 
water

percentage of streamgage basin 
surface area

2006 NLCD, class 11, https://www.mrlc.gov/
data?f%5B0%5D=year%3A2006.

Basin-averaged, 24-hour precipitation 
intensity (10-year recurrence 
interval)

inches NOAA Atlas 14 precipitation frequency estimates, 
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html.

Basin-averaged, 24-hour precipitation 
intensity (100-year recurrence 
interval)

inches NOAA Atlas 14 precipitation frequency estimates, 
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html.

most streamgages, and therefore a minimum of 35 years has 
been used in recent studies (Eash and others, 2013; Paretti 
and others, 2014; Southard and Veilleux, 2014; Wagner and 
others, 2016). Thus, after adequate geographic and hydrologic 
coverage was ensured, streamgages in the dataset having a 
PRL less than 36 years were removed from the study. Of the 

474 sites remaining after the 77 redundant sites were removed, 
106 were removed for having a PRL less than 36 years, leav-
ing 368 streamgages from which a regional skew model 
was developed (table 1; see fig. 2 at https://doi.org/10.3133/
sir20195105).

http://www.horizon-systems.com/nhdplus/
http://www.horizon-systems.com/nhdplus/
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
http://www.prism.oregonstate.edu/
http://water.usgs.gov/GIS/metadata/usgswrd/XML/muid.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/muid.xml
http://www.soils.usda.gov/survey/geography/statsgo/
https://www.mrlc.gov/data?f%5B0%5D=year%3A2006
https://www.mrlc.gov/data?f%5B0%5D=year%3A2006
https://www.mrlc.gov/data?f%5B0%5D=year%3A2006
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html
https://doi.org/10.3133/sir20195105
https://doi.org/10.3133/sir20195105
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Removing the Bias of the At-Site Estimators
The station skew estimates were debiased by using the correction factor developed by 

Tasker and Stedinger (1986) and employed by Reis and others (2005). The unbiased station 
skew estimated by using the PRL is 	

	
,

ˆ 61i i
RL i

G
P


 

= + 
  

,	 (4)

where
	 ˆi 	 is the unbiased station skew estimate for site i,
	 PRL,i	 is the pseudo record length in years for site i as calculated in equations 1 and 2, 

and
	 Gi	 is the traditional biased station skew estimator based on the flood-frequency 

analysis for site i.
The variance of the unbiased station skew estimate includes the correction factor devel-

oped by Tasker and Stedinger (1986):

	 [ ] [ ]
2

,

61ˆi i
RL i

Var Var G
P


 

= + 
  

,	 (5)

where
	 Var[Gi]	 is calculated by using the formula (Griffis and Stedinger, 2009).

	 ( ) ( ) ( ) ( )2 46 9 151 ˆ
6 48

ˆ ˆ
RL RL RL

RL

Var G a P b P G c P G
P
      = + × + + + +           

,	 (6)

where

	a P
P PRL
RL RL

� � � � �
17 75 50 06

2 3

. . ,

	
b P

P P PRL
RL RL RL

� � � � �
3 92 31 10 34 86

0 3 0 6 0 9

. . .

. . .
, and

	c P
P P PRL
RL RL RL

� � � � � �
7 31 45 90 86 50

0 59 1 18 1 77

. . .

. . .
 .

For the 368 streamgages in the study area used in the skew analysis, the unbiased station 
skew ranged from −1.37 to 4.13 in log units (table 1; see fig. 3 at https://doi.org/10.3133/
sir20195105).

Estimating the Mean Square Error of the Skew
There are several possible ways to estimate MSE G� � . The approach used by EMA (taken 

from equation 55 in Cohn and others, 2001) generates a first-order estimate of the MSE G� � , 
which should perform well when interval data are available. Another option is to use the Griffis 
and Stedinger (2009) formula in equations 1–7 (the variance is equated to the MSE) by employ-
ing either the gaged-record length or the length of the entire historical period (from the begin-
ning year to the ending year of the record); however, this method does not account for censored 
data and can lead to an inaccurate and underestimated MSE G� � . This issue was addressed 
by using the PRL instead of the length of the historical period; the PRL accounts for the effects 
of the censored data and the number of recorded gaged peaks. Thus, the unbiased MSE G� �  
was used in the regional skewness model because it is more stable and relatively independent 

https://doi.org/10.3133/sir20195105
https://doi.org/10.3133/sir20195105
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of the station skew estimator (Griffis and Stedinger, 2009). 
This method also was used in previous regional skew stud-
ies (Parrett and others, 2011; Eash and others, 2013; Paretti 
and others, 2014; Southard and Veilleux, 2014; Wagner and 
others, 2016).

