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A Hydrogeomorphic Classification of Connectivity of Large 
Rivers of the Upper Midwest, United States

By Robert B. Jacobson, Jason J. Rohweder, and Nathan R. DeJager

Abstract

River connectivity is defined as the water-mediated 
exchange of matter, energy, and biota between different ele-
ments of the riverine landscape. Connectivity is an especially 
important concept in large-river corridors (channel plus 
floodplain ) because large rivers integrate fluxes of water, sedi-
ment, nutrients, contaminants, and other transported constitu-
ents emanating from large contributing drainage basins, and 
thereby contribute to the complexity of large-river ecosystems. 
Large rivers are also highly valued for socioeconomic goods 
and services, which has led to historical fragmentation, lack 
of connectivity, and contentiousness about best policies for 
managing large-river corridors. The classification is intended 
to serve as a template for understanding geographic varia-
tion in large rivers within the Midwest, to aid in designing 
scientific studies of large river ecological processes, and to 
match specific river-management and restoration objectives 
to specific river reaches. The focus of the classification is on 
measuring river connectivity from available hydrological and 
geomorphic data.

We provide a multiscale assessment and classification for 
segments of 15 rivers that meet various criteria for largeness. 
All rivers are tributaries to the Mississippi River system. The 
11,600 kilometers (km) that qualified as large were classified 
by major alterations (unimpounded, navigation pools, storage 
reservoir) and additionally assessed for their network continu-
ity as a function of numbers and heights of dams. Among the 
15 rivers, 55 percent of segment length was unimpounded, 
30 percent was in navigation pools, and 15 percent was 
under storage reservoirs. Assessment of network longitudinal 
connectivity among river segments documented the contrast 
between river segments with low-head navigation dams 
(Upper Mississippi, Illinois, Ohio, Green, and Cumberland 
Rivers) and those segments with high-head dams (mostly in 
the Upper Missouri River). The longest unimpounded river 
pathways exist in the Lower Missouri River and connected 
tributaries where nearly 1,300 km of the Missouri River 
connect to an additional 1,800 km of the Middle and Lower 
Mississippi Rivers.

At our finest scale, we present a statistically based, 
component classification based on 10-km segments. Cluster 

analysis of hydrologic variables from 66 streamflow-gaging 
stations yielded 5 clusters calculated from 5 ecohydrologi-
cal metrics related to lateral connectivity with the floodplain. 
A separate cluster analysis of 5 geomorphologic variables 
associated with each of the 1,172 river segments also yielded 
5 clusters. When the hydrologic variables were associated 
with corresponding segments, the cluster analysis yielded 8 
hydrogeomorphic clusters that could be explained in terms 
of their contribution to floodplain connectivity. Although 
the clusters overlap considerably in principal component 
space, the resulting hydrogeomorphic classification leads to 
a physically reasonable distribution of classes. The resulting 
classification is intended to increase geographic awareness of 
the range of variation of connectivity potential among large 
rivers of the Upper Midwest, to increase understanding of the 
extent of alteration of these rivers, and potentially to serve as 
a template for stratifying study designs of large-river corridor 
ecological processes.

Introduction
Large rivers provide a multitude of ecosystem services 

to humans and are among the most used of all ecosystems 
(Tockner and Stanford, 2002). In the Midwest United States, 
large rivers are used for transportation, waste treatment, water 
supply, power generation, fisheries, and recreation, among 
other purposes. Control of flood waters allows society to use 
extensive alluvial floodplains of large rivers for agriculture 
and development. Some of these uses are mutually compat-
ible, but in other cases there are incompatibilities among uses 
and society is challenged to select some uses over others or 
to seek compatibilities. Large rivers also provide substantial 
ecosystem services, including some that are currently poorly 
understood but that may be highly valuable (Thorp and others, 
2010).

Human uses of large midwestern rivers have had direct 
effects on physical processes (for example, dams that alter 
flow regimes and restrict fish migrations, levees that isolate 
rivers from their floodplains, point sources of pollution, and 
channelization). In addition, large midwestern rivers have 
been indirectly altered by cumulative land-use changes and 
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hydroclimatic events in their watersheds. Increased sediment 
and nutrient loads from agricultural sources have been linked 
to declines in river habitat quality (Waters, 1995) and hypoxia 
in the Gulf of Mexico (Alexander and others, 2008). Aquatic 
invasive species like Asian carps (black carp [Mylopharyngo-
don piceus], bighead carp [Hypophthalmichthys nobilis], grass 
carp [Ctenopharyngodon idella], and silver carp [Hypophthal-
michthys molitrix]) and zebra mussels (Dreissena polymorpha) 
have taken advantage of large rivers as invasion corridors. 
Many river agencies are now anticipating increased hydrocli-
matic uncertainties (droughts as well as floods) associated with 
future climate change (Milly and others, 2008; Gu and others, 
2010). Informed decision making about managing large-river 
resources can be improved with fundamental understanding 
about how these resources vary over time and across the Mid-
west, especially in context of increasing uncertainties.

Background

This report is a product of the Large River Initia-
tive, a science effort hosted by the Midwestern region of 
the U.S. Geological Survey. The Large River Initiative was 
designed to increase the information basis needed to manage 
and restore large rivers of the  Upper Midwest United States 
(fig. 1). We selected the concept of connectivity to frame this 
effort because of the concept’s importance to river ecosystem 
science and socioeconomic goods and services.

Connectivity is defined in aquatic ecological literature as 
water-mediated exchange of matter, energy, and biota between 
different elements of the riverine landscape (Pringle, 2001). 
Connectivity is considered one of the primary drivers of river 
productivity, biological diversity, and riverine ecosystem 
health (Junk and others, 1989; Bayley, 1995; Ward, 1998; 
Tockner and others, 2000). Moreover, the broad ecological 
definition of connectivity includes socioeconomic charac-
teristics that matter to humans, such as inundation hazards, 
depositional and erosional hazards to floodplain infrastructure, 
nutrient processing (especially denitrification) on floodplains, 
and water supply. Dimensions of connectivity may be lateral 
to floodplains, vertical to shallow groundwater, and longitudi-
nal to additional river, lake, estuary, wetland, and coastal water 
bodies (Amoros and Bornette, 2002; Ward and others, 2002). 
Because magnitude, duration, and timing of connectivity are 
likely to be important to ecological functions, connectivity 
also has temporal attributes.

Large rivers and their floodplains provide fertile soils, 
level land, and abundant water resources that have driven 
agricultural, urban, and industrial development. To maximize 
development, connectivity has often been minimized through 
construction of dams, weirs, bank stabilization, floodwalls, 
and levees. Dams alter water flows, sediment and nutrient 
loads, river temperatures, ecological processes, and fish migra-
tion patterns, which all contribute to diminished longitudinal 
connectivity. Interruptions to lateral and vertical transfers of 
water, sediment, nutrients, and biota by levees, floodwalls, and 
bank stabilization are another form of discontinuity in riverine 

connectivity (Ward and Stanford, 1995). Other important 
mechanisms that alter the connectivity conditions of large 
rivers include water diversions that may de-water a channel or 
geomorphic channel adjustments that change river-floodplain 
connections. For example, channel incision may result in 
perched, hydrologically disconnected riparian areas, whereas 
channel aggradation may result in increased hydrologic con-
nections to floodplains and floodplain aquifers and wetlands 
(Jacobson and others, 2011).

All these mechanisms play out in different combinations 
across the rivers of the Midwest United States, and many may 
accumulate through the channel network, resulting in cumula-
tive effects and interactions that require a landscape approach 
for understanding. How variability in connectivity affects 
ecological patterns and processes may differ among major 
river segments, given regional to local differences in ecologi-
cal attributes; however, the purpose of this report is to develop 
a basic understanding of differences and commonalities in the 
physical patterns and processes that define connectivity among 
these rivers. Because of the underlying geologic and climatic 
variation in the Midwest, patterns of natural connectivity, and 
the degree to which they have been altered, are expected to 
vary geographically. The purpose of this report is to develop 
an understanding of differences and commonalities among 
these rivers.

River Classifications and Definitions
Classification is a fundamental step in organizing scien-

tific understanding of complex and dynamic systems. Rivers 
can be described and classified in a variety of ways and at a 
variety of scales of resolution. Classification serves to identify 
rivers or parts of rivers that are similar, to discriminate among 
parts that are different, and to organize understanding about 
river processes. For scientific inquiries into riverine ecol-
ogy, classification based on physical characteristics serves to 
partition variability into parts of the river that are inherently 
similar, thereby increasing the ability to resolve differences 
because of other causes, such as stresses related to altered 
water quality or flow regime (Thoms and Parsons, 2002; 
Thorp and others, 2006). Physical classification of a river 
indicates where processes, resources, stresses, and hazards are 
similar and require similar management policies (Montgom-
ery, 1999; Thorp and others, 2010).

River science is inherently interdisciplinary, and 
opportunities arise for confusion about fundamental concepts 
and terms. We therefore offer this set of definitions for this 
report:

•	 “Transect” is used to measure cross-sectional attributes 
of rivers, such as floodplain width, topographic rough-
ness, and leveed area.

•	 “Segment” is used to indicate longitudinal parts of a 
stream system between substantial tributaries and with 
relatively uniform properties of bedrock and valley 
physiography (Frissell and others, 1986).
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Figure 1.  Large-river segments and selected streamflow-gaging stations of the Upper Midwest.
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•	 “Reach” is used to indicate longitudinal subdivisions of 
stream segments between breaks in channel slope and 
characterized by channel patterns that contrast with 
those upstream and downstream. This definition differs 
somewhat from Frissell and others (1986) because it 
does not use riparian vegetation or valley-floor width 
as criteria. Reaches typically include multiple riffle/
pool or bend/crossover sequences.

•	 “Riparian” is used to indicate areas of banks, bars, and 
the valley bottom subject to frequent flooding, erosion, 
and deposition because of interactions with the chan-
nel; riparian areas are frequently identified by charac-
teristic vegetation communities. This definition is used 
to include a strict definition of riparian (that is, limited 
only to streambank area) and the operational defini-
tion used by many land and stream managers (that is, 
alluvial bottomland, frequently including the entire 
valley bottom).

•	 “Floodplain” is the flat area adjacent to the river chan-
nel constructed by the present river in the present 
climate and frequently subject to overflow (Leopold, 
1994). “Frequent” means about once every 1.5 years 
or exceeded two times in 3 years. Operationally, 
the floodplain is often identified by the presence of 
recently deposited sediment.

•	 “Valley bottom” is the nearly flat or terraced land 
surface adjacent to a river channel and within a valley. 
It has been formed by fluvial processes of erosion and 
deposition. The valley bottom includes the floodplain 
but also includes terraces that are not flooded as fre-
quently.

•	 “River corridor” consists of the river channel, valley-
bottom surface, valley-bottom water bodies, and under-
lying alluvial sediments and bedrock that are hydrolog-
ically connected to the river channel. The river corridor 
can be defined as main-stem segments of arbitrary 
length, or it can include branches into tributary rivers.

River Names
Official domestic river names are maintained by the 

U.S. Board on Geographic Names in the Geographic Names 
Information System (GNIS, https://www.usgs.gov/core-
science-systems/ngp/board-on-geographic-names/domestic-
names). The official river names generally do not recognize 
geographic modifiers that are widely used by scientists, 
resources managers, and the public to apply additional speci-
ficity (Domestic Names Committee, 2016). For example, the 
GNIS does not recognize Upper Mississippi, Middle Missis-
sippi, and Lower Mississippi river subdivisions (with capital-
ized geographic modifiers), despite the very common usage 

and understanding of these subdivisions (Schramm and others, 
2015; Remo, 2016). Similar geographic subdivisions have 
been proposed and are widely used in the Missouri River, 
wherein “Upper,” “Middle,” and “Lower” designations relate 
to well-defined changes in hydrology, physiography, and man-
agement (Jacobson and others, 2010). The GNIS governing 
document allows for usage of geographic modifiers in cases 
where it is consistently used by the public, and, in such cases, 
the policies allow the modifier to be capitalized (Domestic 
Names Committee, 2016, p. 37). We adopt the convention of 
using capitalized geographic modifiers throughout this docu-
ment to maintain geographic clarity and consistency (fig. 1).

Geographic modifiers applied to the Missouri River fol-
low Jacobson and others (2010):

•	 The Lower Missouri River extends from the confluence 
with the Mississippi River near St. Louis, Missouri, to 
the lowermost main-stem dam at Gavins Point, South 
Dakota (Gavins Point Dam). The abrupt change in 
hydrology, water quality, and channel morphology at 
this point justify the geographic break.

•	 The Middle Missouri River refers to the reservoir-dom-
inated segments of the Missouri River from Gavins 
Point Dam to the headwaters of Lake Sakakawea, near 
Williston, North Dakota.

•	 The Upper Missouri River refers to the segments of the 
Missouri River upstream from Lake Sakakawea that 
are characterized by substantial inter-reservoir seg-
ments, upstream to Three Forks, Montana, where the 
Missouri River begins at the confluence of the Jeffer-
son, Gallatin, and Madison Rivers.

On the Mississippi River, geographic modifiers follow 
Remo (2016):

•	 The Lower Mississippi River (not shown) extends from 
the Gulf of Mexico upstream to the Ohio River conflu-
ence. These segments of the Mississippi River differ 
substantially from those upstream because of the large 
volume of discharge added by the Ohio River, and 
they differ geomorphically in that the river flows in the 
broad alluvial valley of the Mississippi embayment.

