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Conversion Factors
U.S. customary units to International System of Units

Multiply By To obtain

Length

foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

acre 4,047 square meter (m2)
square mile (mi2) 2.590 square kilometer (km2) 

Flow rate

acre-foot per day (acre-ft/d) 0.01427 cubic meter per second (m3/s)
foot per second (ft/s) 0.3048 meter per second (m/s)
foot per day (ft/d) 0.3048 meter per day (m/d)
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
gallon per minute (gal/min) 0.06309 liter per second (L/s)

Radioactivity

picocurie per liter (pCi/L) 0.037 becquerel per liter (Bq/L) 
Transmissivity

foot squared per day (ft2/d) 0.09290 meter squared per day (m2/d) 

 
Datums
All study wells except for USGS 144 were surveyed using the North American Datum of 1927 
(NAD 27) and the National Geodetic Vertical Datum of 1929 (NGVD 29). For USGS 144, the North 
American Vertical Datum of 1988 (NAVD 88) and the North American Datum of 1983 (NAD 83) 
were used.
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Abstract
From 1953 to 1988, approximately 0.941 curies of 

iodine-129 (129I) were contained in wastewater generated at the 
Idaho National Laboratory, with almost all of it discharged at 
or near the Idaho Nuclear Technology and Engineering Center 
(INTEC). Until 1984, most of the wastewater was discharged 
directly into the eastern Snake River Plain (ESRP) aquifer 
through a deep disposal well; however, some wastewater was 
also discharged into unlined infiltration ponds or leaked from 
distribution systems below the INTEC.

During 2017–18, the U.S. Geological Survey, in 
cooperation with the U.S. Department of Energy, collected 
samples for 129I from 30 wells that monitor the ESRP aquifer 
to track concentrations and changes of the carcinogenic 
radionuclide that has a 15.7 million-year half-life. 
Concentrations of 129I in the aquifer ranged from 0.000016 
± 0.000001 to 0.88+/- 0.03 picocuries per liter (pCi/L), and 
concentrations generally decreased in wells near the INTEC 
as compared with previously collected samples. The average 
concentration of 15 wells sampled during 5 different sample 
periods decreased from 1.15 pCi/L in 1990–91 to 0.168 
pCi/L in 2017–18, but average concentrations were similar 
to 2011–12 within analytical uncertainty. All but four wells 
within a 3-mile radius of the INTEC showed decreases in 
concentration, and all samples had concentrations less than 
the U.S. Environmental Protection Agency’s maximum 
contaminant level of 1 pCi/L. These decreases are attributed 
to the discontinuation of disposal of 129I in wastewater and to 
dilution and dispersion in the aquifer. Some wells southeast 
of INTEC showed increasing trends; these increases were 
attributed to variable transmissivity. 

Although wells near INTEC sampled in 2017–18 showed 
decreases in concentrations compared with data collected 
previously, some wells south of the INL boundary showed 
small increases. These increases are attributed to historical 
variable discharge rates of wastewater that eventually moved 
to these well locations as a pulse of water from a particular 
disposal period.

Introduction
The Idaho National Laboratory (INL), encompassing 

about 890 square miles (mi2) of the eastern Snake River Plain 
(ESRP) in southeastern Idaho (fig. 1), is operated by the U.S. 
Department of Energy (DOE). The INL was established in 
1949 for the development of atomic energy applications, 
nuclear safety research, defense programs, environmental 
research, and advanced energy concepts. Until 1993, uranium 
from spent nuclear fuel elements from government-owned 
reactors was recovered after reprocessing at the Idaho Nuclear 
Technology and Engineering Center (INTEC; fig. 1). As part 
of the fuel reprocessing activities, several fission products 
were released in wastewater at the INTEC. Iodine-129 (129I), 
produced by the fission of uranium-235 and plutonium-239, 
was one of the products released in wastewater. Prior to 1984, 
most of the wastewater generated at the INTEC was injected 
directly to the ESRP aquifer through a 598-foot-deep disposal 
well. Beginning in February 1984, routine use of the disposal 
well was discontinued, and wastewater was discharged to 
unlined infiltration ponds south of INTEC, which allow the 
wastewater to percolate through about 450 feet (ft) of basalt 
and sediment to the aquifer.

Iodine-129 in the ESRP aquifer originates from 
atmospheric deposition, rock weathering, and wastewater 
disposal (Mann and Beasley, 1994a). The amount of 129I in the 
aquifer from atmospheric deposition and rock weathering is 
considered small and is included in the estimated background 
concentration of 0.0000054 picocuries per liter (pCi/L) in the 
ESRP aquifer in eastern Idaho (Cecil and others, 2003). Mann 
and Beasley (1994a) reported that wastewater discharged to 
the injection well and infiltration ponds at the INTEC between 
1953 and 1990 contained an estimated 0.56–1.18 curies (Ci) 
of 129I. A more detailed estimate of wastewater discharge to 
the injection well through 1984 was performed by the DOE 
Idaho Operations Office (U.S. Department of Energy, 2004, 
appendix B), and results indicated that a maximum of 0.86 
Ci was discharged to the aquifer. Additionally, about 0.08 Ci 
of 129I were discharged to the infiltration ponds from 1984 to 
1988 (Litteer, 1988; Mann and others, 1988, table 2; Litteer 
and Reagan, 1989), and about 0.001 Ci of 129I was released 
at the INTEC Tank Farm between 1958 and 1986 (Cahn and 
others, 2006, table 5-2). Thus, the revised total from INTEC 
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Figure 1.  Location of the Idaho National Laboratory and selected facilities, Idaho.
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is about 0.941 Ci. Additionally, some 129I may still be present 
in perched groundwater zones around the INTEC. Some 
129I also was discharged into the radioactive waste ponds at 
the Advanced Test Reactor Complex (ATRC), but annual 
concentrations of the discharge water generally were much 
less than 1 pCi/L; for example, EG&G Idaho, Inc. (1979), 
showed an average annual concentration of 0.0000128 pCi/L 
in the 1978 discharge water. 