Cross-Correlation Model
A critical step for the GLS analysis is the estimation of 

the cross correlation of the station skew coefficient estimators. 
Martins and Stedinger (2002) used Monte Carlo experiments 
to derive a relation between the cross correlation of the skew 
estimators for two streamgages (i and j) as a function of the 
cross correlation of concurrent annual peak-flows (ρij): 

	 ( ) ( )ˆ ˆ ˆˆ ˆ,
k

i j ij ij ijSign cf    = ,	 (7)

where
	 ˆ ij 	 is the cross correlation of concurrent annual 

peak-flow for two streamgages,
	 k	 is a constant between 2.8 and 3.3, and
	 cfij	 is a factor that accounts for the sample size 

difference between the concurrent record 
lengths of the two streamgages and is 
defined as follows:

	 cf CY P Pij ij RL i RL j� � �� �/
, ,

,	 (8)

where
	 CYij	 is the pseudo concurrent record length and
	 PRL,i, PRL,j	 are the pseudo record lengths corresponding 

to streamgages i and j, respectively.
As shown in equation 8, the pseudo concurrent record 

length, CYij, is used to compute the cross correlation of sta-
tion skews. The pseudo concurrent record length depends 
upon the years of common historical records between the two 
streamgages as well as the ratio of the pseudo record length to 
the historical record length (Hi) for each streamgage. Because 
censored and historical data are used, calculation of the effec-
tive concurrent record length is more complex than simply 
determining the years during which the two streamgages both 
recorded peaks.

To compute CYij, the years of historical record in common 
between the two streamgages are first determined. For the 
years in common, the following equation that includes the 
beginning year (YBij) and ending year (YEij) is then used 
to calculate the concurrent years of record between two 
streamgages (i and j): 

	 CY YE YB
P
H

P
Hij ij ij

RL i

i

RL j

j

� � �� ��
�
�

�

�
�
�

�
��

�

�
��1

, , .	 (9)

A cross-correlation model for the annual peak flows in 
the study area was developed by using the base-10 logarithms 

of annual peak flows from 54 streamgages that generated 
1,036 streamgage pairs with at least 85 years of concurrent 
gaged peaks. As shown in figure 4A, a logit model, termed the 
Fisher Z Transformation (Z = log[(1+r)/(1−r)]), provides a 
convenient transformation of the sample correlations rij from 
the (−1, +1) range to the (−∞, +∞) range (Fisher, 1915, 1921). 
Models relating the cross correlations of the concurrent annual 
peak flows at two streamgages (ρij) to various basin character-
istics were considered. The adopted model, which uses only 
one explanatory variable for estimating the cross correlations 
of concurrent annual peak flows between two streamgages, is 
based on the distance, in miles, between basin centroids (Dij):

	 ij
ij

ij

exp Z

exp Z
�

� � �
� � �
2 1

2 1

,	 (10)

where

	 Z exp
D

ij
ij� �

��

�
��

�

�
��

�

�
�
�

�

�
�
�

0 89 0 18
1

0 29

0 29

. .
.

.

	 (11)

An OLS regression analysis based on 1,036 streamgage 
pairs with at least 85 years of concurrent record indicated that 
this cross-correlation model is as accurate as having 119 years 
of concurrent annual peak flows from which to calculate 
cross correlation. As is the norm in an OLS analysis, each 
station pair in the model was given equal weight. By setting 
the concurrent-years threshold to 85, the model allowed 
the complete range of data in the study to be represented, 
while also minimizing the influence of station pairs with less 
accuracy and (or) less data. The fitted OLS regression relation 
between Z and the distance between basin centroids from the 
1,036 streamgage pairs (fig. 4A) shows an exponential decline 
in the cross correlation for streamgages within 100 miles of 
each other. A similar decline is found in the cross correlation 
and distance between basin centroids for the untransformed 
streamgage pairs (fig. 4B). This model was used to estimate 
cross correlation for concurrent annual peak flows between all 
streamgage pairs used in the regional skew study.