•	 The Middle Mississippi River extends from the conflu-
ence with the Ohio River, near Cairo, Illinois, upstream 
to the confluence with the Missouri River near St. 
Louis, Mo. These segments of the Mississippi River 
differ markedly from those upstream in that navigation 
is maintained through river-training structures rather 
than locks and dams, and the valley is relatively nar-
row.

•	 The Upper Mississippi River extends from Melvin 
Price Locks and Dam at Alton, Ill., to the origin of the 
Mississippi River at Lake Itasca, Minnesota.

https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/domestic-names
https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/domestic-names
https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/domestic-names
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Scope and Objectives

The geographic scope of this report is large rivers of the 
Upper Midwest United States (fig. 1). Because most large 
rivers within the Midwest drain to the Mississippi River, the 
geographic scope is consistent with the rivers within the Upper 
and Middle Mississippi River drainage basins. Large rivers are 
defined in the “What Is a Large River?” section of this report.

The objective of this report is to develop an understand-
ing of differences and commonalities among these rivers, with 
an emphasis on how river connectivity varies over space and 
time. We document the geography of these large rivers using a 
hierarchy of description, leading to a segment-scale classifica-
tion. The classification is intended to serve as a template for 
understanding geographic variation in large rivers within the 
Midwest, to aid in designing scientific studies of large-river 
ecological processes, and to match specific river management 
and restoration objectives to specific river reaches. The focus 
of the classification is on measuring river connectivity from 
available hydrological and geomorphic data.

Approach
Our approach to this classification process involved 

multiple components. The first component was to define what 
makes a river large. Based on that definition we identified riv-
ers that met the criteria defining largeness and described them 
as to extent of alteration and longitudinal connectivity. We 
then classified segments by statistical analysis of streamflow-
gaging station records for these rivers, and by statistical analy-
ses of geomorphic characteristics of river-corridor segments. 
Finally, we merged these two classifications to develop a 
hydrogeomorphic classification of reaches based on a statisti-
cal cluster analysis that combined geomorphic and hydrologic 
characteristics at the segment scale.

What Is a Large River?

The first step in our classification was to define what 
constitutes a large river. Largeness can be defined in various 
ways, including operational approaches to measurements, met-
rics of physical dimensions, measures of ecological functions 
and processes, and importance to socioeconomic systems. 
An operational definition could be based on the need to use 
specific techniques to measure important features of rivers 
(for example, the inability to rely on wading measurements, 
the need to use boat-mounted sensors, and the ability to use a 
wide range of satellite and remote-sensing data). For example, 
the U.S. Environmental Protection Agency (EPA) uses “non-
wadable” and “large river” interchangeably (Flotermersch 
and others, 2006) to mean lotic systems more effectively and 
safely sampled with boat-based methods.

Definitions based on physical size that include a thresh-
old drainage area or flow quantile, a threshold stream order, 

or a main-stem length have been used (Potter, 1978; Gupta, 
2007). These metrics are readily calculated, but the thresh-
old of size above which a river achieves largeness is unclear. 
Kammerer (1987) defined the 20 largest rivers of the United 
States and ranked them based on three characteristics: total 
length, basin area, and average annual discharge. Notably, 
different rivers had different ranks for the three criteria. One 
aspect of largeness in rivers relates to their size and diversity 
of climate, geology, land use, and ecoregions encompassed 
by their drainage basins: a critical characteristic of large 
rivers is their aggregation of runoff, sediment, nutrients, and 
pollutants from broad and variable areas. In previous work, 
large rivers have been defined as having unregulated mean 
annual discharge greater than 356 cubic meters per second (or 
12,600 cubic feet per second; Dynesius and Nilsson, 1994), 
a threshold that would include many river segments in the 
Midwest. The U.S. Environmental Protection Agency differen-
tiated large rivers from “great rivers,” defining great rivers as 
having at least 400,000 square kilometers of drainage area and 
discharge at the mouth of at least 3,000 cubic meters per sec-
ond (or 106,000 cubic feet per second); only 14 rivers in North 
America are thought to meet these criteria (Angradi, 2006).

Large rivers have been noted for having distinct ecologi-
cal functions and processes. Large rivers tend to have lower 
gradients, finer sediments, and longer residence time for 
water in transit compared to smaller rivers. These conditions 
can affect habitat availability and productivity. In particular, 
large rivers tend to have greater turbidity than smaller rivers 
because of substantial suspended-sediment transport, and tur-
bidity tends to create conditions suitable for a narrow range of 
aquatic species. Large rivers frequently have large floodplains 
that were naturally inundated by long seasonal flood pulses, 
one of the attributes that has been associated with their great 
productivity (Junk and others, 1989; Bayley, 1995). Impor-
tantly, large rivers connect broad sections of the landscape, 
providing migration corridors that are essential for repro-
duction and survival of some aquatic, avian, and terrestrial 
species. Although these ecological functions and processes are 
characteristic of large rivers, there is no clear, strictly ecologi-
cal threshold that would identify when a river becomes large. 
Some potential thresholds may be derived from factors such as 
depths required by large-river obligate fish species or widths 
that accommodate sight distances required by migratory birds 
like sandhill and whooping cranes (Grus canadensis and Grus 
americana, respectively); these definitions would depend, in 
part, on the species that inhabit the rivers and not on physi-
cal river features that would be comparable across rivers with 
different biota.

Compared to smaller rivers, large rivers also provide 
an abundance of socioeconomic resources, including hydro-
power, municipal and industrial water supply, navigation, and 
recreation. Engineering of large-river corridors has provided 
additional socioeconomic benefits in floodplains by providing 
flood control, bank stabilization, and flood-protection struc-
tures that allow for agriculture, urban, and industrial develop-
ment of floodplains. As a result, one characteristic shared by 
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almost all large rivers is extensive alteration from their natural 
condition. Some scientists and managers have recognized that 
there is potential for many of these large rivers to be restored 
to more natural conditions to increase net benefits (Tockner 
and Stanford, 2002; Pahl-Wostl, 2006; Bouska and others, 
2016); however, there is no clear threshold of socioeconomic 
development or ecological floodplain functions that can be 
used to delineate large rivers from small.

For the purposes of this initiative we will define large 
rivers broadly as those rivers that have all or most of the 
characteristics listed above. To include rivers that are large 
based on drainage area, average annual discharge, and length, 
we ranked rivers of the Midwest according to each criterion. 
Data were compiled from Kammerer (1987) and verified using 
the National Hydrography Dataset (NHD) version 2 (McKay 
and others, 2014). Among all rivers compiled by name, we 
selected the top 10 under each category and then combined 
those that qualified based on one or more criteria. This resulted 
in 15 total rivers that were included in at least 1 of the lists 
(table 1). Within this group of large rivers, our classification 
considered main-stem channels extended upstream to include 
all segments of Strahler order 7 and greater (Strahler, 1957), as 
indicated in the NHD.

Identifying these 15 large rivers is somewhat dependent 
on the names historically assigned to specific lengths of river 
as well as the physical criteria used. As a result, some river 
segments that meet the physical criteria are not represented in 
the top 15. An example is the North Platte and the South Platte 
Rivers. Segments of each of these tributaries to the Platte 
River would qualify under the physical criteria if they were 
considered extensions of the Platte River; however, because 
a new name begins at the confluence, our filtering excludes 
them. Similarly, segments of the Allegheny and Mononga-
hela Rivers upstream from their confluence (to form the Ohio 
River) are large but excluded. The reliance on the historically 

Table 1.  Top 10 rivers of the Upper Midwest ranked by length, 
mean annual discharge, and drainage area.

[Data from Kammerer (1987)]

Rank Length Mean discharge Drainage area

1 Missouri River Ohio River Mississippi River
2 Mississippi River Mississippi River Missouri River
3 Ohio River Missouri River Ohio River
4 North Platte River Cumberland River Kansas River
5 Yellowstone River Wabash River Platte River
6 Cheyenne River Illinois River Yellowstone River
7 Minnesota River Osage River Wabash River
8 Platte River Green River Illinois River
9 Cumberland River Yellowstone River Cheyenne River

10 James River Iowa River South Platte River*
*Although the South Platte River qualifies as large based on drainage area, 

it was excluded from the statistical analysis because it did not have segments 
with Strahler order 7 or higher.

assigned names of large rivers introduces a bias in river selec-
tion but does not alter the classification trends. A classification 
that is independent of historical river names may be warranted 
in future work.

Classification Concepts

Classifications of natural phenomena are most use-
ful when they satisfy several criteria (Driscoll and others, 
1984). Desired characteristics of a classification system are as 
follows:

1.	 it is hierarchical (that is, the classification is ame-
nable to aggregation and disaggregation to resolve 
differences at various levels);

2.	 it is based on quantifiable, physical features or pro-
cesses; and

3.	 it is structured to support its intended use.
Many types of classification systems have been devised 

for rivers; the variety of classifications arises from the variety 
of questions and uses that classifications are intended to 
address. The structure and type of classification are heav-
ily influenced by its intended use. As Rowe (1962, p. 420) 
stated, “…purpose is implicit in all classifications and different 
purposes lead to different classifications.” Hence, the optimum 
classification of a river system for understanding water quality 
may differ from one intended to categorize flood hazard or 
biodiversity. The applicability of a classification will increase 
to the extent that the system is based on quantifiable character-
istics that are fundamental determinants of system functions. 
In most cases, classification of a natural system attempts to 
create logical, discrete divisions in systems that are character-
ized by continua or gradients. A central challenge of classifica-
tion is to develop objective criteria for defining useful breaks 
along these continua.

In a discussion of ecosystem classification, Driscoll and 
others (1984) identified two types of classifications: integrated 
and component. An integrated classification presents a system 
in which the total effect of interacting factors is known or 
understood sufficiently to define useful classes. The widely 
used stream classification system proposed by Rosgen (1994) 
is an example of an integrated classification system; the Ros-
gen system is based on the premise that measures of channel 
morphology provide a useful integration of the various factors 
that affect characteristics of a river reach.

In contrast, a component classification initially presents 
classifications of individual factors, and the user is allowed 
to choose the factors and levels that are appropriate for the 
intended use. Component classifications often proceed through 
statistical ordination, classification, or cluster analyses of 
factors associated with river reaches, thereby providing an 
inductive and objective classification (Elliott and Jacobson, 
2006; Jacobson and others, 2010; Kondolf and others, 2016). 
The component approach is readily applicable in environments 
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where nearly continuous measurements of classification vari-
ables (such as channel sinuosity, width, slope, or valley width) 
are available through remote sensing or other geographic 
information system (GIS) datasets. Component systems evalu-
ated through cluster analysis or regression-tree type methods 
are also amenable to hierarchical organization (Elliott and 
Jacobson, 2006).

For component classifications that are defined by charac-
teristics along the channel, by reach, or by segment, there are 
two spatial scales of effect relevant to associating classifica-
tion variables with a river location: those based on charac-
teristics of the contributing drainage-basin area (watershed) 
and those that are based on physical characteristics within 
the river corridor (including the channel and adjacent valley 
bottom). Watershed-based classifications include landscape-
scale factors that are thought to affect runoff, sediment supply, 
water quality, or anthropogenic stressors within the basin that 
propagate to the river. Watershed-based classifications have 
been used to group hydrologically similar rivers as a basis for 
assessments of water quality and ecological alteration (Wolock 
and others, 2004; Carlisle and others, 2011).

Corridor-based classifications are based on morphologies 
or processes within the river corridor. Prominent examples 
of integrated corridor classifications are presented by Rosgen 
(1994), Frissell and others (1986), and Montgomery and Buff-
ington (1997). Examples of component corridor-based systems 
are presented by Elliott and Jacobson (2006) and Jacobson and 
others (2010). The Ecological Limits to Hydrologic Alteration 
approach to environmental flow assessments includes both 
watershed-based approaches to quantifying hydrologic effects 
and corridor-based classification to assess local factors that 
mediate flow regime by altering hydraulics, flow resistance, 
substrate, riparian shading, or other conditions (Poff and oth-
ers, 2010).

The choice of emphasis on a watershed-based or corridor-
based classification clearly depends on the type of heterogene-
ity that exists in a river system and the intended applications 
of the classification. In smaller drainage areas, watershed 
characteristics are likely to have direct effects on channel form 
and process. As rivers grow larger and incorporate more varied 
land use, geology, physiography, and climate, watershed-
based classifications tend to lose predictive capability, with the 
exception of drainage area, which is almost always relevant. 
Larger rivers also tend to have more impoundments, which 
act to disconnect corridor hydrology and water quality from 
the contributing basin; furthermore, bank stabilization and 
navigation structures common in larger rivers may exert strong 
controls on channel form and process at the corridor scale.

We present three levels of resolution to explore differ-
ences and commonalities among these rivers with respect to 
connectivity. At the coarsest level, we document the general 
classification of alteration of river segments. At the next level 
of resolution, we present a simplified analysis of longitudinal 
connectivity based on density and types of dams on the large 
river segments in the dataset. At our finest level of resolution, 
we assess potential for lateral connectivity between surface 

water in the channel and the floodplain at the segment scale. 
Lateral connectivity can be measured with two broadly defined 
types of information: hydrologic characteristics of the rivers 
and geomorphic factors that determine whether surface water 
inundates—or connects with—floodplain lands.

