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Geohydrology and Water Quality of the Unconsolidated 
Aquifers in the Enfield Creek Valley, Town of Enfield, 
Tompkins County, New York

By Benjamin N. Fisher, Paul M. Heisig, and William M. Kappel

Abstract
From 2013 to 2018, the U.S. Geological Survey, in 

cooperation with the Town of Enfield and the Tompkins 
County Planning Department, studied the unconsolidated 
aquifer in the Enfield Creek Valley in the town of Enfield, 
Tompkins County, New York. The valley will likely undergo 
future development as the population of Tompkins County 
increases and spreads out from the metropolitan areas. The 
Town of Enfield, Tompkins County, and the New York State 
Departments of Health and Environmental Conservation need 
geohydrologic information to help planners develop a more 
comprehensive approach to water-resource management in 
Tompkins County.

The Enfield Creek Valley is underlain by an uncon-
fined aquifer that consists of saturated alluvium, alluvial-fan 
deposits, and ice-contact (kame) sand and gravel. A confined 
aquifer of discontinuous ice-contact sand and gravel overlies 
bedrock. Depth to bedrock in the valley ranges from about 
50 feet below land surface from just north of the Enfield Creek 
divide in the northern part of the aquifer to the confluence of 
Fivemile Creek to at least 140 feet below land surface from 
Fivemile Creek to where the valley orientation changes from 
north-south to northwest-southeast. Depth to bedrock is much 
shallower from the valley orientation change to the south-
eastern part of the aquifer because Enfield Creek has carved 
through overlying sediments into bedrock as the creek drops 
450 feet into the Cayuga Inlet Valley. A small buried valley 
running south to north was identified within the Fivemile 
Creek drainage along the western edge of the town. However, 
the valley fill consists of glacial till, and no sand-and-gravel 
aquifer is present.

The unconfined aquifers are recharged by direct infiltra-
tion of precipitation, surface runoff, and shallow subsurface 
flow from hillsides, and by seepage loss from streams overly-
ing the aquifer. The confined aquifers are recharged mostly 
by precipitation that enters the adjacent valley walls, by 

groundwater flowing from bordering till or bedrock, and by 
flow from the bottom of the valley. Also, some recharge may 
be occurring where confining units are absent or from confin-
ing units with sediments of moderate permeability.

Groundwater discharges to Enfield Creek, its tributaries, 
and wetlands and is lost through evapotranspiration from the 
water table or is withdrawn from domestic, commercial, and 
agricultural wells. About 700 individual well owners depend 
on the unconsolidated aquifers for their water supply. An esti-
mated 28,300,000 gallons per year are withdrawn.

Groundwater samples were collected from eight test 
wells drilled for this study, and six surface-water samples 
were collected from five locations on Enfield Creek. Of the 
eight wells sampled, two were finished in unconfined sand-
and-gravel aquifers, two were finished in confined sand-and-
gravel aquifers, and four were finished at or near the shale 
bedrock surface.

Water quality in the study area generally met State and 
Federal drinking-water standards. However, some samples 
exceeded maximum contaminant levels for barium (25 percent 
of samples) and secondary maximum containment levels for 
chloride (25 percent), dissolved solids (25 percent of samples), 
iron (70 percent of samples), and manganese (75 percent of 
samples). Groundwater from 75 percent of the wells sampled 
for methane had concentrations greater than the Office of 
Surface Mining Reclamation and Enforcement recommended 
action level of 10 to 28 milligrams per liter. The two deepest 
wells sampled, TM1075 and TM1077, had the highest specific 
conductance, chloride, and sodium concentrations of all wells 
sampled. The chloride/bromide ratios of these samples suggest 
the source may represent a mixture of saline formation waters 
with shallow dilute groundwater and may receive recharge 
contribution from two tributaries overlying bedrock to the 
west and southwest of the aquifer. In general, the highest 
yields are from wells completed within about 50 feet below 
land surface, which may tap either type of aquifer.
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Introduction

The Town of Enfield relies on groundwater as its sole 
source for drinking water. Unconsolidated aquifers like those 
that underlie the study area are susceptible to contamination 
from manmade and natural sources. Elevated concentrations 
of sodium, chloride, total dissolved solids, and methane in 
groundwater are of local concern.

In 2000, the U.S. Geological Survey (USGS) mapped the 
extent of the unconsolidated (sand-and-gravel) aquifer systems 
in Tompkins County, New York (Miller, 2000). From 2000 to 
2002, the USGS, in cooperation with the Tompkins County 
Planning Department, used this information to plan more 
detailed studies to better understand these unconsolidated 
aquifers. The purpose of these studies is to provide town and 
county planners information to manage, maintain, and protect 
their groundwater resources as a drinking-water source. A list 
of 17 unconsolidated-aquifer reaches (fig. 1) was compiled, 
and a plan to study them over the following years was devel-
oped. The extent of the stratified-drift unconsolidated aquifers 
was based mostly on natural hydrologic boundaries, but, in 
some cases, political boundaries were used as well. Between 
2013 and 2018, the Enfield Creek Valley was the fifth (Miller 
and Karig, 2010; Miller and Bugliosi 2013; Bugliosi and oth-
ers, 2014; Miller, 2015) aquifer study to be investigated for 
this county-wide program.

The objective of this study is to improve the under-
standing of the geohydrology of the unconsolidated aquifer 
in the Enfield Creek Valley. Specifically, the study provides 
information regarding the (1) extent and thickness of geo-
hydrologic units, (2) hydraulic conditions in the aquifer 
(whether the units are under confined [artesian] or unconfined 
conditions), (3) extent of groundwater/surface-water interac-
tion, (4) groundwater use (type and amount of groundwater 
withdrawal), (5) water levels in the geohydrologic units, and 
(6) general water quality of Enfield Creek and the aquifer.

The study may benefit Federal, State, and county gov-
ernments and the residents in the study area by advancing 
knowledge of the regional geohydrologic framework of these 
types of valley-fill systems, by increasing the understanding 
of hydrologic processes in unconsolidated aquifer systems 
in the glacial northeast, and by contributing data to national 
databases that are used to advance the understanding of the 
regional and temporal variations in hydrologic systems. Addi-
tionally, the information provides local government, water 
managers, businesses, and homeowners with groundwater 
information to help ensure that the drinking-water supply will 
be safe, water will be available for economic development, 
and aquatic environments will be healthy. The study builds 
upon the USGS data-collection efforts in New York State and 
on the interpretation of the Nation’s water availability.

Purpose and Scope

This report describes the geohydrology of the uncon-
solidated aquifer in the Enfield Creek Valley in the town of 
Enfield, Tompkins County, New York. The report describes 
and illustrates (1) the geology of the study area, including the 
geologic framework of the unconsolidated aquifers and geohy-
drologic sections; (2) the groundwater-flow system, including 
information about groundwater levels, groundwater/surface-
water interaction, and recharge and discharge conditions; and 
(3) groundwater and surface-water quality, including informa-
tion about concentrations of common inorganic ions, inorganic 
forms of nitrogen and phosphorus (collectively, nutrients), 
trace elements, dissolved gasses, and chlorofluorocarbons.

Evaluating, developing, and protecting these unconsoli-
dated aquifers requires information on the aquifer geometry 
(the three-dimensional extent and distribution of glacial sedi-
ments including aquifers and confining units), on sources of 
recharge and discharge, and on aquifer water quality. Aquifer 
geometry was determined from test wells drilled for the study, 
driller’s logs from existing wells, topographic maps, light 
detection and ranging coverage, passive-seismic soundings, 
field surveys, and field observations from previous studies in 
the area. The types of recharge were delineated, and stream-
flow measurements were made along Enfield Creek and its 
tributaries to determine where the aquifer was being recharged 
from the overlying streams. Groundwater withdrawals were 
estimated using values from USGS water-use reports (Horn 
and others, 2008; Dieter and others, 2018) and from U.S. Cen-
sus Bureau (2012b) data and have been rounded to three 
significant figures.

Stream samples were collected to characterize the quality 
of surface water under base-flow conditions (when the flow is 
mostly from groundwater discharging into stream channels) 
and to determine whether there are similarities in water quality 
between surface water and groundwater. Groundwater samples 
were collected from wells that are finished in unconfined 
and confined aquifers to compare water-quality conditions. 
Samples were collected from wells to characterize the quality 
of groundwater and to determine if the concentrations of any 
constituents exceeded standards for drinking-water quality.

Description of Study Area

The town of Enfield is in the Appalachian Plateau physio-
graphic province of central New York at the transition between 
highly eroded, smooth interfluve areas of low relief between 
deeply eroded Finger Lake valleys and the dissected plateau 
areas of moderate relief to the south (fig. 2). Relief between 
valley bottoms and adjacent hills at the northern end of town is 
about 200 feet (ft); local relief just upvalley from Enfield Glen 
at the southern end of town is about 600 ft. The topography of 
the plateau reflects millions of years of dissection by streams 
and subsequent modification by several periods of glaciation. 
Enfield is underlain by gently southward dipping sedimentary 
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bedrock that primarily consists of shale and siltstone of the 
Sonyea Group and the underlying Genesee Group (exposed in 
Enfield Glen), which are of Upper Devonian age (Rickard and 
Fisher, 1970).