Regression Analyses
The B−WLS/B−GLS method for computing a regional 

skew begins with an OLS analysis to develop a regional skew 
model that is used to generate an estimate of regional skew for 
each streamgage (Veilleux, 2011; Veilleux and others, 2011; 
Veilleux and others, 2012). The OLS-based regional skew 
estimate is the basis for computing the variance of the skew 
for each streamgage used in the WLS analysis. Next, B−WLS 
is used to generate estimators of the regional skew model 
parameters. Finally, B−GLS is used to estimate the precision 
of the WLS parameter values and the model error variance and 
its precision, and to compute various diagnostic statistics.
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Figure 4.  Graphs showing cross 
correlation of annual peak flows 
in the study area. A, Relation 
between Fisher Z transformed cross 
correlation of logarithms of annual 
peak flows and distances between 
basin centroids based on 1,036 
streamgage pairs with concurrent 
record lengths greater than or equal 
to 85 years from 54 streamgages in the 
study area and B, Relation between 
untransformed cross correlation of 
logarithms of annual peak flows and 
distances between basin centroids, 
based on 1,036 streamgage pairs 
with concurrent record lengths 
greater than or equal to 85 years from 
54 streamgages in the study area. 
Abbreviations: r, cross correlation of 
concurrent annual maximum flows; 
D, distance between gage centroids, 
in miles; and Z, Fisher Z transformed 
cross correlation of concurrent annual 
maximum flows
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Ordinary Least Squares Analysis
The first step in the B−WLS/B−GLS regional skew analysis is to prepare an initial 

regional skew model by using OLS regression. The OLS regression analysis yields parameters 
(such as ˆ

OLSb ) and a model that can be used to generate unbiased regional estimates of the 
skew for all streamgages:

	 ˆ
OLS OLS=y X b  ,	 (12)

where
	 yOLS 	 are the estimated regional skew values,
	 X	 is an (n × k) matrix of basin characteristics,
		  is an (k × 1) vector of estimated regression parameters,
	 n	 is the number of streamgages, and
	 k	 is the number of basin parameters, including a column of ones, to estimate the 

regression constant.
The estimated regional skew values yOLS  are then used to calculate unbiased streamgage 

regional skew variances by using equation 8 in Griffis and Stedinger (2009). These variances 
are based on the OLS estimator of the regional skew coefficient instead of the station skew 
estimator, making the weights in the subsequent steps relatively independent of the station skew 
estimates.

Weighted Least Squares Analysis
A WLS analysis is used to develop estimators of the regression coefficients for the regional 

skew model. The WLS analysis explicitly reflects variations in record length, but intentionally 
neglects cross correlations, thereby avoiding problems experienced with GLS parameter 
estimators (Veilleux, 2011; Veilleux and others, 2011).

The first step in the WLS analysis is to estimate the model error variance (σδ ,B WLS−
2 ) 

(Reis and others, 2005). Using a B−WLS approach to estimate the model error variance 
precludes the pitfall of estimating the model error variance as zero, which can occur when 
the method of moments WLS is used. Although the B−WLS analysis produces an estimate of 
the distribution of the model error variance, only the mean model error variance estimator is 
considered. Given the model error variance estimator, a B−WLS analysis is used to generate 
the weight matrix (W) needed to compute estimates of the final regression parameters ( ˆ

WLSb ). 
To compute W, a diagonal covariance matrix [ΛWLS σδ ,B WLS�� �2 ] is created (eq. 13). The diagonal 
elements of the covariance matrix are the sum of the estimated model error variance and the 
variance of the unbiased station skew ( [ ]ˆiVar  ), which depends upon on the record length and 
the estimate of the previously calculated OLS regional skew ( yOLS ). The off-diagonal ele-
ments of ΛWLS σδ ,B WLS�� �2  are zero because cross correlations among sets of streamgage data are 
not considered in the B−WLS analysis. Thus, the (n × n) covariance matrix, ΛWLS σδ ,B WLS�� �2  is 
given by

	 � � � �� �2 2
, , ˆB WLS B WLS diag Varδ δσ σ γ� �� �WLSΛ I ,	 (13)

where
	 σδ ,B WLS−

2 	 is the model error variance,
	 I	 is an (n × n) identity matrix,
	 n	 is the number of streamgages in the study, and
	 [ ]( )ˆdiag Var g 	 is the (n × n) matrix containing the variance of the unbiased station skew, 

[ ]ˆiVar  , on the diagonal and zeros on the off-diagonal.