Our classification approach was to assemble hydrologic 
data and physical data related to connectivity and then analyze 
the data for statistically occurring clusters. We completed the 
cluster analyses separately for hydrologic data (by streamflow-
gaging station) and for geomorphic factors (by segment). 
We then attributed each segment with the nearest upstream 
hydrologic record and completed a cluster analysis for merged 
hydrologic and geomorphic data.

General Classification of River Alteration

We classified the segments in the larger-river dataset 
into three broad, descriptive categories indicative of degree of 
alteration and related to connectivity:

•	 Navigation pools, which are segments impounded by 
low-head (2–12 meters high) navigation dams and 
locks and act as run-of-the-river reservoirs with little 
flood storage capacity;

•	 Storage reservoirs, which are segments that are 
impounded and mostly inundated by high-head, multi-
purpose reservoirs; and

•	 Unimpounded, which are segments not directly 
affected by impounded dams. It should be noted that 
all segments of large rivers of the Upper Midwest are 
affected to some extent by hydrologic alteration from 
upstream reservoirs. In addition, those classified here 
as unimpounded include variable degrees of channel-
ization and bank stabilization.

These classes are used for descriptive statistics; segments that 
were identified as storage-reservoir segments were subse-
quently excluded from the segment-scale cluster analyses.

Longitudinal Connectivity Assessment

Longitudinal connectivity refers to continuity of move-
ment of constituents along the channel network. For water, 
sediment, nutrients, and contaminants, downstream connectiv-
ity is most relevant. For aquatic biota, upstream and down-
stream connectivity are both important. Lack of connectivity 
because of dams or natural lakes can result in accumulation of 
sediment and perhaps sequestering of nutrients, carbon, and 
contaminants. Reservoirs also increase residence time of water 
that may drive nutrient processing or other transformations 
that are important to water quality. For fish species, dams may 
decrease or prevent fish passage and consequently interrupt 
life cycles of native species. Dams may slow the spread of 
some invasive species but at the same time create habitats 
suitable for non-native species. Conversely, some changes to 
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channel networks may serve to increase connectivity in the 
sense that they increase downstream advection of constitu-
ents. For example, channelization and navigation structures 
simplify channel complexity, resulting in faster advection and 
extended downstream transport of water, sediment, and trans-
ported constituents—including fish and invertebrate larvae and 
plant propagules.

Although a detailed consideration of longitudinal connec-
tivity is beyond the scope of this report, we performed a recon-
naissance evaluation of dams along the large river segments 
covered in our analyses to illustrate the potential extent. Using 
the U.S. Army Corps of Engineers National Dam Inventory 
(U.S. Army Corps of Engineers, 2013), we evaluated the dis-
tribution of dams that were likely to serve as an impediment to 
transport of constituents and upstream and downstream move-
ments of biota based on height classes.

Hydrologic Classification

Hydrologic classifications typically concentrate on 
the point locations where streamflow-gaging stations exist 
(Richter and others, 1996; The Nature Conservancy, 2005; 
Henriksen and others, 2006; Kennen and others, 2007) or on 
extrapolation of statistics from gaging stations to the surround-
ing landscape based on drainage-basin characteristics (flow 
regionalization; Ries and others, 2004; Yadav and others, 
2007). A classification framework introduced by Olden and 
others (2012) differentiates among three deductive approaches 
based on inference from basin characteristics and the inductive 
approach based on scaling up from the observed streamflow 
gage information. The approach used in this report is inductive 
as it is based on analysis of streamflow records.

We identified streamflow-gaging stations for large riv-
ers of the Midwest (table 1) for statistical analysis based on 
criteria that the gages were on the main stem of the qualifying 
large rivers and had at least 10 years of recent record (table 2; 
fig. 1). Because our classification is intended to illustrate 
current conditions of these rivers, we were not concerned 
about history of alteration, only that streamflow-gaging sta-
tion records were recent and of sufficient length to calculate 
statistics.

Although a very large number of variables can be calcu-
lated from hydrologic time series (Richter and others, 1996; 
Olden and Poff, 2003; Henriksen and others, 2006), our focus 
is on variables related to lateral connectivity between chan-
nel and floodplain. Determining connectivity requires first an 
estimate of the threshold discharge that overtops the bank, or 
bankfull flow. Bankfull flows are best determined on-site as 
the discharge that just starts to inundate the floodplain, but 
for this extensive regional assessment we use the simplifying 
assumption that, on average, river floodplains in quasi-equi-
librium with their channels are inundated every 1.5 to 2 years 
(Leopold, 1994). Of course, actual extent of inundation of the 
floodplain is affected by factors such as levees and channel 
incision or aggradation that can disrupt equilibrium and alter 

the average return interval for floodplain inundation (Jacobson 
and others, 2011; Jacobson and Faust, 2014). To represent 
a more conservative threshold of floodplain inundation of 
bankfull flow we have used the 50-percent annual exceed-
ance probability flood (or 2-year recurrence interval), calcu-
lated from the partial duration series of peak flows using the 
U.S. Geological Survey PeakFQ program (Flynn and others, 
2006). The statistically determined bankfull discharge should 
be interpreted as a potential for floodplain inundation; the 
potential is mediated by site-specific conditions like levees, 
natural topographic variability, and channel incision.

We then created custom scripts in the Practical extraction 
and reporting language (called “Perl;” http://www.perl.org/) to 
process the hydrologic time series at each streamflow-gaging 
station to calculate average total days per year (duration) and 
average number of events per year (frequency) that discharges 
were greater than the bankfull threshold. We added additional 
metrics as indicated in table 3. The flood index is the ratio of 
the difference between the 1-percent annual exceedance prob-
ability flood (that is, the 100-year recurrence-interval flood) 
and the 50-percent annual exceedance probability flood (that 
is, the 2-year recurrence-interval flood) divided by the magni-
tude of the 50-percent annual exceedance probability flood. It 
is meant as a simple measure of the variance of the flood fre-
quency distribution, similar to the upper-tail ratio of Smith and 
others (2018), but with less emphasis on the extreme flood-
ing of record. We retained the 50-percent annual exceedance 
probability flood magnitude (or bankfull flood) as a measure 
of river size and the unit bankfull flood (bankfull flood divided 
by upstream drainage area) as a measure of hydroclimatology.

Statistical Analysis
We statistically explored hydrologic variables using 

scripts written in R (R Development Core Team, 2013). The 
steps include the following:

1.	Normalizing data by centering around the mean and 
scaling by the standard deviation.

2.	Performing K-means cluster analysis with the number of 
clusters ranging from 1 to 15.

3.	Evaluating the optimum number of clusters by creating 
a scree-plot of within-cluster sum of squares by number 
of clusters, to help in selection of number of k-means 
clusters that adequately describe the data, as well as 
other measures.

4.	Completing a principal components analysis (PCA) to 
evaluate which variables vary in similar or dissimilar 
ways.

5.	Creating boxplots of scaled variables by clusters to visu-
alize how clusters differ.

6.	Attributing reaches with cluster numbers to map clusters 
in a GIS (Jacobson and Rohweder, 2019).

http://www.perl.org/
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Table 2.  Hydrologic characteristics of U.S. Geological Survey streamflow-gaging stations for large rivers of the Upper Midwest.

[ID, identifier; km2, square kilometer; ft3/s, cubic foot per second; (ft3/s)/mi2, cubic foot per second per square mile; Q, discharge magnitude at return interval indicated by subscript]

Station ID Streamflow-gaging station

Hydrologic record

Drainage area 
(km2)

Bankfull1  
(2-year)  

discharge  
(ft3/s)

Unit 
bankfull 

discharge 
([ft3/s]/mi2)

Mean annual 
days above 

bankfull  
discharge days

Mean  
annual duration 
of events above 

bankfull  
discharge days

Number of 
mean annual 
events above 

bankfull stage 
per year

Flood  
connectivity 

index  
(Q100−Q2)/Q2

Begin 
year

End 
year

Number 
of  

years

03086000 Ohio River at Sewickley, Pennsylvania 1970 2014 44  49,982 169,000 8.75 8.67 0.55 0.705 1.28
03216600 Ohio River at Greenup Dam near Greenup, 

Kentucky
1970 2014 44  158,918 393,000 6.40 6.34 1.41 0.952 0.45

03277200 Ohio River at Markland Dam near Warsaw, 
Kentucky

1970 2014 44  213,181 432,000 5.25 5.19 2.61 0.929 0.39

03294500 Ohio River at Louisville, Kentucky 1970 2014 44  233,687 480,000 5.32 5.26 1.95 0.773 0.45
03303280 Ohio River at Cannelton Dam at Cannelton 1975 2014 39  248,630 489,000 5.09 5.04 3.26 0.784 0.47
03316500 Green River at Paradise, Kentucky 1970 2014 44  15,848 43,800 7.15 7.08 2.46 0.676 0.89
03320000 Green River at Lock 2 at Calhoun, Kentucky 1970 2014 44  19,393 46,500 6.21 6.15 3.55 0.659 0.94
03340500 Wabash River at Montezuma, Indiana 1970 2014 44  28,498 64,800 5.89 5.83 2.36 0.614 1.24
03341500 Wabash River at Terre Haute, Indiana 1970 2014 44  31,433 63,700 5.25 5.19 2.20 0.614 1.15
03342000 Wabash River at Riverton, Indiana 1970 2014 44  33,734 65,400 5.02 4.97 3.20 0.500 0.94
03377500 Wabash River at Mount Carmel, Illinois 1970 2014 44  73,397 145,000 5.11 5.06 3.81 0.545 1.06
03381700 Ohio River at Old Shawneetown, Illinois-

Kentucky
2002 2014 12  361,411 662,000 4.74 4.70 3.09 0.364 1.16

03431500 Cumberland River at Nashville, Tennessee 1970 2014 44  32,953 98,500 7.74 7.66 1.00 0.714 1.04
03611500 Ohio River at Metropolis, Illinois 1970 2014 44  520,330 891,000 4.43 4.39 6.21 0.690 0.49
05288500 Mississippi River at Highway 610 in Brooklyn 

Park
1970 2014 44  48,957 32,300 1.71 1.69 5.24 0.605 1.25

05325000 Minnesota River at Mankato, Minnesota 1970 2014 44  38,192 22,600 1.53 1.52 6.11 0.955 3.25
05330000 Minnesota River near Jordan, Minnesota 1970 2014 44  41,524 23,900 1.49 1.48 6.90 0.932 3.39
05330920 Minnesota River at Fort Snelling State Park 2004 2014 10  43,318 35,700 2.13 2.11 6.08 0.625 1.70
05331000 Mississippi River at St. Paul, Minnesota 1970 2014 44  94,326 51,900 1.42 1.41 5.98 0.833 1.72
05331580 Mississippi River below L&D #2 at  

Hastings
1995 2014 19  95,095 64,300 1.75 1.73 6.00 0.571 1.81

05344500 Mississippi River at Prescott, Wisconsin 1970 2014 44  114,831 72,700 1.64 1.62 5.01 0.738 1.32
05378500 Mississippi River at WInona, Minnesota 1970 2014 44  151,741 105,000 1.79 1.77 5.43 0.659 1.10
05389500 Mississippi River at McGregor, Iowa 1970 2013 43  173,016 117,000 1.75 1.73 6.04 0.564 0.99
05420500 Mississippi River at Clinton, Iowa 1970 2014 44  219,410 154,000 1.82 1.80 4.79 0.698 0.73
05465500 Iowa River at Wapello, Iowa 1970 2014 44  32,040 41,600 3.36 3.33 2.78 1.023 2.87
05474500 Mississippi River at Keokuk, Iowa 1970 2014 44  305,021 214,000 1.82 1.80 5.03 1.045 1.13
05586100 Illinois River at Kingston Mines, Illinois 1970 2014 44  40,545 55,600 3.55 3.51 3.24 0.791 1.00
05586100 Illinois River at Valley City, Illinois 1970 2014 44  68,550 75,300 2.84 2.82 6.27 0.929 0.93
05587450 Mississippi River at Grafton, Illinois 1970 2014 44  439,076 321,000 1.89 1.87 6.31 1.000 0.79
06054500 Missouri River at Toston, Montana 1970 2014 44  37,600 17,400 1.20 1.19 5.71 0.864 1.40
06065500 Missouri River below Hauser Dam near Helena, 

Montana
1994 2014 20  43,257 9,650 0.58 0.57 12.90 0.550 3.42



10  


A Hydrogeom
orphic Classification of Connectivity of Large Rivers of the Upper M

idw
est, United States

Table 2.  Hydrologic characteristics of US Geological Survey streamflow gaging stations for large rivers of the Upper Midwest.—Continued

[ID, identifier; km2, square kilometer; ft3/s, cubic foot per second; (ft3/s)/mi2, cubic foot per second per square mile; Q, discharge magnitude at return interval indicated by subscript]

Station ID Streamflow-gaging station

Hydrologic record

Drainage area 
(km2)

Bankfull1  
(2-year)  

discharge  
(ft3/s)

Unit 
bankfull 

discharge 
([ft3/s]/mi2)