Enfield Creek begins at a watershed divide at the north-
ern edge of town just northeast of the intersection of County 
Route 170 (Halseyville Road) and County Route 139 (Hayts 
Road). Just downstream, Enfield Creek is joined by its main 
tributary, Fivemile Creek, as Enfield flows southward, then 
eastward through the main valley to Robert H. Treman State 
Park. At the park, Enfield Creek has incised through unconsol-
idated deposits and into bedrock as it descends 400 ft through 
Enfield Glen on the west wall of the Cayuga Inlet Valley. 
Enfield Creek joins Cayuga Inlet and flows north into Cayuga 
Lake, which is part of the Oswego River Basin and the Lake 
Ontario watershed (Michigan Sea Grant, 2019). The Enfield 

Creek drainage area is 30.6 square miles. Elevations in the 
study area range from about 1,990 ft above the North Ameri-
can Vertical Datum of 1988 on Buck Hill, which is in the 
southwest corner of the town of Enfield, to about 600 ft at the 
base of Enfield Glen in the southeast corner of town (fig. 3).

Methods of Investigation
Data used for analysis in this study were collected 

through geologic mapping, test drilling, passive-seismic 
soundings, measuring groundwater levels, and surface-water 
and groundwater-quality sampling; and through compiling 
existing data, including driller well records, and past geologic, 
soil, surficial- and bedrock-deposit maps and reports, which 
are described in the following sections.
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Well Inventory, Test Drilling, and Water-Level 
Measurements

Well records (306 in total) within and outside the uncon-
solidated aquifer were collected and compiled within the 
town of Enfield. Sources of well data include previous USGS 
groundwater studies, the USGS National Water Informa-
tion System, and well records obtained from the New York 
State Department of Environmental Conservation Water Well 
Contractor Program. These data are available from Fisher and 
others (2019b, 2020).

Eight test wells were drilled in the town of Enfield and 
village of Enfield, New York, as part of the project (app. 1):

•	 Well TM1075 is at the Town of Enfield Highway 
Department and was drilled 142 ft into gray and black 
shale bedrock and cased to 136 ft in sand and gravel.

•	 Well TM1076 is next toTM1075 and was drilled 60 ft 
into sand and gravel and cased to 53 ft in sand and 
gravel.

•	 Well TM1077 is behind an apartment complex in the 
village of Enfield and was drilled 106 ft into gray and 
black shale and cased to 93 ft in sand and gravel.

•	 Well TM1078 is next to well TM 1077 and was drilled 
60 ft into sand and gravel and cased to 56 ft in sand 
and gravel.

•	 Well TM1079 is off Hayts Road and was drilled 61 ft 
into gray and black shale bedrock and cased 48 ft in 
sand and gravel.

•	 Well TM1080 is next to TM1079 and was drilled 12 ft 
into sand and gravel and cased to 9 ft in sand and 
gravel.

•	 Well TM1081 is on a private farm off Enfield Main 
Road and was drilled 142 ft into gray and black shale 
and cased to 138 ft in sand and gravel;

•	 Well TM1082 is next to TM 1081 and was drilled 51 ft 
into sand and gravel and cased to 42 ft in sand and 
gravel.

Soil and rock samples were obtained with depth during 
the drilling to help determine the underlying aquifer mate-
rial. All wells, except for well TM1081, were completed as 
open holes. The casing of well TM1081 was perforated from 
77 to 79 ft deep and sealed at the bottom of the hole. Water-
level and water-temperature data were collected at all eight 
USGS test wells during the study period after completing the 
test drilling. Water-level data loggers were installed in each 
of these wells to monitor seasonal water-level fluctuation. 
As the well data loggers were sealed, a barometric pressure 
data logger in the USGS New York Water Science Center, 
Ithaca office was used to compensate for barometric pressure 
changes recorded at each well. The loggers were set to record 

water-level and water-temperature data every 4 hours, from 
which graphical representations of changes in water level and 
water temperature were made (app. 2).

Land-surface elevations at wells were estimated using 
light detection and ranging technology with a horizontal accu-
racy of 1.000 meter root mean square error and a vertical accu-
racy of 0.185 meter root mean square error. Also used were 
1:24,000-scale topographic contour maps that were accurate 
to 5 ft. Depths to water below the measuring points were then 
converted to water-level elevations by subtracting water level 
from land-surface elevation.

Horizontal-to-Vertical Spectral Ratio Seismic 
Sounding Surveys

The horizontal-to-vertical spectral ratio or passive-
seismic method measures ambient seismic noise to determine 
sediment thickness overlying bedrock. This method uses a 
single, broad-band three-component seismometer to record 
the ambient seismic noise. The averaged horizontal-to-vertical 
frequency spectrum is used to determine a resonance fre-
quency that can then be interpreted using regression equations 
to estimate sediment thickness and depth to bedrock (Lane 
and others, 2008). Measurements were taken at 69 locations 
(fig. 4) to refine aquifer geometry as determined from the data 
collected and described above. These data are available as a 
separate USGS data release (Fisher and others, 2019a) and are 
shown on figure 4. This method works best when the shear 
wave velocities of bedrock and the unconsolidated deposits 
differ; stratified sediments over bedrock generally work best. 
Dense glacial till over shale typically provides a weak peak or 
no peak, which results in either underestimated bedrock depth 
or unusable data and no estimate. The results of these analyses 
are noted with a “greater than” depth estimate or “na,” mean-
ing no analysis was possible. Results are still useful because 
they indicate that the unconsolidated deposits above bedrock 
are probably till. There were several passive-seismic sound-
ings collected in till-dominated areas to the west and south-
west of the study area valley. These soundings were collected 
to investigate a possible buried valley thought to extend from 
the southwest to the northeast and terminate at the Fivemile 
Creek Valley. Well logs in the area indicated the existence 
of a buried valley filled in with till, which explains why the 
passive-seismic soundings in the area were largely unable to 
estimate the bedrock depth.

Surficial Geologic Map

The surficial geologic map of Muller and Cadwell (1986) 
was modified using information from topographic maps, 
orthophotographs, soils maps, and well logs (Neeley, 1961). 
Horizontal-to-vertical spectral ratio seismic surveys were 
used to determine the thickness of the unconsolidated depos-
its and bedrock-surface elevation to help refine the surficial 
geologic map.
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Streamflow Measurements

Synoptic streamflow measurements (Rantz and oth-
ers, 1982) were performed during base flow, or sustained 
low-flow conditions in the absence of direct surface runoff, at 
12 sites along Enfield Creek and its tributaries to determine if 
streams were losing water to or gaining water from the aquifer 
(fig. 5; table 1). The streamflow measurements for discharge 
(stream width, stream depth, and stream velocity) were made 
at intervals along a longitudinal profile based on locations of 
tributaries entering the main stem using a SonTek acoustic 
Doppler velocimeter. These streamflow measurements were 
collected on September 17, 2015.

Measurements at all locations, except for sites 04233090 
and 04233100, were made twice and averaged together for 
the final discharge value. The two locations mentioned above, 
with only one measurement collected, have greater uncertainty 
because of the lack of a verification (or second) measurement. 
In general, there may be relative uncertainty between all mea-
surements made because of equipment uncertainty, possible 
human error in depth and width readings, and the absence of 
uniform flows in the streams.

Water-Quality Sampling and Analysis

Samples for this study were collected from surface 
water and groundwater. Water samples, including replicates 
and blanks, were collected in accordance with the USGS 
national field manual for the collection of water-quality data 
(U.S. Geological Survey, variously dated). Surface-water and 
groundwater samples were analyzed at the USGS National 
Water Quality Laboratory (NWQL) in Denver, Colorado, for 
physical properties, nutrients (Fishman, 1993; Patton and Tru-
itt, 2000; Patton and Kryskalla, 2011), major ions, and trace 
elements (Fishman and Friedman, 1989; Fishman, 1993; Gar-
barino, 1999; Garbarino and others, 2005; American Public 
Health Association, American Water Works Association, and 
Water Environment Federation, 1998). Groundwater samples 
were also analyzed at the USGS Groundwater Dating Labora-
tory in Reston, Virginia, for dissolved gases, chlorofluorocar-
bons (CFCs), and age dating (Busenberg and Plummer, 2008, 
U.S. Geological Survey, 2018).

Physical properties were measured in the field at the time 
of sampling, aside from well depth. Well depth was deter-
mined during the test well drilling. The physiochemical prop-
erties (dissolved oxygen, pH, and water temperature) were 
obtained using a YSI 6920 V2 multiparameter water-quality 
sonde. Specific conductance (SC) values were reported from 
the laboratory.

Surface-water samples were collected on Septem-
ber 17, 2015. Samples were collected along Enfield Creek 
overlying the aquifer boundaries and were collected at the 
same time as the discharge measurements that were performed 
for the streamflow synoptic. One replicate (or quality-control) 
sample was collected—to ensure reproducibility in sample 
collection method—for six surface-water samples.

Groundwater samples were collected on June 15, 2016, 
at all eight USGS test wells. One blank quality-control sample 
was collected for nine groundwater samples. Wells were 
purged until properties (temperature, SC, pH, and dissolved 
oxygen) stabilized. Stability criteria allow variation between 
five or more sequential field-measurement values. Stabil-
ity criteria for each property are as follows: temperature is 
plus or minus (±) 0.2 degree Celsius (°C; thermistor); SC is 
±5 percent of SC less than 100 microsiemens per centimeter 
at 25 degrees Celsius (µS/cm at 25 °C) and ±3 percent for 
SC greater than 100 µS/cm; pH is ±0.1 units (±0.05 units if 
instrument displays two or more digits to the right of the deci-
mal); and dissolved oxygen is ±0.2 milligram per liter (mg/L; 
U.S. Geological Survey, variously dated).

Depositional History and Framework of 
Glacial and Postglacial Deposits

The Finger Lakes region has been subject to several 
periods of glaciation separated by interglacial periods dur-
ing the Pleistocene Epoch, from about 2.6 million years ago 
until about 12,000 years ago (Fullerton, 1980). Since then, 
the glacial deposits locally have been subject to erosion and 
redeposition as postglacial deposits including alluvium and 
alluvial-fan deposits and colluvium (not mapped as a separate 
unit in this study).