ˆ
OLSb
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By using the covariance matrix, the WLS weights are calculated as

	 W X X XWLS WLS� � ��
��

�
�� � ��

� �

�

�T
B WLS

T
B WLSΛ Λσ σδ δ, ,

2
1

1

2
1 ,	 (14)

where
	 W	 is the (k × n) matrix of weights,
	 X	 is the (n × k) matrix of explanatory basin parameters, 
	ΛWLS σδ ,B WLS�� �2 	 is the (n × n) covariance matrix, and
	 k	 is the number of basin parameters, including a column of ones, to estimate the 

regression constant.
These weights are used to compute the final estimates of the regression parameters ( b̂ ) as

	 ˆ ˆWLS =Wb ,	 (15)

where
	 ˆ

WLSb 	 is the (k × 1) vector of estimated regression parameters.

Generalized Least Squares Analysis
After the regression model coefficients ( ˆ

WLSb ) and weights (W) have been determined by 
using a B−WLS analysis, the degrees of precision of the fitted model and the regression coef-
ficients also are estimated by using a B−GLS analysis. Using the B−GLS regression framework 
for regional skew, Reis and others (2005) developed the posterior probability-density function 
for model error variance described as

	
( ) ( ) ( )

( ) ( )( ) ( )

0.52 2 2
, , ,

12
,

ˆˆ| ,

ˆ ˆˆ ˆ     exp 0.5

B GLS WLS B GLS B GLS

T

WLS B GLS WLS

f   



   



−

− − −

−

−

∝ × ×

 − − −  

GLS

GLSX X

g b L

g b L g b
	 (16)

where
	 ĝ 	 represents the skew data, and
	ξ σδ ,B GLS�� �2 	 is the exponential prior for the model error variance defined as

	 ξ σ λ σδ
λ σ

δ
δ

, ,

,

B GLS B GLSe B GLS

�

� � �
�� � � ��2 2

2

0, .	 (17)

The value 10 was adopted for lambda (λ) on the basis of a mean model error variance of 
1/10. That prior assigns a 63-percent probability to the interval (0, 0.1), 86-percent probability 
to the interval (0, 0.2), and 95-percent probability to the interval (0, 0.3).

The mean B-GLS model error variance (σδ ,B GLS−
2 ) can then be used to compute the preci-

sion of the regression parameters ( ˆ
WLSb ) that were based on the B−WLS weights (W). The 

B−GLS covariance matrix for the B−WLS estimator ( ˆ
WLSb ) is simply

	 � � � �2
,

ˆ T
WLS B GLSδΣ σ �� GLSWΛ                     Wb ,	 (18)

where
	 W	 is the (k × n) matrix of weights determined by B−WLS analysis, and
	ΛGLS σδ ,B WLS�� �2 	 is an (n × n) GLS covariance matrix calculated as

	 � � � �2 2
, , ˆB GLS B GLSδ δσ σ Σ γ� �� �GLSΛ                                     I ,	 (19)
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where
	 I	 is an (n × n) identity matrix, and
	 ( )ˆ g 	 is a full (n × n) matrix containing the 

sampling variances of the streamflow 
record’s unbiased skew, [ ]ˆiVar  , and the 
covariances of the skew ˆi .

The off-diagonal values of ( )ˆ g  are determined by the 
cross correlation of concurrent gaged annual peak flows and 
the cf factor, which accounts for the size differences between 
pairs of samples collected at different streamgages and their 
concurrent record length (see eq. 8; Martins and Stedinger, 
2002). In the calculation of the cf factor by using the ratio of 
the number of concurrent peak flows at streamgage pairs to the 
total number of annual peak flows at both streamgages, only 
the gaged records and historical peaks are considered. Thus, 
any additional information provided by perception thresholds 
and censored peaks in the EMA analysis is neglected in the 
calculation of the cross correlation of annual peak flows and 
the cf factor. Precision metrics include (1) the standard error 
of the regression parameters [ ( )];ˆ

WLSSE b  (2) the model error 
variance (σδ ,B GLS−

2 ); (3) pseudo coefficient of determination 
(pseudo R

2 ); and (4) the average variance of prediction at a 
streamgage not used in the regional model (AVPnew ).

Results and Discussion

Final Bayesian Weighted Least Squares/
Bayesian Generalized Least Squares 
Regression Model

A constant B−WLS/B−GLS model having a skew of 
0.086 and developed by using data from 368 streamgages 
with at least 36 years of PRL each, produced the only statisti-
cally significant model of skew in the study area (table 3). A 
constant model does not explain any variability in skew; there-
fore, the pseudo R

2 , a diagnostic statistic that describes the 
percentage of the variability in the skew from streamgage to 
streamgage that is estimated by the model (Gruber and others, 
2007; Parrett and others, 2011), is 0 percent. All available 
basin characteristics were evaluated as possible explanatory 
variables in the B−WLS/B−GLS regression analysis; however, 
the addition of any of the available basin characteristics or 

combinations thereof did not produce a pseudo R
2  greater 

than 5 percent, indicating that they did not explain the varia-
tion in station skews in the study area. Thus, the addition of 
basin characteristics as explanatory variables was not war-
ranted because the increase in complexity did not result in a 
gain in precision.

