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Use of Boosted Regression Trees to Quantify Cumulative 
Instream Flow Resulting from Curtailment of Irrigation in 
the Sprague River Basin, Oregon

By Tamara M. Wood

Abstract
A boosted regression trees (BRT) approach was used to 

estimate the amount by which streamflow is increased when 
irrigation is regulated (curtailed) upstream of a streamgage 
on the Sprague River in southern-central Oregon. The BRT 
approach differs from most other approaches that require 
baseline conditions for comparison, where those baseline 
conditions are determined from past observations by searching 
for hydrologically similar years when irrigation was not 
regulated. Such baseline conditions are always imperfect 
estimates of the true baseline conditions. The BRT approach 
instead estimates unique baseline conditions for any year 
in which irrigation is regulated by calculating the baseline 
condition based on measurements of precipitation and weather 
observations that determine evapotranspiration, and other 
measurements that are proxies for the effects of climate and 
regional groundwater pumping on water-table elevation, using 
a model that has been trained in years of no regulation. The 
amount by which streamflow is increased by regulation is then 
calculated by subtracting the estimated baseline conditions 
from the measured streamflow. The approach is challenged by 
the fact that the streamflow increase may be a small fraction 
of the total streamflow; nonetheless, during 2 years in which 
regulation was started early and was implemented consistently 
through the season, the increased flow made up about one 
third of the flow past the streamgage during the regulation 
period. An advantage of this approach is that with rigorous 
model testing with holdout data, the threshold for detecting 
streamflow increase and intervals around the estimates of 
increase at a desired level of confidence can be quantified. The 
model relies on datasets that are readily available and updated 
continuously and therefore can be used operationally to inform 
resource management.

Introduction
Water managers in the upper Klamath Basin of southern-

central Oregon (fig. 1) have long struggled with the challenges 
of managing water for competing demands in a semi-arid 
basin-and-range landscape. Water in the Klamath basin above 
Upper Klamath Lake is managed according to the doctrine 
of prior appropriations (Oregon Water Resources Department, 
2018), which applies a priority date and amount to each water 
right. When insufficient water is available to satisfy all water 
rights, water users with senior priority dates make a “call” on 
users with junior water rights so that the junior users are shut off 
until the rights of the senior users making the call are satisfied. 
This includes instream rights (rights that keep water in the 
stream channel for the benefit of wildlife) which, in the upper 
Klamath Basin, are senior to consumptive-use rights (rights 
that remove water from the stream channel for off-channel use). 
For this reason, enforcement of senior water rights results in 
curtailment of diversions in the tributaries flowing into Upper 
Klamath Lake, including the Williamson and Sprague Rivers, 
and in more water being retained in these streams.

The final ruling of the Klamath Basin water adjudication 
in March, 2013 (State of Oregon, 2018), allowed regulation 
(curtailment of diversions) based on water rights throughout 
the basin. That was not the case prior to 2013, and regulation 
activities were small-scale and related mostly to complaints 
between neighbors during dry conditions. Water is critical to 
the region’s agriculture and is the basis for healthy ecosystems 
in streams flowing into the lake. In many years, water has 
been inadequate to meet both agricultural and environmental 
demands. Management of this resource requires quantifying 
water flows and the effect of management decisions on flows 
with the greatest possible accuracy. For this reason, in years 
in which water diversions of junior water rights are curtailed, 
it is of great interest to the water managers, water users, and 
stakeholders in the upper Klamath Basin to quantify the 
increased volume of water flowing into Upper Klamath Lake 
as a result of the regulation of water diversions on streams 
flowing into upper Klamath Lake.
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The streamflow resulting from regulation of water 
diversions (referred to as “regulation instream flow” [RIF] 
hereinafter) is difficult to quantify. Generally, water-right 
diversions are not metered at the point of diversion, and 
metering all diversions would still only provide an upper 
bound on the volume of water ultimately reaching the lake as 
a result of the regulation of diversions because not all diverted 
water is lost to the stream system through evapotranspiration 
(consumptive use). Some water will return to the stream as 
surface or groundwater flow. The inventory of issued water 
rights is also not an accurate way of estimating the RIF, 
because the diversion rate listed in a water right is an upper 
limit on the amount of water which may be diverted; the true 
amount varies with landowner water-management decisions 
and can vary with environmental conditions and crop demands, 
according to in-season weather, climate cycles, and antecedent 
conditions controlled by current and prior years’ precipitation, 
temperature, and snowpack. Confounding the issue is the fact 
that the “signal” of the RIF may be small relative to streamflow 
observed at a given downstream streamgage site, because in 
this basin total upstream irrigated acres are typically a fraction 
of the total acres above a given streamgage.

An important aspect of the problem is the fact that the 
RIF is calculated by comparison to an unknown baseline 
condition—the streamflow that would have occurred if the 
environmental conditions were the same but irrigation was not 
curtailed. There are other approaches to calculating the RIF, 
but each must solve the problem of this unknown baseline 
condition. For example, Hess and Stonewall (2014) estimated 
the RIF at a streamgage relative to a baseline condition 
that was obtained by searching the historical record for 
hydrologically similar years, and then merging those similar 
years into a single composite index year. A fundamentally 
different approach is to calculate the RIF from an energy 
balance by calculating the difference in evapotranspiration 
(ET) over irrigated areas between a regulated year and a 
baseline year (Senay and others, 2016). Both approaches have 
limitations in that no year in the historical record of either 
streamflow or Landsat imagery will have exactly the same 
hydroclimate and antecedent conditions as the target year. The 
index year method seeks to mitigate this problem by creating 
a composite baseline based on several years and additionally 
can be modified to use only the baseflow portion of the 
hydrograph in order to remove the effects of precipitation 
events that complicate the identification of appropriate 
baseline hydrographs (Hess and Stonewall, 2014). The remote 
sensing method can be modified to account for differences in 
precipitation between the target and baseline years (Reitz and 
others, 2017).

In this study, a fundamentally different approach is 
taken to estimate RIF. We estimate the baseline condition 
directly from measured hydroclimatic and hydrologic data, 
and we calculate the effects of irrigation regulation based on 
differences between observed streamflow at a streamgaged 
site and our estimated baseline. Furthermore, the baseline 
is estimated using machine learning; that is, by learning the 
baseline response from the statistical relationship between 
observable environmental conditions and historical flow 
observations rather than calculating the baseline response 
based on an understanding of underlying physical processes. 
The baseline condition that we estimate is the streamflow 
at a streamgage located on the Sprague River at Chiloquin, 
Oregon. The RIF is then calculated as the difference of 
streamgage measurements from the estimated baseline 
streamflow. This method resembles more closely the index 
year method than the remote sensing method in that it is not 
spatially explicit, instead estimating RIF over the watershed 
delineated upstream of a streamgage. A potential advantage of 
this method over the index year method is that it does not rely 
on finding a hydroclimatically similar year or set of years in 
the historical record to provide a baseline; rather, a statistical 
model is used to estimate a baseline that is unique to each 
target year.

The BRT model is created by training and testing on 
a long period of measured streamflow prior to 2013, the 
year that irrigation curtailment was first imposed on the 
basin upstream of Upper Klamath Lake. The premise of this 
approach is that surface water diversions for irrigation in 
response to a given set of measured hydroclimatic conditions, 
even if the response is complicated and nonlinear, can be 
“learned” by the model if it is trained on a long period of 
record covering a wide range in conditions prior to 2013. The 
assumption also is made that the response of these diversions 
to hydroclimatology was consistent (statistically stationary) 
through the training period.

Beginning in 2013, the baseline streamflow, unmodified by 
regulation, is simulated with the trained and tested model, and 
the RIF is calculated as the difference between the simulated 
baseline and the measured streamflow. An additional required 
assumption is that the difference is largely attributable to 
regulation activities and not to other, unmeasured causes that 
could include, for example, timber removal activities, juniper 
expansion, changes in the beaver population, and road building.