The town of Enfield occupies a high-elevation upland 
area (interfluve) between the two deepest valleys in the 
region—the Cayuga Lake and Seneca Lake troughs. The main 
valley within the town, occupied by Enfield Creek, ranges 
from about 800 to 200 ft above the level of Cayuga Lake, 
which lies 6 miles to the northeast.

Bedrock Surface and Thickness of Glacial 
Deposits

Unconsolidated deposits in the study area overlie bedrock 
that has been eroded during glacial and interglacial periods. 
Bedrock primarily consists of shale and siltstone of the Sonyea 
Group and the underlying Genesee Group (exposed in Enfield 
Glen), which are of Upper Devonian age (Rickard and Fisher, 
1970). Williams and others (1909) recognized that glacial ero-
sion of bedrock was most pronounced in the deepest valleys 
where the ice was thickest and where valleys were aligned 
with regional ice movement, such as the Cayuga Lake and 
Cayuga Inlet Valleys. The depth to bedrock in the Inlet Val-
ley south of Ithaca is at least 350 ft and probably as much as 
450 ft below land surface (Lawson, 1977). Erosion by glacial 
ice was least effective in upland areas or areas close to the 
ice margin (where ice was thinnest and flow weakest), and in 
valleys oriented perpendicular to regional ice flow. The north-
south-oriented section of Enfield Creek Valley was parallel 
to ice flow (figs. 6 and 7), and although depth to bedrock is 
about 50 ft just south of the northern through-valley divide 
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Table 1.  Streamflow sites and associated discharge measurements, town of Enfield, Tompkins County, New York.

[ft3/s, cubic foot per second; mi2, square mile; Cr, Creek; Rd, Road; °, degree; ′, minute; ″, second; N., north; W., west]

Station  
identifi-
cation 

number

Station name
Discharge  

(ft3/s)

Drainage 
area  
(mi2)

Latitude Longitude

04233051 Enfield Creek above Fivemile Creek at Millers Corners, New York 0.031 2.86 42°26′43.7″ N. 76°37′43.6″ W.

04233053 Enfield Creek below Fivemile Cr at Millers Corners, New York 0.078 7.47 42°26′41.8″ N. 76°37′43.4″ W.

04233060 Enfield Creek at Enfield Center Road 3 at Enfield, New York 0.648 8.43 42°26′09.6″ N. 76°37′47.6″ W.

04233065 Enfield Creek at Bostwick Road at Bostwick Corners, New York 0.794 10.2 42°25′17.9″ N. 76°37′28.0″ W.

04233075 Enfield Creek Tributary at Bostwick Corners, New York 0.031 2.94 42°24′54.3″ N. 76°37′36.5″ W.

04233080 Enfield Creek above State Route 327 at Bostwick Corners, New York 1.23 15.0 42°24′54.8″ N. 76°37′11.4″ W.

04233085 Enfield Creek at Hines Rd near Bostwick Corners, New York 1.30 16.5 42°24′39.4″ N. 76°36′27.3″ W.

04233090 Enfield Creek Tributary 3 at State Route 327 near Bostwick Corners, 
New York

0.048 0.40 42°24′29.4″ N. 76°36′06.5″ W.

04233092 Enfield Creek below Tributary 3 near Bostwick Corners, New York 1.75 17.4 42°24′28.6″ N. 76°36′04.6″ W.

04233095 Enfield Creek Tributary 4 at Robert H. Treman State Park, New York 0.008 0.28 42°24′22.9″ N. 76°35′51.3″ W.

04233097 Enfield Creek below Tributary 4 near Robert H. Treman State Park, 
New York

1.42 17.8 42°24′22.2″ N. 76°35′50.2″ W.

04233100 Enfield Creek at Robert H. Treman State Park, New York 1.56 17.9 42°24′12.9″ N. 76°35′39.2″ W.

of Enfield Creek, it increases to at least 140 ft within 1 mile 
downvalley (at the confluence with Fivemile Creek). This 
140-ft depth is maintained at least until the valley orientation 
changes from north-south to northwest-southeast toward the 
Cayuga Inlet Valley. Reported depths to bedrock downgra-
dient from this point are shallower because Enfield Creek 
has incised through overlying sediments into bedrock as it 
descends 450 ft into the Cayuga Inlet Valley. Tributary val-
leys of the Cayuga Inlet Valley are termed “hanging valleys” 
because glaciation has eroded the bedrock floor of the Inlet 
Valley far below the bedrock floors of the tributary valleys. 
For example, Enfield Creek, before it starts to incise into the 
valley fill, is greater than 600 ft higher than the Cayuga Inlet 
flood plain at their confluence; the difference in elevation of 
the bedrock floors is greater still. Such differences in elevation 
have resulted in the development of a system of gorges along 
the Cayuga Inlet Valley during interglacial intervals (Williams 
and others, 1909; Miller, 2015; Miller and Karig, 2010; Karig, 
2015). The gorges were buried by sediment deposited dur-
ing subsequent glacial advances and have been re-excavated 
to varying degrees during the past 12,000 years. In the study 
area, Enfield Creek has partially re-excavated a buried inter-
glacial gorge and incised farther into bedrock at Enfield Glen 
(within Robert H. Treman State Park in the southeast corner of 
the town of Enfield; figs. 4 and 7B, C).

The upland areas in Enfield are mostly mantled by thin 
(0–40 ft) glacial till of low permeability. Thick till (as much 

as 125 ft) primarily underlies the drainages of Fivemile Creek 
and an unnamed tributary of Taughannock Creek within the 
northwest quadrant of the town (fig. 4). Adjacent areas of thin 
till may indicate that some thick till areas cover buried inter-
glacial gorges.

Glacial and Postglacial History

Most glacial deposits within the study area are derived 
from two primary Laurentide ice sheet advances and retreats 
during the Late Wisconsinan substage at the end of the Pleis-
tocene Epoch. Both advances completely covered the town 
of Enfield. These include the maximum Late Wisconsinan ice 
advance that extended as far south as Pennsylvania (Nissouri 
Stade, about 23,000 to 16,500 years before present [2019]; 
Muller and Calkin, 1993), and the Valley Heads re-advance 
(Fairchild, 1932), which deposited moraines mostly in the 
form of outwash heads in valleys immediately south of Enfield 
(in the town of Newfield; Denny and Lyford, 1963; Bugliosi 
and others, 2014) and across much of western New York 
(Port Bruce Stade, starting about 15,500 years before present 
[2019] until ice retreated from the area about 14,400 years 
ago; Karrow, 1984; Cadwell and Muller, 2004). As a result, 
two tills (or more) are common in valleys north of the Valley 
Heads moraine (for example, Miller, 2015). Earlier glacial or 
interglacial deposits have been noted within the region, most 
commonly as gorge fillings (for example, Karig, 2015).
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The major unconsolidated depositional features in Enfield 
(fig. 6) are the result of early deglacial deposition of ice-con-
tact deposits (kames) during final ice retreat from the Valley 
Heads position, of limited late glacial meltwater drainage from 
ice-marginal positions within and at the northern edge of the 
Enfield Creek drainage, and of erosion of the recently deglaci-
ated landscape through mass wasting and runoff along with 
deposition of flood-plain alluvium, alluvial fans, and organic 
deposits (see Randall, 2001, p. B12, ”The Universal Three 
Depositional Facies”).

The mode of deglaciation from the Valley Heads posi-
tion in much of Enfield seems to have been an active retreat of 
the ice; pauses or re-advances are marked by small moraines. 
Northward ice retreat is indicated by two moraines, and ice 
retreat to the east, towards the ice tongue in the Cayuga Inlet 
Valley, is indicated by a morainic loop in the lower Enfield 
Creek Valley (fig. 6).

Poorly sorted ice-contact deposits, till, and gravelly or 
resedimented till (flow till, debris flow, or slump deposits) are 
the primary glacial deposits within the Enfield Creek Valley 
(figs. 6 and 7). These deposits are the result of small amounts 
of meltwater flow and sorting in this high-elevation valley, 
with drainage away from the ice margin. Little meltwater 
was impounded in the valley. The most extensive ice-contact 
deposits are on the west side of the valley just before it turns 
to the southeast and on each side of the lowermost valley at 
Enfield Glen (fig. 6). Lacustrine deposits are mostly limited 
to the lower Enfield Creek Valley, where drainage was toward 
the ice tongue in the Cayuga Inlet Valley. Elsewhere within the 
valley fill, deposits that could be interpreted as lacustrine are 
thin and discontinuous (fig. 7C). The only outwash deposits in 
Enfield Creek Valley are present near the through-valley drain-
age divide at the north end of the town, where little meltwater 
from the ice margin entered the valley (fig. 6; Williams and 
others, 1909).

As the Enfield area became ice free more than 
13,000 years ago (Miller and Karig, 2010; table 1), ero-
sion of unvegetated glacial deposits began, principally by 
water action and gravity-driven mass movement of unstable 
slopes. Sediments deposited by running water formed alluvial 
fans and alluvial flood plains. Organic deposits (freshwater 
swamp deposits) accumulated in poorly drained areas (fig. 6). 
Subsequent decreases in sediment load and lowering base 
level has incised the flood plain and created alluvial terraces 
immediately upvalley from Enfield Glen. Erosion and deposi-
tion continue to the present day but at slower rates because of 
vegetative cover.

Alluvial fans are common within the study area and 
are divided into two classes on the basis of morphology: 
“alf(d)” indicates irregular and somewhat lobate fans, gener-
ally of high slope that were formed by water-poor, debris-
flow deposits as the area became ice free (Church and Ryder, 
1972), and “alf” indicates regular-shaped fans of generally 
low slope that reflect water-rich fluvial deposition (fig. 6). 