The posterior mean of the constant model error variance 
(σδ

2 ) is 0.13. The average sampling error variance (ASEV) of 
the constant model is 0.0031, which represents the average 
error in the regional skew as calculated from the station skew 
values measured at streamgages used in the analysis. The 
average variance of prediction at a new streamgage (AVPnew) 
corresponds to the MSE used in B17B to describe the preci-
sion of the generalized skew map. The constant model has an 
AVPnew of 0.13, which corresponds to an effective record length 
of 54 years. An AVPnew of 0.13 is a marked improvement over 
the B17B national skew map, whose reported MSE of 0.302 
has a corresponding effective record length of only 17 years 
(Interagency Advisory Committee on Water Data, 1982). 
Measured by effective record length, the new regional model 
includes more than three times the information of that of the 
B17B map. Appendix 1 provides a graphical assessment of the 
B−WLS/B−GLS model of regional skew.

Bayesian Weighted Least Squares/
Bayesian Generalized Least Squares 
Regression Diagnostics

To determine whether a regression model is a good 
representation of the data and which regression parameters, if 
any, should be included in the model, diagnostic statistics have 
been developed to evaluate how well a model fits a regional 
hydrologic dataset (Griffis, 2006; Gruber and Stedinger, 2008). 
In a regional skew study, potential explanatory variables are 
statistically evaluated to ensure an accurate prediction of skew 
while also keeping the model as simple as possible.

A pseudo analysis of variance (pseudo ANOVA) con-
tains regression diagnostics and goodness-of-fit statistics that 
describe how much of the variation in the observations can 
be attributed to the regional model, and how much of the 
variation in the residuals can be attributed to modeling and 
sampling error (table 4; see fig. 5 at https://doi.org/10.3133/
sir20195105). Determining these quantities is difficult; the 

Table 3.  Regional skew model and model fit for parts of the Great Lakes and Ohio River Basins.

[Standard deviations are in parentheses. σδ
2 , model error variance; ASEV, average sampling error variance; AVPnew , average variance of prediction 

for a new site; Pseudo R
2, fraction of the variability in the station skews explained by each model (Gruber and others, 2007)]

Model
Regression 

constant σδ
2 ASEV AVPnew Pseudo R

2  
(percent)

Constant 0.086 0.13 0.0031 0.13 0

(0.055) (0.015)      

https://doi.org/10.3133/sir20195105
https://doi.org/10.3133/sir20195105
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modeling errors cannot be resolved because the values of the 
sampling errors ( i ) for each streamgage (i) are not known. 
However, the total sampling error sum of squares (SS) can be 
described by its mean value ( [ ]1 ˆn

i iVar =Σ ), as there are n equa-
tions, and the total variation caused by the model error ( ) 
for a model with k parameters has a mean equal to n kσδ

2 � � . 
Thus, the residual variation attributed to the sampling error is 

[ ]1 ˆn
i iVar =Σ , and the residual variation attributed to the model 

error is n kσδ
2 � � .

For a model with no explanatory parameters other than 
the mean (the constant model), the estimated model error 
variance (σδ

2
0� � ) describes all of the variation in γ µ δi i� � , 

where μ is the mean of the estimated station skews. Thus, 
the total variation resulting from model error (i ) and 
sampling error ( ˆi i i  = − ) in the expected sum of squares 
should equal σ γδ

2

1
0� � � � ���in iVar  . For a model type other 

than constant, the expected sum of squares attributed with k 
parameters equals n kσ σδ δ

2 2
0� � � � ��� ��  because the sum of the 

model error variance n kσδ
2 � �  and the variance explained by 

the model must equal nσδ
2

0� � . This division of the variation 
in the observations is referred to as a pseudo ANOVA because 
the contributions of the three sources of error are estimated or 
constructed rather than determined from the computed residual 

Table 4.  Pseudo analysis of variance (ANOVA) table for the constant model of regional skew in parts of the Great Lakes and Ohio River 
Basins.

