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Conversion Factors

International System of Units to U.S. customary units

Multiply By To obtain
Length
centimeter (cm) 0.3937 inch (in.)
kilometer (km) 0.6214 mile (mi)
Volume
cubic meter (m?) 35.31 cubic foot (ft%)
Flow rate
cubic meter per second (m?/s) 35.31 cubic foot per second (ft¥/s)

Datum

Vertical coordinate information is referenced to the North American Vertical Datum of 1988

(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Abbreviations

AEP annual exceedance probability

ASEV average sampling error variance

AVP,.. average variance of prediction

B17B Bulletin 17B (see Interagency Advisory Committee on Water Data, 1982)
B17C Bulletin 17C (see England and others, 2018)

B-GLS Bayesian generalized least squares

B-WLS Bayesian weighted least squares

DAR drainage area ratio

EMA Expected Moments Algorithm

EVR error variance ratio

GAGES Il Geospatial Attributes of Gages for Evaluating Streamflow Il
GLS generalized least squares

LP-III log-Pearson Type Il distribution

MBV* Misrepresentation of the Beta Variance

MGBT Multiple Grubbs-Beck test

MSE mean square error

NWIS National Water Information System of the USGS

oLS ordinary least squares
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pseudo ANOVA
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USGS

WLS
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Methods for Estimating Regional Skewness of Annual
Peak Flows in Parts of the Great Lakes and Ohio River
Basins, Based on Data Through Water Year 2013

By Andrea G. Veilleux and Daniel M. Wagner

Abstract

Bulletin 17C (B17C) recommends fitting the log-Pearson
Type I (LP—III) distribution to a series of annual peak flows
at a streamgage by using the method of moments. The third
moment, the skewness coefficient (or skew), is important
because the magnitudes of annual exceedance probability
(AEP) flows estimated by using the LP—III distribution are
affected by the skew; interest is focused on the right-hand tail
of the distribution, which represents the larger annual peak
flows that correspond to small AEPs. For streamgages having
modest record lengths, the skew is sensitive to extreme events
like large floods, which cause a sample to be highly asymmet-
rical or “skewed.” For this reason, B17C recommends using a
weighted-average skew computed from the station skew for a
given streamgage and a regional skew. This report generates
an estimate of regional skew for a study area encompassing
most of the Great Lakes Basin (hydrologic unit 04) and
part of the Ohio River Basin (hydrologic unit 05). A total of
551 candidate streamgages that were unaffected by extensive
regulation, diversion, urbanization, or channelization were
considered for use in the skew analysis; after screening for
redundancy and pseudo record length (7, ) greater than 36
years, 368 streamgages were selected for use in the study.
Flood frequencies for candidate streamgages were analyzed by
employing the Expected Moments Algorithm (EMA), which
extends the method of moments so that it can accommodate
interval, censored, and historic/paleo flow data, as well as the
Multiple Grubbs-Beck test to identify potentially influential
low floods in the data series. Bayesian weighted least squares/
Bayesian generalized least squares regression was used to
develop a regional skew model for the study area that would
incorporate possible variables (basin characteristics) to explain
the variation in skew in the study area. Twelve basin charac-
teristics were considered as possible explanatory variables;
however, none produced a pseudo coefficient of determination
(pseudo R;) greater than 5 percent; as a result, these character-
istics did not help to explain the variation in skew in the study
area. Therefore, a constant model having a regional skew coef-
ficient of 0.086 and an average variance of prediction (AVP,,,)

new

(which corresponds to the mean square error [MSE]) of 0.13
at a new streamgage was selected. The AVP,,, corresponds to
an effective record length of 54 years, a marked improvement
over the Bulletin 17B national skew map, whose reported
MSE of 0.302 indicated a corresponding effective record

length of only 17 years.

Introduction

Flood-frequency analysis of annual peak flows at stream-
flow-gaging stations (hereafter referred to as “streamgages”)
provides engineers, hydrologists, and many others estimates of
the magnitudes and frequencies of floods for planning, design,
and management of infrastructure along rivers and streams.
The Subcommittee on Hydrology of the Federal Advisory
Committee on Water Information recently published Bulletin
17C (herein referred to as “B17C,” England and others, 2018),
which comprises updated guidelines for flood-frequency anal-
ysis. The bulletin recommends use of the log-Pearson Type 111
(LP—III) distribution to fit a time series of annual peak flows
measured by a streamgage to obtain estimates of flows cor-
responding to various annual exceedance probabilities (AEP).
In the case of flood-frequency analysis, the LP—III distribution
is described by three moments: the mean, the standard devia-
tion, and the skewness coefficient of the logarithms of the
flows. The third moment, the skewness coefficient (hereafter
referred to as the “skew”), is a measure of the asymmetry of
the distribution as shown by the thicknesses of the tails of the
distribution. In flood-frequency analysis, the skew is important
because the magnitudes of AEP flows estimated by using the
LP—III distribution are affected by the skews of the annual
peak flows at specific streamgages (hereafter referred to as
“station skew”); interest is focused on the right-hand tail of the
distribution, which represents annual peak flows correspond-
ing to small AEPs of the larger flood flows.

For streamgages having modest record lengths, approxi-
mately in the range of 25 to 100 years, the skewness coeffi-
cient is sensitive to unusually large or small annual peak flows
because they cause a sample of such flows to be asymmetrical
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or skewed (Griffis and Stedinger, 2007). Thus, B17C guide-
lines recommend using a weighted-average skew that is com-
puted from the skew of the station’s annual peak flows and
the regional skew. Using the weighted-average skew reduces
the sensitivity of the station skew to extreme events, particu-
larly for streamgages with short record lengths of less than
approximately 25 years.

The B17C guidelines recommend using the Bayesian
weighted least squares/Bayesian generalized least squares
(B-WLS/B—GLS) method to estimate regional skew (England
and others, 2018, p. 30). Using this procedure, the regional
skew is estimated based on the station skew of the logarithms
of annual peak-flow data. The B-WLS/B—GLS procedure
first uses an ordinary least squares (OLS) regression analysis
to generate an initial regional-skew model that is used to
compute the variance of the station skew for each streamgage.
Next, B-WLS is used to generate estimators of the regional
skew model parameters. Finally, B-GLS is used to estimate
the precision of the B-WLS parameter values, to estimate
the model error variance and its precision, and to compute
some diagnostic statistics. The B-WLS/B—GLS method can
account for the complexities introduced by the Expected
Moments Algorithm (hereinafter referred to as “EMA,” Cohn
and others, 1997), the B17C recommended generalization of
the method of moments approach for flood-frequency analy-
sis of the annual peak flows from streamgages, and the cross
correlation between annual peak flows at pairs of streamgages
(Veilleux, 2011; Veilleux and others, 2011).

To date, the B-WLS/B—GLS method has been used
to generate estimates of regional skew for several regions
around the Nation (Parrett and others, 2011; Eash and others,
2013; Olson, 2014, Paretti and others, 2014; Southard and
Veilleux, 2014; Curran and others, 2016; Mastin and others,
2016; Wagner and others, 2016). In this study, the B-WLS/
B—GLS procedure was used to estimate skew for a region
encompassing parts of the Great Lakes and Ohio River Basins
(hydrologic units 04 and 05, respectively; see fig. 14 at
https://doi.org/10.3133/5ir20195105) to improve estimates of
regional skew and flows corresponding to various AEPs across
the region.