The problem of estimating the unobserved baseline has 
some similarity to the problem of forecasting streamflows, 
particularly at short lead times, to which machine learning 
has been applied successfully (Rasouli and others, 2012; 
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Erdal and Karakurt, 2013; Humphrey and others, 2016; Lima 
and others, 2016; Yaseen and others, 2016), but there is an 
important distinction between this problem and short-lead 
forecasting. Streamflow forecasts often include the most 
recent streamflow observations as predictor variables; in 
this case, that is not possible because the model is used to 
estimate a baseline streamflow that is not observed. This also 
means that the model cannot be updated regularly with new 
information, which has been shown to improve forecasts to the 
extent that new observations contain novel event information 
not included in the training data (Lima and others, 2016). For 
these reasons, a more apt comparison might be to statistical 
downscaling that relates large-scale climate information 
obtained from global-scale general circulation models (GCMs) 
directly to localized streamflow without the intermediate 
step of running a deterministic hydrologic model. Statistical 
downscaling can be used to examine historical trends in 
streamflow over long time periods based on global re-analysis 
data (Cannon and Whitfield, 2002), to predict climate 
change impacts using GCM simulations of future climate at 
monthly (Ghosh and Mujumdar, 2008; Sachindra and others, 
2013; Umut and Gul, 2015; Nasseri and others, 2017) or 
daily (Tisseuil and others, 2010) time scales, or to forecast 
water supply (Erdal and Karakurt, 2013). The conclusion 
that nonlinear statistical methods perform better than linear 
methods for this problem is the norm, when the two methods 
are directly compared (Cannon and Whitfield, 2002; Tisseuil 
and others, 2010; Rasouli and others, 2012; Joshi and others, 
2013; Sachindra and others, 2013). The modeling approach 
described hereinafter differs from a downscaling problem in 
that it uses high-resolution, gridded surface meteorological 
data (Abatzoglou, 2013) instead of re-analysis data, and the 
gridded data is augmented with local observations to provide 
the model site-specific information regarding climate cycles 
and current year weather and hydrology.

It is not the purpose of this study to compare the 
performance of a selection of machine learning methods. 
In this study, the boosted regression trees (BRT) technique 
is used. A direct comparison of BRT to artificial neural 
networks and Bayesian networks for the prediction of nitrate 
in groundwater of the Central Valley in California (Nolan 
and others, 2015) and the meta-modeling of surface water 
depletion expressed as the source of water-to-wells in the 
Lake Michigan Basin (Fienen and others, 2016) showed that 

BRT performed comparably to, or slightly better than, the 
other two methods for these hydrologic problems at a regional 
scale. Snelder and others (2009) used BRT to predict flow 
regimes in ungaged catchments in France based on watershed 
characteristics and found BRT to have better performance than 
linear discriminant analysis or classification and regression 
trees. For the problem of statistical downscaling, which is 
closely related to our problem of estimating RIF, aggregated 
boosted regression trees (ABT, a variation on BRT in which 
multiple BRT models built on subsets of the data are averaged 
together) slightly outperformed artificial neural networks 
and Bayesian networks, though the authors note that all three 
models performed comparably (Tisseuil and others, 2010). 
BRT has been used successfully to relate hydroclimate and 
basin topography to multi-decadal streamflow trends at the 
large spatial scales of the continental and sub-continental 
United States (Rice and others, 2016) and to forecast 
streamflow at monthly time scales (Erdal and Karakurt, 2013). 
Based on these previous studies, we determined that BRT is 
an appropriate choice of machine learning algorithm to use for 
estimating the unknown baseline streamflow.

From the water managers’ perspective, a model for 
calculating RIF is most useful if it is “operational,” meaning 
that it can make calculations at time scales of 2 weeks or less 
to inform decisions. This requires temporal resolution of a few 
days or less and also requires that model calculations be based 
on environmental measurements that are updated frequently. 
For this reason, the model was developed based on daily 
measurements and uses datasets that are available with a delay 
of a few days or less. Second, because the RIF accumulates 
over sub-seasonal time scales based on operational decisions 
that occur intermittently at intervals from days to weeks, 
the temporal resolution required is greater than that required 
for a medium-to-long range forecast with the purpose of 
providing water availability information in advance of an 
irrigation season (Risley and others, 2005). Third, because 
there will never be observations against which to compare and 
evaluate the model estimation of the baseline in the years of 
curtailment, it becomes particularly crucial to understand the 
expected accuracy of the estimation based on the performance 
of the model in estimating observations made in years prior 
to the implementation of curtailment. For this reason, an 
important component of this study is the use of an ensemble 
of tests on holdout data1 to quantify the uncertainty in the 
cumulative RIF through an irrigation season.

1 As used herein, holdout data are a 1-year subset of the full 33-year dataset 
that provides a final estimate of the BRT model’s performance after it has been 
trained and tested with the rest of the data. Holdout data are not used in the 
training of the BRT model.
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Use Of Boosted Regression Trees To 
Model Streamflow

Surface-Water Budget

A representation of the surface water budget for the 
drainage basin above the Chiloquin streamgage is:

 
dut roSW PRECIP ET GW GW= − − +      	         (1)

where,  
 
SWout is the streamflow measured at the streamgage,  
 
PRECIP and ET are the precipitation and evapotranspiration,

 respectively, integrated over the entire basin,  
 
GWr is water at the surface infiltrating to the water table, and  
 
GWd is the streamflow gained from groundwater discharge. 
 
All of the terms on the right-hand side of the equation are vari-
able over the landscape and through time.

ET incorporates evapotranspiration from all landscape 
types in the basin—forests, grasslands, wetlands, and irrigated 
and non-irrigated agriculture. Process-based calculation of 
evapotranspiration requires spatially dense data describing 
land cover and soil characteristics—soil moisture, temperature 
profile—as well as the atmospheric weather data that drives 
the evapotranspiration, including solar radiation, wind, air 
temperature, and humidity. Weather observations include 
current observations but also some integration of observations 
over previous weeks to months that determine antecedent 
conditions, primarily soil moisture. Basin-scale variability in 
the atmospheric drivers must also be incorporated for accurate 
calculations of PRECIP and ET, particularly in a basin like the 
Sprague River basin that varies in elevation.

The two remaining terms, groundwater recharge and 
discharge, are not continuous over the basin; recharge is 
largely limited to higher elevations, and discharge occurs 
at discrete locations. Over annual time scales groundwater 
recharge and discharge can probably be considered 
approximately in balance with each other (Gannett, 2007), but 
over longer time scales the small imbalances in these terms 
lead to variability in water-table elevation and consequent 
variability in baseflow to the stream. This interannual 
variability in baseflow is correlated to climate cycles or long-
term changes in storage owing to groundwater pumping and 
is highly relevant to the current problem because baseflow 
dominates the streamflow during the summer and early 
autumn months—exactly the season when accurate estimates 
of RIF are desired.

Machine learning was tested in this study because, if 
appropriate predictor variables representing forcing functions 
can be selected, the algorithms of the model can be relied on 
to find the complex nonlinear relationships that define the 
response (SWout in the mass balance) to those forcing functions 

without the intermediate step of explicitly calculating 
PRECIP, ET, GWr, and GWd. An inherent assumption is that 
the human behavioral response to hydroclimatic forcing (in 
terms of crop type and acreage and corresponding unregulated 
irrigation practices) is consistent through the training period 
and can be learned by the model.

Boosted Regression Trees

The theory and use of boosted regression trees are 
provided eloquently in classic texts and papers on the subject 
(Friedman, 2001; Hastie, 2001; Friedman, 2002; De’ath, 
2007), and is not repeated here. It is useful, however, to briefly 
contrast the basic mathematical form of the BRT model of 
streamflow with the mass balance above:

SW bout
m

M

m m�

�
�
1

� �( ; )p
 		

	        (2)

In BRT formulation, the streamflow at the streamgage 
is represented as a summation over M basis functions b 
(the regression trees), each of which is a function of the 
vector of predictor variables p. The set of potential predictor 
variables comprises short-term weather observations, 
soil characteristics, irrigated acres, and long-term climate 
observations. Variables derived from weather observations 
that represent a 1–6-month memory of weather and hydrologic 
conditions in the system are also included in p.