Iodine-129 is a carcinogen, and communities 
downgradient of the INL may be concerned that 129I disposed 
at the INL could be a hazard to their health. Because of its 
15.7 million-year half-life, 129I released to the environment 
is a permanent addition to the global inventory (Mann and 
Beasley, 1994a). The U.S. Environmental Protection Agency 
(USEPA) maximum contaminant level (MCL) for 129I in 
drinking water is 1 pCi/L (U.S. Environmental Protection 
Agency, 2015, Table of Derived Concentrations of Beta and 
Photon Emitters in Drinking Water). The MCL is based on the 
average concentration in a public drinking water supply that 
will yield an annual whole-body dose equivalent of 4 millirem 
per year (mrem/year). Each man-made nuclide has a different 
concentration of radiation, measured in pCi/L, which produces 
the 4 mrem/year dose.

To provide information to evaluate the potential hazards, 
the U.S. Geological Survey (USGS), in cooperation with the 
DOE, has periodically monitored for 129I in groundwater from 
the ESRP aquifer at and downgradient of the INTEC since 
1977. Monitoring programs from 1977, 1981, 1986, 1990–91, 
2003, 2007, and 2010–12 were summarized by Mann and 
others (1988), Mann and Beasley (1994b), Bartholomay 
(2009) and (2013). This report summarizes concentrations in 
the ESRP aquifer from 2017–18.

Purpose and Scope

The USGS collected water samples from wells during 
autumn 2017 and spring 2018 to evaluate concentrations 
of 129I in the ESRP aquifer. The 30 wells that were sampled 
were used to monitor the ESRP aquifer at and near the INL. 
The wells sampled were completed as open-hole monitoring 
wells in the upper 50–200 ft of the ESRP aquifer from depths 
ranging from about 460 to 800 ft below land surface. In 
October 2017, 18 samples were collected from 16 wells, 
and in April 2018 an additional 16 samples were collected 
from 14 wells (figs. 2 and 3). Four replicates were collected 
as a measure of quality assurance/quality control (QA/QC). 
Samples were analyzed using accelerator mass spectrometry 
(AMS) at the Purdue Rare Isotope Measurement Laboratory 
(PRIME Lab), Purdue University, West Lafayette, Indiana. 
This method is described on the PRIME Lab website, “AMS 
is an ultra-sensitive analytical technique for measuring long-
lived radionuclides” (Purdue Rare Isotope Measurement 
Laboratory, 2019). 

This report documents the analytical results for these 
samples, presents an analysis of the results, describes 
the distribution and concentration of 129I, and provides a 
comparison to the results of previous studies.

Geohydrologic Setting

The INL is located above the west-central part of the 
ESRP. The ESRP is a northeast-trending structural basin about 
200-mile (mi) long and 50–70 mi wide (fig. 1). The basin, 
bounded by faults on the northwest and by downwarping and 
faulting on the southeast, has been filled with basaltic lava 
flows interbedded with terrestrial sediments. The basaltic 
rocks and sedimentary deposits combine to form the ESRP 
aquifer, which is the main source of groundwater on the plain. 

The ESRP aquifer is one of the most productive aquifers 
in the United States (U.S. Geological Survey, 1985, p. 193). 
Movement of water in the aquifer generally is from northeast 
to southwest, and water eventually discharges to springs along 
the Snake River downstream of Twin Falls, Idaho—about 
100 mi southwest of the INL. Water moves horizontally 
through basalt interflow zones and vertically through joints 
and interfingering edges of interflow zones. Infiltration of 
surface water, heavy pumpage, geologic conditions, and 
seasonal fluxes of recharge and discharge locally affect the 
movement of groundwater (Garabedian, 1986). Recharge 
to the ESRP aquifer is primarily from infiltration of applied 
irrigation water, infiltration of streamflow, groundwater inflow 
from adjoining mountain drainage basins, and infiltration of 
precipitation. 

At the INL, depth to water in wells completed in the 
ESRP aquifer ranges from about 200 ft in the northern part 
of the site to more than 900 ft in its southeastern part. A 
significant proportion of the groundwater moves through 
the upper 200–800 ft of basaltic rocks (Mann, 1986, p. 21). 
Ackerman (1991, p. 30) and Bartholomay and others (1997, 
table 3) reported a range of transmissivity of basalt in the 
upper part of the aquifer of 1.1–760,000 foot squared per 
day (ft2/d). The hydraulic gradient at the INL ranges from 
2 to 10 feet per mile (ft/mi), with an average of about 4 ft/
mi (Bartholomay and others, 2017, fig. 9). Horizontal flow 
velocities of 2–20 ft/d have been calculated based on the 
movement of various constituents in several areas of the 
aquifer at the INL (Robertson and others, 1974; Mann and 
Beasley, 1994b; Cecil and others, 2000; Busenberg and 
others, 2001). These flow rates equate to a travel time of 
about 70–700 years for water beneath the INL to travel to 
springs that discharge at the terminus of the ESRP aquifer near 
Twin Falls, Idaho (fig. 1). Localized tracer tests at the INL 
have shown vertical and horizontal transport rates as high as 
60–150 ft/day (Nimmo and others, 2002; Duke and others, 
2007).
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Previous Investigations

There have been many evaluations of the geology and 
hydrology of the ESRP aquifer at the INL. A comprehensive 
listing of publications by the USGS at the INL is available at 
U.S. Geological Survey (2019).