Purpose and Scope

The purpose of this report is to present the results of
a B-WLS/B—GLS analysis of regional skew for parts of
the Great Lakes and Ohio River Basins (fig. 14). The scope
of the project includes 368 streamgages, 187 in the Great
Lakes Basin (hydrologic unit 04) and 181 in the Ohio River
Basin (hydrologic unit 05) located in the States of Illinois,
Indiana, Kentucky, Michigan, Minnesota, New York, Ohio,
Pennsylvania, Vermont, West Virginia, and Wisconsin (see
fig. 1B at https://doi.org/10.3133/5ir20195105). Flood-
frequency analyses for the 368 streamgages were based on
annual peak-flow data through water year 2013 (a water year
is described as the period October 1-September 30, named
for the year in which it ends) and were performed using the

U.S. Geological Survey (USGS) peak-flow analysis software
(PeakFQ version 7.2, Veilleux and others, 2014). The results
were used to analyze the regional skew. Streamgages in 4-digit
hydrologic units 0511 and 0513 in Kentucky and Tennes-
see and in Canada were not considered because USGS Water
Science Center offices only in the States of Illinois, Michigan,
Minnesota, New York, Ohio, Pennsylvania, and Wisconsin
actively participated in the study.

A summary of output from the flood-frequency analyses
for each streamgage used in the regional skew analysis and a
description of the basin characteristics considered as potential
explanatory variables in the study are provided in the tables
in this report. Peak-flow input files (.txt), PeakFQ setup files
(.psf), and PeakFQ output (.PRT) files for the 368 streamgages
used in the analysis and corresponding metadata are provided
in a data release associated with this report (Wagner and
Veilleux, 2019).

Description of Study Area

The study area encompasses most of the Great Lakes
Basin (hydrologic unit 04) and part of the Ohio River Basin
(hydrologic unit 05) and includes the States of Indiana,
Michigan, and Ohio, and parts of the States of Illinois,
Minnesota, New York, Pennsylvania, and Wisconsin (fig. 14).
The study area spans approximately 1,600 kilometers from
east to west from northeastern Minnesota to the New York-
Vermont border and approximately 1,200 kilometers from
north to south from northeastern Minnesota near Lake Supe-
rior to the Ohio River on the southern boundary of Illinois.

The study area contains parts of the Laurentian Upland,
Appalachian Highlands, and Interior Plains physiographic
divisions (Fenneman, 1938). The northwestern part of the
study area is in the Laurentian Upland, characterized by gently
rolling hills and small mountain remnants of the Canadian
Shield, which is underlain by granitic rocks of Precambrian
age (U.S. Environmental Protection Agency and Government
of Canada, 1995). The southern part of the Great Lakes Basin
and northern part of the Ohio River Basin in the study area are
in a part of the Interior Plains that is characterized by rela-
tively flat glacial-till plains and glacial deposits. The eastern
part of the Ohio River Basin and far northeastern part of the
Great Lakes Basin, which are respectively in Pennsylvania and
New York, are characterized by the mountainous terrain of the
Appalachian Highlands.

The study area exhibits two climate types—humid sub-
tropical in southern Illinois, Indiana, Ohio, and Pennsylvania;
and humid continental in the rest of the study area. Mean
annual precipitation in the study area ranges from 40 to
50 inches (102 to 127 centimeters) in the south near the Ohio
River to 25 to 30 inches (64 to 76 centimeters) in northeastern
Minnesota and northern Michigan (Arguez and others, 2012).

Based on the 2011 National Land Cover Database,
the study area is approximately 36 percent forested, 38
percent agricultural (crops and pasture), 11 percent devel-
oped, and 10 percent wetlands, with the remaining 5 percent
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including open water, barren land, shrub/scrub, and grassland/
herbaceous categories (Homer and others, 2015).

Methods

Streamgage Selection

A suite of 551 candidate streamgages were considered
for use in the regional skew analysis (see table 1 at
https://doi.org/10.3133/sir20195105). Annual peak flows for
these streamgages were obtained from the USGS National
Water Information System (NWIS; U.S. Geological Sur-
vey, 2015). Only streamgage records unaffected by exten-
sive regulation, diversion, urbanization, or channelization
(based on coding of annual peaks in the peak-flow files)
and having 25 or more gaged peaks were considered for use
in the regional skew analysis. Using these criteria, USGS
employees who had local knowledge and experience in
each State that participated in the study selected candidate
streamgages. Finally, streamgages that were deemed redundant
were then screened and removed from the larger dataset (see
“Redundancy Screening” section for more information).

Redundancy Screening

Two streamgages may be redundant if their drainage
basins are nested and similar in size; the drainage basins
are considered nested if one entire drainage area is inside
the other. If streamgages are redundant, a statistical analysis
incorporating data from both streamgages incorrectly repre-
sents the information content in the regional dataset (Gruber
and Stedinger, 2008). Instead of providing two spatially
independent observations that depict how the characteristics of
each basin are related to skew, the basins will be assumed to
exhibit similar hydrologic responses to a given storm and thus
represent only one spatial observation. To determine whether
two streamgages are redundant and thus represent the same
watershed for the purposes of developing a regional hydro-
logic model, two types of information are considered: (1) the
standardized distance (SD) between the centroids of the basins
and (2) the ratio of the drainage areas of the basins.

The SD between two basin centroids is used to determine
the likelihood that the basins are redundant. SD is defined as

D,
SD, = i
" J0.5(DRNAREA, + DRNAREA, )’ o

where
D, is the distance between centroids of basin i
and basin j, in miles;
DRNAREA, is the drainage area at streamgage 7, in square
miles; and
DRNAREA, is the drainage area at streamgage j, in square
miles.
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The drainage area ratio (DAR) is used to determine if two
nested basins are sufficiently similar in size that they represent
the same watershed for the purposes of developing a regional
hydrologic model (Veilleux, 2009). The DAR is defined as

DRNAREA, DRNAREA,

DAR = Max , , 2)
DRNAREA; DRNAREA,
where
DAR is the Max (maximum) of the two values in
brackets;
DRNAREA, is the drainage area at streamgage 7; and
DRNAREA, is the drainage area at streamgage ;.

Previous studies suggest that streamgage pairs having
SD less than or equal to 0.50 and DAR less than or equal to
5.0 are likely to be redundant for purposes of determining
regional skew (Veilleux, 2009). If DAR is large enough, even
nested streamgages will reflect different hydrologic responses
because storms of different sizes and duration typically affect
sites differently.

All possible combinations of streamgage pairs from the
551 streamgages were considered in the redundancy analysis.
All streamgage pairs with SD < 0.5 and DAR < 5.0 were
identified as possibly redundant. The drainage area of each
streamgage was then investigated to determine if one of the
two drainage areas was nested inside the other; if this was
true, the preference was generally for the streamgage having
the smaller drainage area and the longer record length. The
procedure identified 123 possibly redundant streamgage pairs;
of these, 77 were found to be redundant and removed from the
analysis, after which 474 were left for use in the regional skew
study (table 1).