The model is built sequentially by fitting a new tree 
at each iteration m to the residuals remaining after the last 
iteration, m - 1. The parameters β and γ at each iteration are 
calculated to minimize a loss function. The improvement 
made by the new tree at each iteration is focused on a small 
region of the predictor space, so that the overall improvement 
in the representation of the response variable at each iteration 
is small, but the process of adding together trees created over 
many iterations (“boosting”) creates a good solution. The total 
number of trees M is generally hundreds to thousands; the 
process of optimizing M is part of the model-building process. 
Minimization of a generalized loss function can be made more 
efficient by applying the method of steepest descent (“gradient 
boosting”; Friedman, 2001), and performance (in terms of 
error, computation time, and reduction of over-fitting) can be 
improved by selecting only a fraction of the data to fit a tree at 
any given iteration (“stochastic gradient boosting”; Friedman, 
2002). Thus, the model uses “stochastic, gradient-boosted 
regression trees,” which is abbreviated to “boosted regression 
trees” (BRT).

BRT model calculations were done using version 2.1.3 
of the gbm package (Greenwell and others, 2018) in the 
R computing environment (R Foundation for Statistical 
Computing, 2018). Parameter selection and holdout testing 
was done using task-specific wrapper scripts for the gbm 
package written by the author, also in the R computing 
environment.
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Data Used To Develop Sprague River 
Discharge Boosted Regression  
Trees Model

Response Variable

The model response variable is derived from daily 
mean flow in the Sprague River near Chiloquin, the site of 
U.S. Geological Survey (USGS) streamgage 11501000 (U.S. 
Geological Survey, 2017). The Sprague River joins with the 
Williamson River downstream of Chiloquin to form the largest 
tributary to Upper Klamath Lake (fig. 1). The Sprague River 
drains 1.002 million acres to the east of Upper Klamath Lake, 
originating in volcanic uplands that border the eastern side of 
the upper Klamath Basin. The hydrograph at this streamgage 
is typically characterized by high flows driven by rainfall 
runoff during the winter followed by snowmelt-driven peak 
flows in the spring which, following a spring recession period, 
give way to base flow conditions in the summer and autumn. 
Irrigated acres in the Sprague River basin upstream of the 
Chiloquin streamgage make up approximately 6.7 percent of 
the 1.02 million acres in the basin.

The record of flow at this streamgage goes back to 
1921, but the training and testing period is constrained by 
the atmospheric predictor data to start in 1980. The calendar-
day-mean flow was calculated over 33 years (1980−2012) to 
get an average seasonal cycle. This long-term average cycle 
was subtracted from the daily mean flow to create the model 
response variable.

The dates covered by the model in each year were based 
on streamflow at the streamgage. The model start date in each 
year is variable and is defined as the first day following the 
day that the flow was 500 cubic feet per second (ft3/s) for the 
last time in the water year2, or March 2 if springtime flows 
never reach 500 ft3/s. The end date of the model in each year 
is September 30th, the last date in the water year. The number 
of model dates in each year varies from72 in 1995 (a year with 
high spring flows in which the model starts on July 22) to 214 
in 1992 (a year in which water year flows never were as high 
as 500 ft3/s and in which the model starts on March 2).

2The 12-month period from October 1 of any given year to September 30 of 
the following year. 

Predictor Selection

The relative influence of each predictor in an individual 
regression tree can be quantified as the sum of the squared 
improvements at all splits determined by that predictor 
(Breiman and others, 1984). The relative influence of the 
predictor in the model as a whole is then the average over each 
tree, and for a cross-validated model, the average over each 
tree in each fold.

Selection for the predictor variables with the most 
important explanatory power is inherent to the BRT 
algorithms—variables with little explanatory power have 
small values of relative influence and very little effect on 
the outcome. Nonetheless, having a long list of predictor 
variables adds unnecessary computation time and can make 
interpretation of the model dependencies more difficult. 
Therefore, before beginning the process of rigorous parameter 
selection, a process of model simplification was executed to 
limit the number of predictors. A reasonable value of learning 
rate (0.01) and number and complexity of trees (2,000 trees 
with an interaction depth of 5) was assumed, and a list of 35 
potential predictors was reduced to 20 in an iterative process 
by dropping the variable with the lowest relative influence 
score at each iteration and running the model again; this 
process was repeated until only 5 predictor variables were left. 
In this way it was determined that the relative improvement 
gained with each additional predictor began to drop off more 
quickly after the number of predictors reached 17, and an 
additional 3 predictors were initially retained to provide 
some flexibility in the model to re-order predictors during 
the parameter selection process. After the learning rate and 
number of trees were optimized, the three variables with the 
smallest relative influence were dropped from the model. The 
final list of 17 variables with their relative influence in the 
model (averaged over 10 folds of cross validation) is provided 
in table 1 and in figure 2.
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Table 1.  Response variable and model predictors. 

[The length of record used in all cases is 33 years (1980–2012). Relative influence is based on the chosen best, simplest model during model training and testing, 
with final parameters as in table 2. USGS, U.S. Geological Survey; —, not applicable]

 Source Data type
Data interval and 
statistic

Derived variables
Relative 

influence
Short name

Response variable
USGS Sprague River gage

Sprague River near 
Chiloquin, Oregon, 
streamgage No. 11501000

Streamflow Daily mean 33-yr calendar day mean subtracted — —

Predictor variables
Oregon Water Resources Department

Upper Sprague River, 
Oregon, well KLAM2145

Depth to water Instantaneous value at 
variable intervals, 
approximately 4 times 
per year

Interpolated to daily values using 
locally weighted scatterplot 
smoothing (LOWESS)

19.24 wl2145_dtw

Fall River, Oregon, 
streamgage No. 14057500

Streamflow Daily mean Cumulative flow since beginning of 
current WY

8.60 fr_cum_WY

Annual by water year Cumulative flow over entire water 
year,lagged by 1 water year

3.51 fr_WY_lag1yr

University of Idaho GridMET
Precipitation Daily accumulation Lagged by 5 days 6.96 precip_lag5days

Daily accumulation Change over last 5 days 5.28 precip_dif5days
Daily accumulation Accumulation from beginning of 

current water year
3.36 precip_cum_WY

Air temperature Daily maximum — 3.54 airt_dailymax
Daily maximum Mean over last 180 days 13.31 airt_mean180d

Relative humidity Daily minimum — 2.18 relhum_dailymin
Daily minimum Mean over last 30 days 7.86 relhum_mean30d

Specific humidity Daily mean Mean over previous 180 days 7.09 sphum_mean180d
Daily mean Mean over previous 30 days 2.17 sphum_mean30d

Natural Resources Conservation Service SNOTEL
Summer Rim, Oregon, site 

number 20G02S
Precipitation Daily accumulation Accumulation from beginning of 

current WY
3.76 sr_precip_cum_

WY

National Oceanic and Atmospheric Administration, National Centers for Environmental Information
Crater Lake National 

Park Headquarters 
weather station, site 
GHCND:USC00351946

Precipitation Daily accumulation Lagged by 3 days 2.19 cl_precip_
lag3days

Snowfall/
precipitation

Daily accumulation Ratio of snowfall accumulation 
from beginning of current WY to 
precipitation accumulation from 
beginning of current WY

2.36 cl_sn2pr_cum_
WY

Snowfall/
precipitation

Daily accumulation Ratio of snowfall accumulation 
over entire WY to precipitation 
accumulation over entire WY, 
lagged by 2 years

2.43 sl_sn2pr_WY_
lag2yr

— Serial day — Days since target variable was 500 
cubic feet per for the last time in 
the water year

6.17 ser_day
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Figure 2.  Percent relative influence, averaged over all trees, of the final selection of 17 predictor variables 
in the boosted regression trees model. [Variable names are defined in table 1. The relative influence of each 
predictor in an individual regression tree was quantified as the sum of the squared improvements at all splits 
determined by that predictor.]
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Predictors Related To Interannual Variability In 
Water Table Elevation