Previous investigations of 129I in water from the ESRP 
aquifer include those by Barraclough and others (1982), 
Lewis and Jensen (1985), Mann and others (1988), Mann 
and Beasley (1994a; 1994b), Cecil and others (2003), U.S. 
Department of Energy (2004, 2007, 2008, 2012), Hall (2006), 
Forbes and others (2007), Bartholomay (2009, 2013), and 
Shanklin and others (2017). Results from April 1977 sampling 
for 129I in 14 wells indicated concentrations ranged from 0.9 
to 27 pCi/L for statistically positive values (Barraclough and 
others, 1982, fig. 42), and since discharge began in 1953, 
129I was identified in wells less than 3 mi from the disposal 
well. In October 1981, concentrations of 129I ranged from 
0.05 to 41 pCi/L for statistically positive values (Lewis and 
Jensen, 1985), and since discharge began in 1953, 129I was 
identified in wells about 6.3 mi from the disposal well. The 
major difference between the 1977 and 1981 results was that 
the sample size was increased from 1 to 4 L for a four-fold 
reduction in the reporting level. The increase in sensitivity 
of analyses (Lewis and Jensen, 1985), along with a more 
extensive set of wells sampled (20 in 1977 and 32 in 1981), 
were the primary reasons for the increase in the size of the 129I 
plume. In August 1986, 129I concentrations from 20 wells that 
were greater than the reporting level (Mann and others, 1988) 
ranged from 0.49 ± 0.12 to 3.6 ± 0.4 pCi/L and had migrated 
about the same distance from the disposal well as in 1981. 
The large decrease in the maximum concentration between 
1981 and 1986 was attributed to changes in disposal practices 
at the INTEC, reduction in the mass of 129I in wastewater, and 
to increased dilution in the mid-1980s from a large amount of 
flow in the Big Lost River (Mann and others, 1988).

Prior to the 1990–91 data collection, neutron activation 
methods were used for analyses. During 1990–91, Mann and 
Beasley (1994b) collected samples from 51 wells at and near 
the INL and analyzed the samples using an AMS method. The 
AMS method allowed for increased sensitivity of the analyses 
(two to six times more sensitive than neutron activation). The 
increased sensitivity allowed for determining a background 
concentration of 0.0000009 ± 0.0000002 pCi/L from a sample 
located upgradient from the INTEC. The increased sensitivity 
resulted in detectable concentrations of 129I downgradient 
of the INL that were used to calculate groundwater flow 
velocities of at least 6 ft/d. The maximum concentration 
detected in 1990–91 samples was 3.82 ± 0.19 pCi/L, which 
was similar to the maximum concentration detected in 1986; 
however, mean concentrations from 18 wells sampled in 1986 
and 1990–91 decreased from 1.30 ± 0.26 to 0.81 ± 0.19 pCi/L 
(Mann and Beasley, 1994b). This decrease was attributed 
largely to a decrease in disposal rates. 

In 1992, Mann and Beasley (1994a) collected 
groundwater and surface-water samples from 16 sites not 
likely to have been affected by wastewater disposal at the 
INTEC to determine background concentrations of 129I. 
Concentrations in water from nine wells, four springs, 
and three streams on or tributary to the ESRP ranged from 
0.0000001 ± 0.0000001 to 0.0000081 ± 0.0000006 pCi/L 
(average of 0.0000033 ± 0.0000021 pCi/L). At the 99-percent 
confidence level, background concentrations for the 16 
sites were estimated to be less than or equal to 0.0000082 
pCi/L. Cecil and others (2003) reevaluated the background 
concentrations by analyzing results of 52 samples collected 
from groundwater and surface water in 1992–94 from various 
locations in the ESRP in southeastern Idaho, and includes the 
samples collected by Mann and Beasley (1994a). Cecil and 
others (2003) determined that surface water samples generally 
contained larger 129I concentrations than groundwater samples 
because of anthropogenic fallout and evapotranspiration. 
Using a subset of 30 water samples from wells, they 
determined a background concentration of 0.0000054 pCi/L 
with a 95-percent nonparametric confidence interval of 
0.0000052 to 0.00001 pCi/L. 

Hall (2006) collected samples from 13 sites downgradient 
of the INL during 1997 and 1998. Using AMS methods, 
Hall (2006) determined that concentrations in four of the 
sites—USGS 11, 14, 124, and 125 (fig. 2)—were greater 
than estimated background concentrations, and he postulated 
that the 1958 peak 129I concentration in the ESRP aquifer had 
already passed these wells. Concentrations of the four sites 
ranged from 0.0000061 ± 0.00000018 to 0.00074 ± 0.00003 
pCi/L, but they were less than concentrations measured in 
1991 and 1993. 

INL contractors routinely collect 129I from monitoring 
wells throughout the INL for their Waste Area Group 
monitoring programs at the INL. In 2002, samples were 
collected from four wells south of the INTEC (ICPP 
1795–98, fig. 3) from three zones in the aquifer to determine 
concentrations above and below the H-I interbed (U.S. 
Department of Energy, 2004). Concentrations of 129I in well 
ICPP-1795 increased from 0.34 ± 0.04 pCi/L at 560 ft below 
land surface to 0.43 ± 0.07 pCi/L at 620 ft below land surface. 
The three wells farther to the south showed a decrease in 
129I concentration with depth, with concentrations in the 
upper zone ranging from 0.58 ± 0.1 to 0.88 ± 0.08 pCi/L and 
concentrations in the lower zone ranging from not detected to 
0.33 ± 0.05 pCi/L. The U.S. Department of Energy (2004, fig. 
5-5) also presented results from analyses of 49 wells sampled 
in 2001; concentrations ranged from less than the method 
detection level of approximately 0.1 to 1.06 pCi/L. Analyses 
were completed using gamma spectroscopy methods. 
Concentrations for 20 sites sampled in 2003 were all less 
than the MCL of 1 pCi/L (U.S. Department of Energy, 2004, 
fig. 6-1). 
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Forbes and others (2007) presented results for 25 wells 
sampled in 2006 near the INTEC; concentrations ranged 
from less than the reporting level to 0.65 ± 0.097 pCi/L 
in USGS 67. Analyses of data collected from 2004–06 at 
wells around the INTEC indicated no discernible change 
in the concentrations when the uncertainty of the data was 
considered.

U.S. Department of Energy (2007) presented results 
for 129I data collected in 2005 and 2006 from 24 wells 
downgradient of the INTEC and the ATRC (including several 
wells south of the INL), along with results from 5 zones each 
from two WestbayTM equipped wells (Middle 2050A and 
Middle 2051). Samples were analyzed using the AMS method 
at the PRIME Lab in Indiana, and some comparison was made 
to the 2003 USGS data presented in Bartholomay (2009). 
Results were used to speculate on the source of 129I in wells 
around the RWMC. Concentrations in most southern wells 
were greater than background concentrations. 