Basin Characteristics

Basin characteristics for the streamgages used in the
skew analysis were either obtained from the USGS Geospa-
tial Attributes of Gages for Evaluating Streamflow (GAGES
IT) database or generated. The GAGES II database consists
of a subset of USGS streamgages having at least 20 years of
discharge record since 1950 or that were active as of water
year 2009 and whose watersheds lie within the United States
(Falcone, 2011). For streamgages that were used in the skew
analysis but not in the GAGES II database, the suite of basin
characteristics was generated by using the ArcHydro package
in Esri ArcGIS software version 10.3.1 (Esri, 2009; Eash
and others, 2013; Wagner and others, 2016). This procedure
ensured that a consistent suite of basin characteristics was
available for all 368 streamgages used in the skew analysis.

Basin characteristics selected to potentially explain the
variation in skew in the study area included morphometric
(drainage area, latitude and longitude of basin centroid, mean
basin slope, mean basin elevation, and basin compactness
ratio), climatological (basin-average mean annual precipita-
tion), and pedologic or geologic (areal percentages of open
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water and forest, and average soil permeability) character-
istics (table 2). In addition to these 10 basin characteristics,
the basin-average 24-hour, 100-year precipitation intensity
was determined for each streamgage (National Oceanic

and Atmospheric Administration, 2014), as was the physio-
graphic division within which the basin centroid was located
(either the Laurentian Upland, Interior Plains, or Appalachian
Highlands; Fenneman, 1938).

Annual Exceedance Probability Analyses

To estimate regional skew for parts of the Great Lakes
and Ohio River Basins, a flood-frequency analysis must first
be conducted for each streamgage to determine the station
skew and its associated mean square error (MSE). The
B17C guidelines recommend fitting the log-Pearson Type
IIT (LP—III) distribution to a series of annual peak flows at a
streamgage by using the method of moments (England and
others, 2018). In doing so, it is recommended that the EMA is
employed to extend the method of moments to accommodate
interval, censored, and historical or paleo flood data, as well as
the use of the Multiple Grubbs-Beck test (MGBT) to identify
potentially influential low floods (PILFs) in the data series. In
this study, the USGS software PeakFQ version 7.2 was used
to analyze the flood frequencies (Veilleux and others, 2014;
https://water.usgs.gov/software/PeakFQ/).

Hydrologists in the USGS Water Science Centers in
[llinois, Michigan, Minnesota, New York, Ohio, Pennsylvania,
and Wisconsin used EMA with PeakFQ version 7.2 for
candidate streamgages in their respective States and used
EMA with PeakFQ version 7.2 for candidate streamgages
in Indiana, Kentucky, Vermont, and West Virginia. Flood
frequencies were analyzed by using the station-skew option
in PeakFQ software and, with few exceptions (such as a
fixed threshold for PILFs that yielded a superior fit of the
flood-frequency model to the dataset), the MGBT for PILFs.
Historical peaks were included in the analysis; annual peak
flows coded as urban or regulated were not. Hydrologists in
the participating States assigned perception thresholds to the
entire historical periods (from the start year to the end year
of the record, including years with missing peaks and periods
of crest-stage gage operation) and flow intervals to uncertain
annual peak flows as appropriate.

Bayesian Weighted Least Squares/Bayesian
Generalized Least Squares Analysis

Prior to analyzing regional skew by the B-WLS/B-GLS
method, three preliminary steps were completed: (1) cal-
culation of the pseudo record length for each streamgage,
given the number of censored observations and concurrent
record lengths; (2) correction for structural bias in the esti-
mate of station skew and its MSE; and (3) development of
a cross-correlation model of concurrent annual peak flows
between streamgages.

Calculating Pseudo Record Length

The pseudo record length of the annual peak-flow series
at each streamgage is used in the regional skew study in
several steps, including unbiasing the station skew and its
mean square error, determining the concurrent record length
between two streamgages, and computing the cross cor-
relation of the station skews. Because the dataset includes
censored data and historical information, the effective record
length used to compute the precision of the skewness estima-
tors is no longer simply the number of annual peak flows at a
streamgage. Instead, a more complex calculation based on the
availability of historical information and censored values is
used. Whereas historical information and records of censored
peaks provide valuable information, they often provide less
information than records of an equal number of years of gaged
peaks (Stedinger and Cohn, 1986). The calculations described
in the following paragraphs yield a pseudo record length (P,,)
associated with skew, which appropriately accounts for all
types of peak-flow data available from a streamgage. If no
interval, censored, historical data are present in the annual
peak-flow record of a streamgage, P, is equal to the gaged
record length.

The P, is defined as the number of years of gaged record
that would be required to yield the same mean square error of
the skew (MSE (G |) as would the combination of the histori-
cal and gaged records actually available at a streamgage; thus,
the P,, of the skew is a ratio of the MSE of the station skew
when only the gaged record is analyzed (MSE (GS )) to the
MSE of the station skew when the entire record, including

historical and censored data, is analyzed (MSE (GC )):

Py x MSE(G)
== 3)
MSE(G,)
where
P, is the pseudo length of the entire record at the
streamgage, in years;
P, is the number of years with gaged peaks in the
record;
MSE ( € S) is the estimated MSE of the skew when only
the gaged record is analyzed; and
MSE( ~C) is the estimated MSE of the skew when the

entire record, including historical and
censored data, is analyzed.

Because the P, is an estimate, the following conditions
must also be met to ensure a valid approximation. The P,
must be nonnegative. If 7, is greater than P, (the length of the
historical period), then P, should be set to equal . Also, if
Py, is less than P, then P, is set to P,. This ensures that the P,
will not be larger than the complete P, or less than the £

As stated in B17C, the station skew is sensitive to
extreme events; therefore, accurate estimates of skew
require longer periods of record, typically 50 years or
greater; however, 50 years of record are not available for
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Table 2. Basin characteristics considered for use as explanatory variables in the regional skew analysis.

[GIS, geographic information system; DEM, digital elevation model; NAD83, North American Datum of 1983; NHD, National Hydrography Dataset; NLCD,
National Land Cover Database; NOAA, National Oceanic and Atmospheric Administration; PRISM, Parameter Regression on Independent Slopes Model]

Basin characteristic Units Source

Drainage area of streamgage basin, square kilometers Derived from 30-meter NHDPlus data, http://www.horizon-

delineated by using GIS systems.com/nhdplus/.

Latitude of basin centroid decimal degrees NADS83 Determined from zonal statistics of grids derived from basin
polygons in Esri ArcGIS, version 10.3.1.

Longitude of basin centroid decimal degrees, NADS83 Determined from zonal statistics of grids derived from basin
polygons in Esri ArcGIS, version 10.3.1.

Mean basin elevation meters Determined from 10-meter DEM, National Elevation Dataset,
https://www.usgs.gov/core-science-systems/national-
geospatial-program/national-map.

Mean basin slope percent Derived from 100-m resolution National Elevation Dataset,
https://www.usgs.gov/core-science-systems/national-geospa-
tial-program/national-map, or obtained from USGS GAGES
II database (Falcone, 2011).