The upper Klamath Basin is situated between the Pacific 
Northwest, where the strong correlation between winter 
precipitation and the El Niño-Southern Oscillation (ENSO) 
results in anomalously low streamflow associated with the El 
Niño phase of the oscillation, and the desert Southwest, where 
anomalously high streamflow is associated with the El Niño 
phase of the oscillation (Redmond and Koch, 1991). In this 
relatively narrow mid-latitude band, the Southern Oscillation 
Index (SOI) is not a useful climate index as it is in other 
parts of western North America. Kennedy and others (2009) 
demonstrated that, while the SOI is not particularly useful, 
the equatorial Pacific Ocean sea surface temperature gradient, 
expressed as the Trans-Niño Index (TNI), is an appropriate 
climate index to incorporate into streamflow forecast models 
with 1–4 month lead times. Thus, there is an established 

teleconnection between climate, particularly as indexed by 
equatorial Pacific Conditions, and surface-water flow in the 
Upper Klamath Basin. However, because the purpose of this 
study is not to forecast streamflow but rather to “hindcast” 
streamflow, there is no lead time required. This suggests that 
leading indicators, particularly global scale interannual climate 
indices such as the Pacific Decadal Oscillation (Beebee and 
Manga, 2004; McCabe and Dettinger, 2002) and the Trans-
Niño index (Kennedy and others, 2009), might not be as 
useful, in terms of explanatory power, as measurements of the 
localized response to these indicators.

The discharge measured at the Chiloquin streamgage 
during winter and spring months is dominated by surface and 
sub-surface runoff originating at the higher elevations of the 
watershed, but the time period of interest for this study is the 
summer and early autumn dry season. Runoff in response to 
precipitation events occurs during this season as well, but the 
discharge is dominated by groundwater-influenced baseflow. 
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Groundwater recharge in the upper Klamath Basin integrates 
the effects of climate over decadal-scale drought cycles; 
the effect on groundwater storage is in turn reflected in the 
groundwater discharge to streams as the water table and head 
gradients fluctuate in response to climate cycles (Gannett, 
2007) and to long-term trends in regional groundwater 
pumping as the number of permitted groundwater-irrigated 
acres increased from 14,400 in 1980 to 25,000 in 2007, after 
which it did not increase. The response of the water table 
in the upper Sprague basin to these cycles is well-described 
by the depth-to-water in well KLAM2145 near Bly, Oregon 
(Oregon Water Resources Department, 2018a) that has been 
monitored at approximately quarterly intervals by the Oregon 
Water Resources Department (OWRD). The water level in 
this well responds to climate-driven variations in recharge, 
is correlated with precipitation at Crater Lake National Park 
Headquarters, and also demonstrates a long-term trend in 
response to multi-decadal increases in regional groundwater 
pumping. The water level in this well has been identified as 
a potentially useful predictor variable for seasonal forecasts 
of streamflow in the upper Klamath Basin (Risley and others, 
2005; Kennedy and others, 2009). After removing sporadic 
drawdowns that were obviously caused by pumping in the 
well itself, the irregular data were interpolated to a daily 
interval using a Lowess smooth (Cleveland and Devlin, 
1988), with the smoothing parameter set to utilize a window 
of about 3.5 years, which removed most variability associated 
with intra-annual fluctuations while retaining the climate 
and regional groundwater signal inherent in the inter-annual 
fluctuations (fig. 3).
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Figure 3.  Depth-to-water in Oregon Water Resources 
Department well No. 2145, interpolated with a locally 
weighted scatterplot smoothing to filter out intra-annual 
variability, Sprague River Basin, Oregon. [OWRD, Oregon 
Water Resources Department]

Fall River is located in the Deschutes Basin to the 
north of the upper Klamath Basin, in a similar geologic 
and geographic setting to groundwater dominated streams 
in the upper Klamath Basin, but unaffected by regulation 
of irrigation. Streamflow in Fall River consists entirely of 
discharge from springs and the measurements at the OWRD 
streamgage near La Pine, Oregon, reflect regional climate, 
as integrated over a few years (Risley and others, 2005). 
The streamflow in Fall River also was shown to be a useful 
predictor for seasonal forecasts of streamflow in the upper 
Klamath Basin (Risley and others, 2005; Kennedy and others, 
2009). The daily mean discharge in Fall River is correlated 
with the depth-to-water in well 2145, which was found to 
have a greater relative influence in the BRT model, and 
therefore daily mean discharge was not retained in the model 
simplification process. A derived variable was created from the 
Fall River daily mean discharge by summing the flow over the 
entire water year, and lagging by 1, 2, and 3 years. The total 
water year flow with a lag of 2 and 3 years was removed from 
the model during model simplification, and the total water year 
flow with a lag of 1 year was retained.

The depth-to-water in well 2145 and Fall River discharge 
are correlated to the long-term cumulative departure from 
average precipitation measured at the Crater Lake National 
Park (CLNP) headquarters (Gannett, 2007). Conditions at 
CLNP clearly contain information about regional climate 
cycles, and a derived variable based on the precipitation at 
CLNP was calculated as the ratio of precipitation as snow 
and ice to the precipitation as rain. This variable is essentially 
an annual temperature index and was found to have a greater 
relative influence than precipitation alone. This derived 
variable was based on the total accumulation of both types 
of precipitation in the water year, lagged by 1, 2, and 3, 
years. The water year ratios with a lag of 1 and 3 years were 
removed from the model during model simplification, and the 
water year ratio with a lag of 2 years was retained.

Predictors Related To Current Water Year 
Weather And Hydrology

Current meteorological data to be used as predictor 
variables in a model for streamflow at a single streamgage 
and at sub-weekly time scales is most useful at high spatial 
and temporal resolution. Because meteorological observation 
networks are rarely dense enough to provide the required 
spatial resolution in unpopulated areas, it is common practice 
to use some form of model-based “reanalysis” data that 
incorporates observations in a systematic and robust way 
and disaggregates the data into uniformly spaced spatial and 
temporal data. For short lead-time streamflow forecasting, 
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global re-forecasts that incorporate local observations, such 
as the re-forecast generated by the National Oceanic and 
Atmospheric Administration (NOAA; Kalnay and others, 
1996), have proven very useful in many downscaling and 
streamflow forecasting studies, but the spatial resolution is 
coarse for watershed studies—about 210 kilometer at the 
equator. The NOAA publishes North American Land Data 
Assimilation System (NLDAS) re-analysis data with a 
resolution of 1/8 degree and temporal resolution from hourly 
to monthly to drive land surface hydrologic models (Xia 
and others, 2012). The University of Idaho gridMet data 
(Abatzoglou, 2013) melds temporal attributes from NLDAS 
with the physiographically based interpolation of observations 
from the Parameter-elevation Regressions on Independent 
Slopes Model (PRISM; Daly and others, 2008). The resulting 
product is a spatially and temporally complete, high-resolution 
(1/24 degree, or about 4-kilometer) gridded dataset of surface 
meteorological variables. The time series of daily gridMET 
data were downloaded as a weighted average over the entire 
Sprague River basin from the USGS geo-data portal (U.S. 
Geological Survey, 2018).

GridMET variables include precipitation (daily 
accumulation), air temperature (daily minimum and 
maximum), relative humidity (daily minimum and maximum), 
daily specific humidity, wind speed and direction, and 
incoming shortwave solar radiation. The entire suite of 
variables was tested for predictive power in the model, but 
after model simplification, solar radiation and wind speed 
were dropped. Precipitation was retained, lagged by 5 days, 
and the change in precipitation over the last 5 days also was 
retained. The 5-day lag in precipitation maximized the linear 
correlation of gridMET precipitation with streamflow at the 
Chiloquin streamgage. Daily maximum air temperature and 
daily minimum relative humidity were retained. Additionally, 
several derived variables that were expected to capture 
intermediate-term memory in the system (1–6 months) 
related to hydrology and evapotranspiration, particularly the 
integration of conditions that sets antecedent soil moisture, 
were found to be useful: the current water year accumulation 
in precipitation, the mean of the maximum air temperature 
over the previous 180 days, the mean of the minimum relative 
humidity over the previous 30 days, and the mean over the 
previous 30 and 180 days of the specific humidity (table 1).