U.S. Department of Energy (2008) presented results for 
129I data collected in 2007 from six zones in one WestbayTM 
equipped well (USGS 132). Samples were analyzed using the 
AMS method at the PRIME Lab in Indiana, and the results 
from the six zones ranged from 0.0004 ± 0.000013 to 0.002 ± 
0.00009 pCi/L. Results for all six zones were more than two 
orders of magnitude less than the MCL. 

Bartholomay (2009) presented results for 129I data 
collected in 2003 from 36 wells and data collected in 2007 
from 36 wells along with concentrations from 31 zones 
sampled from six wells equipped with multilevel monitoring 
systems. Samples were analyzed using the AMS method at 
the PRIME Lab in Indiana, and concentrations ranged from 
0.0000066+/- 0.0000002 to 1.16 +/- 0.04 pCi/L. The report 
highlighted concentration increases and decreases through 
time at various parts of the INL. Decreases were attributed 
to discontinued disposal and dilution and dispersion in the 
aquifer. Increases were attributed to variable discharge rates 
of wastewater that eventually moved to well locations as a 
mass of water from a particular disposal period, and from 
the possible movement of remnant concentrations in perched 
aquifers around INTEC infiltrating to the ESRP aquifer.

U.S. Department of Energy (2012) presented results for 
129I data collected in 2011 from wells in and around INTEC. 
Concentrations were less than the MCL at all the monitoring 
wells, and most of the wells had concentrations below 
the laboratory detection levels. The highest concentration 
(0.537 pCi/L) was detected in well USGS 67. Trend plots 
indicated that 129I concentrations decreased significantly from 
concentrations observed during the 1980s and 1990s (U.S. 
Department of Energy, 2012, p.27). 

Bartholomay (2013) presented results for 129I data 
collected from 2010 through 2012 at and downgradient of the 
INL from 62 wells. Eleven of the 62 wells were multi-level 

monitoring wells that had 25 samples collected from various 
zones. Concentrations of 129I in the aquifer ranged from 
0.0000013+/-0.0000005 to 1.02 +/-0.04 pCi/L and generally 
decreased in wells near INTEC relative to previous sampling 
events. The smallest concentration was collected in a first-
time sample collected from a well near Kimama, Idaho, and 
first-time samples were also collected from wells near the 
Naval Reactors Facility, the ATRC, and several multi-level 
monitoring wells.

Results of FY2016 groundwater monitoring performed 
to implement the CERCLA remedy at the INTEC were 
presented in a report by Shanklin and others (2017). Results 
of sampling at 16 aquifer wells and 5 shallow perched aquifer 
wells showed 129I detections at 2 aquifer wells, both below 
USEPA MCLs. The report also stated that when taking 
analytical uncertainties into account, none of the wells showed 
a significant 129I concentration increase. 

Methods and Quality Assurance

Sample Collection Methods

Water was collected from wells with dedicated 
submersible pumps, apart from two production wells located 
in the Central Facilities Area (CFA). Water samples were 
collected according to proceedures described in the USGS 
National Field manual (U.S. Geological Survey, variously 
dated) and the USGS INL Project Office quality assurance 
plan (Bartholomay and others, 2014). At least one borehole 
volume of water was purged from each well, and field 
measurements had stabilized prior to collecting samples. Prior 
to October 2003, samples were collected following stable 
field measurements and after three volumes of water were 
purged, but studies conducted by Bartholomay (1993) and 
Knobel (2006) determined that the difference between purging 
one and three wellbore volumes at selected INL wells had 
no discernible effect on the statistical comparability of select 
water-quality data. Those studies, however, did not examine 
the possible effects on 129I data.

To ensure that particulate matter would not affect the 
laboratory preparation of the silver-iodide targets used in 
the AMS measurements of 129I (Cecil and others, 2003), all 
samples were filtered through a disposable 0.45-micrometer 
filter cartridge that had been pre-rinsed with at least 2 L of 
deionized water and an additional amount of sample water 
prior to sample collection. Samples were collected over a 
several week period, so each sample was preserved with a 
potassium hydroxide and sulfurous acid stabilizer solution, 
stored until sampling completion and then sent for processing 
as one shipment to the laboratory.
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Analytical Methods

All samples were sent to the PRIME Lab at Purdue 
University, West Lafayette, Indiana, where 129I concentrations 
were determined by AMS methods described on the PRIME 
Lab website (Purdue Rare Isotope Measurement Laboratory, 
2019) and by Sharma and others (1997, 2000). Quality 
control procedures are described by Mark W. Caffee, Director 
of PRIME Lab (Caffee, 2019). Water samples go through 
a chemical process to produce a silver iodide (AgI) target 
material that is mixed with an equal volume of Niobium 
(Nb), which serves as a binder material. The samples are then 
loaded into aluminum cathodes for AMS analysis. Analyses 
of the targets produce a ratio of 129I to stable iodine-127 (127I) 
and associated uncertainties. Calculated concentrations and 
analytical uncertainties are derived from the 129I to 127I ratios 
into units of picocuries of 129I per liter of water (pCi/L).

For this study, the laboratory reported results in pCi/L 
based on the equation:

pCi
L

sample R R W W x
Wt

pCis b s c( )
( ) ( ) .

�
� � �1 80 10 7

(
L
) (1)

where 
	 Rs	 is the measured sample ratio of 129I atoms to 

127I atoms,
	 Rb	 is the ratio of the chemistry blank,
	 Ws	 is the weight of 127I in sample (in milligrams 

[mg]),
	 Wc	 is the weight of 127I added as carrier (in mg), 

and
	 Wt	 is weight of sample (aliquot).