Basin compactness ratio (area/ unitless Calculated in Esri ArcGIS, version 10.3.1, by using drainage

perimeter"?x100); higher number
indicates more compact shape

Basin-averaged mean annual centimeters
precipitation for the 30-year period
1971 to 2000

Basin-averaged soil permeability inches per hour
Percentage of streamgage basin in percentage of streamgage basin
forested land use categories surface area

Percentage of streamgage basin in open percentage of streamgage basin
water surface area

Basin-averaged, 24-hour precipitation  inches
intensity (10-year recurrence
interval)

Basin-averaged, 24-hour precipitation  inches
intensity (100-year recurrence

area and perimeter of GIS-delineated basin polygons.

800-meter PRISM data, Oregon State University,
http://www.prism.oregonstate.edu/.

Wolock, 1997 (http://water.usgs.gov/GIS/metadata/usgswrd/
XML/muid.xml) and U.S. Department of Agriculture, 2008
(http://www.soils.usda.gov/survey/geography/statsgo/).

2006 NLCD, sum of classes 41, 42, and 43,
https://www.mrlc.gov/data?f%5B0%5D=year%3A2006.

2006 NLCD, class 11, https://www.mrlc.gov/
data?f%5B0%5D=year%3A2006.

NOAA Atlas 14 precipitation frequency estimates,
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html.

NOAA Atlas 14 precipitation frequency estimates,
https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html.

interval)
most streamgages, and therefore a minimum of 35 years has 474 sites remaining after the 77 redundant sites were removed,
been used in recent studies (Eash and others, 2013; Paretti 106 were removed for having a P, less than 36 years, leav-
and others, 2014; Southard and Veilleux, 2014; Wagner and ing 368 streamgages from which a regional skew model
others, 2016). Thus, after adequate geographic and hydrologic ~ was developed (table 1; see fig. 2 at https://doi.org/10.3133/
coverage was ensured, streamgages in the dataset having a sir20195105).

P, less than 36 years were removed from the study. Of the
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Removing the Bias of the At-Site Estimators

The station skew estimates were debiased by using the correction factor developed by
Tasker and Stedinger (1986) and employed by Reis and others (2005). The unbiased station
skew estimated by using the P, is

. 6
7, =[1+—:|Gi, “)
RL,i
where
Vi is the unbiased station skew estimate for site i,
Py, 1s the pseudo record length in years for site i as calculated in equations 1 and 2,

and
G, is the traditional biased station skew estimator based on the flood-frequency
analysis for site i.

The variance of the unbiased station skew estimate includes the correction factor devel-
oped by Tasker and Stedinger (1986):

6 } Var[G.] 6]

RL,i

Var[;?i]:l:1+

where
Var(G ] is calculated by using the formula (Griffis and Stedinger, 2009).

var(G) :{Pi+a(PRL )}{1{%%(1&))@2 +(%+C(PRL ))G“}, (6)

RL
where
17.75 50.06
a(PRL)=— p 2 p3
RL RL
3.92 31.10 34.86
b(PRL):P 03 _P 0.6 +P 09 » and
RL RL RL
7.31 4590 86.50
C(P ):— + - .
RL PRL0,59 PRLI,IS PRL1.77

For the 368 streamgages in the study area used in the skew analysis, the unbiased station
skew ranged from —1.37 to 4.13 in log units (table 1; see fig. 3 at https://doi.org/10.3133/
sir20195105).

Estimating the Mean Square Error of the Skew

There are several possible ways to estimate MSE (G) . The approach used by EMA (taken
from equation 55 in Cohn and others, 2001) generates a first-order estimate of the MSE (G) ,
which should perform well when interval data are available. Another option is to use the Griffis
and Stedinger (2009) formula in equations 1-7 (the variance is equated to the MSE) by employ-
ing either the gaged-record length or the length of the entire historical period (from the begin-
ning year to the ending year of the record); however, this method does not account for censored
data and can lead to an inaccurate and underestimated MSE (G) . This issue was addressed
by using the P, instead of the length of the historical period; the P, accounts for the effects
of the censored data and the number of recorded gaged peaks. Thus, the unbiased MSE (G)
was used in the regional skewness model because it is more stable and relatively independent
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of the station skew estimator (Griffis and Stedinger, 2009).

This method also was used in previous regional skew stud-
ies (Parrett and others, 2011; Eash and others, 2013; Paretti
and others, 2014; Southard and Veilleux, 2014; Wagner and
others, 2016).

Cross-Correlation Model

A critical step for the GLS analysis is the estimation of
the cross correlation of the station skew coefficient estimators.
Martins and Stedinger (2002) used Monte Carlo experiments
to derive a relation between the cross correlation of the skew
estimators for two streamgages (i and ) as a function of the
cross correlation of concurrent annual peak-flows (pij):

A(A A . A N
p(yi,yj)zSzgn(py)cﬁj|py| ’ M
where
,[),.j is the cross correlation of concurrent annual
peak-flow for two streamgages,
k is a constant between 2.8 and 3.3, and
¢f,  isafactor that accounts for the sample size
' difference between the concurrent record
lengths of the two streamgages and is
defined as follows:
o, =3, (P ) o) ®
where
CY,-,- is the pseudo concurrent record length and
Prpp Py are the pseudo record lengths corresponding

to streamgages i and j, respectively.

As shown in equation 8, the pseudo concurrent record
length, CY, is used to compute the cross correlation of sta-
tion skews The pseudo concurrent record length depends
upon the years of common historical records between the two
streamgages as well as the ratio of the pseudo record length to
the historical record length (/7) for each streamgage. Because
censored and historical data are used, calculation of the effec-
tive concurrent record length is more complex than simply
determining the years during which the two streamgages both
recorded peaks.

To compute CY, the years of historical record in common
between the two streamgages are first determined. For the
years in common, the following equation that includes the
beginning year (YB,) and ending year (YE,) is then used
to calculate the concurrent years of record between two
streamgages (i and j):

cy, =(YE, YB+1)(};';’J{%}. )

A cross-correlation model for the annual peak flows in
the study area was developed by using the base-10 logarithms
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of annual peak flows from 54 streamgages that generated
1,036 streamgage pairs with at least 85 years of concurrent
gaged peaks. As shown in figure 44, a logit model, termed the
Fisher Z Transformation (Z = log[(1+7)/(1-7)]), provides a
convenient transformation of the sample correlations ry from
the (—1, +1) range to the (—oo, +o0) range (Fisher, 1915 1921).
Models relating the cross correlations of the concurrent annual
peak flows at two streamgages (pij) to various basin character-
istics were considered. The adopted model, which uses only
one explanatory variable for estimating the cross correlations
of concurrent annual peak flows between two streamgages, is
based on the distance, in miles, between basin centroids (ij):

expl2Z.)-1
£; :M, (10)
! exp(ZZi/.)+l
where
DY _q
Z.=exp| 0.89-0.18| —~ (11)
Y 0.29

An OLS regression analysis based on 1,036 streamgage
pairs with at least 85 years of concurrent record indicated that
this cross-correlation model is as accurate as having 119 years
of concurrent annual peak flows from which to calculate
cross correlation. As is the norm in an OLS analysis, each
station pair in the model was given equal weight. By setting
the concurrent-years threshold to 85, the model allowed
the complete range of data in the study to be represented,
while also minimizing the influence of station pairs with less
accuracy and (or) less data. The fitted OLS regression relation
between Z and the distance between basin centroids from the
1,036 streamgage pairs (fig. 44) shows an exponential decline
in the cross correlation for streamgages within 100 miles of
each other. A similar decline is found in the cross correlation
and distance between basin centroids for the untransformed
streamgage pairs (fig. 4B). This model was used to estimate
cross correlation for concurrent annual peak flows between all
streamgage pairs used in the regional skew study.