Previous studies have established the predictive value of 
the Natural Resource Conservation Service Snow Telemetry 
(SNOTEL) sites to prediction of streamflow in the upper 
Klamath Basin, particularly in the Sprague River, which 
receives seasonal snowmelt from higher elevations to the 
east (Risley and others, 2005; Kennedy and others, 2009). 
Cumulative precipitation in the current water year and 
snow water equivalent (SWE) observations from SNOTEL 

sites at Taylor Butte and Summer Rim were tested for their 
explanatory value. The observations at Summer Rim were 
retained for the model. SWE observations at Summer Rim 
were lagged by 10, 30, and 60 days and, after the variable 
selection process, only the cumulative current water year 
precipitation was retained, indicating that the role of snow 
melt during the last part of the hydrograph recession that 
is included in the model’s 500 ft3/s threshold is better 
captured by the retained GridMET variables, particularly air 
temperature.

Crater Lake National Park, while not in the Sprague 
River basin, is at the northern boundary of the upper Klamath 
Basin, and weather data from CLNP is important both for 
the information it contains regarding climate cycles, which 
has already been discussed and for the measurements of 
current, local storm systems coming from the west. Data 
from the NOAA meteorological station at Crater Lake 
National Park Headquarters is available from NOAA National 
Centers for Environmental Information (National Oceanic 
and Atmospheric Administration, 2017). Published data 
include daily minimum and maximum temperature, daily 
accumulation of precipitation as rain, daily accumulation 
of precipitation as snow, and snow depth. As with SWE at 
Summer Rim, because the model focuses on the low-flow 
season, the accumulation of snow at CLNP was not a useful 
predictor, and daily temperature was highly correlated 
with temperature in the gridMET dataset, so those data 
were dropped during the model simplification process. The 
daily accumulation of precipitation as rain at a 3-day lag 
was retained; the 3-day lag in precipitation maximized the 
linear correlation of CLNP precipitation with streamflow 
at the Chiloquin streamgage. A derived variable based on 
the precipitation at CLNP was calculated as the ratio of 
cumulative precipitation in the current water year as snow and 
ice to the cumulative precipitation in the current water year as 
water. This variable is a form of temperature index and was 
found to have a greater relative influence than temperature or 
precipitation alone.

Building And Evaluating The Sprague 
River Discharge Boosted Regression 
Trees Model

Identification Of Model Start Date And Selection 
Of Training Data

The daily data from water years 1980 to 2012 comprise 
the potential training dataset. A more accurate model 
was obtained by concentrating the training on the lower 
streamflows dominated by base flow that are of the most 
interest when calculating the RIF. The model start date in each 
year, therefore, was based on streamflow rather than a fixed 
calendar date. The daily contribution of groundwater discharge 
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(base flow) to the measured streamflow was estimated using 
a streamflow partitioning method implemented in the USGS 
program PART (Rutledge, 1998). A streamflow of 500 ft3/s 
was chosen as a good indicator of the transition between 
runoff-dominated and baseflow-dominated streamflow. At 
this streamflow, coming at the end of the spring recession of 
the hydrograph, base flow made up at least 50 percent of the 
streamflow in each year in the training dataset, and in half of 
the years in the training dataset, base flow made up more than 
99 percent of the streamflow.

For each modeled water year, the start date is the latest 
of March 2 or the first day following the day that the flow was 
500 ft3/s for the last time in the water year. The end date is the 
last day in the water year, September 30. Because the length 
of the hydrograph between start and end dates varied each 
year, the number of data points available for training varied 
in each year as well. The total number of daily observations 
included in the 33 years of training data is 3,859. The daily 
data between the first model date (determined in the same way 
as for the training data) and the end of the water year from 
water years 2013 to 2016 comprise the regulated dataset that 
was used to quantify the RIF.

Statistical Methods

Model performance was evaluated with root-mean-
square error (RMSE), mean absolute error (MAE), mean 
error (ME), and the correlation coefficient (R). In the case of 
cross-validation training and testing, the estimate of the error 
statistic was the mean of the statistic across the 10 folds of a 
cross-validation, and the standard error (SE) of the estimate 
was the standard deviation across the 10 folds of the cross-
validation, divided by √10. In the case of testing with holdout 
data, the estimate of the error statistic for an individual 
holdout test was the mean of the statistic across the 10 folds of 
a cross-validation, and the standard error (SE) of the estimate 
was the standard deviation across the 10 folds of the cross-
validation, divided by √10. The estimate of the error statistic 
for the entire ensemble of 33 holdout tests was the mean of 
the statistic across 10 folds of each individual holdout test, 
and the SE of the estimate was the standard deviation of the 
error statistic across 10 folds of each individual holdout test, 
divided by √330.

Normality in the distribution of holdout errors was tested 
with the Shapiro Wilk test, with p values greater than 0.05 
indicating a normal distribution, with 95 percent confidence. A 
confidence threshold for the cumulative model errors through 
time based on the ensemble of holdout tests was determined 
with a Z-score at the desired level of confidence. First it 
was established that the cumulative errors were normally 
distributed with zero mean. Then, the detection limit for 
the cumulative difference between the model baseline and 
streamgage measurements in regulation years that exceeded 

model error was determined by zασ where zα is the Z-score 
for a desired level of confidence α (1.64 for 95 and 1.28 for 
90 percent), and σ is the standard deviation of the cumulative 
errors. A one-tailed test was used because the cumulative 
difference between baseline and measurements in regulation 
years should only be negative. A confidence interval for the 
cumulative model errors through time also was determined 
with a Z-score at the desired level of confidence, but using a 
two-tailed test, as cumulative error can be positive or negative.

All statistical test calculations were done using the basic 
stats package in the R computing environment (R Foundation 
for Statistical Computing, 2018).

Selection Of Model Parameters

Selection of model parameters is a balance between 
the goals of (1) minimizing the error between the simulated 
values of the response variable and the measurements of 
that variable, and (2) avoiding over-training the model such 
that it learns to simulate the noise superimposed on the 
real information contained in the response variable, which 
degrades the model’s predictive power. In the BRT model, 
three techniques—controlling the learning rate, constraining the 
number and complexity of regression trees, and subsampling 
the data—are effective means of limiting model over-training. 
The careful choice of the parameters that define these 
techniques is therefore an important part of the development of 
an efficient model with good predictive performance. Parameter 
selection generally followed the procedure outlined by Elith and 
others (2008).

The process of parameter choice started with assuming 
reasonable values for the rate of sub-sampling and tree 
complexity. Values of the sub-sampling rate between 0.2 and 
0.8, meaning that a randomly chosen 20–80 percent of the data 
is used to create each tree, effectively reduce absolute error in 
the response variable while also reducing computation time 
(Friedman, 2002). The sub-sampling rate in this study was 
set to 0.2, resulting in a random 20 percent of the daily data 
being chosen to create each tree. More typical values of the 
sub-sampling rate are between 0.4 and 0.6 (De’ath, 2007); a 
low value was used in this case because the daily values in 
the training dataset could support a higher sub-sampling rate 
without much loss of information. The results of training the 
model on the entire training dataset with a sub-sampling rate 
of 0.2 were compared to the results of training the model on 
a training dataset created by subsampling at regular intervals 
of 5 and 10 days, with a sub-sampling rate of 0.5. The 
performance of the model using a sub-sampling rate of 0.2 and 
no a priori sub-sampling was better, without evidence of 
increased overfitting. The interaction depth, or tree depth, was 
set to 3, allowing up to second-order reactions among the 
predictors. While the maximum theoretical depth is limited 
to the number of predictors, the best tradeoff between bias 
and variance is generally achieved at much smaller trees 
when the number of predictors is high (Friedman, 2001). The 
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minimum number of observations required to create a new 
split was set to 10, which was not more constraining on tree 
complexity than the interaction depth of 3. With these choices 
of parameters held constant, model training and testing was 
repeated across a range in values of learning rate and number 
of regression trees. The learning rate varied from 0.001 to 0.1, 
and the number of regression trees varied from 200 to 3,000.