Debris-flow-dominated fans have intermittent confined perme-
able zones within less permeable deposits whose parent mate-
rial was mostly till. Soil surveys indicate till parent material. 
Fluvially dominated fans or parts of fans are generally silty 
gravels with some cleaner zones.

The debris-flow-dominated fans are indicative of early 
deglacial conditions (Church and Ryder, 1972), and their 
presence indicates that fluvial action since then has not been 
enough to alter their morphology. In Enfield, alf(d) deposits 
most commonly have upgradient drainages that are dispropor-
tionately small relative to fan size or even fan development 
(fig. 6). This may indicate that some early fan development 
depended on meltwater flow across cols (a gap in a hillside) 
from a nearby ice margin. Because meltwater contribu-
tions ceased, local runoff from the small drainage areas has 
been insufficient to substantially modify the fans. Fans with 
relatively large drainage areas have developed more regular 
fluvial-dominated fan morphology during postglacial time.

Glacial Aquifers

Glacial aquifers in the Enfield area are a modest ground-
water resource, present within ice-contact and outwash 
stratified drift and in alluvial fan deposits (fig. 6) primarily 
within the Enfield Creek Valley (fig. 3). Ice-contact deposits 
can vary greatly in grain size and degree of sorting over short 
distances. Alluvial fan (alf) deposits may likewise have silty 
confining zones, silty gravels, and less commonly cleaner 
sand-and-gravel beds. Shallow intervals of these deposits form 
unconfined aquifers, and deeper deposits form semiconfined 
or confined aquifers within the valley fill (fig. 3). Alluvium 
is generally too thin to form an unconfined aquifer unless it 
is underlain by other permeable deposits. Confined aquifer 
conditions are widespread but mostly consist of multiple, 
relatively thin, silty sand-and-gravel beds isolated to varying 
degrees by intervening, poorly sorted beds. Ice-contact depos-
its are most probably thinly saturated and thus of limited aqui-
fer potential where the Enfield Creek Valley joins the Cayuga 
Inlet Valley because deep incision has lowered the base level 
at Enfield Glen. The most favorable area for groundwater 
resources is within ice-contact and alluvial fan deposits just 
north of where the Enfield Creek Valley turns to the southeast 
in the unconfined and shallower confined zones (fig. 7C).

Driller-reported well yields from wells completed in 
glacial aquifers across the town range from 0 to 40 gallons 
per minute (gal/min; Fisher and others, 2019b). In general, 
the highest yields are from wells completed within about 50 ft 
of land surface, which may tap either type of aquifer. Deeper 
productive confined or semiconfined aquifer intervals inter-
sected during the USGS drilling effort yielded as much as 
20 gal/min. Higher yields from both types of aquifer would be 
expected if wells are constructed with screened intervals; most 
domestic-water wells are typically completed with an open-
ended well casing.
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Groundwater Recharge, Discharge, 
and Withdrawals

Groundwater recharge, discharge, and withdrawals are 
characterized in the following sections. Groundwater recharge 
from the overlying Enfield Creek was estimated by collect-
ing synoptic streamflow measurements commonly known 
as a seepage run. Several water temperature and water level 
loggers were installed in two test wells drilled for this study 
to help determine where major sources of surface water may 
be recharging the aquifer. Groundwater withdrawal rates were 
compiled from reported or estimated data to determine the 
amount of groundwater being withdrawn from domestic and 
production wells in the town of Enfield.

Groundwater Recharge

Unconfined aquifers are primarily recharged by the 
infiltration of precipitation, either by rain or snowmelt, on the 
land surface. The confined aquifers are recharged mostly by 
areas where upland runoff meets deposits on the valley floor in 
hydraulic connection with the confined aquifer, by groundwa-
ter flow from bordering till or bedrock, and by flow from the 
bottom of the valley. Also, some recharge may be occurring 
where confining units are absent or from confining units with 
sediments of moderate permeability. Understanding ground-
water recharge is essential to determine the long-term avail-
ability of the groundwater in a specific aquifer system.

Aquifer recharge mostly occurs at two periods dur-
ing the year: March through April and mid-October through 
mid-December. These are the primary recharge periods 
because vegetation is dormant during these times, which 
decreases evapotranspiration, allowing more aquifer recharge 
and storage. During the growing season, which occurs from 
May through mid-October, the rate of evapotranspiration is 
typically greater than the rate of precipitation, causing a net 
decrease in water levels and storage. During the study period, 
substantial recharge occurred during July 2017 from large 
summer storms. Other sources of recharge included unchan-
nelized runoff from hills that border the aquifer and seepage 
losses that occurred when overlying streams drained into 
the aquifer.

Streamflow measurements were collected on September 
17, 2015 (fig. 5; table 1), at 12 locations along Enfield Creek 
to determine where surface water was potentially losing water 
to or gaining water from the aquifer. Measurements at every 
location indicated streamflow gains along Enfield Creek, 
except for the stretch between Enfield Creek below Tributary 3 
near Bostwick Corners, New York (04233092), and Enfield 

Creek below Tributary 4 near Robert H. Treman State Park 
(04233097) where Enfield Creek recharges 0.33 cubic foot per 
second (ft3/s) to the aquifer (fig. 5; table 1).

In March 2016, two of the eight drilled test wells 
(TM1075 and TM1077) were instrumented with water-tem-
perature loggers at multiple depths to determine the timing of 
aquifer recharge and how groundwater temperature fluctuates 
in the unconsolidated aquifer at these locations. Well TM1075 
is near the Village Department of Public Works garage in the 
southern part of the aquifer. Well TM1077 is about 1.5 miles 
north of well TM1075 and is near the middle, between the 
north and south ends, of the aquifer and is adjacent to Enfield 
Creek (fig. 8). Well TM1075 was equipped with seven 
temperature loggers at depths of 10, 20, 45, 65, 85, 100, and 
134 ft. Well TM1077, which is shallower, was equipped with 
five temperature loggers at depths of 10, 25, 50, 75, and 90 ft. 
The temperature graphs are provided in appendix 3.

In comparing the two sets of temperature logs, it is 
interesting to note that in the middle part of the aquifer at well 
TM1077, groundwater temperatures fluctuated seasonally 
down to about 25 ft and did not change at greater depths; the 
shallower depths were more reactive to temperature change 
(app. 3) because of recharge. In well TM1075, the zone of 
more constant seasonal water temperature was encountered 
below 70 ft (app. 3). These temperature profiles, especially 
in well TM1075 in the southern part of the aquifer, seem to 
indicate an appreciable amount of groundwater recharge.

In viewing the topography of the two contributing areas 
to these wells (fig. 8), well TM1077 only receives water from 
the valley walls and from farther upvalley. Well TM1075 
receives water from these same sources but also seems to be 
affected by a large tributary entering the Enfield Valley off the 
west valley wall near Harvey Hill Road and an even larger 
tributary (Enfield Creek Tributary at Bostwick Corners, N.Y.) 
that enters the valley from the southwest toward this well 
(fig. 3).

The orientation of these tributary streams mimics 
the structural framework of the underlying bedrock. The 
stream channels have either a northwest-southeast trend or 
a northeast-southwest trend, both of which are typical for 
central New York. These tributaries contribute surface-water 
recharge to the unconfined aquifer along their channels and 
could potentially provide recharge to the unconfined aquifer 
(Miller, 2015). The orientation of the tributary valleys is fur-
ther enhanced by preferential glacial erosion and subsequent 
deposition of glacial sediments in these valleys and into the 
Enfield Creek Valley. The water quality in these tributar-
ies has a direct bearing on the usefulness of the aquifer as a 
water resource.
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Figure 8.  Locations of domestic, test, and production wells in the town of Enfield, Tompkins County, New York. A, All 
quadrangles; B, Northwest, C, Northeast, D, Southwest, and E, Southeast quadrangles. See also Fisher and others 
(2020).—Continued
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Groundwater Discharge

Groundwater discharges to Enfield Creek, its tributaries, 
and local wetlands; and groundwater discharge is removed 
by evapotranspiration from the water table or is withdrawn 
by domestic, commercial, and agricultural wells. During the 
nongrowing season from mid-October through April, the rate 
of recharge to the aquifer is greater than discharge, which is 
reflected by an increase in aquifer storage and groundwater 
levels. During the growing season from May through mid-
October, the rate of discharge from the aquifer is greater than 
the rate of recharge, which is reflected by a decrease in aquifer 
storage and groundwater levels.

Groundwater Withdrawals

Groundwater withdrawals were estimated at locations 
where withdrawal data were not available or provided. The 
total estimated annual withdrawal from the aquifer was 
28.3 million gallons (Mgal).

Domestic wells (n=218) that tap the unconsolidated 
aquifer by homes and farms overlying the aquifer boundar-
ies were estimated using orthoimagery and tax parcels to do a 
visual count. Because the U.S. Census Bureau did not have a 
population count for the town of Enfield, the number of wells 
was multiplied by the average household size for the neighbor-
ing town of Newfield, which is 2.45 residents (U.S. Census 
Bureau, 2012a), to obtain the estimated number of people 
withdrawing water from the aquifer. In Enfield, that estimated 
number was 534 persons; this number was then multiplied 

by 75 gallons per day (gal/d), which is the average use per 
person (Dieter and others, 2018), to determine the estimated 
withdrawal (40,000 gal/d), The estimated withdrawal was 
then multiplied by 365 days to determine the estimated annual 
withdrawal of 14.6 Mgal from residences overlying the aquifer 
boundary. Water use for the only mobile home park overlying 
the aquifer was calculated similarly as above. About 70 house-
holds withdraw water from 1 well serving the mobile home 
community. The estimated daily and annual withdrawals from 
the mobile home park are 12,800 and 4,670,000 gallons (gal), 
respectively. This estimation (4,670,000 gal) plus the visual 
count estimation above (14,600,000 gal) equal an annual with-
drawal of 19,300,000 gal from domestic wells (table 2).