Regression Analyses

The B-WLS/B—GLS method for computing a regional
skew begins with an OLS analysis to develop a regional skew
model that is used to generate an estimate of regional skew for
each streamgage (Veilleux, 2011; Veilleux and others, 2011;
Veilleux and others, 2012). The OLS-based regional skew
estimate is the basis for computing the variance of the skew
for each streamgage used in the WLS analysis. Next, B-WLS
is used to generate estimators of the regional skew model
parameters. Finally, B-GLS is used to estimate the precision
of the WLS parameter values and the model error variance and
its precision, and to compute various diagnostic statistics.
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Figure 4. Graphs showing cross
correlation of annual peak flows

in the study area. A, Relation
between Fisher Z transformed cross
correlation of logarithms of annual
peak flows and distances between
basin centroids based on 1,036
streamgage pairs with concurrent
record lengths greater than or equal
to 85 years from 54 streamgages in the
study area and B, Relation between
untransformed cross correlation of
logarithms of annual peak flows and
distances between basin centroids,
based on 1,036 streamgage pairs
with concurrent record lengths
greater than or equal to 85 years from
54 streamgages in the study area.
Abbreviations: r, cross correlation of
concurrent annual maximum flows;
D, distance between gage centroids,
in miles; and Z Fisher Z transformed
cross correlation of concurrent annual
maximum flows

Fisher Z transformed cross correlation of concurrent annual maximum flows

Cross correlation of concurrent annual maximum flows

with at least 85 years of concurrent records

with at least 85 years of concurrent records

A
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EXPLANATION
7= exp[1.01 + -0.25((D 022 -1)/0.22)]
e  Site pairs

025 * .

05 | | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1,000
Distance between gage centroids, in miles
B

1 T T T T T T T T T
0.9 EXPLANATION —
08 m— = (exp(2Z )-1)/(exp(2Z)+1) | _|

e  Site pairs

100 200 300 400 500 600 700 800 900 1

Distance between gage centroids, in miles

,000



Methods

Ordinary Least Squares Analysis

The first step in the B-WLS/B—GLS regional skew analysis is to prepare an initial
regional skew model by using OLS regression. The OLS regression analysis yields parameters
(such as f,,,) and a model that can be used to generate unbiased regional estimates of the
skew for all streamgages:

j"oLs = XﬁOLS > (12)

where
Yos are the estimated regional skew values,
X  isan (n % k) matrix of basin characteristics,
ﬁOLS is an (k x 1) vector of estimated regression parameters,
n is the number of streamgages, and
k  is the number of basin parameters, including a column of ones, to estimate the
regression constant.

The estimated regional skew values y,, are then used to calculate unbiased streamgage
regional skew variances by using equation 8 in Griffis and Stedinger (2009). These variances
are based on the OLS estimator of the regional skew coefficient instead of the station skew
estimator, making the weights in the subsequent steps relatively independent of the station skew
estimates.

Weighted Least Squares Analysis

A WLS analysis is used to develop estimators of the regression coefficients for the regional
skew model. The WLS analysis explicitly reflects variations in record length, but intentionally
neglects cross correlations, thereby avoiding problems experienced with GLS parameter
estimators (Veilleux, 2011; Veilleux and others, 2011).

The first step in the WLS analysis is to estimate the model error variance ( o‘é’ powis)

(Reis and others, 2005). Using a B-WLS approach to estimate the model error variance
precludes the pitfall of estimating the model error variance as zero, which can occur when

the method of moments WLS is used. Although the B-WLS analysis produces an estimate of
the distribution of the model error variance, only the mean model error variance estimator is
considered. Given the model error variance estimator, a B-WLS analysis is used to generate
the weight matrix (W) needed to compute estimates of the final regression parameters ( /;WLS ).
To compute W, a diagonal covariance matrix [ A, ¢ (o‘ﬁ Bowis )] is created (eq. 13). The diagonal
elements of the covariance matrix are the sum of the estimated model error variance and the
variance of the unbiased station skew (Var [771] ), which depends upon on the record length and
the estimate of the previously calculated OLS regional skew ( 3, ). The off-diagonal ele-
ments of A, (0'(2y M,,LS) are zero because cross correlations among sets of streamgage data are
not considered in the B-WLS analysis. Thus, the (n x n) covariance matrix, A, (o‘fy BWLS) is
given by

Ay (o-g,B—WLS ) = G;,B—WLSI + diag(Var[;?]), (13)

where
0'; sms 1 the model error variance,
I isan (n x n) identity matrix,
n is the number of streamgages in the study, and
diag (Var[ }7]) is the (n x n) matrix containing the variance of the unbiased station skew,
Var[;?,.] , on the diagonal and zeros on the off-diagonal.
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By using the covariance matrix, the WLS weights are calculated as

-1
W= [XTAWLS (O-rzf‘B—WLS) 1 X:| XTAWLS (O-zzf,B—WLS) 1 > (14)
where
W is the (k x n) matrix of weights,
X is the (n x k) matrix of explanatory basin parameters,
Ayrs (o-ﬁ B—WLS) is the (n x n) covariance matrix, and
k is the number of basin parameters, including a column of ones, to estimate the

regression constant.
These weights are used to compute the final estimates of the regression parameters (4 ) as

ﬂAWLS =Wy, (15)

where
Bois is the (k x 1) vector of estimated regression parameters.

Generalized Least Squares Analysis

After the regression model coefficients ( ﬁms ) and weights (W) have been determined by
using a B-WLS analysis, the degrees of precision of the fitted model and the regression coef-
ficients also are estimated by using a B-GLS analysis. Using the B-GLS regression framework
for regional skew, Reis and others (2005) developed the posterior probability-density function
for model error variance described as

0.5
X

f(Ug,B—GLS | 7>ﬁWLs ) o §(G§,B—GLS)X‘AGLS (Gg,B—GLS) 6
exp[—O.S(ﬁ - XﬂAWLS )T (AGLS (G;B—GLS ))71 (}; - XﬂAWLS ):l

where

7 represents the skew data, and

cf( O p s ) is the exponential prior for the model error variance defined as

A ) =2 ") 02 0> 00 a7
The value 10 was adopted for lambda (1) on the basis of a mean model error variance of
1/10. That prior assigns a 63-percent probability to the interval (0, 0.1), 86-percent probability
to the interval (0, 0.2), and 95-percent probability to the interval (0, 0.3).
The mean B-GLS model error variance ( 05 ,_,5 ) can then be used to compute the preci-
sion of the regression parameters ( ﬁms ) that were based on the B-WLS weights (W). The
B—GLS covariance matrix for the B-WLS estimator ( ,Bms ) is simply

> (ﬁWLs ) =WAgs (05 5 s )W (18)

where
W is the (k % n) matrix of weights determined by B-WLS analysis, and
Agrs (o‘ﬁ B—WLS) is an (n X n) GLS covariance matrix calculated as

Agis (o'g,schs) = G;,B—GLSI +2Z(7) (19)



I  isan (n % n) identity matrix, and

is a full (» x n) matrix containing the
sampling variances of the streamflow
record’s unbiased skew, Var[j?i] , and the
covariances of the skew 7.