Mean annual 
days above 

bankfull  
discharge days

Mean  
annual duration 
of events above 

bankfull  
discharge days

Number of 
mean annual 
events above 

bankfull stage 
per year

Flood  
connectivity 

index  
(Q100−Q2)/Q2

Begin 
year

End 
year

Number 
of  

years

06066500 Missouri River below Holter Dam near Wolf 
Creek, Montana

1970 2014 44  43,956 11,000 0.65 0.64 10.62 0.750 2.58

06078200 Missouri River near Ulm, Montana 1970 2014 44  53,676 13,500 0.65 0.64 10.16 0.810 2.16
06090800 Missouri River at Fort Benton ,Montana 1970 2014 44  63,437 20,100 0.82 0.81 8.96 0.591 2.19
06109500 Missouri River at Virgelle, Montana 1970 2014 44  88,120 21,300 0.63 0.62 8.03 0.773 2.21
06115200 Missouri River near Landusky, Montana 1970 2014 44  105,058 24,600 0.61 0.60 6.96 0.750 3.15
06177000 Missouri River near Wolf Point, Montana 1970 2014 44  210,926 15,900 0.20 0.19 5.03 1.364 2.21
06185500 Missouri River near Culbertson, Montana 1970 2014 44  234,679 17,300 0.19 0.19 7.16 0.860 2.71
06295000 Yellowstone River at Forsyth, Montana 1977 2014 37  102,902 43,900 1.10 1.09 4.43 0.784 1.41
06309000 Yellowstone River at Miles City, Montana 1970 2014 44  123,682 46,700 0.98 0.97 4.30 0.744 1.16
06327500 Yellowstone River at Glendive, Montana 2002 2014 12  171,191 54,000 0.82 0.81 3.58 0.545 1.30
06329500 Yellowstone River near Sidney, Montana 1970 2014 44  177,074 49,200 0.72 0.71 3.93 0.841 1.32
06342500 Missouri River at Bismarck, North Dakota 1970 2014 44  477,781 33,500 0.18 0.18 14.09 1.364 1.72
06423500 Cheyenne River near Wasta, South Dakota 1970 2014 44  32,809 8,990 0.71 0.70 0.49 0.349 3.08
06475000 James River near Redfield, South Dakota 1970 2014 44  35,657 1,410 0.10 0.10 11.38 0.444 15.24
06477000 James River near Forestburg, South Dakota 1970 2014 44  45,087 2,320 0.13 0.13 25.26 0.568 18.18
06478500 James River near Scotland, South Dakota 1970 2014 44  52,938 3,730 0.18 0.18 15.07 0.523 16.00
06486000 Missouri River at Sioux City, Iowa 1970 2014 44  816,531 52,300 0.17 0.16 11.23 0.795 1.70
06610000 Missouri River at Omaha, Nebraska 1970 2014 44  837,549 69,000 0.21 0.21 6.51 1.045 1.45
06768000 Platte River near Overton, Nebraska 1970 2014 44  144,308 5,600 0.10 0.10 6.97 0.860 4.38
06770500 Platte River near Grand Island, Nebraska 1970 2014 44  147,769 6,620 0.12 0.11 3.41 0.517 2.97
06774000 Platte River near Duncan, Nebraska 1970 2014 44  151,998 8,550 0.15 0.14 4.59 0.886 2.39
06807000 Missouri River at Nebraska City, Nebraska 1970 2014 44  1,061,060 92,900 0.23 0.22 3.88 1.182 1.48
06818000 Missouri River at St. Joseph, Missouri 1970 2014 44  1,076,801 129,000 0.31 0.31 4.05 1.023 1.33
06887500 Kansas River at Wamego, Kansas 1970 2014 44  141,694 28,100 0.51 0.51 2.95 1.045 2.88
06889000 Kansas River at Topeka, Kansas 1970 2014 44  145,385 42,000 0.75 0.74 0.81 0.909 2.69
06891000 Kansas River at Lecompton, Kansas 1970 2014 44  149,845 51,200 0.88 0.88 0.79 0.955 2.50
06893000 Missouri River at Kansas City, Missouri 1970 2014 44  1,240,846 161,000 0.34 0.33 3.11 1.250 1.60
06895500 Missouri River at Waverly, Missouri 1970 2014 44  1,245,459 168,000 0.35 0.35 3.62 1.167 1.70
06906500 Missouri River at Glasgow, Missouri 2000 2014 14  1,278,781 212,000 0.43 0.42 3.77 0.929 1.00
06909000 Missouri River at Boonville, Missouri 1970 2014 44  1,283,395 236,000 0.48 0.47 2.85 1.091 1.34
06926000 Osage River near Bagnell, Missouri 1970 2014 44  35,885 49,700 3.59 3.55 3.94 1.045 1.68
06934500 Missouri River at Hermann, Missouri 1970 2014 44  1,339,273 292,000 0.56 0.56 2.89 0.705 1.36
06935965 Missouri River at St. Charles, Missouri 2000 2014 14  1,343,117 268,000 0.52 0.51 2.61 0.929 0.83
07010000 Mississippi River at St. Louis, Missouri 1970 2014 44  1,786,551 544,000 0.79 0.78 5.63 0.932 0.86
07020500 Mississippi River at Chester, Illinois 1982 2014 32  1,816,284 560,000 0.80 0.79 5.76 0.955 0.84
07022000 Mississippi River at Thebes, Illinois 1970 2014 44  1,828,075 584,000 0.83 0.82 5.70 0.818 0.83
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Table 3.  Hydrologic metrics used to statistically classify 
connectivity in large rivers of the Upper Midwest.

Metric Abbreviation Explanation

Bankfull flood 
magnitude

BF_Q Magnitude of the bankfull flood, 
approximated as the 2-return 
flow, or 50-percent annual 
exceedance probability flood; 
indicates size of river.

Unit bankfull flood 
magnitude

BF_QU Bankfull flood magnitude  
divided by contributing  
drainage area; indicates  
hydroclimatology of river.

Flood index INDEX Magnitude of 100-year  
recurrence-interval flood  
divided by magnitude of 
2-year recurrence-interval 
flood; indicates variance in 
flood-frequency distribution.

Average number of 
bankfull floods 
per year

BF_NUM Average number of bankfull 
floods (and greater) per year; 
indicates frequency of  
connectivity events. 

Average annual  
duration of bank-
full floods

BF_DUR Average total days per year with 
floods greater than bankfull; 
indicates duration of  
connectivity events.

Geomorphic Classification

Geomorphic classification followed the same main steps 
as those for hydrologic classification but was based on seg-
ments rather than gage sites. River segments were derived 
by arbitrarily dividing rivers into 10-kilometer (km) sec-
tions, beginning at the downstream-most location of each 
river (some shorter segments exist at ends of the large-river 
sections). This resulted in 1,172 river segments along rivers 
with Strahler stream orders greater than 6 as calculated by 
NHD Plus (McKay and others, 2014). Floodplain width and 
percentage of leveed attributes were summarized by using 
the mean and standard deviation (or coefficient variation) of 
metrics calculated along cross-sectional river transects. To 
create transects, the valley-bottom centerline was delineated 
along each river (see example in fig. 2). The centerline was 
smoothed using the ArcGIS tool “Smooth Line” using the 
PAEK smoothing algorithm and a tolerance of 2 km. Tran-
sects were then generated perpendicular to the valley-bottom 
centerline using the “Perpendicular Transects Tool” (Ferreira, 
2014). The tool was parameterized to create transects every 
mile, and overlapping transects were edited so that they did 
not cross one another (Rohweder, 2019). Five variables were 
used to assess geomorphic connectivity potential: channel 
sinuosity, average floodplain width, standard deviation of 
floodplain width, average percentage of length of transects 
behind (landward of) levees, coefficient of variation of transect 
length behind levees (table 4).

The lateral width of floodplains was delineated using a 
method that incorporated interpolating a water-surface eleva-
tion. The intersection of the water surface and land elevation 
at the outermost edge of the floodplain was used to delineate 
the extent of the floodplain. Water-surface elevations approxi-
mating the 0.2-percent annual exceedance probability flood 
were used when available; and where that information was not 
available, we used elevations approximating the 0.2-percent 
annual exceedance probability flood under the assumption 
that such floods would completely over-top water-control 
structures within the valley such as levees, floodwalls, and 
roadways. The water-surface elevations were documented at 
least every 20 miles along the river reach being analyzed and 
more often where it was deemed necessary, including areas 
of rapid longitudinal elevation change. These elevations were 
attributed to the corresponding 1-mile transect, and interpola-
tion of water-surface elevations between each 1-mile transect 
was completed using the ArcGIS (ESRI, Redlands, CA) tool 
“topo to Raster.” Within the tool, parameters were chosen to 
create an interpolated surface using the transects as the input 
feature layer, the elevation values generated within that layer 
as the input field, and an input type of contour. Then areas of 
the 1/3-arc second National Elevation Dataset that were less 
than the interpolated water surface were identified using the 
ArcGIS tool “Greater Than.” These areas represent the lateral 
extent of the floodplain valley bottom for further analyses. 
This raster dataset was then converted to the vector boundary 
dataset labeled “Derived valley-bottom outline” (fig. 2)

Table 4.  Geomorphic metrics for 10-kilometer segments used in 
statistical classification of connectivity, large rivers of the Upper 
Midwest.

Metric Abbreviation Explanation

Channel sinuosity SIN Total sinuosity for the 10-kilo-
meter segment calculated by 
dividing segment length by 
the straight-line distance  
between the segment end 
points.

Average floodplain 
width

FPW Average floodplain width 
calculated as average transect 
length across valley bottom.

Standard deviation 
of floodplain 
width

FPW_SD Variation of floodplain width 
calculated as standard  
deviation of transect length 
across valley bottom.

Average percentage 
of transects land-
ward of levees

LEV Average percentage of valley-
bottom transects on landward 
side of levees.

Coefficient of  
variation of 
percent transects 
landward of levee

LEV_CV Variation in leveed condition 
calculated as variation of 
percentage of valley-bottom 
transects on landward side of 
levees.
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Figure 2.  An example of the valley-bottom centerline used to derive perpendicular river transects. Also shown is an interpolated 
water surface, which was used in combination with river transects and the underlying digital elevation model to delineate the 
extent of the valley bottom. Data source: Rohweder (2019).

Once the valley bottom was derived, transects at 1-mile 
spacing (see example in fig. 3) were extended until they inter-
sected the derived valley bottom outline using the “Extend 
tool” in ArcGIS. Transects that extended up into the val-
leys of connecting tributaries were not included because the 
resulting values were very large and a source of spatial bias. 
Inclusive features within the derived valley-bottom outline, 
such as raised plateaus, were removed. The total length of 
these extended transects was then calculated. Figure 3 shows 
transects extended to the valley-bottom outline. The aver-
age and standard deviation of the length of transects that 
intersected each 10-km river segment were then calculated 
and used as estimates of average and standard deviation of 
floodplain width. Finally, we merged the leveed areas from 
the U.S. Army Corps of Engineers National Levee Data-
base (U.S. Army Corps of Engineers, 2014, 2015) with the 

floodplain-width transects. The average percentage of transects 
on the landward side of levees and coefficient of variation of 
the length of the transects that were landward of the leveed 
area polygons were then calculated (fig. 3).

Sinuosity was measured as the deviation of a line from 
the shortest possible path between the two endpoints of that 
line. The sinuosity index is calculated by dividing the length 
of the river segment by the shortest possible distance between 
the endpoints of that line and was calculated for each indi-
vidual segment using an ArcGIS python toolbox. The linear 
representation of rivers in our study was taken from the NHD 
Plus version 2 NHDFlowline data source (McKay and others, 
2014). These stream network segments extend uninterrupted 
from the mouth of the stream, upstream to the point it becomes 
less than stream order 7. Sinuosity is an index that ranges from 
1 (perfectly straight line) to 2 or higher (highest sinuosity).
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between river segment end points. Data source: Rohweder (2019).

Statistical Analysis
The 5 variables described above were measured for 

1,172 10-km river segments and used in multivariate analyses 
similar to the hydrologic analysis. We explored geomorphic 
variables statistically using scripts written in R (R Develop-
ment Core Team, 2013). The steps include the following:

1.	 Normalizing data by centering around the mean and 
scaling by the standard deviation.

2.	 Evaluating optimum number of clusters by creating a 
scree-plot of within-cluster sum of squares by num-
ber of clusters, to help select the number of k-means 
clusters that adequately describe the data, as well as 
other measures.

3.	 Completing a PCA of the scaled data to illustrate 
degree of separation of clusters.

4.	 Creating boxplots of scaled data by clusters to visu-
alize how clusters differ.

5.	 Attributing reaches with cluster numbers to map 
clusters.

Hydrogeomorphic Classification

The separate hydrologic and geomorphic classifications 
provide some insights into connectivity differences among 
rivers using two separate datasets. However, a combined 
classification that uses both sources of data would provide 
a more integrated understanding of connectivity. To do this, 
we assigned 10-km segments to representative streamgages 
so hydrologic characteristics could also be associated with 
each segment. Assignment of segments to streamgages is not 
an exact process and depends on judgement about how much 
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effect changing drainage area may have on segment-scale 
hydrology between streamgages. Generally, downstream seg-
ments were assigned to streamgages until a new streamgage 
location was encountered. If a large tributary entered the main 
stem between streamgages, the segments downstream of the 
tributary were assigned to the upstream or downstream gage, 
depending on judgement about relative influence. We used the 
same sequence of statistical analysis steps for the hydrogeo-
morphic database that we used for the separate hydrologic and 
geomorphic classifications.