Water use, in gallons per day, at a commercial store, a 
commercial business, and Enfield Elementary School were 
estimated using median water demand estimates for commer-
cial establishments and schools (Horn and others, 2008). The 
daily withdrawals are 40, 132, and 234 gal/d, respectively, 
and annual withdrawals are 14,600, 48,200, and 85,400 gal, 
respectively. Water use for a golf course overlying the aqui-
fer along the northeastern boundary was estimated in 2015 
using data from Dieter and others (2018) based on other golf 
course data. The estimated daily use is 23,700 gal/d, and 
annual use is 8,650,000 gal, respectively. Water use from a 
well, which overlies the aquifer, at the Upper Park at Robert 
H. Treman State Park was provided by the park manager for 
2016 (Robert H. Treman State Park park manager, oral com-
mun., April 2018). The estimated annual withdrawal from 
that well for 2016 was 242,000 gal. The sum of withdrawals 
from production wells equals a total annual withdrawal of 
9,040,000 gal (table 2). 

Table 2.  Estimated groundwater withdrawals by users that reside over the unconsolidated aquifer in the Enfield Creek Valley, town of 
Enfield, Tompkins County, New York.

[—, no data]

Users
Estimated number of 
wells that tap the un-
consolidated aquifer1

Average 
household 

size2

Estimated number of 
people using water from 
unconsolidated aquifer

Average use 
per person,  
in gallons3

Estimated daily 
withdrawal, 

in gallons

Estimated annual 
withdrawal,  

in gallons

Domestic wells 288 2.45 706 75 52,900 19,300,000
Production wells3–5 — — — — — 9,040,000
Total — — — — — 28,300,000

1The estimated number of wells that tap the unconsolidated aquifer were determined by a visual count of homes and farms overlying the aquifer area using 
orthoimagery and tax parcels.

2Data from U.S. Census Bureau (2012b).
3Data from Dieter and others (2018).
4Data from Horn and others (2008).
5Estimate provided by Robert H. Treman State Park park manager (oral commun., April 2018).
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Water Quality of the Unconsolidated 
Aquifers in the Enfield Creek Valley

Surface-water quality samples were collected on Sep-
tember 17, 2015, during base-flow conditions at five locations 
along Enfield Creek. Base-flow conditions occur when flow in 
a stream is sustained by groundwater discharge and no direct 
runoff. The surface-water quality samples were analyzed for 
physical properties, common inorganic ions, nutrients, and 
trace elements at the USGS NWQL in Denver, Colo. Results 
for chemical analyses of surface-water samples are presented 
in this section.

Comparisons of results are often made to State and 
Federal contaminant levels and goals. U.S. Environmental 
Protection Agency (EPA) maximum contaminant levels and 
secondary maximum contaminant levels (MCLs and SMCLs, 
respectively) are enforceable standards and represent the high-
est level of a contaminant allowed in drinking water. Maxi-
mum contaminant level goals (MCLGs) are nonenforceable 
public health goals for drinking-water quality. Treatment tech-
niques are primary drinking-water regulations created in lieu 
of an MCL and used instead of an MCL if an MCL would be 
too difficult or too costly to comply with (U.S. Environmental 
Protection Agency, 2012). The New York State Department 
of Health (NYSDOH) MCLs similarly set state regulation 
on levels of contaminants in drinking water (New York State 
Department of Health, 2019).

Surface Water

Surface-water quality samples were collected from 
Enfield Creek and select tributaries in the town of Enfield 
during base-flow conditions to obtain a general baseline of the 
water quality overlying the aquifer (fig. 5). The results of the 
chemical analyses are presented in table 3.

Physical Properties
Temperature values ranged from 11.8 to 19.5 °C. pH val-

ues ranged from 7.35 to 8.45 standard units. Specific conduc-
tance values ranged from 459 to 472 µS/cm at 25 °C. Dis-
solved-oxygen concentrations ranged from 7.60 to 10.3 mg/L. 
Temperature, pH, and dissolved oxygen trend upward in 

values moving downstream. This trend may be attributed to a 
change in groundwater chemistry from the addition of water 
from other tributaries downstream. Additionally, air tempera-
ture over the course of sampling changed by 20 °C and may 
also provide some context to the increasing physical properties 
(National Oceanic and Atmospheric Administration, 2019).

Common Inorganic Ions

Common inorganic ion constituent results were relatively 
similar at each site along Enfield Creek. In general, alkalin-
ity, calcium, chloride, hardness, silica, sodium, and dissolved 
solids all slightly trended downward in concentration as the 
sampling moved downstream. A similar downward trending 
pattern can also be seen for specific conductance. Conversely, 
fluoride, magnesium, potassium, and sulfate trended slightly 
upward in concentration as sampling moved downstream. 
As mentioned above, these trends may also be attributed to 
the effect of groundwater contribution higher up in the basin. 
Concentrations of all common inorganic ion constituents were 
below State and Federal drinking-water standards.

Nutrients

Most results for nutrient concentrations either were below 
the detection limit or had low concentrations that did not 
show any trend. Nitrate plus nitrite, however, did show a clear 
trend of high to low concentrations moving downstream in the 
system, which may be attributed to the presence of agriculture 
closer to the upstream parts of Enfield Creek. Another pos-
sible source of high nitrate concentration upstream could be 
related to septic systems because there are a greater number 
of houses closer to Enfield Creek in the upstream part (fig. 5) 
of the study area. All constituent concentrations were below 
drinking-water standards (table 3).

Trace Elements

Overall, trace-element concentrations were low; several 
constituents (beryllium, cadmium, silver, and zinc) were below 
the detection limit at all stream locations. All constituent con-
centrations were below drinking-water standards (table 3).
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Table 3.  Physical properties and concentrations of inorganic major ions, nutrients, and trace elements in surface-water samples from Enfield Creek, town of Enfield, Tompkins 
County, New York.

[Values in bold indicate maximum values where three or more different values are present; values in italics indicate minimum value where three or more different values are present. p code, U.S. Geological Survey 
National Water Information System parameter code; ft3/s, cubic foot per second; mg/L, milligram per liter; µS/cm, microsiemens per centimeter; °C, degree Celsius; FNU, formazin nephelometric unit; CaCO3, 
calcium carbonate; N, nitrogen; <, less than; P, phosphorus; µg/L, microgram per liter]

Constituent P code
Unit of mea-

surement

Station name (and identification number; fig. 5)

Drinking-water 
standard

Enfield Creek 
above Fivemile 

Creek at 
Millers Corners, 

New York 
(04233051)

Enfield Creek at 
Enfield Center 

Road 3 at 
Enfield, 

New York 
(04233060)

Enfield Creek 
above State 
Route 327 at 

Bostwick Cor-
ners, New York 

(04233080)

Enfield Creek 
at Hines Road 
near Bostwick 
Corners, New 

York (04233085)

Enfield Creek 
below tributary 4 

near Robert H. 
Treman State 

Park, New York 
(04233097)

Enfield Creek 
below tribitary 4 

near Robert H. 
Treman State 

Park, New York 
(04233097; repli-

cate sample) 

Physical properties

Dischargea 00061 ft3/s 0.031 0.648 1.23 1.30 1.42 1.42 —
Dissolved oxygen (field) 00300 mg/L 7.60 9.59 8.72 10.3 9.56 9.56 —
pH (field) 00400 standard units 7.35 7.93 7.93 8.39 8.45 8.45 6.5–8.5a,b

Specific conductance (lab) 90095 µS/cm at 25 °C 573 471 472 479 459 459 —
Temperature (field) 00010 °C 11.8 14.8 17.9 18.3 19.5 19.5 —
Turbidity (field) 63680 FNU 0.0 0.0 0.0 0.0 0.0 0.0 —

Common inorganic ions

Alkalinity, filtered, as CaCO3 29801 mg/L 185 156 175 178 166 165 —
Bromide, filtered 71870 mg/L 0.043 0.032 0.04 0.053 0.049 0.045 —
Calcium, filtered 00915 mg/L 61.0 51.2 56.1 55.0 51.5 52.3 —
Chloride, filtered 00940 mg/L 61.2 44.8 37.4 38.9 38.7 38.4 250a

Dissolved solids, dried at 180 °C 70300 mg/L 322 266 264 272 258 264 500a,b

Fluoride, filtered 00950 mg/L 0.05 0.05 0.06 0.07 0.07 0.07 2.2a–4c,d

Hardness, filtered, as CaCO3 00900 mg/L 192 164 182 179 172 174 —
Magnesium, filtered 00925 mg/L 9.5 8.76 10.2 10.2 10.6 10.6 —
Potassium, filtered 00935 mg/L 1.45 1.59 1.65 1.63 1.71 1.72 —
Silica, filtered 00955 mg/L 6.5 6.67 6.79 6.09 5.83 5.81 —
Sodium, filtered 00930 mg/L 36.9 25.7 21.4 22.1 22.4 22.6 60e

Sulfate, filtered 00945 mg/L 9.45 11.5 12.3 14.5 15.7 15.5 250a,b 
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Table 3.  Physical properties and concentrations of inorganic major ions, nutrients, and trace elements in surface-water samples from Enfield Creek, town of Enfield, Tompkins 
County, New York.—Continued