The off-diagonal values of X(7) are determined by the
cross correlation of concurrent gaged annual peak flows and
the cf factor, which accounts for the size differences between
pairs of samples collected at different streamgages and their
concurrent record length (see eq. 8; Martins and Stedinger,
2002). In the calculation of the c¢f factor by using the ratio of
the number of concurrent peak flows at streamgage pairs to the
total number of annual peak flows at both streamgages, only
the gaged records and historical peaks are considered. Thus,
any additional information provided by perception thresholds
and censored peaks in the EMA analysis is neglected in the
calculation of the cross correlation of annual peak flows and
the c¢f factor. Precision metrics include (1) the standard error

of the regression parameters [ SE ( ﬁms )]; (2) the model error
variance (05 ;_;5); (3) pseudo coefficient of determination

(pseudo R; ); and (4) the average variance of prediction at a
streamgage not used in the regional model (4VP,,,).

new

Results and Discussion

Final Bayesian Weighted Least Squares/
Bayesian Generalized Least Squares
Regression Model

A constant B-WLS/B—GLS model having a skew of
0.086 and developed by using data from 368 streamgages
with at least 36 years of P, each, produced the only statisti-
cally significant model of skew in the study area (table 3). A
constant model does not explain any variability in skew; there-
fore, the pseudo R}, a diagnostic statistic that describes the
percentage of the variability in the skew from streamgage to
streamgage that is estimated by the model (Gruber and others,
2007; Parrett and others, 2011), is 0 percent. All available
basin characteristics were evaluated as possible explanatory
variables in the B-WLS/B—GLS regression analysis; however,
the addition of any of the available basin characteristics or

Results and Discussion 1

combinations thereof did not produce a pseudo R; greater
than 5 percent, indicating that they did not explain the varia-
tion in station skews in the study area. Thus, the addition of
basin characteristics as explanatory variables was not war-
ranted because the increase in complexity did not result in a
gain in precision.

The posterior mean of the constant model error variance
(o%) is 0.13. The average sampling error variance (4SEV) of
the constant model is 0.0031, which represents the average
error in the regional skew as calculated from the station skew
values measured at streamgages used in the analysis. The
average variance of prediction at a new streamgage (4VP,,,)
corresponds to the MSE used in B17B to describe the preci-
sion of the generalized skew map. The constant model has an
AVP,,, of 0.13, which corresponds to an effective record length
of 54 years. An AVP,,, of 0.13 is a marked improvement over
the B17B national skew map, whose reported MSE of 0.302
has a corresponding effective record length of only 17 years
(Interagency Advisory Committee on Water Data, 1982).
Measured by effective record length, the new regional model
includes more than three times the information of that of the
B17B map. Appendix 1 provides a graphical assessment of the
B—WLS/B—GLS model of regional skew.

Bayesian Weighted Least Squares/
Bayesian Generalized Least Squares
Regression Diagnostics

To determine whether a regression model is a good
representation of the data and which regression parameters, if
any, should be included in the model, diagnostic statistics have
been developed to evaluate how well a model fits a regional
hydrologic dataset (Griffis, 2006; Gruber and Stedinger, 2008).
In a regional skew study, potential explanatory variables are
statistically evaluated to ensure an accurate prediction of skew
while also keeping the model as simple as possible.

A pseudo analysis of variance (pseudo ANOVA) con-
tains regression diagnostics and goodness-of-fit statistics that
describe how much of the variation in the observations can
be attributed to the regional model, and how much of the
variation in the residuals can be attributed to modeling and
sampling error (table 4; see fig. 5 at https://doi.org/10.3133/
sir20195105). Determining these quantities is difficult; the

Table 3. Regional skew model and model fit for parts of the Great Lakes and Ohio River Basins.

[Standard deviations are in parentheses. o7, model error variance; ASEV, average sampling error variance; AVP,

average variance of prediction

new >

for a new site; Pseudo R3, fraction of the variability in the station skews explained by each model (Gruber and others, 2007)]

Model Regression o ASEV AVP,, Pseudo R’
constant
(percent)
Constant 0.086 0.13 0.0031 0.13 0

(0.055) (0.015)
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modeling errors cannot be resolved because the values of the
sampling errors (7,) for each streamgage (i) are not known.
However, the total sampling error sum of squares (SS) can be
described by its mean value (X Var(7,]), as there are n equa-
tions, and the total variation caused by the model error ( &)
for a model with k parameters has a mean equal to no (k).
Thus, the residual variation attributed to the sampling error is
X! Var[7,], and the residual variation attributed to the model
error is no (k).

For a model with no explanatory parameters other than
the mean (the constant model), the estimated model error
variance (o5 (0) ) describes all of the variation in y, = £+ &,
where 4 is the mean of the estimated station skews. Thus,
the total variation resulting from model error ( o, ) and
sampling error (1), =7, —¥,) in the expected sum of squares
should equal &7 (0)+ ZLVW(;,-) . For a model type other
than constant, the expected sum of squares attributed with &
parameters equals n[oﬁ_ (0)-03 (k)] because the sum of the
model error variance no, (k) and the variance explained by
the model must equal no7 (0). This division of the variation

in the observations is referred to as a pseudo ANOVA because
the contributions of the three sources of error are estimated or
constructed rather than determined from the computed residual

Table 4.
Basins.

errors and the observed model predictions, while not account-
ing for the effect of correlation on the sampling errors.

The error variance ratio (EVR) is a diagnostic statistic
used to determine whether a simple OLS regression analysis
would be sufficient, or a more sophisticated WLS or GLS
analysis would be more appropriate. The EVR is the ratio
of the average sampling error variance to the model error
variance. Generally, an EVR greater than 0.20 indicates that
the sampling error variance is not negligible when compared
to the model error variance, suggesting that a WLS or GLS
regression analysis is appropriate. The EVR is calculated as

SS(samplingerror) X! Var(7,)
EVR = =
SS(modelerror) no; (k)

(20)

The constant model has a sampling error variance of
0.0031 (table 3) and an EVR of 1 (table 4), indicating that the
sampling error variance is not negligible when compared to
the model error variance, and that a WLS or GLS regression
analysis was appropriate. Thus, an OLS model that neglects
sampling error in the station skew would not provide a sta-
tistically reliable analysis of the data. Given the diagnostic
statistics and the range of record lengths among streamgages,

Pseudo analysis of variance (ANOVA) table for the constant model of regional skew in parts of the Great Lakes and Ohio River

[k, number of estimated regression parameters not including the constant; #, number of streamgages used in regression; o7 (0), model error variance of a con-
stant model; of (k), model error variance of a model with £ regression parameters and a constant; Var(;?i ), variance of the estimated sample skew at site i; EVR,
error variance ratio; MBV*, misrepresentation of the beta variance; GLS, generalized least squares; WLS, weighted least squares; b(;m, regression constant from
WLS analysis; A, covariance matrix; pseudo R>, fraction of variability in the true skews explained by each model (Gruber and others, 2007); %, percent]

Source Degrees of freedom Equations Sum of squares

Model k 0 n| o5(0)- a3 (k)] 0
Model error n—k—1 367 n [O’f, (k):| 47
Sampling error n 368 2, Var (}7, ) 46
Total 21 735 n| o (k) |+ X, Var(7,) 93
EVR = M 1.0

no; (k)

WLS .