A tenfold cross-validation (CV) approach was used to 
train and test the BRT model for optimization of the learning 
rate and number of trees. The entire training dataset was 
separated into 10 subsets by randomly sampling 3 years of the 
training dataset without replacement and assigning all of the 
daily values from those years to the same subset, 9 times, and 
assigning all of the daily values from the remaining 6 years to 
the tenth subset. Creating subsets of the training data in this 
way proved to be a more demanding test of the model than 
combining all years of data first and randomly sampling the 
daily values into 10 subsets. The model was then trained on 
each of the 10 possible combinations of 9 subsets of data and 
tested by using the learned model weights and coefficients to 
predict the values of the response variable in the subset of data 
that was left out of the training.

The estimate of the testing RMSE is shown for four 
values of the learning rate in figure 4. Higher values of the 
learning rate are omitted for clarity; higher values resulted 
in larger and more variable RMSE across the range in the 

number of trees. The combination of a learning rate of 0.01 
and 1,200 trees resulted in the smallest testing RMSE. The 
RMSE of the training data (not shown) was lower for the 
same combination of parameters (table 2) and decreased with 
increasing numbers of trees across the entire range tested; 
this is expected because a model can be trained to fit noise 
in the data as well as real information, but this over-training 
coincides with degraded performance in testing (De’ath, 
2007). Once the “best” model with the lowest testing RMSE 
was identified, the 1 SE rule (Hastie and others, 2001) was 
applied to pick the “best simpler” model, which was defined 
as the lowest learning rate first, and then the minimum number 
of trees, that had an estimated RMSE within 1 SE of the best 
testing model (fig. 4). Applying the rule resulted in a final 
optimized learning rate of 0.005 and an optimized number of 
trees of 1,000 (table 2). The mean error (ME) and correlation 
coefficient R of the best and best simpler models are provided 
in table 2 as additional measures of performance.

Once final values of learning rate and number of trees 
were determined, additional tenfold CV tests were performed 
to evaluate model performance by increasing values of the 
sub-sampling rate (up to 0.7). Increasing the sub-sampling 
rate resulted in slightly degraded performance relative to the 
best model identified in the previous step, so this parameter 
remained at 0.2 for subsequent testing.

Table 2.  Results of model training and testing on the entire 33-year training dataset, with a tenfold cross-validation.

[Model parameters held constant include bag fraction (0.2), minimum number of observations at terminal nodes (10). The best model had the minimum root 
mean square error, and the best simpler model was the final model chosen with a RMSE within 1 standard error of the best model. Units of RMSE and mean 
absolute error are cubic foot per second. Coefficient of determination R has no units. The proportion of observations is approximate, as the assignment to train-
ing and testing is by year rather than individual data points, and each year has a different number of data points. Abbreviations: MAE, mean absolute error; ME, 
mean error; R, correlation coefficient R; RMSE, root mean square error]

Best model in 10-fold  
cross-validation validation  

to choose learning rate  
and number of trees

Best simpler model within 1 stadard 
error of best in tenfold  

cross-validation to choose  
learning rate and  
number of trees

Final model
(best simpler model within 1 

standard error of best in tenfold 
hold-out testing to choose 

interaction depth)
Training Testing Training Testing Training Testing

Days of training or testing 3,473 386 3,473 386 3,473 386
Years of training or testing 30 3 30 3 30 3
Sub-sampling rate 0.2 0.2 0.2
Learning rate 0.01 0.005 0.005
Number of trees 1200 1000 1000
Interaction depth 3 3 5
RMSE +/- 1 SE 24.02±0.12 42.80±2.62 31.41±0.18 45.04±2.75 26.65±0.13 41.87±2.65
MAE +/- 1 SE 18.71±0.08 33.67±2.21 24.38±0.14 35.55±2.26 20.68±0.12 33.04±2.38
ME +/- 1 SE -0.03±0.02 0.44±4.78 -0.06±0.02 0.74±4.74 -0.01±0.01 -1.24 ±3.43
R +/- 1 SE 0.94±0.00 0.76±0.06 0.90±0.00 0.73±0.06 0.93±0.00 0.78 ±0.05
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Figure 4.  Relation between model complexity as defined by the number of trees and model 
performance as measured by root-mean-square error of the tenfold cross-validation testing 
prediction for four values of learning rate. [Bars indicating 1 standard error are provided 
for a learning rate of 0.01 only. The best model is indicated by the filled square; best simpler 
models by open circles.]
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Model Optimization And Testing With  
Holdout Data

Once the learning rate and number of trees were 
finalized, the model was further optimized and tested by 
withholding a subset of the data from training and examining 
model performance in predicting the holdout data. An 
individual holdout test was implemented by removing all data 
corresponding to a single year from the training dataset, as this 
was the best way to evaluate model errors during curtailment 
years. An ensemble of 33 individual holdout tests was created 
by withholding each of the years in the entire training dataset 
in turn. Again, a tenfold cross validation procedure was used 
in each holdout test. The procedure was the same as that 
used for optimizing parameters, except that a single year of 
data was removed from the training dataset before it was 
partitioned into 10 mutually exclusive subsets. The model was 
trained on each of the 10 possible combinations of 9 subsets 
of data and then used to predict the response variable in the 

holdout year, resulting in 10 predictions and 10 estimates of 
error statistics for each holdout year.

The ensemble of holdout tests was used to optimize 
the interaction depth of the trees in the model. Each of the 
33 holdout tests was repeated while varying the interaction 
depth between 2 and 14, and the ensemble mean of RMSE 
(330 estimates) was used to identify the optimal interaction 
depth (fig. 5). Minimum ensemble RMSE was associated with 
an interaction depth of 12, but interaction depths as low as 5 
resulted in an ensemble RMSE within 1 SE of the RMSE at an 
interaction depth of 12.

The tenfold CV training and testing was repeated with 
an interaction depth of 5; the results showed that increasing 
the interaction depth from 3 to 5 yielded an improvement in 
testing RMSE and MAE compared to the testing results of the 
best and best simpler (1 SE) models obtained previously. The 
testing RMSE of the best, best simpler, and final models was 
42.80, 45.04, and 41.87 ft3/s, respectively, and the MAE of the 
three models was 33.67, 35.55, and 33.04 ft3/s, respectively 
(table 2). The final, “optimal” set of model parameters 
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included, therefore, a learning rate of 0.005, 1,000 trees, and a 
maximum interaction depth of 5, and this set of parameters was 
used in all subsequent model training, testing, and prediction.

Having identified the optimal set of model parameters, 
the performance of the model on holdout data could be 
compared to performance on testing data in a cross-validation. 
The overall mean of the performance metrics was comparable 
to the metrics obtained during CV testing (a RMSE of 41.03 
ft3/s in table 3, in comparison to a RMSE of 41.87 ft3/s during 
CV testing of the final model with the same parameters in 
table 2, for example), indicating that the performance of the 
model in predicting holdout data was not degraded compared 
to testing with data that was included in the CV training and 
testing. The RMSE, MAE, and ME of the ensemble of 33 
holdout tests were normally distributed as determined by a 
Shapiro-Wilk test (p>0.05 in all cases). The 33 years were 
ranked according to the average flow during model dates 
(starting after flows reach 500 ft3/s in the spring to the end 

of the WY), and the data were split into two groups. The 
RMSE, MAE, and ME of these two groups were significantly 
different as determined by a Kruskal-Wallis test (p less than 
0.05 in all cases), meaning the magnitude of absolute errors 
measured by RMSE and MAE was higher, overall, in high 
flow years than in low flow years, which is not unexpected if 
the errors are proportional to the magnitude of the response 
variable. The ME was more likely positive in low flow years 
and negative in high flow years, although standard deviation 
of ME across all the holdout years is large, and the relation 
with flow is most apparent at the extremes—less than 200 or 
more than 300 ft3/s —of the range in flows, and ME of both 
signs is scattered across the middle of the range (fig. 6). The 
correlation coefficient was not significantly different between 
the high-flow and low-flow groups, although the highest R 
values were obtained in high-flow years and the lowest in 
low-flow years (fig. 7). Both R and ME were weakly but 
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Figure 5.  Relation between model complexity as defined by the maximum interaction 
depth of trees and model performance as measured by root-mean-square error of the 
holdout testing predictions. [Bars indicate 1 standard  error.  The optimal model is indicated 
by the open circle.]
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Table 3.  Results of model testing on holdout data. 