[Values in bold indicate maximum values where three or more different values are present; values in italics indicate minimum value where three or more different values are present. p code, U.S. Geological Survey 
National Water Information System parameter code; ft3/s, cubic foot per second; mg/L, milligram per liter; µS/cm, microsiemens per centimeter; °C, degree Celsius; FNU, formazin nephelometric unit; CaCO3, 
calcium carbonate; N, nitrogen; <, less than; P, phosphorus; µg/L, microgram per liter]

Constituent P code
Unit of mea-

surement

Station name (and identification number; fig. 5)

Drinking-water 
standard

Enfield Creek 
above Fivemile 

Creek at 
Millers Corners, 

New York 
(04233051)

Enfield Creek at 
Enfield Center 

Road 3 at 
Enfield, 

New York 
(04233060)

Enfield Creek 
above State 
Route 327 at 

Bostwick Cor-
ners, New York 

(04233080)

Enfield Creek 
at Hines Road 
near Bostwick 
Corners, New 

York (04233085)

Enfield Creek 
below tributary 4 

near Robert H. 
Treman State 

Park, New York 
(04233097)

Enfield Creek 
below tribitary 4 

near Robert H. 
Treman State 

Park, New York 
(04233097; repli-

cate sample) 

Nutrients

Ammonia (NH3+NH4
+), as N, filtered 00608 mg/L 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 2.0a

Ammonia plus organic nitrogen, as 
N, filtered

00623 mg/L 0.12 0.11 0.12 0.14 0.12 0.12 —

Nitrite, as N, filtered 00613 mg/L 0.002 0.004 0.003 0.002 0.002 0.002 1a,c,d

Nitrate plus nitrite, as N, filtered 00631 mg/L 1.96 1.26 0.384 0.194 0.105 0.1 10a,c,d

Orthophosphate, as P, filtered 00671 mg/L <0.004 0.005 0.004 0.004 <0.004 <0.004 —
Trace elements

Aluminum, filtered 01106 µg/L 8.5 <3.0 3.5 3.1 <3.0 12.3 50–200b

Antimony, filtered 01095 µg/L 0.036 0.058 0.096 0.065 0.068 0.087 6a,c,d

Arsenic, filtered 01000 µg/L 0.14 0.21 0.41 0.4 0.45 0.45 0e–10a,c,f

Barium, filtered 01005 µg/L 29.1 30.3 42.0 43.4 40.4 40.4 2,000a,c,d

Beryllium, filtered 01010 µg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 4a,c,d

Boron, filtered 01020 µg/L 26.0 20.0 17.0 17.0 17.0 17.0 —
Cadmium, filtered 01025 µg/L <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 5a,c,d

Chromium, filtered 01030 µg/L <0.3 0.83 <0.3 <0.3 <0.3 <0.3 100a,c,d

Cobalt, filtered 01035 µg/L 0.101 0.073 0.12 0.058 0.058 0.133 —
Copper, filtered 01040 µg/L 1.4 0.8 0.97 1.1 0.91 1.3 1,000b–1,300d,f

Iron, filtered 01046 µg/L <4.0 9.9 7.2 <4.0 <4.0 <4.0 300a,b

Lead, filtered 01049 µg/L 0.63 0.109 0.116 0.463 0.084 0.105 0d–15f

Lithium, filtered 01130 µg/L 0.72 0.67 1.59 1.02 1.65 1.26 —
Manganese, filtered 01056 µg/L 0.51 10.4 6.78 5.07 1.03 1.26 50b–300a

Molybdenum, filtered 01060 µg/L 0.099 0.232 0.266 0.393 0.466 0.469 —
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Table 3.  Physical properties and concentrations of inorganic major ions, nutrients, and trace elements in surface-water samples from Enfield Creek, town of Enfield, Tompkins 
County, New York.—Continued

[Values in bold indicate maximum values where three or more different values are present; values in italics indicate minimum value where three or more different values are present. p code, U.S. Geological Survey 
National Water Information System parameter code; ft3/s, cubic foot per second; mg/L, milligram per liter; µS/cm, microsiemens per centimeter; °C, degree Celsius; FNU, formazin nephelometric unit; CaCO3, 
calcium carbonate; N, nitrogen; <, less than; P, phosphorus; µg/L, microgram per liter]

Constituent P code
Unit of mea-

surement

Station name (and identification number; fig. 5)

Drinking-water 
standard

Enfield Creek 
above Fivemile 

Creek at 
Millers Corners, 

New York 
(04233051)

Enfield Creek at 
Enfield Center 

Road 3 at 
Enfield, 

New York 
(04233060)

Enfield Creek 
above State 
Route 327 at 

Bostwick Cor-
ners, New York 

(04233080)

Enfield Creek 
at Hines Road 
near Bostwick 
Corners, New 

York (04233085)

Enfield Creek 
below tributary 4 

near Robert H. 
Treman State 

Park, New York 
(04233097)

Enfield Creek 
below tribitary 4 

near Robert H. 
Treman State 

Park, New York 
(04233097; repli-

cate sample) 

Trace elements—Continued

Nickel, filtered 01065 µg/L 0.4 0.37 0.39 0.4 0.36 0.39 —
Selenium, filtered 01145 µg/L <0.05 <0.05 0.05 <0.05 <0.05 <0.05 50a,c,e

Silver, filtered 01075 µg/L <0.02 <0.03 <0.04 <0.05 <0.06 <0.07 100a,b

Strontium, filtered 01080 µg/L 114 101 104 127 123 124 —
Uranium, natural, filtered 22703 µg/L 0.225 0.207 0.31 0.362 0.39 0.389 0e–30a,c,f

Zinc, filtered 01090 µg/L <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 5,000a,b

aNew York State Department of Health maximum contaminant level.
bU.S. Environmental Protection Agency secondary maximum contaminant level.
cU.S. Environmental Protection Agency maximum contaminant level.
dU.S. Environmental Protection Agency maximum contaminant level goal.
eU.S. Environmental Protection Agency drinking-water advisory taste threshold.
fU.S. Environmental Protection Agency treatment technique.
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Groundwater

Groundwater-quality samples were collected to better 
understand the water quality of the confined and unconfined 
parts of the Enfield Creek Valley unconsolidated aquifer. 
Results from the sampling are tabulated in table 4.

Physical Properties
Temperature ranged from 7.2 to 10.9 °C. pH values 

ranged from 7.7 to 8.4 standard units. Specific conductance 
values ranged from 369 to 3,100 µS/cm at 25 °C. Dissolved-
oxygen concentrations ranged from of 0.1 to 3.8 mg/L.

Common Inorganic Ions
Most common inorganic ion concentrations were rela-

tively similar at each well except for two wells: TM1075 and 
TM1077 (fig. 8E). TM1075 is on the town highway depart-
ment grounds, and TM1077 is within the village. These wells 
were finished near bedrock and although they are likely 
pulling water mostly from the overlying sand and gravel, they 
are confined and there may be more inorganic constituents 
resulting from the underlying bedrock because they have had 
time to accumulate in the slower moving groundwater.

Wells TM1075 and TM1077 exceeded the NYSDOH 
MCL for chloride (250 mg/L) with values of 830 and 789, 
respectively. Concentrations of chloride above 250 mg/L have 
aesthetic effects on the water quality such as odor and taste, 
giving the water a salty taste (U.S. Environmental Protec-
tion Agency, 2012). The NYSDOH MCL and EPA SMCL 
for dissolved solids (500 mg/L) was exceeded at these wells 
with values of 1,880 and 1,970 mg/L, respectively. The EPA 
drinking-water advisory taste threshold for sodium (60 mg/L) 
was exceeded at these wells with values of 384 and 429 mg/L, 
respectively. High concentrations of total dissolved solids 
can cause hardness, deposits, colored water, staining, and a 
salty taste. Oral doses of sodium above 60 mg/L may cause 
nausea, vomiting, inflammation of the gastrointestinal tract, 
thirst, muscular twitching, convulsions, and possibly death 
(U.S. Environmental Protection Agency, 2003). The source of 
high chloride and sodium (which contributed to high specific 
conductance values) can be inferred by looking at the chlo-
ride-bromide (Cl−/Br−) ratios (Williams and Kappel, 2015). 
Road salt sources of chloride generally have high chloride-
bromide ratios, when chloride is elevated but bromide is not, 
whereas chloride-bromide ratios of around 100 indicate a mix-
ture of saline formation waters with shallow dilute groundwa-
ter (Williams and Kappel, 2015). The chloride-bromide ratios 
for wells TM1075 and TM1077 are 90 and 94, respectively, 
which indicates that these high chloride and sodium values 
represent a mixture of saline formation waters with shallow 
dilute groundwater.

Nutrients
Many of the results for nutrient concentrations were 

at or near the method reporting limit for each constituent 
(table 4). Although each constituent was detected at sev-
eral wells, no constituents came close to or exceeded any 
drinking-water standard.

Groundwater Age and Gasses
Dissolved gases were only collected at wells drilled to 

bedrock: TM1075, TM1077, TM1079, and TM1081. Each 
well was analyzed for methane, dissolved nitrogen gas, argon, 
carbon dioxide, and dissolved-oxygen gas (table 4). All four 
samples had elevated concentrations of methane that decreased 
from south to north. Wells TM1075, TM1077, TM1079, and 
TM1081 had methane concentrations of 52.2, 29.4, 16.7, 
and 7.79 mg/L, respectively. As groundwater enters a well 
at atmospheric pressure, methane can be released from the 
water, which can cause a column of gas to form above the 
water surface in the well or be released within a pressure 
tank, at faucets inside a home, or in structures enclosing the 
well, where it can become flammable or explosive as a result 
(Eltschlager and others, 2001). Methane reaches saturation in 
water at 28 mg/L at 1 atmosphere of pressure and temperature 
of 15 °C and becomes flammable in air at about 5 percent by 
volume (Eltschlager and others, 2001). The Office of Sur-
face Mining Reclamation and Enforcement recommends that 
methane concentrations greater than 28 mg/L in well water 
should be addressed immediately by removing any potential 
ignition source and venting the gas away from confined spaces 
(Eltschlager and others, 2001). The Office of Surface Mining 
Reclamation and Enforcement also recommends that methane 
concentrations ranging from 10 to 28 mg/L in water (or 3 to 
5 percent by volume in air) signify an action level where the 
situation should be closely monitored, and if the concentration 
increases, the area should be vented to prevent methane gas 
buildup. Concentrations of methane less than 10 mg/L in water 
(or 1 to 3 percent by volume in air) are not as great a concern, 
but the gas should be monitored to observe if the concentra-
tions increase over time (Kappel and Nystrom, 2012).