MBV' = var |:b° | GLS analyszs} _ w' Aw where w, = ! , v=(nx1)vector of ones 47

Var [bgV " wLS analysis:| w'y A,
Pseudo R, =1- 7 (k) 0%

72 (0

~




a WLS or GLS analysis was warranted to evaluate the final
precision of the model.

The Misrepresentation of the Beta Variance (MBV'*) diag-
nostic statistic is used to determine whether a WLS regression
is sufficient, or if a GLS regression is more appropriate to
determine the precision of the estimated regression parameters
(Griffis, 2006; Veilleux, 2011). The MBV* describes the error
produced by a WLS regression analysis in its evaluation of
the precision of b)™* , which is the estimator of the constant
A", because the covariance among the estimated station
skews (7, ) generally has its greatest effect on the precision of
the constant term (Stedinger and Tasker, 1985). If the MBV* is
substantially greater than 1, then a GLS error analysis should
be employed; conversely, if the MBV* is not substantially
greater than 1, a WLS analysis is sufficient. The MBV* is
calculated as

Var[bgy | GLS analysis} w' Aw

MBV* = =
Var[bgy S\ WLS analysis} 2w,

., (2D

1
where w, = —.

7

The MBV* is equal to 4.7 for the constant model
(table 4), indicating that the cross correlation among the
skew estimators has an effect on the precision with which the
regional skew can be estimated. If a WLS precision analysis
were used for the estimated constant in the model, the vari-
ance would be underestimated by a factor of 4.7. Thus, a WLS
analysis alone would misrepresent the variance of the constant
in the skew model. Moreover, a WLS model would underesti-
mate the variance of prediction, given that the sampling error
in the constant term in both models was sufficiently large to
make an appreciable contribution to the average variance of
prediction.

Leverage and Influence

Diagnostic statistics for leverage and influence can be
used to identify atypical observations and to address lack-of-fit
when skew coefficients are estimated. The leverage statis-
tics identify those streamgages in the analysis for which the
observed streamflow values have a large impact on the fitted
(or predicted) values (Hoaglin and Welsch, 1978). Generally,
leverage statistics can determine whether an observation or
explanatory variable is unusual and thus likely to have a large
effect on the estimated regression coefficients and predic-
tions. Unlike leverage, which highlights points that have the
ability or potential to affect the fit of the regression, influence
attempts to describe those points that have an unusual effect
on the regression analysis (Belsley and others, 1980; Cook and
Weisberg, 1982; Tasker and Stedinger, 1989). An influential
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observation is one with an unusually large residual that has a
disproportionate effect on the fitted regression relations.

Influential observations often have high leverage. If p
is the number of estimated regression coefficients (p=1 for
a constant model), and 7 is the sample size (or number of
streamgages in the study), then leverage values have a mean
of p/n, and values greater than 2p/n are generally considered
large. Influence values greater than 4/n are typically consid-
ered large (Veilleux, 2011; Veilleux and others, 2011).

For the constant model of skew in the study area, influ-
ence greater than 0.011 (p/n = 4/368) and leverage greater than
0.005 [(2x1)/368] were considered high. No sites in the study
area exhibited high leverage; therefore, the differences in the
leverage values for the constant model reflect the variation
in record lengths among sites. Eighteen streamgages in the
study area exhibited high influence, and thus had an unusual
effect on the fitted regression (table 5). These streamgages also
had 18 of the 31 largest residuals (in magnitude) among the
368 streamgages used in the B-WLS/B—GLS analysis.

Summary

Bulletin 17C (B17C) guidelines recommend fitting the
log-Pearson Type III (LP—III) distribution to a series of annual
peak flows at a station by using the method of moments. The
LP-III distribution is described by three moments: the mean,
the standard deviation, and the skewness coefficient. The third
moment, the skewness coefficient (hereinafter referred to as
“skew”), is a measure of the asymmetry of the distribution or,
in other words, the thickness of the tails of the distribution.

In flood-frequency analysis, the skew is important because
the magnitude of annual exceedance probability (AEP) flows
for a streamgage estimated by using the LP—III distribution
are affected by the skew of the annual peak flows (hereinafter
referred to as “station skew”); interest is focused on the right-
hand tail of the distribution, which represents annual peak
flows corresponding to small AEPs and the larger flood flows.
For streamgages having modest record lengths, the skew is
sensitive to extreme events, such as large floods, as they cause
a sample to be highly asymmetrical, or skewed. Thus, B17C
recommends using a weighted-average skew computed from
the station skew for a given streamgage and a regional skew.
These choices reduce the sensitivity of the station skew to
extreme events, particularly for streamgages with short record
lengths. An estimate of regional skew is generated for a study
area encompassing most of the Great Lakes Basin (hydrologic
unit 04) and part of the Ohio River Basin (hydrologic unit 05),
including the States of Indiana, Michigan, and Ohio and parts
of the States of Illinois, Minnesota, New York, Pennsylvania,
and Wisconsin. The study area spans approximately

1,600 kilometers from east to west, from northeastern Min-
nesota to the New York-Vermont border, and approximately
1,200 kilometers north to south, from northeastern Minnesota



99¢ €1- L (40 99¢ €1- 253 (34 TT00°0 110°0 NI 0S9¥LTE0 991
L1 68°0 801 91°0 L1 01 43! 1L 62000 110°0 AN 0009520 C19
S1 160 L 81°0 S1 01 wl 69 62000 C10°0 HO 0050020 0SL
L (4! 01 620 L €l 6v¢C 59 §200°0 C10°0 vd 0086¥0€0 €18
€1 S6'0 LL 81°0 €1 01 1€l 1L 62000 €100 HO 00002T€0 789
9 €1 9 S€0 9 ¥l 69¢ 8t ¥200°0 ¥10°0 HO 0vS6S1€0 LL9
L9€ vi- 4! 670 L9€ €1- €9C ot $200°0 S10°0 A 0000ST€0 ¥8¢
6C L0 143 LO0 6¢ 6L°0 € 0S1 8€00°0 S100 IA 00088¢H0 998
19¢ €6°0— Lol o 19¢ ¥8°0— 49 68 €000 9100 M 0006L0%¥0 338
¥9¢ €l- ¥9 61°0 ¥9¢ Tl- 981 09 LT00°0 L10°0 NI 00LSEEC0 €0C
LSE ¥8°0— (443 800 LSE SL0- L 6Cl L€000 0200 IN 0009510 (4374
4! 01 151 ¥1°0 4! 'l 6¢ 001 ¥£€00°0 120°0 AM 00S0L0€0 ¥96
S9¢ €1- 6¢ o S9¢ Tl- ¥S1 L9 82000 Te00 IN 86v¥11+0 9LE
09¢ 16°0— 90¢ 600 09¢ €8°0— 8 8¢l L€000 €200 I 00SSP€€0 €C
89¢ SI- L1 LT0 89¢ 1= 8LI1 19 LT00°0 ¥20°0 AM 000¥0T€0 YL6
S Sl ¥ LEO S 91 10T 8¢ 92000 §20°0 NI 00089€€0 ¢
14 91 € 8¢0 14 L1 YL €8 1€00°0 9%0°0 HO 0006€1€0 ¥99
[4 (4 S 9¢°0 [4 €C 4! SIl $€00°0 €cro HO 00S61C€0 189
yuey anjep yuey anjep yuey anjep Juey  anjep
pajeao| Jaquinu
|enpisay MR_N_V_M“H“—%_ S_m-uBH_MuE:: ._M_Am_m“_ﬂﬂwmn_ afesana] (@ spj009 s1 afebweans abefweans ‘_NM__””__:
’ ’ ’ Yarym ut ajeis sosn