Results—Potential for Hydrologic 
Connectivity of Large Rivers of the 
Upper Midwest

General Categorical Classification of Rivers

Large rivers of the Upper Midwest United States have 
been highly altered for socioeconomic benefits (fig. 4). Of 
11,654 km of river channel that qualify by our definition of 
large river, 45.3 percent have either been altered by a naviga-
tion pool (30.0 percent) or storage reservoir (15.3 percent). 
Somewhat more than half (54.6 percent) remains free flowing 
in the sense that they are not directly impeded by a reservoir, 
although all are affected to some extent by upstream reser-
voirs. The unimpounded reach type does not differentiate 
between segments that have been channelized, stabilized, or 
both, and those that have minimal channel alterations. By 
major river basin (Missouri, Upper Mississippi, and Ohio), 
the Missouri River Basin large rivers are notable for the lack 
of navigation pools, substantial proportion of storage reser-
voirs, and high percentage of unimpounded reaches (table 5). 
In contrast, large rivers of the Ohio and Upper Mississippi 
River basins have substantial proportion in navigation pools 
maintained by low-head dams and relatively low proportion in 
storage reservoirs.

Each of the three major river basins has substantial reser-
voir storage, when summed by total storage area in the entire 
basin (table 5). Reservoir storage is highest in the Missouri 
River Basin, due in large part to the five main-stem reservoirs 
of the Missouri River Reservoir System, which accounts for 
90 of the 168 cubic kilometers in the Missouri River Basin 
(fig. 5); however, reservoir storage is substantial throughout 
the Midwest.

Longitudinal Assessment of Connectivity

Longitudinal connectivity, as measured by spatial 
density of dams in the National Inventory of Dams (NID), 

varied among the rivers of the Upper Midwest. It is impor-
tant to note that connectivity measures based on dams in the 
NID are contingent on how complete the NID is and on the 
assumption that dams are the major impediment to network 
connectivity. For our simplified analysis we looked at total 
number of dams in the three main river systems (Missouri, 
Upper and Middle Mississippi, and Ohio), and number 
of dams along the large rivers in the classification dataset 
(table 6). Connectivity potential of these dams may vary by 
construction characteristics, including height and overall 
area of the impoundment, which would affect ability of the 
impoundment to transmit sediment and other transported 
constituents through the reservoir. Connectivity for fish 
migrations—an important ecological aspect for large rivers—
will vary as well by height, hydrology, and construction, 
and whether or not passage is possible through fish-passage 
structures or navigation locks.

If areal density of dams in the NID is assumed to be a 
surrogate metric for diminished total longitudinal connectiv-
ity, the Missouri River basin has the most at 0.015 dams per 
square kilometer, followed by the Upper Mississippi and the 
Ohio Rivers (table 6). If assessment of diminished connectiv-
ity is limited to dams on the main stems of the river seg-
ments that we have classified as large, the linear dam density 
of the Upper and Middle Mississippi River is greatest at 
0.016 dams per kilometer (dams/km), followed by the Ohio 
River (at 0.01 dams/km) and the Missouri at 0.005 dams/
km. Although the Missouri River large-river segments have 
the lowest density, they have the highest median height, 
followed by the Ohio and Upper Mississippi Rivers (fig. 6; 
table 6).

The navigation pools of the Upper Mississippi and Ohio 
Rivers contribute to the high spatial density, but the naviga-
tion dams are relatively low, are frequently opened to allow 
free flow of water at high flows, and allow some transport 
through the lock chambers at low flows—including upstream 
migration of native and invasive fishes (O’Connell and oth-
ers, 2011). The dams in the Missouri River drainage basin 
lack locks for navigation and are generally higher, presenting 
more persistent and formidable impediments to longitudinal 
connectivity. The high dams on the Missouri River main stem 
have prevented (so far) invasion by Asian carps upstream from 
the lowest dam at Gavins Point, S. Dak. (Nico and others, 
2018a, b). Although dams in the Missouri River large-river 
segments tend to be higher and therefore act to diminish con-
nectivity, the lack of navigation dams and locks on 1,300 km 
of the Lower Missouri River contributes to the most connected 
river sections among the Upper Midwest large rivers (fig. 7). 
This is due to the historical decision to develop navigation on 
the Missouri River using channel-training structures instead of 
dams and locks (Ferrell, 1996). Because the Middle Missis-
sippi River is also free flowing, connectivity of the Missouri 
and Mississippi results in as much as 3,080 km of connected 
large-river habitats.
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Rohweder (2019).
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Table 5.  Percentages and lengths of segment types by major large rivers of the Upper Midwest.

Segment type Unit
Cheyenne 

River
Cumberland 

River
Green  
River

Illinois 
River

Iowa  
River

James 
River

Kansas  
River

Minnesota 
River

Unimpounded Percent 92.7 8.2 29.4 0.0 100.0 100.0 100.0 94.4
Kilometer  507  40  71  -  47  475  290  501 

Navigation pool Percent 0.0 50.9 70.6 100.0 0.0 0.0 0.0 5.6
Kilometer  -  249  170  388  -  -  -  30 

Storage reservoir Percent 7.3 40.9 0.0 0.0 0.0 0.0 0.0 0.0
Kilometer  40  200  -  -  -  -  -  - 

Segment type Unit
Mississippi 

River
Missouri 

River
Ohio  
River

Osage 
River

Platte  
River 

Wabash 
River

Yellowstone 
River

All  
Rivers

Unimpounded Percent 23.1 66.1 0.0 35.9 100.0 100.0 100.0 55.1
Kilometer  330  2,457  -  130  518  393  664  6,422 

Navigation pool Percent 75.0 0.0 100.0 0.0 0.0 0.0 0.0 29.8
Kilometer  1,070  -  1,567  -  -  -  -  3,474 

Storage reservoir Percent 1.9 33.9 0.0 64.1 0.0 0.0 0.0 15.1
Kilometer  26  1,260  -  232  -  -  -  1,758 

Segment-Scale Classification of Lateral 
Connectivity

Hydrologic Analysis of Lateral Connectivity

The spatial distributions of hydrologic measures of 
connectivity indicate strong east-west differences, as would 
be expected from the existing precipitation gradients (fig. 8). 
When normalized by drainage area, bankfull discharge varia-
tion documents the increased discharge by unit drainage area 
in the Ohio and Upper Mississippi River Basins compared to 
the Missouri River Basin (fig. 9).

The average duration of floods that are greater than the 
bankfull threshold are noticeably higher in the west and north 
of the study area, presumably reflecting the effect of annual 
snowmelt flooding. (fig. 10). Regardless of the number of 
qualifying events, the average duration of floods was calcu-
lated as the average consecutive days of flow above the thresh-
old. The James River stands out as an anomaly with very high 
durations. The flood index is a measure of relative influence 
of large (1-percent annual exceedance probability floods) 
relative to smaller (50-percent annual exceedance probability 
floods; fig. 11). As such it measures the skewness and breadth 
of the flood-frequency distribution. The large values of flood 
index on the James River again stand out as anomalies, fol-
lowed by high values on the Platte River. In contrast, the 
number of bankfull events per year at or above the bankfull 
flow, is anomalously small on the James River compared to 
other rivers (fig. 12). The statistically expected number of 
bankfull events per year is 0.5, based on the flood-frequency 

calculation; hence, smaller numbers indicate a distribution 
with fewer small floods per year and a larger number indi-
cates more frequent floods over the bankfull threshold each 
year. The cluster of values greater than one on the Kansas and 
Lower Missouri Rivers indicate a tendency for these rivers to 
experience multiple floodplain-connecting floods greater than 
the bankfull threshold each year.

The hydrologic data were analyzed to identify naturally 
occurring clusters using the k-means R statistical function (R 
Development Core Team, 2013). First, the data were scaled by 
dividing by the mean. Next, an optimal number of clusters was 
evaluated using the R NbClust function (Charrad and others, 
2014). NbClust runs 30 indices—including scree plots—to 
determine the optimum number of clusters designated by most 
of the indices. Of the 30 indices, 7 indices (the majority) indi-
cated 3 was the optimum number. The three-cluster class was 
not considered to be particularly informative, so we proceeded 
to the next-ranked number of clusters (five) that was sup-
ported by five indices. Five hydrologic clusters were retained 
for further analysis although useful information could also be 
extracted using other numbers of clusters.

The data were analyzed subsequently by a k-means 
cluster for five clusters using the R k-means function. The 
separation of clusters in multivariate space is illustrated by 
bivariate plots of the first two components of a PCA (fig. 13); 
this was accomplished using the clusplot function in R. The 
cluster numbers were added back to the dataset and boxplots 
of the nonscaled values of each variable were developed to 
illustrate and interpret what each cluster represents (fig. 14). 
Cluster numbers were also added back as attributes to the 
reach shapefile to illustrate the geographic distribution of 
clusters (fig. 15).
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Figure 5.  The distribution of reservoir storage associated with dams in the Upper Midwest. Note that only reservoirs with greater than 0.05 cubic 
kilometer (40,000 acre-feet) of storage are shown. Data source: Jacobson and Rohweder (2019).
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Table 6.  Number of dams, dam areal density in the three main drainage basins, and number, linear density, and median height of 
dams in the large rivers of the Upper Midwest. 

[Data are from U.S. Army Corps of Engineers (2013). km3, cubic kilometer; km2, square kilometer; m, meter]

Rivers Number
Drainage 
area (km2)

Minimum reservoir 
storage in basin 

(km3)

Dam density  
(number per km2)

Number of dams 
on large rivers

Large-river  
dam density  

(number per km2)

Large-river dam  
median height (m)

Missouri River 19,627 1,349,283 168.3  0.015 30 0.005 20.1
Upper and Middle 

Mississippi 
Rivers

5,273 492,027 45.4  0.011 39 0.016 12.8

Ohio River 3,782 421,962 53.8  0.009 26 0.010 18.1
Total 28,682 2,263,271  268  0.013 95 0.008 13.4

Geomorphic Analysis of Lateral Connectivity
The spatial distributions of geomorphic variables that 

we hypothesize affect lateral connectivity show variable 
geographic patterns. Floodplain width is a metric for how 
much area is potentially available for lateral connectivity; as 
indicated in the previous section describing calculation of the 
variables, floodplain width has been identified nominally as 
the valley bottom delineated by bluffs or clearly demarcated 
valley walls. Although floodplain width generally increases 
downstream with larger river size, there are also some instances 
of geologically influenced floodplain width (fig. 16). Wide 
floodplain widths on the Platte River are reflective of a wide, 
braided floodplain deposited within sandy, highly erodible 
surficial deposits. The wide floodplain of the Lower Missouri 
River upstream from the Platte River confluence results from 
deposition of proglacial outwash during multiple episodes of 
Pleistocene glaciations. The Missouri River floodplain varies 

substantially between the Platte and the Mississippi River con-
fluence because of variation in erodibility of bedrock and the 
history of channel changes during the Pleistocene. Variations in 
floodplain width along the Mississippi River relate to conflu-
ences, generally increasing where rivers come together (for 
example, the Missouri, Mississippi, and Illinois rivers conflu-
ence). Although most of the upper Ohio River has a relatively 
narrow floodplain, areas of increased floodplain width are 
apparent near the Wabash River confluence and upstream on 
the Wabash, which was affected by extensive glacial outwash 
deposits. The standard deviation of floodplain widths (within a 
segment) reflects some of the broad geologic controls as well 
as more local variations (fig. 17).

Levees directly diminish connectivity potential. Leveed 
segments are concentrated in the wide, dominantly agricul-
tural floodplains of the Kansas, Missouri, Mississippi, Illinois, 
and Wabash Rivers (fig. 18), although small areas of levees 
and floodwalls also exist at local scale, and some agricul-

tural levees with low protection 
may not be well represented in 
the National Levee Database 
(U.S. Army Corps of Engineers, 
2014, 2015). We used the coef-
ficient of variation of percent-
age of leveed area to indicate 
segments where levee protec-
tion was more or less variable 
(fig. 19).
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Figure 7.  All dams from the National Inventory of Dams (NID), and NID dams on large-river segments, with and without navigation locks, symbolized in 
proportion to dam height, Upper Midwest. Data source: Jacobson and Rohweder (2019).
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Figure 8.  The distribution of bankfull discharge among large rivers of the Upper Midwest. Data source: Jacobson and Rohweder (2019).
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Figure 9.  The distribution of bankfull discharge normalized by upstream drainage area for large rivers of the Upper Midwest. Data source: Jacobson and 
Rohweder (2019).
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Figure 10.  The distribution of average duration of floods greater than bankfull, large rivers of the Upper Midwest. Data source: Jacobson and Rohweder 
(2019).
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Figure 11.  The distribution of the flood index calculated from the difference of the 1-percent annual exceedance probability flood and the 50-percent 
annual exceedance probability flood, divided by the 50-percent annual exceedance probability flood, to provide to provide a measure of temporal variability 
in connection events, large rivers of the Upper Midwest. Data source: Jacobson and Rohweder (2019).
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Figure 12.  The distribution of numbers of flood events greater than bankfull, a measure of frequency of connectivity, large rivers of the Upper Midwest. 
Data source: Jacobson and Rohweder (2019).
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Figure 13.  The principal 
components analysis biplot 
of first two components 
for hydrologic metrics of 
connectivity. Data source: 
Jacobson and Rohweder (2019).