CFCs were analyzed in water collected from wells 
TM1075, TM1077, TM1079, and TM1081. All four wells 
were drilled to bedrock but finished in a confined sand-and-
gravel aquifer. CFC concentrations in the sample from well 
TM1075 indicated that the recharge age of the water (time 
that groundwater was isolated from the atmosphere) was from 
the early 1960s or younger. More information on the methods 
used to determine groundwater age can be found in Busenberg 
and Plummer (2008). The sample from TM1077 showed a 
range in age from the mid- to late 1960s or younger. The sam-
ple from TM1079 ranged in age from early 1950 or younger. 
The sample from TM1081 ranged in age from the mid-1950s 
or younger (table 4).
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Table 4.  Physical properties and concentrations of inorganic major ions, nutrients, trace elements, dissolved gasses, and chlorofluorocarbons in groundwater samples from 
stratified-drift aquifers in the town of Enfield, Tompkins County, New York.

[Values that are underlined indicate drinking water standard exceedance (footnote “b,” maximum contaminant level goal excluded); values in bold indicate maximum value where three or more values are present; 
values in italics indicate minimum value where three or more values are present. p code, U.S. Geological Survey National Water Information System parameter code; S&G, sand and gravel; conf, confined aquifer; 
unconf, unconfined aquifer; mg/L, milligram per liter; —, no data or not available; µS/cm, microsiemens per centimeter; °C, degree Celsius; ft, foot; CaCO3, calcium carbonate; <, less than; e, estimated; N, nitro-
gen; P, phosphorus; µg/L, microgram per liter; pg/kg, picogram per kilogram; CFC, chlorofluorocarbon; EPA, U.S. Environmental Protection Agency; USGS, U.S. Geological Survey]

Constituent P code
Unit of mea-

surement

Site name (fig. 8), station identification number, and aquifer type

Drinking-
water 

standard

TM1075 TM1076 TM1077 TM1078 TM1079 TM1080 TM1081 TM1082

42
25

04
07

63
73

00
1

42
25

04
07

63
73

00
2

42
26

23
07

63
74

50
1

42
26

23
07

63
74

50
2

42
27

44
07

63
73

40
1

42
27

44
07

63
73

40
2

42
26

53
07

63
74

60
1

42
26

53
07

63
74

60
2

S&G, conf S&G, unconf S&G, conf S&G, conf S&G, conf S&G, unconf S&G, conf S&G, conf

Physical properties

Dissolved oxygen (field) 00300 mg/L 0.1 3.8 0.1 0.2 0.1 0.7 0.1 0.2 —
pH (field) 00400 units 8.1 7.7 8.1 8.2 8.1 7.4 8.4 8.3 6.5–8.5a,b

Specific conductance (field) 00095 µS/cm at 
25 °C

3,100 369 3,000 570 471 584 573 556 —

Water temperature (field) 00010 °C 7.5 7.2 10.5 9.7 9.3 10.9 9.9 9.2 —
Well depth of open-ended casing — ft 136 53 93 56 48 9 77-79c 42 —

Common inorganic ions

Alkalinity, filtered, as CaCO3 29801 mg/L 129 137 129 145 226 241 162 181 —
Bromide, filtered 71870 mg/L 9.12 <0.01 8.44 0.893 0.051 0.035 0.845 0.681 —
Calcium, filtered 00915 mg/L 152 49.7 116 46.6 51.8 83.4 42.1 42.2 —
Chloride, filtered 00940 mg/L 830 23.8 789 89.1 17.1 40.7 81.3 66.0 250a

Dissolved solids, dried at 180 °C 70300 mg/L 1,880 214 1,970 331 292 338 317 313 500a,b

Fluoride, filtered 00950 mg/L e0.06 0.05 0.42 0.24 0.23 0.03 0.30 0.33 2.2a–4d,e

Hardness, filtered, as CaCO3 00900 mg/L 538 160 413 179 183 273 157 170 —
Magnesium, filtered 00925 mg/L 36.8 8.75 28.0 14.9 12.8 15.5 12.4 15.6 —
Potassium, filtered 00935 mg/L 2.48 0.97 2.85 1.40 1.44 1.47 1.65 1.77 —
Silica, filtered 00955 mg/L 8.13 5.42 7.30 12.1 8.11 8.26 8.50 10.4 —
Sodium, filtered 00930 mg/L 384 14.4 429 43.3 35.0 18.1 57.5 48.6 60f

Sulfate, filtered 00945 mg/L 0.1 15.1 <0.24 0.61 5.37 14.4 0.67 2.22 250a,b 
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Table 4.  Physical properties and concentrations of inorganic major ions, nutrients, trace elements, dissolved gasses, and chlorofluorocarbons in groundwater samples from 
stratified-drift aquifers in the town of Enfield, Tompkins County, New York.—Continued

[Values that are underlined indicate drinking water standard exceedance (footnote “b,” maximum contaminant level goal excluded); values in bold indicate maximum value where three or more values are present; 
values in italics indicate minimum value where three or more values are present. p code, U.S. Geological Survey National Water Information System parameter code; S&G, sand and gravel; conf, confined aquifer; 
unconf, unconfined aquifer; mg/L, milligram per liter; —, no data or not available; µS/cm, microsiemens per centimeter; °C, degree Celsius; ft, foot; CaCO3, calcium carbonate; <, less than; e, estimated; N, nitro-
gen; P, phosphorus; µg/L, microgram per liter; pg/kg, picogram per kilogram; CFC, chlorofluorocarbon; EPA, U.S. Environmental Protection Agency; USGS, U.S. Geological Survey]

Constituent P code
Unit of mea-
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S&G, conf S&G, unconf S&G, conf S&G, conf S&G, conf S&G, unconf S&G, conf S&G, conf

Nutrients

Ammonia (NH3+NH4
+), as N, filtered 00608 mg/L 0.16 0.01 0.43 0.09 0.11 0.01 0.12 0.11 2.0a

Ammonia plus organic nitrogen, as 
N, filtered

00623 mg/L 0.21 <0.07 0.47 0.09 0.18 <0.07 0.53 0.18 —

Nitrite, as N, filtered 00613 mg/L 0.002 0.010 0.001 <0.001 0.003 <0.001 0.001 0.001 1a,d,e

Nitrate plus nitrite, as N, filtered 00631 mg/L <0.040 0.75 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 10a,d,e

Orthophosphate, as P, filtered 00671 mg/L <0.004 <0.004 <0.004 0.015 <0.004 <0.004 <0.004 <0.004 —
Trace elements

Aluminum, filtered 01106 µg/L <6 10.6 <6 3.1 <3 18.1 <3 <3 50–200b

Antimony, filtered 01095 µg/L 0.078 0.038 0.067 <0.027 0.373 0.218 0.698 1.1 6a,d,e

Arsenic, filtered 01000 µg/L 0.2 <0.1 5.2 0.47 0.29 1.2 0.54 1.8 0e–10a,d,g

Barium, filtered 01005 µg/L 3,470 25.9 3,930 729 248 103 126 245 2,000a,d,e

Beryllium, filtered 01010 µg/L <0.04 <0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 4a,d,e

Boron, filtered 01020 µg/L 31 9 187 53 131 18 96 112 —
Cadmium, filtered 01025 µg/L <0.06 <0.03 <0.06 <0.03 <0.03 <0.03 <0.03 <0.03 5a,d,e

Chromium, filtered 01030 µg/L <0.6 <0.3 <0.6 <0.3 <0.3 <0.3 <0.3 <0.3 100a,d,e

Cobalt, filtered 01035 µg/L 0.356 0.125 0.185 <0.05 0.153 0.7 0.203 0.526 —
Copper, filtered 01040 µg/L <1.6 <0.8 <1.6 <0.8 <0.8 <0.8 <0.8 <0.8 1,000b–

1,300e,g

Iron, filtered 01046 µg/L 5,210 396 3,030 1,210 5,960 180 2,720 3,070 300a,b
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Table 4.  Physical properties and concentrations of inorganic major ions, nutrients, trace elements, dissolved gasses, and chlorofluorocarbons in groundwater samples from 
stratified-drift aquifers in the town of Enfield, Tompkins County, New York.—Continued

[Values that are underlined indicate drinking water standard exceedance (footnote “b,” maximum contaminant level goal excluded); values in bold indicate maximum value where three or more values are present; 
values in italics indicate minimum value where three or more values are present. p code, U.S. Geological Survey National Water Information System parameter code; S&G, sand and gravel; conf, confined aquifer; 
unconf, unconfined aquifer; mg/L, milligram per liter; —, no data or not available; µS/cm, microsiemens per centimeter; °C, degree Celsius; ft, foot; CaCO3, calcium carbonate; <, less than; e, estimated; N, nitro-
gen; P, phosphorus; µg/L, microgram per liter; pg/kg, picogram per kilogram; CFC, chlorofluorocarbon; EPA, U.S. Environmental Protection Agency; USGS, U.S. Geological Survey]