Methods for Estimating Regional Skewness of Annual Peak Flows in Parts of the Great Lakes and Ohio River Basins

14

[eruISIIA 1SOM ‘A SUISUOISIA ‘AN SJUOULIOA ‘LA BIUBAJASUUD] V{ ‘OO ‘HO SHOA MON ‘AN SUBSIYIIA TN SAomuay ‘A
‘eueIpu] ‘NJ ‘SIOUI[[] “I] {10119 d1enbs ueaw ‘SN YISUS] PI0IAI QAP “TYH "2OUINPUI JO INJBA ISI[BLUS 0) JSATIB[ ) WOIJ PA)IOS SI 3[qe) AY [, *A1032180 [yoed ul anjea 2An1sod 1sad1e| ay) 03 spuodsariod |
JO Yuel B 9JoyM YUBI 9ANR[AI S} SUIAJIUSIS Q9¢ 0) | WO} dN[eA B PIUTISSE Sem Apnjs moys [RUOISAI dU) UI SIS 9¢ Y3 JO yory "(110°0=89¢/¢ 10) U/ uey) 10JeaI3 san[eA ( S,300)) Se pauyap sI doudnyur ySiy]

'suiseg JaAlYy o1y(Q pue sayeT 1ealn ayl jo sued oy Mmays [euoiBal o [apoL JueIsuod ayl uo aauanpul ybiy yum sabeg g ajqel



near Lake Superior to the Ohio River on the southern bound-
ary of Illinois.

Candidate streamgages in the study area were selected by
the USGS in the respective States. Only streamgage records
unaffected by extensive regulation, diversion, urbanization, or
channelization, and having 25 or more years of gaged record
were considered.

As recommended in B17C, the flood frequency for
each candidate streamgage was determined by employing
the Expected Moments Algorithm (EMA), which extends
the method of moments so that it can accommodate interval,
censored, and historical/paleo data, as well as use the Multiple
Grubbs-Beck test (MGBT) to identify potentially influential
low floods (PILFs) in the data series.

A total of 551 candidate streamgages were initially
considered for use in the skew analysis; after screening
for redundancy and sufficient pseudo record length (7,),

368 streamgages were selected. The Bayesian weighted least
squares/Bayesian generalized least squares (B—WLS/B—GLS)
regression method was used to develop a regional skew model
for the study area that would incorporate possible explana-
tory variables (basin characteristics) to explain the variation
in skew in the study area. Basin characteristics for candidate
streamgages were obtained from the GAGES II database or
generated by using the ArcHydro package in Esri ArcGIS ver-
sion 10.3.1. Twelve basin characteristics were considered as
possible explanatory variables in the B-WLS/B—GLS regres-
sion analysis; however, none produced a pseudo coefficient of
determination greater than 5 percent, indicating that they did
not explain the variation in station skews in the study area.
Therefore, a constant skew model was selected. The constant
model has a regional skew coefficient of 0.086 and an average
variance of prediction (4VP,,,) of 0.13, which corresponds to
the mean square error (MSE). An AVP,,,, of 0.13 corresponds
to an effective record length of 54 years, which is a marked
improvement over the Bulletin 17B (B17B) national skew
map, whose reported MSE of 0.302 has a corresponding
effective record length of only 17 years. Measured by effec-
tive record length, the new regional model provides more
than three times the amount of information provided by the
B17B map.
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Appendix 1. Assessment of a regional
and Ohio River Basins by using Monte C

This appendix provides a graphical assessment of the
Bayesian weighted least squares/Bayesian generalized least
squares (B—WLS/B—GLS) model of regional skew that is
described in this report for parts of the Great Lakes and Ohio
River Basins. Observed, unbiased station skews are depicted
in figure 1.1 along with contour lines and shading to provide
a sense of geographic patterns in the skews. The contour-

ing algorithm used to generate figure 1.1 shows a substantial
amount of structure in the pattern of the unbiased station
skews. The larger skews (positive skews) in eastern Ohio and

western Pennsylvania might be a cause for concern.

Monte Carlo simulations were used to determine whether

the apparent observed structure in the station skews is evi-
dence of significant model misspecification or an artifact of
random-sampling variability possibly confounded by the cov
riance structure of the errors. The Monte Carlo simulations

were generated from a multivariate normal distribution with a
mean equal to the constant from the regional skew model and
a covariance matrix identical to the covariance matrix used in

the regional skew model. The constant model of skew in the
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skew model for parts of the Great Lakes
arlo simulations
(1.1)

Vamisipors = 0-086+¢
where & represents the total error and
&~ N(O, Var(g)) ,

where N signifies a normal distribution of the total error in
the constant regional skew model determined in the B—-GLS

(1.2)

analysis.
As described in equation 1.2, the Var(e) can be described

as
[SET] = Ags (Ug,sfcm ) = G;,B—GLSI + Z(?;) , (1.3)

where
Ay (G; B_GLS) is the (n x n) GLS covariance matrix,

is the B-GLS variance of the underlying

a-

O-i',BfGLS
model error d,
I isan (n x n) identity matrix, and
) (}7) is the full (n x n) covariance matrix of the

sampling errors for each streamgage ().
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The covariance matrix of the sampling errors is made
up of the sampling variances of the unbiased station skew
(Var [;7,] ) and the covariances of the skewness estimators
(7:). The off-diagonal values of X' ( ;9) are determined by the
cross correlation of concurrent gaged annual peak flows and
the cf factor (see eqs. 7 and 8 in report). The model error vari-
ance o, for the constant model is 0.13 (table 3) and was used
in the Monte Carlo simulations. The covariance matrix 2’ (;7)
used in the Monte Carlo simulations is the same as that used
in the B-WLS/B—GLS regression analysis (see eqs. 13 and 18
in report).
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The results of the Monte Carlo simulations are depicted
graphically in 20 realizations of the expected patterns in the
station skew if the station skews are normally distributed with
a mean equal to 0.086 and the covariance matrix given by
equation 1.3 (fig. 1.2). The Monte Carlo simulations reveal no
consistent structure in the pattern of the station skews con-
sistent with the observed pattern of the station skews in the
constant model (fig. 1.1). Therefore, it seems reasonably safe
to conclude that, based on the geographic patterns observed in
the station skews, there is little evidence of a lack of fit.
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