[k, number of estimated regression parameters not including the constant; n, number of streamgages used in regression; σδ
2

0� �, model error variance of a con-
stant model; σδ

2 k� � , model error variance of a model with k regression parameters and a constant; ( )ˆiVar  , variance of the estimated sample skew at site i; EVR, 
error variance ratio; MBV*, misrepresentation of the beta variance; GLS, generalized least squares; WLS, weighted least squares; bWLS0 , regression constant from 
WLS analysis; Λ, covariance matrix; pseudo R

2, fraction of variability in the true skews explained by each model (Gruber and others, 2007); %, percent]

Source Degrees of freedom Equations Sum of squares

Model k 0 n kσ σδ δ
2 2

0� � � � ��� �� 0

Model error n−k−1 367 n kσδ
2 � ��� �� 47

Sampling error n 368 ( )1 ˆn
i iVar =∑

 46

Total 2n−1 735 ( ) ( )2
1 ˆn

i in k Var =  + ∑  93

( )
( )

1
2

ˆn
i iVar

EVR
n k




==
Σ

1.0

MBV
Var b GLS analysis

Var b WLS analysis
w w

WLS

WLS

T
*

|

|

�
�� ��
�� ��

�0

0

�
ww vT

where
 
wi

ii

=
1


,
 

v n� �� �1 vector of ones

 
4.7

Pseudo R
k

δ
δ

δ

σ
σ

2

2

2
1

0
� �

� �
� � 0%

errors and the observed model predictions, while not account-
ing for the effect of correlation on the sampling errors.

The error variance ratio (EVR) is a diagnostic statistic 
used to determine whether a simple OLS regression analysis 
would be sufficient, or a more sophisticated WLS or GLS 
analysis would be more appropriate. The EVR is the ratio 
of the average sampling error variance to the model error 
variance. Generally, an EVR greater than 0.20 indicates that 
the sampling error variance is not negligible when compared 
to the model error variance, suggesting that a WLS or GLS 
regression analysis is appropriate. The EVR is calculated as

	
( )
( )

( )
( )

1
2

SS samplingerror
SS mode r

ˆ
lerro

n
i iVar

EVR
n k




== =
Σ

.	 (20)

The constant model has a sampling error variance of 
0.0031 (table 3) and an EVR of 1 (table 4), indicating that the 
sampling error variance is not negligible when compared to 
the model error variance, and that a WLS or GLS regression 
analysis was appropriate. Thus, an OLS model that neglects 
sampling error in the station skew would not provide a sta-
tistically reliable analysis of the data. Given the diagnostic 
statistics and the range of record lengths among streamgages, 
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a WLS or GLS analysis was warranted to evaluate the final 
precision of the model.

The Misrepresentation of the Beta Variance (MBV*) diag-
nostic statistic is used to determine whether a WLS regression 
is sufficient, or if a GLS regression is more appropriate to 
determine the precision of the estimated regression parameters 
(Griffis, 2006; Veilleux, 2011). The MBV* describes the error 
produced by a WLS regression analysis in its evaluation of 
the precision of bWLS0 , which is the estimator of the constant 
0
WLS , because the covariance among the estimated station 

skews ( ˆi ) generally has its greatest effect on the precision of 
the constant term (Stedinger and Tasker, 1985). If the MBV* is 
substantially greater than 1, then a GLS error analysis should 
be employed; conversely, if the MBV* is not substantially 
greater than 1, a WLS analysis is sufficient. The MBV* is 
calculated as

	 MBV
b GLS analysis

b WLS analysis
w wWLS

WLS

T

*
|

|
�

�� ��
�� ��

�
Var

Var
0

0

�
��in iw�1

 ,	 (21)

where wi
ii

=
1


.

The MBV* is equal to 4.7 for the constant model 
(table 4), indicating that the cross correlation among the 
skew estimators has an effect on the precision with which the 
regional skew can be estimated. If a WLS precision analysis 
were used for the estimated constant in the model, the vari-
ance would be underestimated by a factor of 4.7. Thus, a WLS 
analysis alone would misrepresent the variance of the constant 
in the skew model. Moreover, a WLS model would underesti-
mate the variance of prediction, given that the sampling error 
in the constant term in both models was sufficiently large to 
make an appreciable contribution to the average variance of 
prediction.