Sinuosity—calculated as the ratio of channel length to the 
shortest straight-line distance between the endpoints of each 
10-km segment—is somewhat greater among smaller river seg-
ments because of the constant numerator and river scaling (fig. 
20). Sinuosity is included as a connectivity metric because it is 
indicative of the potential for hydraulic interaction of a channel 
with its floodplain; in addition to increasing channel/floodplain 
interface with increasing sinuosity, a more sinuous channel 
provides more opportunities for water to be directed onto flood-
plains at bends. The James and Wabash Rivers are notable for 
their relatively large sinuosity. By contrast, the Platte River—
with its highly braided channel through a sandy floodplain—is 
relatively straight at the 10-km segment scale.

The geomorphic data were analyzed using the same 
sequence of steps as the hydrologic analysis. NbClust returned 
two clusters as the optimum (with nine indices supporting). 
We considered two clusters to be uninformative for our clas-
sification purposes and therefore selected five clusters, which 
had the next most-supported number of indices with four.

The data were subsequently subjected to a k-means 
cluster for five clusters using the R k-means function. The 
separation of clusters in multivariate space is illustrated by 
bivariate plots of the first two components of a PCA (fig. 21); 
this was accomplished using the clusplot function in R. The 
cluster numbers were added back to the dataset and boxplots 
of the nonscaled values of each variable were developed to 
illustrate and interpret what each cluster represents (fig. 22). 
Cluster numbers were also added back as attributes to the 
reach shapefile to illustrate the geographic distribution of 
clusters (fig. 23).

Hydrogeomorphic Analysis of Lateral 
Connectivity

Similar to the preceding analyses of hydrologic and geo-
morphic variables, the hydrogeomorphic variables assigned to 
each 10-km reach were analyzed by determining the optimum 
number of clusters, k-means clustering, and PCA. NbClust 
returned eight clusters as the optimum, and the clusplot func-
tion was used to illustrate the clusters in multivariate space 
(fig. 24); this was accomplished using the clusplot function in 
R. The cluster numbers were added back to the dataset, and 
boxplots of the nonscaled values of each variable were devel-
oped to illustrate and interpret what each cluster represents 
(fig. 25). Cluster numbers were also added back as attributes 
to the reach shapefile to illustrate the geographic distribution 
of clusters (fig. 26).

Hydrogeomorphic Assessment of 
Connectivity of Large Rivers of the 
Upper Midwest

Categorical, hydrologic, geomorphic, and combined 
hydrogeomorphic classifications illustrate the breadth of varia-
tion across large rivers of the Upper Midwest. Recognition of 
that variation may be useful in organizing understanding of 
the rivers and for structuring sampling designs of large-river 
ecological characteristics.
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Figure 14.  Distributions of hydrologic metrics by hydrologic cluster. Data source: Jacobson and Rohweder (2019).
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Figure 15.  The distribution of hydrologic clusters, large rivers of the Upper Midwest. Data source: Jacobson and Rohweder (2019).
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Figure 16.  The average floodplain width within 10-kilometer segments, large rivers of the Upper Midwest. Data source: Jacobson and Rohweder (2019).
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Figure 17.  Standard deviations of floodplain width within 10-kilometer segments, large rivers of the Upper Midwest. Data source: Jacobson and Rohweder 
(2019).
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Figure 18.  The percentage of river segments protected by levees, large rivers of the Upper Midwest. Data source: Jacobson and Rohweder (2019).
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Figure 19.  The levee coefficient of variation of protection by levees within a 10-kilometer river segment, large rivers of the Upper Midwest. Data source: 
Jacobson and Rohweder (2019).
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Figure 20.  Channel sinuosity for each 10-kilometer segment, large rivers of the Upper Midwest. Data source: Jacobson and Rohweder (2019).
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Figure 21.  The principal components analysis biplot of the first two components for geomorphic metrics of connectivity. Data 
source: Jacobson and Rohweder (2019).

General Categorical Classification

We classified river segments into broad categories 
indicative of the degree of anthropogenic alteration: unim-
pounded, navigation pools, and storage reservoirs (fig. 4). 
This integrated classification simplifies some segments that 
grade from one type to another. For example, inter-dam 
reaches of the navigable Mississippi, Illinois, and Ohio Riv-
ers are lumped as navigation pools, although in detail they 
are typically composed of a complex of alluvial reaches 
directly downstream from the navigation dams, grading 
downstream into variably connected backwaters, and then 
into impounded pools (Jacobson and others, 2010; Alexander 
and others, 2012; Skalak and others, 2013; Remo, 2016). 
Assignment to segment type is also affected by the 10-km 
resolution used in the classification because each 10-km seg-
ment is assigned to only one dominant type rather than being 
split into subsegments.

The general categories are useful for understanding 
the breadth of river segment types that exist in these riv-
ers, but their application to lateral connectivity is somewhat 
ambiguous. Unimpounded segments are those without direct 
impoundment by storage reservoirs or navigation dams, 

although the hydrology may be controlled to a considerable 
extent by upstream reservoirs. Connectivity in unimpounded 
segments is controlled in part by the hydrology of the segment 
and may be increased or diminished by the degree of upstream 
flow regulation. Reservoir storage segments are no longer 
riverine, and in most cases large parts of the floodplains in 
these former riverine segments are completely inundated. In a 
sense, complete inundation has maximized connectivity but at 
the expense of some riverine functions, such as hydrologically 
driven flow pulses that episodically connect the floodplain 
(Junk and others, 1989). Navigation pool segments are similar 
to inter-reservoir segments (Skalak and others, 2013) in that 
they typically comprise an alluvial reach downstream from 
the upstream navigation dam, a reach of enhanced connectiv-
ity (the aquatic-terrestrial transition zone [ATTZ], Junk and 
others, 1989), and a downstream permanently inundated pool 
(fig. 27). The presence and extent of ATTZs in navigation pool 
segments contribute substantial lateral connectivity to this 
segment type. Not all navigation pools have the longitudinal 
variation that is apparent in the Mississippi River (fig. 27). For 
example, navigation pools in the Ohio River, and tributaries, 
tend to be narrower and lack the extensive ATTZs of the Mis-
sissippi River.
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Figure 24.  The principal components analysis biplot of the first two components for combined hydrogeomorphic metrics of 
connectivity. Data source: Jacobson and Rohweder (2019).

By type, most river length among these rivers is in unim-
pounded segments, followed by navigation pool, and stor-
age reservoir segments (table 5). The Yellowstone, Wabash, 
Platte, James, Iowa, and most of the Kansas River main stems 
are categorized as unimpounded because they lack storage 
reservoir and navigation dams (although they may have other 
low-head diversions that are not included in the NID, like 
diversions on the Kansas River). In contrast, 34 percent of the 
length of the main-stem Missouri River exists under storage 
reservoirs operated by the U.S. Army Corps of Engineers and 
Bureau of Reclamation; the reservoir system stores more than 
91 cubic kilometers (75 million acre-feet) of water. The Illi-
nois, Ohio, and most of the Mississippi River upstream from 
the Ohio River confluence are in navigation pools.

Longitudinal Connectivity

Our simple analysis of channel network connectivity 
documents the range of variability and similarities among 
large rivers of the Upper Midwest. Considering all dams 
throughout each basin, the three main drainage basins have 
similar spatial densities of dams (table 6) although the dam 
heights in the Mississippi River basin are notably lower than 
the Missouri and Ohio (fig. 6). Among dams on the large-river 
segments only, those on the Missouri River are substantially 

higher than those of the Mississippi and Ohio, indicating the 
influence of large, main-stem storage reservoirs in diminishing 
connectivity (figs. 6, 7).

The effects of diminished connectivity are most apparent 
in changes to sediment fluxes associated with sedimentation 
in large reservoirs (Wohl and others, 2015). For example, the 
large, main-stem reservoirs on the Missouri River trap nearly 
100 percent of the input sediment load, resulting in incision of 
channels directly downstream from the dams and simplifica-
tion of habitats (Williams and Wolman, 1984; Schmidt and 
Wilcock, 2008; Jacobson and others, 2009; Skalak and others, 
2013). Loss of connectivity of sediment fluxes from Upper 
Midwest river systems has been associated with sediment defi-
cits and increased coastal flooding along the Gulf of Mexico 
(Kemp and others, 2016).

Diminished connectivity is not necessarily detrimental 
to all environmental concerns and can have beneficial effects. 
Deltaic sediment accumulations in the headwaters of reser-
voirs provide diverse habitats that may support novel plant 
communities (Dixon and others, 2015; Johnson and others, 
2015; Volke and others, 2015) or that have numerous sand-
bars that support reproduction of threatened and endangered 
shorebirds (Catlin and others, 2015). On the other hand, 
deltaic sedimentation may also result in increased flood hazard 
to nearby communities (Skalak and others, 2013; George and 
others, 2017).
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Figure 25.  Distributions of hydrogeomorphic variables by hydrogeomorphic cluster. Data source: Jacobson and Rohweder (2019).
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Figure 25.  Distributions of hydrogeomorphic variables by hydrogeomorphic cluster. Data source: Jacobson and Rohweder (2019).—Continued
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Figure 26.  The distribution of hydrogeomorphic clusters within 10-kilometer river segments, large rivers of the Upper Midwest. Data source: Jacobson 
and Rohweder (2019).
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Reservoirs slow the advection of water and transported 
constituents through river networks, allowing for some 
additional environmental benefits. Although sediment deficits 
downstream from reservoirs can be problematic, contaminants 
and carbon associated with sediments may be effectively 
sequestered in reservoir sediments. In addition, reservoirs can 
attenuate fluxes of nutrients like nitrogen and phosphorous. 
In the Missouri River drainage basin, the large main-stem 
reservoirs are successful in attenuating 76 percent of the total 
nitrogen (TN) and 88 percent of the total phosphorous sup-
plied to them (Brown and others, 2011). The navigation dams 
and pools in the Upper Mississippi River are less efficient at 
removing TN, largely because the channels advect nitrogen 
(and phosphorous) through the pools, bypassing backwaters 
and floodplains, resulting in short residence times (Schramm 
and others, 2015; Loken and others, 2018). The entire Upper 
Mississippi River system of navigation pools has been esti-
mated to remove only 9.5 percent (Schramm and others, 2015) 
and 12.5 percent (Loken and others, 2018) of the TN deliv-
ered to it. In this sense, the Upper Mississippi River is more 

longitudinally connected than the Upper Missouri River, but 
less laterally connected, and therefore less effective at seques-
tering or processing nutrient loads.

Longitudinal connectivity of river systems is of para-
mount concern for fish migrations. Some native species of 
these rivers, like the endangered pallid sturgeon (Scaphi-
rhynchus albus), have evolved life cycles that include long 
upstream migrations (100s of kilometers) followed by com-
mensurate distances of downstream dispersal of progeny 
(DeLonay and others, 2016). Dams present formidable, often 
impassable, obstacles to upstream migration of adult fish, and 
reservoirs present habitats thought to be lethal to very young 
fish (Guy and others, 2015; Jordan and others, 2016). Hence 
dams and reservoirs sever connectivity of migration patterns 
and may fragment rivers into segments that function poorly for 
some large-river fish species. River segments without storage 
reservoirs and navigation dams present the most opportunity 
for those native fishes whose reproductive ecology requires 
long-distance dispersal. The Lower Missouri River, plus 
segments of the James and Platte Rivers, combine with the 
Middle and Lower Mississippi Rivers to provide several thou-
sand kilometers of connected, unimpounded channel.

Dams and reservoirs also serve as impediments to 
invasions of non-native flora and fauna, a situation where 
diminished connectivity produces ecological benefits. The 
high dams of the Missouri River main stem have (to date) 
prevented invasion of Asian carps upstream from Gavins Point 
Dam in South Dakota, whereas the low-head navigation dams 
of the Upper Mississippi, Illinois, and Ohio Rivers have only 
slowed the invasion (O’Connell and others, 2011; Nico and 
others, 2018a, b; fig. 7). It has also been argued that once an 
invading organism reaches a reservoir, the water-quality con-
ditions may provide habitats that are supportive of the invad-
ers, thereby providing a foothold for expansion in a drainage 
basin (Havel and others, 2005).

In contrast to the effects of dams and reservoirs in dimin-
ishing connectivity, channelization of rivers can concentrate 
velocities and fluxes, increasing longitudinal connectivity, 
but often at the expense of lateral connectivity. Channeliza-
tion with river-training structures is ubiquitous throughout 
the Lower Missouri River (downstream from Sioux City, 
Iowa) and the Middle and Lower Mississippi Rivers. Channel 
training structures are designed to focus current velocities to 
maintain sediment transport and, therefore, navigable depths. 
At the same time, these structures speed downstream advec-
tion of water, nutrients, carbon, and sediment, essentially 
increasing connectivity of the river segments. In river seg-
ments where channelization is accompanied by levees, lateral 
connectivity is greatly diminished while downstream longitu-
dinal connectivity is enhanced. Channelization can present fur-
ther challenges to fishes that depend on upstream migrations 
for completion of their life cycles, and enhanced downstream 
transport of progeny may result in transport of larval fish into 
nonsupportive environments or beyond their native ranges 
(McElroy and others, 2012; Erwin and Jacobson, 2015).
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Segment-Scale Classification of Lateral 
Connectivity

Our segment-scale classification combines statistical 
assessment of flow metrics, which were selected for their 
application to hydrologically driven lateral connectivity, with 
geomorphic metrics related to mediation of hydrologically 
driven connectivity. We then combined the two metrics into 
an integrated hydrogeomorphic classification at the segment 
scale.