Laboratory results from previous studies (1990–2003) 
were reported by the PRIME Lab as the ratio of 129I to 127I and 
converted to concentrations in pCi/L by using an equation 
described by Rao (1997): 

S Rm CcCv ScSv CcCvCr N
fSvT �

� �[ ( ) ]
(2)

where 
	 ST	 is the 129I concentration in atoms per liter of 

water,
	 Rm	 is the ratio of 129I /127I measured by AMS,
	 CC	 is the concentration of iodine in grams per 

liter (g/L) of carrier solution,
	 Cv	 is the volume of carrier solution added in L,
	 Cr	 is 129I /127I ratio for carrier solution,

	 Sc	 is the concentration of iodine in g/L for 
sample, 

	 Sv	 is the volume of the sample in L,
	 N	 is Avogadro’s number (6.023 × 1023 atoms/

mole), and
	 f	 is the formula weight for iodine (126.9 grams 

per mole).
The mass of the carrier given by the PRIME Lab is 

the product of carrier volume (Cv) and carrier concentration 
(CC) in milligrams. The concentration of iodine in most 
samples was less than 0.002 mg/L, which was used for the 
concentration for all samples except those with estimated or 
reported concentrations. 

Guidelines for Interpretation of Analytical 
Results

The guidelines for interpreting analytical results are 
based on an extension of a method proposed by Currie (1984) 
and are given in Mann and Beasley (1994b). Concentrations of 
129I are reported with an estimated sample standard deviation, 
s, which is obtained by propagating sources of analytical 
uncertainty in measurements. In this report, 129I concentrations 
less than 3s are considered less than a “reporting level” 
because the results are below the 95-percent probability of 
reporting true concentrations. The reporting level should not 
be confused with the analytical method detection limit, which 
is based on laboratory procedures (Bartholomay, 2013).

The laboratory calculations do not consider the 
concentration of iodine in the sample because the 
concentration typically is negligible; the concentrations were 
estimated in the equation (Rao, 1997) used for previous 
data from 1990 to 2003. Differences between the reported 
concentrations are similar between both equations when 
sample ratios are larger than carrier blank ratios; however, 
when 129I/127I ratios of the samples are less than the ratio for the 
carrier blank sample, negative results occur for calculations 
based on equation 2. The PRIME Lab did not subtract the 
carrier blank ratios for the samples that had carrier blank ratios 
larger than sample ratios (Susan Ma, PRIME Lab, written 
commun., September 7, 2008), so no negative results occurred 
for the 2007, 2010–12, and 2017–18 data. This difference in 
calculation methods between 1990–2003 and results reported 
since 2003 should not affect the comparability of the data 
between these analyses periods since negative results are not 
considered.
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Quality Assurance/Quality Control

Quality assurance and reproducibility were assessed with 
replicate samples. Four sequential replicate samples were 
collected and submitted for AMS analyses along with the 
environmental samples.

Williams (1996) provided a detailed explanation of a 
method defined by Volk (1969) for determining the statistical 
equivalency of radiochemical-constituent concentrations in 
replicate pairs (where a replicate pair consists of the replicate 
sample and its associated environmental sample). In this 
method, statistical equivalence is determined in a specified 
confidence level. A value for the standard deviate, Z, is 
calculated, and then the level of significance of the result is 
evaluated (evaluation of the level of significance assumes 
that the sample population is distributed normally). For this 
report, concentrations of individual constituents in replicate 
pairs were considered equivalent when the results were within 
two standard deviations of each other. At this confidence level 
(95-percent), the level of significance, determined from a 
standard normal probability curve, was 0.05 for a two-tailed 
test and corresponded to a Z-value of 1.96.

The equation used to determine Z was adapted from Volk 
(1969):

Z
x y

s sx y

�
�

�( ) ( )2 2
(3)

where
	 x	 is the concentration of a constituent in the 

environmental sample,
	 y	 is the concentration of the same constituent in 

the sequential replicate sample,
	 sx	 is the standard deviation of x, and 
	 sy	 is the standard deviation of y.

When the population is distributed normally and 
the standard deviation is known, the analytical results of 
replicate pairs can be considered statistically equivalent at 
the 95-percent confidence level if the Z-value is less than or 
equal to 1.96. When the population is not distributed normally, 
which is often the case with radiochemical results (L. 
DeWayne Cecil, USGS, written commun., January 4, 2009) or 
an approximation of the standard deviation is used, a Z-value 
less than 1.96 must be considered as a guide when testing for 
equivalence (Williams, 1996). 

The use of equation 3, therefore, is considered a guide 
in determining if the results of 129I analyses of a replicate 
pair were equivalent. Table 1 lists the results and reported 
standard deviations for the analyses of 129I replicate pairs and 
the Z-values. Results for all four of the replicate pairs had 
Z-values less than or equal to 1.96 and can be considered 

statistically equivalent. Therefore, results for the replicate 
samples generally indicated that the sample collection and 
laboratory procedures used were appropriate for the data 
obtained.

Concentrations of Iodine-129 in the 
Eastern Snake River Plain Aquifer

Thirty water samples were collected from the ESRP 
aquifer at wells in and around the INL in October 2017 
and April 2018. All wells had 129I concentrations above the 
estimated background level of 0.0000054 pCi/L for the 
ESRP aquifer as calculated by Cecil and others (2003). 
Concentrations ranged from 0.000016 ± 0.000001 to 0.877+/-
0.032 pCi/L (table 1; fig. 4). 

Table 2 shows multiple 129I concentrations in water 
from 26 wells for the 5 sampling events during 1990–2018, 
with mean concentrations shown for each sampling event 
for the 15 wells that were included in all 5 sampling events. 
The mean concentration of 15 wells decreased from 1.15 
pCi/L in 1990–91 to 0.168 in 2017–18. When considering 
the mean uncertainties, the concentrations from 2017–18 are 
approximately the same as in 2011–12. Overall, 20 of 27 wells 
showed decreases or no change in concentrations ranging from 
0.0000003 to 0.189 pCi/L that are attributed to discontinuation 
of disposal of 129I in wastewater after 1988 and to dilution and 
dispersion in the ESRP aquifer (table 3). Bartholomay (2009) 
compared 2003 results to the 2007 results and described 
areas where concentrations seemed to be decreasing or 
increasing. In the wells with concentrations that increased, it 
was concluded that the increases could be due to flow in the 
Big Lost River moving remnant perched water concentrations 
into the aquifer. Mirus and others (2011) indicated that 
streamflow from the Big Lost River provides local recharge to 
the shallow, intermediate and deep perched zones within about 
150 m of the river and indicated other perched water dynamics 
including local snowmelt and anthropogenic sources (such 
as leaky pipes and drainage ditches) contribute to recharge of 
shallow and intermediate perched zones throughout much of 
INTEC. The results of the current study show that most of the 
wells within a 1-mi radius of the INTEC showed no change 
or slight decreases in concentration since the 2011–12 study 
(fig. 6), but of the three wells that showed increases, two were 
sampled in April 2018 following two large pulses of flow in 
the river at the Lincoln Boulevard bridge (13132535, fig. 1) 
during the months of May to July 2017 (45,201 acre-feet/day) 
and continuous flow from the end of September 2017 through 
March 2018 (13,805 acre-feet/day), which may have helped 
move remnant 129I from the unsaturated zone to the aquifer. 
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Sample identifier Site No. Date sampled Concentrations (pCi/L) Z-value