Leverage and Influence

Diagnostic statistics for leverage and influence can be 
used to identify atypical observations and to address lack-of-fit 
when skew coefficients are estimated. The leverage statis-
tics identify those streamgages in the analysis for which the 
observed streamflow values have a large impact on the fitted 
(or predicted) values (Hoaglin and Welsch, 1978). Generally, 
leverage statistics can determine whether an observation or 
explanatory variable is unusual and thus likely to have a large 
effect on the estimated regression coefficients and predic-
tions. Unlike leverage, which highlights points that have the 
ability or potential to affect the fit of the regression, influence 
attempts to describe those points that have an unusual effect 
on the regression analysis (Belsley and others, 1980; Cook and 
Weisberg, 1982; Tasker and Stedinger, 1989). An influential 

observation is one with an unusually large residual that has a 
disproportionate effect on the fitted regression relations.

Influential observations often have high leverage. If p 
is the number of estimated regression coefficients (p=1 for 
a constant model), and n is the sample size (or number of 
streamgages in the study), then leverage values have a mean 
of p/n, and values greater than 2p/n are generally considered 
large. Influence values greater than 4/n are typically consid-
ered large (Veilleux, 2011; Veilleux and others, 2011).

For the constant model of skew in the study area, influ-
ence greater than 0.011 (p/n = 4/368) and leverage greater than 
0.005 [(2×1)/368] were considered high. No sites in the study 
area exhibited high leverage; therefore, the differences in the 
leverage values for the constant model reflect the variation 
in record lengths among sites. Eighteen streamgages in the 
study area exhibited high influence, and thus had an unusual 
effect on the fitted regression (table 5). These streamgages also 
had 18 of the 31 largest residuals (in magnitude) among the 
368 streamgages used in the B−WLS/B−GLS analysis. 

Summary
Bulletin 17C (B17C) guidelines recommend fitting the 

log-Pearson Type III (LP−III) distribution to a series of annual 
peak flows at a station by using the method of moments. The 
LP−III distribution is described by three moments: the mean, 
the standard deviation, and the skewness coefficient. The third 
moment, the skewness coefficient (hereinafter referred to as 
“skew”), is a measure of the asymmetry of the distribution or, 
in other words, the thickness of the tails of the distribution. 
In flood-frequency analysis, the skew is important because 
the magnitude of annual exceedance probability (AEP) flows 
for a streamgage estimated by using the LP−III distribution 
are affected by the skew of the annual peak flows (hereinafter 
referred to as “station skew”); interest is focused on the right-
hand tail of the distribution, which represents annual peak 
flows corresponding to small AEPs and the larger flood flows. 
For streamgages having modest record lengths, the skew is 
sensitive to extreme events, such as large floods, as they cause 
a sample to be highly asymmetrical, or skewed. Thus, B17C 
recommends using a weighted-average skew computed from 
the station skew for a given streamgage and a regional skew. 
These choices reduce the sensitivity of the station skew to 
extreme events, particularly for streamgages with short record 
lengths. An estimate of regional skew is generated for a study 
area encompassing most of the Great Lakes Basin (hydrologic 
unit 04) and part of the Ohio River Basin (hydrologic unit 05), 
including the States of Indiana, Michigan, and Ohio and parts 
of the States of Illinois, Minnesota, New York, Pennsylvania, 
and Wisconsin. The study area spans approximately 
1,600 kilometers from east to west, from northeastern Min-
nesota to the New York-Vermont border, and approximately 
1,200 kilometers north to south, from northeastern Minnesota 
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near Lake Superior to the Ohio River on the southern bound-
ary of Illinois.

Candidate streamgages in the study area were selected by 
the USGS in the respective States. Only streamgage records 
unaffected by extensive regulation, diversion, urbanization, or 
channelization, and having 25 or more years of gaged record 
were considered.

As recommended in B17C, the flood frequency for 
each candidate streamgage was determined by employing 
the Expected Moments Algorithm (EMA), which extends 
the method of moments so that it can accommodate interval, 
censored, and historical/paleo data, as well as use the Multiple 
Grubbs-Beck test (MGBT) to identify potentially influential 
low floods (PILFs) in the data series.