Hydrologic Clusters
Hydrologic variation among the large-river streamgages 

shows expected longitudinal variation, with higher bankfull 
flows in the east compared to the west (fig. 8). The longitu-
dinal variation is especially clear when bankfull flows are 
normalized by contributing drainage area (fig. 9); the Ohio 
River basin values are substantially higher than the Upper 
Mississippi River Basin values, which are, in turn, greater than 
the Missouri River Basin values.

Probably the most surprising hydrologic conditions 
among these large rivers are the anomalously high values of 
flood index for the James River in South Dakota (fig. 11). 
The flood index calculated for this report is the ratio of the 
magnitude of the 1-percent annual exceedance probability 
flood minus the magnitude of the 50-percent annual exceed-
ance probability flood, compared to the 50-percent annual 
exceedance probability flood. It is meant as a simple measure 
of the variance of the flood-frequency distribution: how much 
larger in magnitude the rare floods are compared to the more 
frequent floods. The duration of bankfull floods on the James 
River is also substantially longer than many of the other 
large rivers (fig. 10). The explanation for the James River 
hydrologic anomaly is not entirely clear; it is possible that a 
combination of low gradient, high sinuosity, and the existence 
of years with deep snowpack accumulations contribute to large 
volumes of water that evacuate slowly from the basin (Benson, 
1983).

The PCA by cluster (fig. 13) shows substantial overlap of 
the clusters but some useful relations. The number of bankfull 
events is positively loaded on component 2. The number of 
bankfull events per year is essentially a measure of flashi-
ness because the expected value of bankfull events per year 
is 0.5 by definition. Values greater than 0.5 indicate connect-
ing floods occur frequently during the year (and would not 
be measured as part of the annual peak series that was used 
to generate the flood frequency estimate). Some of the lowest 
values occur on the James River, and relatively high values 
occur throughout but with a tendency to increase toward the 
southern rivers (fig. 12). Number of bankfull events per year is 
expected to be less variable in rivers that experience one large 
annual snowmelt flood every year.

The PCA further indicates that flood index and duration 
of bankfull discharge are positively loaded on component 1, 

whereas bankfull discharge is negatively loaded on compo-
nent 1. This is indicative of longer duration discharges and 
steep flood-frequency curves being associated with snowmelt 
(Upper Mississippi and Missouri basins) and larger flow 
magnitudes being associated with Lower Mississippi and Ohio 
Rivers (figs. 8, 11, 12).

Boxplots of distributions of the hydrologic variables 
by cluster number provide additional explanation for the 
geographic distribution of hydrologic classes (figs. 14, 15). 
Cluster 1 stands out because the three stations on the James 
River, S. Dak., have extremely low values of bankfull dis-
charge, and unit bankfull discharge, but the highest values of 
the flood index and high values of duration. Cluster 2 stands 
out for having the highest bankfull discharge and lowest flood 
indexes; this cluster is associated with the Middle Mississippi 
River and the lower segments of the Ohio River main stem, 
rivers with high flows and relatively flat flood-frequency dis-
tributions. Cluster 3 is remarkable for having moderate values 
of all five variables, and cluster 3 segments are distributed 
among the Upper Mississippi, Upper and Lower Missouri, 
and Yellowstone Rivers. Cluster 4 is characterized by moder-
ate values of all hydrologic variables except number of events 
greater than 50-percent annual exceedance probability flood 
per year, where the median is equal to about one event per 
year. This latter characteristic is associated with highly regu-
lated parts of the Missouri River, where the high frequency 
of floodplain-connecting events may be associated with flow 
regulation, such as peak-following reservoir releases. Cluster 5 
is remarkable for having the highest range of unit bankfull 
discharge, and is associated with tributaries to the Ohio River 
that drain humid parts of the eastern United States.

Geomorphic Clusters

Geomorphic characteristics of large rivers result from 
both natural processes and human alterations to connectiv-
ity. Floodplain width—the fundamental metric for potential 
for floodplain connectivity—generally increases with river 
size, but the downstream trends are interrupted by geologic 
influences related to factors such as bedrock erodibility, 
Pleistocene history, and channel confluences (fig. 16). Based 
on floodplain width (and the covarying standard deviation 
of floodplain width), the rivers with the greatest geomorphic 
connectivity potential are parts of the Lower Missouri, Platte, 
and Wabash Rivers, and confluence-affected segments of the 
Missouri, Mississippi, Illinois, and Ohio Rivers.

The intensity of levee development can be seen as a met-
ric of diminished connectivity potential as well as an indicator 
where levee-setback decisions could increase actual connec-
tivity (fig. 18). Most of these segments are on the Missouri, 
Mississippi, and Illinois Rivers, where wide, levee-protected 
floodplains have provided opportunities for agricultural 
development as well as for municipal developments around 
large cities (for example, Omaha, Nebraska; Kansas City, Mo.; 
St. Louis, Mo.; and Cincinnati, Ohio).
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Sinuosity is greatest in upstream segments of the Mis-
souri and in some of the moderate and smaller rivers—for 
example, the James, Cheyenne, Minnesota, Osage, and 
Cumberland Rivers (fig. 20). The high sinuosity of these rivers 
may have importance to connectivity because increased bend 
curvature is associated with increased steering of velocity vec-
tors from the main channel to the floodplain during overbank 
(connecting) flows. Highly sinuous rivers are more likely 
to experience advection of transported constituents (water, 
organic carbon, sediment, nutrients) onto the floodplain com-
pared to low-sinuosity rivers, which rely more on diffusive 
transport when velocity vectors remain parallel to the channel. 
High sinuosity may also drive lateral infiltration of water into 
banks and alluvial aquifers during less-than-bankfull floods 
(Gomez-Velez and others, 2017).

PCA of the geomorphic segments by cluster document 
the five overlapping clusters and their relations to the variables 
(fig. 21). Mean floodplain width and standard deviation of 
valley width are correlated, increasing with both component 1 
and 2. Similarly, percent leveed and coefficient of variation of 
leveed are correlated and increase with component 1, decrease 
with component 2. Segment sinuosity is negatively loaded on 
component 1 and positively loaded on component 2. Boxplots 
(fig. 22) further define the relations:

•	 Cluster 1 is notable for having low values of every 
variable with the exception of sinuosity, for which it 
has the highest values.

•	 Cluster 2 is remarkable for having the widest flood-
plains and relatively high variation of floodplain width.

•	 Cluster 3 is remarkable for having low values for all 
five variables.

•	 Cluster 4 is notable for having the highest percentage 
of leveed area and relatively high variation of flood-
plain width.

•	 Cluster 5 is notable for having high percentages of 
leveed area and the highest values of leveed area varia-
tion.

In the mapped distribution of segments by cluster, leveed 
river segments stand out clearly as cluster 4 in the Missouri, 
Kansas, Mississippi, Illinois, and Wabash Rivers (fig. 23). 
Cluster 5 also has a high percentage of leveed area but differs 
from cluster 4 in also having very large variation of within-
segment leveed area. Wide river segments (mostly associated 
with cluster 2) are associated with the unleveed part of the 
Lower Missouri River, the Platte River, and some isolated 
segments along the Mississippi and Illinois Rivers. Clusters 1 
and 3 are juxtaposed in the Upper Missouri River, Yellowstone 
River, James River, Minnesota River, uppermost segments of 
the Mississippi River, and the Ohio River (and tributaries). 
These rivers are characterized by lack of levees and relatively 
narrow floodplains, with cluster 1 adding in higher values of 
sinuosity.

Hydrogeomorphic Clusters
Similar to the separate hydrologic and geomorphic clus-

ters, the combined hydrogeomorphic clusters overlap consid-
erably in PCA (fig. 24). Hydrologic variables load strongly on 
component 2, with unit bankfull discharge loading positively 
and flood index and average duration loading negatively on 
component 2 (and component 1). Sinuosity stands out as load-
ing negatively on component 1. Notably, average floodplain 
width, standard deviation of floodplain width, percent leveed, 
coefficient of variation of leveed area, and average number of 
bankfull events per year load similarly on components 1 and 2.

Boxplots document the range of variability among the 
river segments and how they relate to the hydrogeomorphic 
variables selected to represent connectivity (fig. 25; and sum-
marized in table 7, fig. 28). Connectivity potential of some 
river segments relates to the hydrologic drivers; for example, 
high unit discharges for Ohio River basin rivers (cluster 2) 
and long durations and high flood indices for the James River 
(cluster 8). Connectivity potential of other segments is more 
closely tied to river alterations. For example, cluster 4 is 
defined by river segments that are highly affected by levees, 
and cluster 6 contains parts of the wide floodplains of the 
Platte and Lower Missouri Rivers that have diminished con-
nectivity because of water management.

Applications of the Large River Classification

The hydrogeomorphic classification documents large-
river segments that are intrinsically different with respect to 
potential for lateral connectivity (fig. 28; table 7). As such, 
the classification can be used to help design water quality 
and ecological monitoring programs by providing a basis 
for stratifying sampling or to provide contrast among study 
sites. The classification also illustrates the joint importance of 
hydrologic drivers and geomorphology in determining connec-
tivity classes. For example, the classes developed in this study 
could provide a framework for a stratified-random sampling 
design of large-river ecological characteristics; if strata are 
well defined, stratified-random designs can be more efficient 
and can provide more precise inferences compared to general 
random designs (Stevens and Olsen, 2004; Dobbie and others, 
2008).

A particular value of spatial stratification is to ensure 
that rare classes are sampled. In the case of large rivers of 
the Upper Midwest, stratification based on the classifications 
presented here would ensure sampling of the James River (an 
unusual, rare river), whereas a sparse randomized sampling 
may undersample or completely fail to sample this rare case. 
A similar clustering approach was used to determine strata for 
a sampling design for environmental indicators in the Great 
Lakes (Danz and others, 2005).

The classification presented here may also be applied 
to design of restoration monitoring programs. For example, 
the cluster classes could be used to identify similar segments 
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Table 7.  Dominant characteristics, geographic distribution, and notes on connectivity for the eight cluster classes for large rivers of the Upper Midwest.

[km, kilometer]

Cluster 
number

Fig. 28 Dominant characteristics Geographic distribution Notes on connectivity
Length 
in class 

(km)

Percentage 
of total  

segment 
length

Reservoir A Storage reservoir segments excluded from 
cluster analysis

Mostly in the Missouri River system, 
but also in smaller segments 
throughout

Reservoir segments are permanently connected to their 
floodplains.

1,768 15.2

1 B Second highest in percent leveed and 
highest in variation of percent leveed. 
Moderate average floodplain width and 
highest values of standard deviation of 
floodplain width. Relatively high  
sinuosity, bankfull discharge, and  
number of bankfull events per year

Isolated segments of the Missouri and 
Mississippi Rivers, approximately 
340 km total length

These isolated segments occur in river confluences where 
the total floodplain width results from both rivers. These 
might be considered “hot spots” of connectivity because 
of the increased floodplain area. Moreover,  
hydraulic and hydrologic interactions between the rivers 
can provide greater frequency and duration of overbank 
events compared to nonconfluence areas.

340 2.9

2 C Large bankfull discharge, unit bank-
full discharge, and number of 2-year 
recurrence-interval floods. Low ratio of 
100:2-year recurrence interval floods. 
Low areas in levees and low sinuosity 
(with high variabilityof sinuosity)

Ohio River main stem, Cumberland 
River, Green River

The rivers in the Ohio River drainage basin have abundant 
water but relatively narrow valleys, which limit flood-
plain connectivity.  Levees are limited but frequency 
and durations of floodplain connecting flows are low 
compared to other large rivers.

1,939 16.6

3 D Uniformly low values of geomorphic 
variables. Highest value of number of 
2-year recurrence-interval floods

Middle Missouri River inter-reservoir 
reaches, exclusively

The distinguishing characteristic of this cluster—increased 
frequency of connecting events—may be the result of 
peaking flows or other reservoir operations that increase 
the number of annual near-bankfull events. Because 
this cluster occurs in inter-reservoir reaches of the 
Upper Missouri River, the net effect of hydrologic and 
geomorphic characteristics on connectivity varies from 
downstream of the dam (where there is little potential 
for connectivity) to the headwaters of the downstream 
reservoir (where connectivity is enhanced; Skalak and 
others, 2013).

320 2.7

4 E Highest percentage of floodplain leveed, 
moderate floodplain widths. Relatively 
low sinuosity. Moderate bankfull  
discharge, relatively high number of 
2-year recurrence-interval floods

Lower Missouri River,southern  
segments of Upper Mississippi 
River, southern segments of  
Illinois River, Middle Mississippi 
River

Although characterized by moderately wide floodplains 
and moderately high frequency of connecting events, 
this cluster is characterized by abundant levees, thereby 
diminishing connectivity under current conditions.  
Connectivity could be enhanced in some areas by 
alternative levee configurations (Jacobson and others 
2009; 2011).