[Units of root mean square error and mean absolute error are cubic foot per second. Correlation coefficient R has no units. Flow rank is based on the daily 
streamflow, averaged over model dates in each year. The rank is out of 33 years: 1980–2012, inclusive. Abbreviations: MAE, mean absolute error; ME, mean 
error; RMSE, root mean square error; SE, standard error]

Year Flow 
rank

Number of 
observations RMSE ± SE R ± SE ME ± SE MAE ± SE

Aggregated means
33 years – – 3859 41.03 ± 0.67 0.72 ± 0.01 -0.40 ± 1.44 33.57 ± 0.58
Years with flow rank 17-33 – – 2152 36.60 ± 0.91 0.69 ± 0.01 9.34 ± 1.48 29.66 ± 0.75
Years with flow rank 1-16 – – 1707 45.73 ± 0.84 0.76 ± 0.01 -10.76 ± 2.24 37.72 ± 0.75

Individual years: best metrics
Smallest positive ME 2002 26 127 27.14 ± 0.45 0.69 ± 0.01 1.07 ± 1.79 22.39 ± 0.33
Smallest negative ME 2007 25 130 27.46 ± 0.35 0.73 ± 0.01 -0.50 ± 0.61 21.82 ± 0.27
Smallest RMSE 2005 23 110 17.72 ± 0.81 0.83 ± 0.01 1.61 ± 1.57 14.40 ± 0.81
Highest R 1986 6 108 25.38 ± 0.62 0.95 ± 0.00 5.35 ± 1.35 18.72 ± 0.68

Individual years: worst metrics
Largest positive ME 1998 10 82 57.93 ± 1.79 0.78 ± 0.01 49.49 ± 2.09 50.58 ± 1.82
Largest negative ME 2006 9 103 57.72 ± 1.13 0.35 ± 0.01 -51.30 ± 1.32 51.37 ± 1.31
Largest RMSE 1987 5 142 65.87 ± 1.17 0.68 ± 0.01 -51.80 ± 1.59 54.48 ± 1.34
Lowest R 2003 31 111 50.34 ± 0.46 0.25 ± 0.01 24.25 ± 0.85 46.46 ± 0.51

significantly correlated with flow (Spearman ρ=0.36 and -0.52, 
respectively; p<0.05 in both cases).

The results of 8 of the 33 individual holdout tests with 
the best and worst performance metrics are reported in table 3. 
The response variable and model predictions for 4 of these 
years are shown in figure 8. This selection of individual 
holdout tests demonstrates that performance metrics vary 
greatly among individual years and that correlation with flow 
is weak. Three of the four best metrics characterized years 
from the lower half of the flow distribution, and three of the 
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Figure 6.  Mean error in 33 holdout years, as a function 
of the measured daily streamflow, averaged over model 
dates in each year.
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Figure 7.  Correlation coefficient in 33 holdout years, for 
years in which daily streamflow, averaged over model 
dates, was high (rank 1-16) and low (rank 17-33).



four worst metrics characterized years from the upper half of 
the flow distribution. The highest R (0.95) was found for a 
year of high flow (1986; rank 6), and the lowest R (0.25) was 
found for a year of low flow (2003; rank 31). However, the 
third lowest R of 0.35 was found for a high flow year, 2006 
(rank 9). Years with similar flow ranks can have quite different 
performance metrics, as demonstrated by the years shown in 
figure 8. The year characterized by highest R (0.95) was 1986 
(flow rank 6), and the year of largest RMSE (65.9 ft3/s) was 
1987 (flow rank 5), both high-flow years. The year with smallest 
RMSE (17.72 ft3/s) was 2005 (rank 23), and the year with the 
lowest R (0.25) was 2003 (rank 31), both low-flow years.

When model performance is measured in terms of 
overall bias in each year as measured by ME, the best metrics 
were found for low-flow years; the smallest positive and 

negative ME were found for 2002 and 2007, ranked 26 and 
25, respectively. Two years of similarly high flow were 
characterized by the largest positive ME (49.49 ft3/s in 1998, 
rank 10) and the largest negative ME (-51.30 ft3/s in 2006, 
rank 9). The bias results of the holdout tests have important 
implications for using the BRT model to quantify instream 
flow, because they indicate that, while the overall bias of the 
model in any individual year that was not used in training can 
be positive or negative, and as high as about 50 ft3/s, when the 
ensemble of years of holdout tests is considered, the errors 
are normally distributed, and the overall bias is approximately 
zero. The 33 holdout tests therefore provide an estimate of 
the distribution of model errors in predicting the baseline 
streamflow in years of irrigation curtailment.
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Figure 8.  Observed and predicted target variable in 4 holdout years, Sprague River 
at Chiloquin, Oregon. [Years characterized by smallest root mean square error (2005), 
highest correlation coefficient R (1986), largest room mean square error (1987), and lowest 
correlation coefficient R (2003).]
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Using The Boosted Regression Trees 
Model To Quantify Cumulative Instream 
Flow Resulting From Curtailment  
Of Irrigation

Water in the basin is allocated in terms of volume 
rather than streamflow, and it is convenient to quantify the 
RIF in terms of a cumulative volume, as determined by 
subtracting the BRT-predicted baseline from the streamgage 
measurements and accumulating those deviations through 
time. The results of the holdout tests were used as the basis 
for determining the “detection limit” of the RIF, as follows. 
As discussed above, the errors of the prediction with respect 
to the streamgage were normally distributed across 33 pre-
regulation years, as was the accumulation of those errors over 
a fixed period of time in each year. This was demonstrated 
by cumulatively summing the difference between the daily 
prediction and the daily average flow from the streamgage, 
starting from July 1 (fig. 9). In some years, the calculation 

begins at a later date because the model did not start until 
some days later, when the transition to 500 ft3/s occurred. 
During years before irrigation regulation, the cumulative 
difference in streamflow between the BRT prediction and 
the observations would be zero in each year if the model 
were perfect. Instead, error in the model predictions results 
in a non-zero cumulative difference in streamflow, and the 
envelope delimited by the highest and lowest values increases 
with time away from the starting date of the calculation. These 
non-zero values of cumulative error provide the distribution 
against which the cumulative differences in regulation years; 
that is, the BRT estimate of RIF, can be compared. Also 
shown on figure 9 is the cumulative difference between 
the BRT-predicted baseline streamflow and the streamgage 
in 4 regulation years. In a regulation year, the cumulative 
difference is the sum of the accumulated error and any 
instream flow resulting from irrigation curtailment. When the 
cumulative difference is negative, the streamgage measures 
more flow than the predicted baseline. Two regulation years 
appear to be well within the envelope of expected cumulative 
error after 4 months, and two are outside or at the limit of 
expected cumulative error after 4 months.
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Figure 9.  Cumulative difference between predicted and measured streamflow in each of 33 holdout years and in 4 years 
when irrigation was regulated, Sprague River at Chiloquin, Oregon, starting on July 1.
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The cumulative error is normally distributed with a mean 
of zero and a standard deviation that increases through time, 
for all but a few days between July 1 and September 30. This 
distribution provides a measure of the cumulative model error 
that can be expected in any given year and applied to the 
regulation years, and it provides a measure of the cumulative 
difference in streamflow that could be attributed to model 
error in the prediction of a baseline hydrograph, rather than 
a real difference attributable to irrigation curtailment. To 
illustrate how this would work in practice, the distribution of 
cumulative errors, starting on July 1 and ending on September 
30, is shown in figure 10, with thresholds for 90 and 95 
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Figure 10.  Boxplot showing cumulative difference 
between predicted and measured streamflow 
in 33 holdout years, Sprague River at Chiloquin, 
Oregon, starting July 1 and ending September 30. 
[The accumulation of the difference between the 
predicted baseline and streamgage measurements 
for 4 post-regulation years are superimposed 
on the boxplot. Thresholds indicate the levels at 
which surplus water from curtailment of irrigation 
can be identified and quantified, with 95 and 90 
percent confidence.]

percent confidence for detection of the RIF shown. Based 
on this assessment, 1 regulation year is well outside of the 
95 percent confidence threshold, and one is outside of the 
90 percent confidence threshold. In 2 regulation years, the 
cumulative difference between the predicted reference and the 
gaged streamflow was not distinguishable from model error.