CFA-1 433204112562001 04-11-2018 0.403 ± 0.012 NA
CFA-2 433144112563501 10-10-2017 0.082 ± 0.003 NA
Cross Road 432128113092701 04-10-2018 0.000016 ± 0.000001 NA
RWMC M14S 433052113025001 10-10-2017 0.016 ± 0.001 NA
USGS 11 432336113064201 04-09-2018 0.000066 ± 0.000003 NA
USGS 14 432019112563201 10-11-2017 0.000018 ± 0.000001 NA
USGS 20 433253112545901 04-17-2018 0.056 ± 0.002 NA
USGS 37 433326112564801 10-04-2017 0.171 ± 0.006 NA
USGS 38 433322112564301 04-16-2018 0.140 ± 0.005 NA
USGS 42 433404112561301 04-19-2018 0.221 ± 0.006 NA
USGS 45 433402112561801 10-02-2017 0.292 ± 0.010 NA
USGS 47 433407112560301 10-05-2017 0.206 ± 0.008 NA
USGS 51 433350112560601 04-18-2018 0.133 ± 0.004 NA
USGS 52 433414112554201 10-04-2017 0.151 ± 0.006 NA
USGS 57 433344112562601 10-02-2017 0.144 ± 0.006 NA
USGS 67 433344112554101 10-04-2017 0.877 ± 0.032 1.05
QA-6 433344112554101 10-04-2017 0.931 ± 0.040 NA
USGS 77 433315112560301 10-03-2017 0.372 ± 0.013 1.96
QA-3 433315112560301 10-03-2017 0.408 ± 0.013 NA
USGS 82 433401112551001 04-17-2018 0.0073 ± 0.0002 NA
USGS 85 433246112571201 04-16-2018 0.079 ± 0.002 NA
USGS 104 432856112560801 10-12-2017 0.0045 ± 0.0004 NA
USGS 106 432959112593101 10-19-2017 0.027 ± 0.001 NA
USGS 111 433331112560501 04-17-2018 0.235 ± 0.009 0.08
QA-4 433331112560501 04-17-2018 0.236 ± 0.008 NA
USGS 112 433314112563001 10-03-2017 0.239 ± 0.008 NA
USGS 113 433314112561801 04-17-2018 0.402 ± 0.011 NA
USGS 114 433318112555001 10-03-2017 0.129 ± 0.006 NA
USGS 116 433331112553201 04-17-2018 0.395 ± 0.0150 NA
USGS 124 432307112583101 04-09-2018 0.0022 ± 0.0001 NA
USGS 125 432602113052801 10-11-2017 0.00039 ± 0.00001 NA
USGS 130 433130112562801 10-19-2017 0.031 ± 0.001 NA
USGS 144 433021112552501 04-03-2018 0.000020 ± 0.000001 0.71
QA-8 433021112552501 04-03-2018 0.000019 ± 0.000001 NA

Table 1.  Iodine-129 concentrations in groundwater, Idaho National Laboratory and vicinity, 2017–18.

[See figures 2 and 3 for well locations. Concentrations and analytical uncertainties are in picocuries per liter (pCi/L); uncertainties are one standard deviation. 
Date sampled: Month, day, year. Z-value: Result of the statistical test used to compare the replicate values. Abbreviations: NA, not applicable; QA, quality 
assurance]
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Table 2.  Concentrations of Iodine-129 in water from selected wells, Idaho National Laboratory and vicinity, 1990–2018.

[See figures 2 and 3 for well locations. Concentrations and analytical uncertainties are in picocuries per liter (pCi/L); uncertainties are one 
standard deviation. Mean concentration calculated from the 15 wells with concentrations from all 5 sample periods. Abbreviation: NS, not 
sampled]

Sample identifier 1990–91 2003 2007 2011–12 2017–18

CFA-1 0.24±0.05 NS 0.318±.015 0.37±0.017 0.403±0.012

CFA-2 0.10±0.03 NS 0.131±0.006 0.0798±0.0024 0.082±0.003
USGS 11 0.00001±0.000001 0.000018±0.0000005 NS 0.000046±0.0000025 0.000066±0.000003
USGS 14 0.00003±0.000002 0.00004±0.000002 NS 0.0000177±0.000001 0.000018±0.000001