1,540 13.2
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Table 7.  Dominant characteristics, geographic distribution, and notes on connectivity for the eight cluster classes for large rivers of the Upper Midwest.—Continued

[km, kilometer]

Cluster 
number

Fig. 28 Dominant characteristics Geographic distribution Notes on connectivity
Length 
in class 

(km)

Percentage 
of total  

segment 
length

5 F Relatively narrow floodplains, moderate 
percent leveed, moderate and highly 
variable unit discharge

Isolated segments of the Yellowstone 
River, Platte River, Kansas River, 
Upper Mississippi River, Illinois 
River, and Wabash River

Connectivity is limited by relatively narrow floodplains, 
moderate levee development, and low contribution of 
hydrologic drivers of connectivity.

650 5.6

6 G Highest floodplain widths, although  
variable. Variable leveed floodplain. 
Variable unit bankfull discharge.  
Moderate and low values of other 
variables

Parts of Platte, Lower Missouri,  
Upper Mississippi, Illinois,  
Wabash, and Ohio Rivers

Although characterized by wide floodplains, this clus-
ter occurs mainly in segments of the Lower Missouri 
River that are highly affected by reservoir operations 
that have resulted in channel incision and diminished 
floodplain-connecting flows, and on the Platte River 
where low irrigation and power production withdrawals 
have diminished floodplain-connecting flows. Increased 
connectivity would require increasing water availability 
in an over-appropriated river system (Smith, 2011).

530 4.5

7 H Relatively low values of all hydrologic 
and geomorphic variables

Upper Missouri River, Yellowstone 
River, Cheyenne River, Middle 
Missouri River, Platte River,  
northern segments of Upper  
Mississippi River, northern  
segments of Illinois River

By length, this is the cluster with the greatest representa-
tion among large rivers in the upper Midwest. This 
cluster has moderate values of hydrologic and geomor-
phic variables and is distinguished mostly by being rare 
in the Ohio River drainage basin. This cluster has few 
characteristics associated with connectivity but has the 
advantage of lacking levees.

4,092 35.1

8 I High ratio of 100:2-year recurrence- 
interval floods, extremely long  
durations of 2-year recurrence-interval 
floods. Low bankfull discharge. 
Moderate-high range of sinuosity. Low 
leveed percent

James River, South Dakota  
(exclusive)

Long flood durations, the relatively enhanced contribu-
tions of rare magnitude events to connectivity, and high 
sinuosity determine high connectivity potential in the 
James River.

475 4.1
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Figure 28.  Aerial photographs showing examples of segments from the eight cluster classes of large rivers of the Upper Midwest. 
All photographs are presented at the same scale for comparability. A, Reservoir, Osage River, Misouri. B, Cluster 1, Wabash River, 
Indiana. C, Cluster 2, Ohio River, Ohio. D, Cluster 3, Middle Missouri River, North Dakota; E, Cluster 4, Lower Missouri River, Missouri. 
F, Cluster 5, Illinois River, Illinois. G, Cluster 6, Platte River, Nebraska. H, Cluster 7, Yellowstone River, Montana. I, Cluster 8, James 
River, South Dakota.
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Figure 28.  Aerial photographs showing examples of 
segments from the eight cluster classes of large rivers 
of the Upper Midwest. All photographs are presented at 
the same scale for comparability. A, Reservoir, Osage 
River, Misouri. B, Cluster 1, Wabash River, Indiana. C, 
Cluster 2, Ohio River, Ohio. D, Cluster 3, Middle Missouri 
River, North Dakota; E, Cluster 4, Lower Missouri River, 
Missouri. F, Cluster 5, Illinois River, Illinois. G, Cluster 6, 
Platte River, Nebraska. H, Cluster 7, Yellowstone River, 
Montana. I, Cluster 8, James River, South Dakota.—
Continued

within which controls and intervention reaches could be 
identified for a before-after-control-intervention experiment 
design. A similar, although more detailed, bend-scale geomor-
phic classification on the Lower Missouri River (Jacobson and 
others, 2017) has been used to select control and intervention 
bends for a channel reconfiguration experiment to improve 
understanding of rearing habitat for pallid sturgeon larvae 
(Fischenich and others, 2018).

Additional Dimensions of Connectivity
The classification presented here emphasized hydrologic 

and geomorphic variables that were readily calculated from 
existing data sources. Vertical dimensions were excluded from 
this analysis because the requisite data were not available for 
all the large rivers of the Midwest. Considering the vertical 
dimension of lateral connectivity may include surface water 
and groundwater; data on the latter are considerably more 
limiting than the former.

For small rivers and for some streamflow-gaging sta-
tions, the vertical dimension of surface-water hydrology can 
be explored explicitly and empirically through a streamgage-
discharge rating curve. Such data can be used to determine the 
stage threshold when surface water goes over bank to connect 
to the floodplain and to calculate hydrologic metrics (exceed-
ances, durations, seasonality, for example) for that thresh-
old condition (Jacobson and Faust, 2014). Extrapolation of 
hydraulic conditions from streamflow-gaging sites to reaches 
or segments between gages can be tenuous, however, depend-
ing on the geomorphology of the gaged cross section compared 
to variability along the river. Most streamgages are selectively 
installed at stable, simple cross sections with easy access for 
making measurements (Rantz, 1982); thus, the geomorphology 
of gaged sites can be biased compared to intervening reaches 
of a river segment. The potential for bias is increased on large 
rivers where streamgages are preferentially located in narrow 
reaches and on bridges that are often associated with roadway 
constrictions and reduced floodplain conveyance. Reliable 
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interpolation of water-surface elevations between streamgages 
requires either a large number of empirical water-surface-ele-
vation surveys, a hydraulic model, or both.

Modeling of water-surface elevations using calibrated 
hydraulic models is increasingly feasible because elevation 
data and computational power have increased, although col-
lection of robust bathymetric and calibration data remain a 
limitation (Nelson and others, 2016). Continental scale models 
of flood hazard and risk indicate future potential for quantify-
ing floodplain connectivity over large areas (Wing and others, 
2017, 2018), but such models do not presently incorporate 
ecological flow metrics.

Previous work has documented how the vertical dimension 
of connectivity has been quantified on 1,200 kilometers of the 
Lower Missouri River by integrating time series of hydrologic 
events, one-dimensional hydraulic models, and high-resolution 
floodplain elevation data (Jacobson and others, 2007, 2011; 
Chojnacki and others, 2012); an update of this approach used 
82 years of unsteady daily water-surface elevations to evaluate 
connectivity on 500 kilometers of the river to allow for complex 
ecological queries about extent, duration, and timing of con-
nectivity (Bulliner and others, 2017). The longitudinal distribu-
tion of area of the floodplain affected by inundation of varying 
frequency results from longitudinally varying hydrology (close 
to upstream dams compared to far downstream from the dams) 
and longitudinally varying incision and aggradation of the 
channel that modifies the threshold of floodplain connectivity 
(fig. 29). The unsteady flow analysis allows for ecologically 
relevant queries with high spatial resolution (fig. 30).

Another dimension of vertical connectivity that is not 
addressed in this report is connectivity through porous media 
in the bed, banks, and floodplain—processes that can be 
especially important in biogeochemical processes (Harvey 
and Gooseff, 2015). Documented sensitivity of floodplain 
aquifer potentiometric surfaces to main-channel stages 
indicates that such connections can be substantial in large 
rivers (Kelly, 2001, 2011). Exchange of surface water with 
the bed, banks, and floodplain depends on hydrologic drivers, 
geomorphic factors, and sediment characteristics that govern 
hydraulic conductivity. Although considering the interaction 
of these fine-scale factors is beyond the scope of this report, 
it is notable that hydrologic exchange with bank material 
is thought to increase with channel sinuosity, indicating the 
importance of flow vectors in the channel that are subparallel 
to the banks (Gomez-Velez and others, 2017). Simulations of 
hydrologic exchange flows in a river network indicated that 
exchange fluxes with bars and banks decrease with decreasing 
particle size and increasing stream order, whereas residence 
times of water increase in larger rivers; the authors concluded 
that exchanges with the bed, bars, and banks of large riv-
ers can be important in geochemical processes at the basin 
scale, but that the longer total length of smaller rivers in the 
networks probably has a greater net effect (Gomez-Velez and 
others, 2017). Additional study of hyporheic and groundwater 
exchanges along large rivers is warranted, especially given the 
large variation in channel form and particle sizes among these 
rivers.
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Figure 29.  The longitudinal distribution of the percentage of the Lower Missouri River floodplain inundated at varying flow 
exceedances, valley width, and pattern of channel incision and aggradation.  CRP is the Construction Reference Plan, a riverwise 
sloping datum defined at 75-percent flow exceedance. Data sources: Jacobson and others (2009, 2011) and Chojnacki and others 
(2012).
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Figure 30.  A section of the Lower Missouri River floodplain as an example of an ecological query about floodplain connectivity (in 
this case, average number of days of inundation during the growing season over 82 years of record). Data source: Bulliner and others 
(2017).
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Summary and Conclusions
The concept of river connectivity—water-mediated 

exchange of matter, energy, and biota between different ele-
ments of the riverine landscape—integrates many perspectives 
about how flowing water influences ecological processes. 
Connectivity in large rivers is especially important because 
large rivers integrate fluxes of water, sediment, nutrients, 
contaminants, and other transported constituents over large 
drainage basins. Large rivers provide migration pathways for 
native flora and fauna that have evolved to use the channels, 
sandbars, and riparian areas to complete their reproductive 
cycles, and they provide invasion corridors for non-native 
species. Large rivers also are highly valued by society because 
they provide water for municipal and industrial uses, naviga-
tion, hydropower, recreation, and extensive floodplains for 
agriculture and development. Socioeconomic development of 
larger rivers and their floodplains has led to fragmentation and 
loss of connectivity.

Criteria for defining a large river are subjective because 
largeness may be based on many factors such as drainage 
area, length, discharge, sediment fluxes, or other factors such 
as socioeconomic value. Largeness also varies whether one 
considers rivers globally or locally. This report takes a limited 
geographic perspective to consider large rivers that are part 

of the Mississippi River drainage basin in the Upper Mid-
west. The geographic scope was set to provide an assessment 
of variability of large rivers within one integrating drainage 
basin (the Mississippi River) yet spanning a wide range of 
longitude (36 degrees), hydroclimatic conditions, land uses, 
and river alterations. The 15 rivers of the Upper Midwest 
in this report were selected based on being in the top 10 in 
categories of length, mean annual discharge, or drainage area 
(based on their downstream extent) in the Missouri, Middle 
and Upper Mississippi, and Ohio River drainage basins. 
Lengths of the rivers under consideration were then limited to 
Strahler stream orders of seven and above. Although quantita-
tive, these criteria are still somewhat arbitrary and may result 
in biased selections because of factors like varying stream 
network density or river-naming conventions. Nevertheless, 
the selection of 1,172 segments of 15 rivers serves to sample 
and describe the geographic variation of large rivers of the 
Upper Midwest.

River classification systems vary considerably in their 
approach, scale, resolution, and objectives and the chief con-
cern for developing a classification should be that it supports 
its objectives. Our objective was to develop a classification of 
large rivers of the Upper Midwest that would document and 
illustrate the existing range of river conditions that relate to 
riverine connectivity.
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While there has been substantial emphasis over the 
past two decades on hydroecological assessments and clas-
sifications of discharge time series, the geomorphic context 
of hydroecological metrics typically has been given less 
attention. One of the benefits of the classification system 
documented in this report is that it combines hydroecological 
metrics and the geomorphic context that mediates hydrologic 
factors, especially in reference to connectivity. Including geo-
morphic context was one of the fundamental steps proposed in 
the Ecological Limits to Hydrologic Alteration framework.

The three types of classifications presented in this report 
provide a hierarchical view of these river systems. At the 
broadest level, segments in the 15 rivers were classified based 
on their degree of alteration: relatively unimpounded, engi-
neered for navigation with locks and dams, and those that are 
completely inundated as storage reservoirs. A separate assess-
ment of longitudinal connectivity considered density and 
height of dams as impediments to connectivity; this assess-
ment documents the contrast between river segments with 
low-head navigation dams (Upper Mississippi, Illinois, Ohio, 
Green, and Cumberland Rivers) and those segments with high-
head dams (mostly in the Upper Missouri River). In addition, 
this analysis documents that the longest unimpounded river 
pathways exist in the Lower Missouri River and connected 
tributaries. The nearly 1,300 kilometers of unimpounded 
Lower Missouri River—with the addition of nearly 1,800 
kilometers of the unimpounded Middle and Lower Mississippi 
Rivers—provide migratory potential that may be critical for 
survival of species like the pallid sturgeon.

Our finest scale of resolution is a statistically based com-
ponent classification at the 10-kilometer scale. Cluster analysis 
of hydrologic variables from 66 streamflow-gaging stations 
yielded 5 clusters calculated from 5 ecohydrological metrics 
related to connectivity. A separate cluster analysis of 5 geo-
morphologic variables associated with each of 1,172 river seg-
ments also yielded 5 clusters. When the hydrologic variables 
were associated with corresponding segments, the cluster 
analysis yielded eight clusters. Although the clusters over-
lap considerably in principal component space, the resulting 
hydrogeomorphic classification leads to a physically reason-
able distribution of classes. The hierarchical classification 
should serve to increase geographic awareness of the range 
of large-river variation that occurs at multiple scales in the 
Upper Midwest, to increase understanding of the extent of 
river alteration, and to serve as a useful template for stratifying 
study designs of large rivers by indicating commonalities and 
dissimilarities among classes.
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