Because the date on which irrigation starts to be limited 
by holders of senior water rights varies from year to year, 
the accumulation of flow differences also should begin on a 
date that is determined by a unique timetable in each year. 
Increasing thresholds of model error can be calculated for days 
beyond the start of regulatory action. The calculation of the 
thresholds, which is based on the 33 holdout years, varies by 
a small amount depending on when the calculation starts. In 
figure 11, several curves, starting on June 1 and 15, July 1 and 
15, and August 1 and 15, have been averaged and smoothed 
with a running average, to produce threshold curves along an 
arbitrary timeline starting with regulation action. In figure 11, 
more water in the stream from irrigation curtailment is shown 
as a positive value.

Not only does regulation take place on a different 
timeline each year, but also the amount of acreage affected 
varies through time, and can both increase and decrease 
multiple times within a year. The most important features 
of this timeline for the 4 regulation years have been 
reconstructed, using information from OWRD (Oregon 
Water Resources Department, 2018b), and are shown with 
streamgaged streamflow and the BRT-predicted baseline in 
figure 12. Regulation affects all acreage with rights dated on 
or after the date of regulation; thus, the farther back in time 
regulated water rights are dated, the more acreage is affected. 
For example, regulation starting at 1864 affects more acreage 
than regulation starting at 1905, because it includes all 
acreage with rights dated between 1864 and 1905. Regulation 
starting at time immemorial affects all acreage irrigated with 
surface water (and since 2014 some acreage irrigated with 
groundwater) in the basin. The measured streamflow in 4 
regulation years shows some deviations from the predicted 
baseline that appear coordinated with regulation activities, 
most obviously in 2013, when the observations diverge from 
and are higher than the predicted baseline hydrograph soon 
after the date on which regulation action began (fig. 13). 2013 
was the only year in which regulation of all surface-water 
rights in the basin was imposed early and maintained through 
the rest of the water year. Other times when divergence 
between the measured streamflow and the predicted reference 
streamflow seem coordinated with regulation activities include 
mid-July of 2015 and early August of 2016 (fig. 13).
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Figure 11.  Thresholds for 
quantification of cumulative instream 
flow resulting from the curtailment of 
irrigation, as a function of days from 
the start of regulation action, Sprague 
River at Chiloquin, Oregon. [More 
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Figure 12.  Measured and 
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regression trees]
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Generally, however, it is difficult to identify deviations 
in daily streamflow that correspond to regulation activities, 
because of the inherent variability in water management 
decisions made by individual users, inconsistencies in 
regulation compliance, and regulation actions that are variable 
in time and location. The effect of regulation is more reliably 
identified as an accumulation of difference with respect to 
the baseline over time, which is shown in figure 14 for the 
4 regulation years. The results shown are broadly consistent 
with what is known about how regulation was imposed in the 
4 years. Regulation of all surface water rights began earliest 
in 2013 (June 17) and was maintained for the rest of the water 
year, which resulted in the greatest accumulation of RIF by 
the end of the water year—12,600±8,400 acre-ft (table 4). 
In 2014, regulation of groundwater rights was added to the 
regulation of surface-water rights, but started weeks later on 
(July 19) and therefore the accumulation by the end of the 
water year was only 6,900±6,200 acre-ft. In 2015, regulation 

started in June as in 2013 (June 24), but acreage was regulated 
on and off throughout the season, and the regulation of the 
maximum acres (to time immemorial) started in July and 
was intermittent. In 2016, regulation started the latest of the 
4 years (July 27), and regulation to time immemorial started 
on August 11 and lasted only 19 days, so the accumulation of 
RIF was minimal. The cumulative RIF in 2015 and 2016 was 
78±7,860 and 73±5,630 acre-ft, respectively (table 4). In order 
to assess the reliability of these estimates, the cumulative RIF 
can be compared with what is known about the accumulation 
of model error (fig. 11). The results are provided in table 4, 
where it is shown that in 2013 and 2014, the cumulative 
instream flow from irrigation curtailment exceeded the 95 
percent confidence threshold for quantifying the flow. Under 
maximally regulated conditions, the RIF is a significant 
fraction of the total streamflow at the streamgage—31 percent 
in 2013 and 29 percent in 2014. The values in 2015 and 2016 
were not distinguishable from model error (table 4).
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Figure 14.  Model estimate of the cumulative instream flow made available through the end of September by irrigation 
curtailment in post-regulation years, Sprague River at Chiloquin, Oregon. [The accumulation begins each year on the date 
on which regulatory action started in that year.]

Table 4.  Cumulative instream flow from irrigation curtailment 
(RIF) at the Chiloquin gage on the Sprague River, calculated in 4 
post-regulation years. 

[Also shown is the total volume of flow past the gage during the regulation 
time period.]

Year
Days under 
regulation

Volume in 
acre-feet

Confidence 
threshold 
(percent)

Total volume 
in acre-feet

2013 105 12,600 95 40,566
2014 73 6,900 95 23,532
2015 98 78 na 31,260
2016 65 73 na 20,787
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Conclusion
The quantification of the instream flow resulting from 

the curtailment of irrigation in the upper Klamath Basin is a 
challenging problem, but not unsolvable. Ideally, the volume 
of water should be calculated relative to what streamflow 
would have been, in exactly the same weather and climate 
context, and under exactly the same antecedent conditions, 
without limits placed on irrigation (the baseline conditions). 
While there are several approaches to the problem, most 
require that the baseline conditions be taken from observations 
made in hydrologically similar and un-regulated years in 
the past, which means that the baseline conditions cannot be 
entirely correct for the regulated year in the present. Boosted 
regression trees offer the option of re-creating a unique 
baseline for any given year in current, regulated conditions, 
without requiring spatially explicit land cover and soil 
characteristics, including crop types and associated irrigation 
practices, that are critical to deterministic calculation of 
evapotranspiration.

We were able to demonstrate that BRT can be used to 
calculate the RIF, but a crucial component is the assessment 
of model error. This was done by creating an ensemble of 
holdout tests based on each individual year in our training 
data, which mimicked the way that the model will be used 
to predict a baseline in a given regulated year. From this 
ensemble of holdout tests, the distribution of the accumulation 
of model errors over time could be calculated, and the 
threshold for identification of RIF could be determined at 
a desired level of confidence. For example, at 30, 60, 90, 
and 120 days from the start of regulation, the threshold for 
identifying RIF was calculated to be 3,140, 5,420, 7,440, and 
9,520 acre-ft, respectively, with a confidence of 95 percent. 
RIF in 2 regulation years—2013 and 2014—exceeded the 95 
percent threshold and made up about one third of the total flow 
past the streamgage during the regulation period, in spite of 
the fact that irrigated acres make up less than 7 percent of the 
acres in the basin.

The relative influence of the model predictors 
underscores that the streamflow in the Sprague River during 
irrigation season responds more strongly to the climate 
signals that influence baseflow—the information embedded 
in the depth-to-water at a well in the basin not influenced by 
pumping, and the streamflow in the Fall River, a groundwater-
dominated system in an adjacent basin—than to precipitation-
induced runoff. This is the case even though the Sprague River 

is runoff-dominated at other times of the year and has a strong 
seasonal snowmelt signal. The relative influence of the depth-
to-water in the well was 19.24 (out of 100), which made it the 
predictor with the most influence on the model results. The 
streamflow in Fall River had a combined relative influence, 
based on two derived predictors, of 12.11, making it the 
third most influential predictor. The second most influential 
predictor was air temperature with a combined relative 
influence of 16.85, indicating primarily the strong influence of 
temperature on evapotranspiration.

The BRT approach provides information that can inform 
decisions about management of water on an operational basis. 
All of the predictors used are readily available and updated 
continuously. The model is created in the R open-source 
computing environment.
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