USGS 201 0.033±0.002 0.026±0.0011 0.0282±0.0009 0.037±0.0021 0.056±0.002

USGS 371 1.80±0.08 0.452±0.025 0.395±0.017 0.31±0.016 0.171±0.006

USGS 381 2.00±0.07 0.556±0.019 0.281±0.008 0.202±0.018 0.140±0.005

USGS 421 3.82±0.19 0.216±0.0064 0.325±0.01 0.214±0.013 0.221±0.006

USGS 45 0.32±0.01 NS NS 0.359±0.012 0.292±0.010

USGS 47 0.83±0.04 0.621±0.022 NS 0.349±0.019 0.206±0.008

USGS 511 0.28±0.01 0.164±0.0071 0.231±0.01 0.151±0.01 0.133±0.004

USGS 52 0.38±0.03 NS 0.284±0.014 0.165±0.008 0.151±0.006

USGS 571 1.38±0.07 0.64±0.023 0.521±0.023 0.333±0.021 0.144±0.006

USGS 67 1.43±0.04 NS 1.16±0.04 1.02±0.04 0.877±0.032

USGS 771 1.37±0.06 0.586±0.0193 0.71±0.04 0.153±0.007 0.372±0.013

USGS 821 0.119±0.002 0.0112±0.0004 0.011±0.0004 0.007±0.0005 0.0073±0.0002

USGS 851 1.64±0.08 0.283±0.009 0.173±0.006 0.113±0.008 0.079±0.002

USGS 1041 0.0036±0.0001 0.0049±0.0002 0.005±0.00023 0.027±0.007 0.0045±0.0004

USGS 1061 0.025±0.001 0.034±0.001 0.0274±0.0013 0.0288±0.0012 0.027±0.001

USGS 1111 0.86±0.09 0.138±0.007 0.192±0.007 0.166±0.009 0.235±0.009

USGS 112 2.40±0.25 0.617±0.067 NS 0.43±0.03 0.239±0.008

USGS 1131 3.25±0.14 0.72±0.051 0.75±0.04 0.477±0.026 0.402±0.011

USGS 1141 0.28±0.01 0.153±0.0063 0.173±0.006 0.141±0.004 0.129±0.006

USGS 1161 0.45±0.01 0.069±0.0026 0.144±0.005 0.242±0.011 0.395±0.0150

USGS 124 NS 0.0023±0.0001 0.00225±0.00007 0.00186±0.0001 0.0022±0.0001

USGS 125 NS 0.00013±0.0000008 NS 0.000293±0.00001 0.00039±0.00001
Mean 

concentration 1.15±0.054 0.270±0.012 0.264±0.012 0.173±0.010 0.168±0.006
1Wells used for mean concentration values
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Table 3.  Iodine-129 concentrations in groundwater wells located various distances from the Idaho Nuclear Technology and 
Engineering Center and changes in concentration from the 2011–12 study, Idaho National Laboratory and vicinity, Idaho.

[See figures 2 and 3 for well locations. Concentrations and analytical uncertainties are in picocuries per liter (pCi/L); analytical uncertainties are one standard 
deviation (s); combined standard uncertainties (uc) are 2 s. Abbreviations: NA, not applicable; NS, not sampled]

Sample 
identifier

2011–12 2017–18 Change uc Trend

I-mile radius of the INTEC

USGS 37 0.31±0.016 0.171±0.006 -0.139 0.044 Decrease

USGS 38 0.202±0.018 0.140±0.005 -0.062 0.046 Decrease

USGS 42 0.214±0.013 0.221±0.006 0.007 0.038 No change
USGS 45 0.359±0.012 0.292±0.010 -0.067 0.044 Decrease
USGS 47 0.349±0.019 0.206±0.008 -0.143 0.054 Decrease

USGS 51 0.151±0.01 0.133±0.004 -0.018 0.028 Decrease

USGS 52 0.165±0.008 0.151±0.006 -0.014 0.028 Decrease

USGS 57 0.333±0.021 0.144±0.006 -0.189 0.054 Decrease

USGS 67 1.02±0.04 0.877±0.032 -0.143 0.144 Decrease

USGS 77 0.153±0.007 0.372±0.013 0.219 0.04 Increase

USGS 82 0.007±0.0005 0.0073±0.0002 0.0003 0.0014 No change

USGS 111 0.166±0.009 0.235±0.009 0.069 0.036 Increase

USGS 112 0.43±0.03 0.239±0.008 -0.191 0.076 Decrease

USGS 113 0.477±0.026 0.402±0.011 -0.075 0.074 Decrease

USGS 114 0.141±0.004 0.129±0.006 -0.012 0.02 Decrease

USGS 116 0.242±0.011 0.395±0.0150 0.153 0.052 Increase

2-mile radius of the INTEC

USGS 20 0.037±0.0021 0.056±0.002 0.019 0.0082 Increase

USGS 85 0.113±0.008 0.079±0.002 -0.034 0.02 Decrease

3-mile radius of the INTEC

CFA-1 0.37±0.017 0.403±0.012 0.033 0.058 No change

CFA-2 0.0798±0.0024 0.082±0.003 0.0022 0.0108 No change

USGS 130 NS 0.031±0.001 NA NA NA

Greater than 3-mile radius of the INTEC

Cross Road 0.0000066±0.0000009 0.000016±0.000001 0.0000094 0.0000019 Increase

RWMC M14S NS 0.016±0.001 NA NA NA

USGS 11 0.000046±0.0000025 0.000066±0.000003 0.00002 0.000011 Increase

USGS 14 0.0000177±0.000001 0.000018±0.000001 0.0000003 0.000004 No change

USGS 104 0.027±0.007 0.0045±0.0004 -0.0225 0.0148 Decrease

USGS 106 0.0288±0.0012 0.027±0.001 -0.0018 0.0044 Decrease

USGS 124 0.00186±0.0001 0.0022±0.0001 0.00034 0.0004 No change

USGS 125 0.000293±0.00001 0.00039±0.00001 0.000097 0.00004 Increase

USGS 144 NS 0.000020±0.000001 NA NA NA
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Figure 5.  Change in concentration of iodine-129 between samples collected during 2011–12 and 
2017–18, Idaho National Laboratory and vicinity, Idaho.
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The largest 129I concentration value for this study was at 
USGS 67, located southeast of the INTEC (table 1; fig. 4), at 
0.877 pCi/L, which continues a decreasing trend for this well 
(fig. 7). This decreasing trend is consistent with decreasing 
trends for tritium, strontium-90, chloride, sodium, and 
sulfate for this well (Davis and others, 2015, tables 5 and 7). 
Continuing to the southeast is USGS 116, with a concentration 
of 0.395 pCi/L, an increase of 0.153 pCi/L from the 2011–12 
study and the second largest increase in this study. This well 
and well USGS 20 further to the southeast show increasing 
trends (fig. 7). Davis and others (2015) suggested that the 
aquifer southeast of the INTEC has lower transmissivity 
which may account for the slower movement of wastewater to 
the wells, and the resulting increasing concentrations in these 
wells to the southeast of INTEC may be remnant water from 
periods of time with large amounts of disposal. Both USGS 20 
and 116 also show increasing concentration trends for chloride 
(Davis and others, 2015, table 7).