A total of 551 candidate streamgages were initially 
considered for use in the skew analysis; after screening 
for redundancy and sufficient pseudo record length (PRL), 
368 streamgages were selected. The Bayesian weighted least 
squares/Bayesian generalized least squares (B−WLS/B−GLS) 
regression method was used to develop a regional skew model 
for the study area that would incorporate possible explana-
tory variables (basin characteristics) to explain the variation 
in skew in the study area. Basin characteristics for candidate 
streamgages were obtained from the GAGES II database or 
generated by using the ArcHydro package in Esri ArcGIS ver-
sion 10.3.1. Twelve basin characteristics were considered as 
possible explanatory variables in the B−WLS/B−GLS regres-
sion analysis; however, none produced a pseudo coefficient of 
determination greater than 5 percent, indicating that they did 
not explain the variation in station skews in the study area. 
Therefore, a constant skew model was selected. The constant 
model has a regional skew coefficient of 0.086 and an average 
variance of prediction (AVPnew) of 0.13, which corresponds to 
the mean square error (MSE). An AVPnew of 0.13 corresponds 
to an effective record length of 54 years, which is a marked 
improvement over the Bulletin 17B (B17B) national skew 
map, whose reported MSE of 0.302 has a corresponding 
effective record length of only 17 years. Measured by effec-
tive record length, the new regional model provides more 
than three times the amount of information provided by the 
B17B map.
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Appendix 1.  Assessment of a regional skew model for parts of the Great Lakes 
and Ohio River Basins by using Monte Carlo simulations

This appendix provides a graphical assessment of the 
Bayesian weighted least squares/Bayesian generalized least 
squares (B−WLS/B−GLS) model of regional skew that is 
described in this report for parts of the Great Lakes and Ohio 
River Basins. Observed, unbiased station skews are depicted 
in figure 1.1 along with contour lines and shading to provide 
a sense of geographic patterns in the skews. The contour-
ing algorithm used to generate figure 1.1 shows a substantial 
amount of structure in the pattern of the unbiased station 
skews. The larger skews (positive skews) in eastern Ohio and 
western Pennsylvania might be a cause for concern.

Monte Carlo simulations were used to determine whether 
the apparent observed structure in the station skews is evi-
dence of significant model misspecification or an artifact of 
random-sampling variability possibly confounded by the cova-
riance structure of the errors. The Monte Carlo simulations 
were generated from a multivariate normal distribution with a 
mean equal to the constant from the regional skew model and 
a covariance matrix identical to the covariance matrix used in 
the regional skew model. The constant model of skew in the 
study area is:

	 / .ˆ 0 086BWLS BGLS = +  ,	 (1.1)

where   represents the total error and

	  ~ ,N Var0 � �� � , 	 (1.2)

where N signifies a normal distribution of the total error in 
the constant regional skew model determined in the B−GLS 
analysis.

As described in equation 1.2, the Var(ɛ) can be described 
as

	 ( ) ( )2 2
, , ˆT

GLS B GLS B GLS    − −  = = +  IL S ,	 (1.3)

where
	 ( )2

,GLS B GLS −L 	is the (n × n) GLS covariance matrix,
	 σδ ,B GLS−

2 	 is the B–GLS variance of the underlying 
model error δ,

	 I	 is an (n × n) identity matrix, and
	 ( )̂S 	 is the full (n × n) covariance matrix of the 

sampling errors for each streamgage (n).
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Figure 1.1.  Contour map 
of unbiased station skews 
(unweighted) for the 368 
streamgages used in the 
regional skew analysis for 
parts of the Great Lakes and 
Ohio River Basins.
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The covariance matrix of the sampling errors is made 
up of the sampling variances of the unbiased station skew 
( [ ]ˆiVar  ) and the covariances of the skewness estimators 
( ˆi ). The off-diagonal values of ( )ˆS g  are determined by the 
cross correlation of concurrent gaged annual peak flows and 
the cf factor (see eqs. 7 and 8 in report). The model error vari-
ance σδ

2  for the constant model is 0.13 (table 3) and was used 
in the Monte Carlo simulations. The covariance matrix ( )̂S  
used in the Monte Carlo simulations is the same as that used 
in the B−WLS/B−GLS regression analysis (see eqs. 13 and 18 
in report).

The results of the Monte Carlo simulations are depicted 
graphically in 20 realizations of the expected patterns in the 
station skew if the station skews are normally distributed with 
a mean equal to 0.086 and the covariance matrix given by 
equation 1.3 (fig. 1.2). The Monte Carlo simulations reveal no 
consistent structure in the pattern of the station skews con-
sistent with the observed pattern of the station skews in the 
constant model (fig. 1.1). Therefore, it seems reasonably safe 
to conclude that, based on the geographic patterns observed in 
the station skews, there is little evidence of a lack of fit.
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Figure 1.2.  Contour maps showing results of 20 Monte Carlo simulations of skew at 368 streamgages in the Great Lakes and Ohio River 
Basins used in the regional skew analysis. Simulations are normally distributed to the constant skew model and covariance matrix.
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Figure 1.2.  Continued.
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Figure 1.2.  Continued.
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Figure 1.2.  Continued.
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