The well with the largest increase in concentration was 
USGS 77, with an increase of 0.219 pCi/L (table 3; fig. 6). The 
reason for this increase is unclear, though a similar increase 
occurred during the 2007 study with a subsequent decrease in 
2011–12, and the overall trend for this site continues to show a 
decrease in 129I concentration values (fig. 7). Both the increases 
occurred after wet periods in 2006 and 2017, so it is possible 
this particular well had a pulse of wastewater contaminants 
moved to it; it showed similar increases in sodium in 2007 and 
2017–18.

Although most of the wells near the INTEC showed 
decreases of 129I, about half of the wells located beyond a 1-mi 
radius (8 of 11) showed slight increases in concentrations 
between 2011–12 and 2017–18 (table 3; figs. 5 and 6). 
The amount of increase for four of these wells fell within 
the range of uncertainty for the reported analytical results 
thereby resulting in no statistical change. Only wells USGS 
85, 104, and 106 showed a slight decrease in concentration. 
These concentration increases or decreases may be related to 
variable discharge rates of wastewater that moved to these 

well locations as a mass of water from a particular disposal 
period as discussed in Bartholomay (2013). The highest 
concentrations of 129I probably were in wastewater discharged 
in 1958 and 1978 (modified from U.S. Department of Energy, 
2004, appendix D). Therefore, when water reaches a well from 
discharge in 1958 and 1978, the concentration of the sample 
most likely would be greater than concentrations in samples of 
water discharged during other periods. Data from wells USGS 
11 and USGS 14 from Hall (2006) somewhat support this idea 
because 129I concentrations for these two wells were less in 
1998 than during the 1990–91 and 2003 sample periods. 

Previous studies have found that mobility of different 
isotopes in the ESRP is variable and timing of peak migration 
of these isotopes at sites on the INL can have large differences 
in arrival times. Cecil and others (2000) indicated that 1958 
peak disposal of chlorine-36 probably reached USGS 11 in 
1984 and reached USGS 14 in 1987. Using similar timing 
of movement of wastewater, the 2018 samples would have 
been primarily from wastewater discharged in 1994 for 
USGS 11 and 1991 for USGS 14, which would have been 
after the primary disposal of 129I into the aquifer. Beasley 
and others (1998) examined the relative mobility of several 
isotopes disposed at the INTEC, and they concluded that 
chlorine-36 behaves conservatively in the basalt; however, 
129I is attenuated by sorption with other ionic species, and 
probably moves more slowly in the system. Busenberg and 
others (2001, table 8 and fig. 25) calculated the age of the 
young fraction of groundwater and relative flow rates for 
several of the wells, at and south of the INL; and the age 
and flow velocity to USGS 11 and USGS 125 were younger 
and faster than the age and flow velocity to USGS 124 and 
USGS 14, which could account for the observed increase in 
concentrations for USGS 11 and USGS 125 and don’t change 
for USGS 124 and USGS 14. Accurately predicting the first 
arrival of peak concentrations with the limited sample periods 
is difficult because of the uncertainty of 129I concentrations in 
wastewater discharged prior to 1976 and the uncertainty of 
flow movement in the basaltic aquifer system. 
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Figure 7.  Concentration trends of iodine-129 at selected 
wells at and near the Idaho National Laboratory, Idaho.

Summary
From 1953 to 1988, the Idaho National Laboratory 

(INL) in southeastern Idaho generated wastewater containing 
approximately 0.941 curies of iodine-129 (129I). This 
wastewater was a byproduct of fuel reprocessing activities 
at the Idaho Nuclear Technology and Engineering Center 
(INTEC) at the INL. The majority was discharged directly 
into the eastern Snake River Plain (ESRP) aquifer through a 
deep disposal well until 1984; however, some wastewater also 
was discharged into unlined infiltration ponds or leaked from 
distribution systems below the INTEC.

The U.S. Geological Survey (USGS) conducted 
monitoring programs for 129I in the ESRP aquifer at the INL in 
1977, 1981, 1986, 1990–91, 2003, 2007, and 2010–12 prior 
to sample collection in 2017–18. Some additional sampling 
was done in the 1990s to determine an estimated background 
concentration of ESRP water of 0.0000054 picocuries per liter 
(pCi/L). Current 129I concentrations in the ESRP aquifer at the 
INL are compared to the background concentration and to the 
U.S. Environmental Protection Agency’s (USEPA) maximum 
contaminant level (MCL) of 1 pCi/L. 

In 2017–18, the USGS, in cooperation with the U.S. 
Department of Energy, collected samples for 129I from 30 
wells that are used to monitor the ESRP aquifer. Four replicate 
samples were collected as a measure of quality assurance. 
Concentrations of 129I in the aquifer ranged from 0.000016 ± 
0.000001 to 0.877 ± 0.032 pCi/L, and concentrations generally 
decreased in wells near the INTEC from samples collected 
previously. The mean concentration of 15 wells sampled 
during 5 different sample periods decreased from 1.15 pCi/L 
in 1990–91 to 0.168 pCi/L in 2017–18, with concentration 
trends decreasing or holding steady in 11 wells and increasing 
in 4 wells. Overall, 20 of 27 wells showed decreases or no 
change in concentrations ranging from 0.0000003 to 0.189 
pCi/L that are attributed to discontinuation of disposal of 129I 
in wastewater after 1988 and to dilution and dispersion in 
the ESRP aquifer. All wells had concentrations less than the 
USEPA’s MCL.

Increases in concentrations for wells within 1 mi of 
INTEC were attributed to either more recharge near INTEC 
from episodic flow in the Big Lost River and/or from local 
snowmelt and anthropogenic sources moving remnant 
wastewater, or from lower transmissivities in an area southeast 
of the facility.

Although most wells near the INTEC sampled in 
2017–18 showed decreases in concentrations compared 
with previously collected data, some wells locate south of 
the INL showed slight increases. These slight increases are 
probably related to variable discharge rates of wastewater that 
eventually have moved to these well locations as a mass of 
water from a particular disposal period.
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