Constituent P code
Unit of mea-

surement

Site name (fig. 8), station identification number, and aquifer type

Drinking-
water 

standard

TM1075 TM1076 TM1077 TM1078 TM1079 TM1080 TM1081 TM1082

42
25

04
07

63
73

00
1

42
25

04
07

63
73

00
2

42
26

23
07

63
74

50
1

42
26

23
07

63
74

50
2

42
27

44
07

63
73

40
1

42
27

44
07

63
73

40
2

42
26

53
07

63
74

60
1

42
26

53
07

63
74

60
2

S&G, conf S&G, unconf S&G, conf S&G, conf S&G, conf S&G, unconf S&G, conf S&G, conf

Trace elements

Lead, filtered 01049 µg/L <0.08 <0.04 <0.08 <0.04 <0.04 0.04 <0.04 <0.04 0e–15g

Lithium, filtered 01130 µg/L 271 1.37 277 20.0 27.6 5.35 20.4 20.6 —
Manganese, filtered 01056 µg/L 150 32.6 110 42.2 176 122 224 101 50b–300a

Molybdenum, filtered 01060 µg/L 2.93 0.192 10.90 2.28 3.54 0.599 6.45 6.96 —
Nickel, filtered 01065 µg/L 1.0 0.45 0.5 <0.2 0.58 0.49 1.8 6.0 —
Selenium, filtered 01145 µg/L 0.28 <0.05 0.26 0.07 <0.05 <0.05 0.05 <0.05 50a,d,e

Silver, filtered 01075 µg/L <0.04 <0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 100a,b

Strontium, filtered 01080 µg/L 5,070 75.5 5,320 676 436 160 593 590 —
Uranium, natural, filtered 22703 µg/L <0.028 0.126 0.031 <0.014 0.049 0.497 0.156 <0.014 0e–30a,d,g

Zinc, filtered 01090 µg/L <4.0 <2.0 <4.0 <2.0 <3.0 <4.0 <5.0 <6.0 5,000a,b

Dissolved gases and chlorofluorocarbons

Argon, unfiltered 82043 mg/L 0.498 — 0.557 — 0.774 — 0.829 — —
Carbon dioxide, unfiltered 00405 mg/L 3.27 — 0.396 — 2.78 — 1.37 — —
Dissolved nitrogen gas, unfiltered 00597 mg/L 13.3 — 13.8 — 22.9 — 25.7 — —
Dissolved oxygen gas, unfiltered 62971 mg/L 0.463 — 0.480 — 0.378 — 0.347 — —
Methane, unfiltered 85574 mg/L 52.2 — 29.4 — 16.7 — 7.79 — 10–28h
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Table 4.  Physical properties and concentrations of inorganic major ions, nutrients, trace elements, dissolved gasses, and chlorofluorocarbons in groundwater samples from 
stratified-drift aquifers in the town of Enfield, Tompkins County, New York.—Continued

[Values that are underlined indicate drinking water standard exceedance (footnote “b,” maximum contaminant level goal excluded); values in bold indicate maximum value where three or more values are present; 
values in italics indicate minimum value where three or more values are present. p code, U.S. Geological Survey National Water Information System parameter code; S&G, sand and gravel; conf, confined aquifer; 
unconf, unconfined aquifer; mg/L, milligram per liter; —, no data or not available; µS/cm, microsiemens per centimeter; °C, degree Celsius; ft, foot; CaCO3, calcium carbonate; <, less than; e, estimated; N, nitro-
gen; P, phosphorus; µg/L, microgram per liter; pg/kg, picogram per kilogram; CFC, chlorofluorocarbon; EPA, U.S. Environmental Protection Agency; USGS, U.S. Geological Survey]

Constituent P code
Unit of mea-

surement

Site name (fig. 8), station identification number, and aquifer type
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S&G, conf S&G, unconf S&G, conf S&G, conf S&G, conf S&G, unconf S&G, conf S&G, conf

Dissolved gases and chlorofluorocarbons—Continued

CFC–11i 50281 pg/kg 15.97 — 79.21 — 10.22 — 9.73 — —
CFC–12i 50282 pg/kg 14.64 — 45.26 — 6.10 — 16.87 — —
CFC–113i 50283 pg/kg 3.93 — 10.80 — 2.56 — 5.17 — —
CFCsi 50281 

50282 
50283

years Early 1960s 
or younger

— Mid- to late 
1960s or 
younger

— Early 1950 
or younger

— Mid 1950s or 
younger

— —

aNew York State Department of Health maximum contaminant level.
bU.S. Environmental Protection Agency secondary maximum contaminant level.
cWater enters at perforations in the casing at a depth of 77 to 79 feet.
dU.S. Environmental Protection Agency maximum contaminant level.
eU.S. Environmental Protection Agency maximum contaminant level goal.
fU.S. Environmental Protection Agency drinking-water advisory taste threshold.
gU.S. Environmental Protection Agency treatment technique.
hAction level recommended by the Office of Surface Mining Reclamation and Enforcement.
iCFCs are used to estimate groundwater age; concentration values represent the median derived from three values reported by U.S. Geological Survey Groundwater Dating Laboratory.
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Trace Elements
Concentrations of arsenic, lead, and (or) uranium in all 

wells were above the EPA MCLG, which all have a contami-
nant level goal of 0 microgram per liter (µg/L). Arsenic, lead, 
and uranium were below the NYSDOH MCL, EPA treatment 
technique, and EPA MCL of 10, 15, and 30 µg/L, respec-
tively. No groundwater samples exceeded the EPA MCL or 
NYSDOH MCL for arsenic. One sample at well TM1077 had 
an arsenic level 5 to 10 times higher than the other values 
(table 4).

Two samples exceeded the EPA and the NYSDOH MCL 
for barium (2,000 µg/L) at wells TM1075 and TM1077 with 
values of 3,470 and 3,930 µg/L, respectively. The potential 
health effect from long-term exposure above the MCL for 
barium is an increase in blood pressure (U.S. Environmental 
Protection Agency, 2012).

Concentrations of iron in all but one well (TM1080) 
exceeded the NYSDOH MCL and the EPA SMCL threshold of 
300 µg/L. High values of iron above the SMCL have notice-
able effects in the water such as a rusty color, sediment, metal-
lic taste and reddish or orange staining (U.S. Environmental 
Protection Agency, 2012).

Six of the wells sampled (TM1075, TM1077, TM1079, 
TM1080, TM1081, and TM1082) had values of manganese 
above the EPA SMCL threshold of 50 µg/L with values of 
150, 110, 176, 122, 224, and 101 µg/L, respectively. No 
samples exceeded the NYSDOH MCL of 300 µg/L. High 
values of manganese above the SMCL have noticeable effects 
in the water such as a black to brown color, black staining, 
and a bitter metallic taste (U.S. Environmental Protection 
Agency, 2012).

Comparison of Groundwater and Surface-Water 
Chemistry

Waters sampled in this study can be categorized as 
surface water, unconfined aquifer groundwater, or confined 
aquifer groundwater (fig. 9). The overall trend is an increase 
in major ion and trace-metal concentrations with depth and 
a shift from oxic to reducing environments with depth. The 
chloride-bromide ratios indicate surface-water and uncon-
fined groundwater chloride concentrations are associated with 
halite sources, such as road-salt leachate and water-softener 
discharges, whereas confined aquifer groundwater chloride, 

major ion, and trace-element chemistry is mostly derived 
from mixing of freshwater with small amounts of saline 
formation waters.

Surface and unconfined groundwater samples have 
similar concentrations of major ions and trace elements but 
differ in reduction-oxidation (redox)-sensitive species (fig. 9). 
Surface-water samples are well oxygenated (high dissolved 
oxygen), with more nitrate and less iron and manganese (fil-
tered) than either unconfined or confined groundwaters.

Unconfined groundwater samples are less oxygenated 
than surface-water samples because of reducing conditions in 
the soil and aquifer resulting from a combination of land-use 
practices (for example, septic influences) and natural condi-
tions (such as microbial activity; fig. 9). Dissolved oxygen and 
nitrate concentrations are lower, and iron and manganese (fil-
tered) concentrations are higher than in surface-water samples. 
Sulfate concentrations are about the same.

Confined aquifers can be characterized based on potabil-
ity, which is reflected in the depth and hydrogeology of the 
wells sampled. Shallow and deep confined aquifer sample 
concentrations of most major ions and all trace elements 
(fig. 9) are consistently higher than unconfined aquifer and 
surface-water samples. Differences in chloride and sodium 
concentrations were greatest among the major ions—shallow 
confined chloride and sodium were as high as 90 and 60 mg/L, 
respectively, and deep confined samples were about 800 and 
300 mg/L, respectively. The greater effect of mixing with 
saline formation waters and shallow dilute groundwater in the 
deepest, and farthest downvalley confined aquifer water makes 
it unpotable. Among major ions, calcium is an exception in 
that shallow confined-aquifer concentrations are typically 
lower than surface-water or unconfined-aquifer concentrations. 
This exception is likely a result of cation exchange of calcium 
for sodium on clay minerals over time in the confined aquifer 
(for example, see Back and others, 1993).

Confined-aquifer samples indicate a reducing (anoxic) 
groundwater environment (fig. 9). Oxic species such as dis-
solved oxygen and nitrate are virtually absent, and sulfate 
concentrations are all less than 6 mg/L. Species consistent 
with a reducing environment in these samples include ammo-
nia, manganese, iron, and methane (7.8 to 52 mg/L). In south-
central New York, methane and high specific conductance 
(mineral content) in well water is most closely associated with 
confined sand-and-gravel and fractured bedrock aquifers in 
valley settings (Heisig and Scott, 2013).
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Figure 9.  Water chemistry for surface-water and groundwater samples for the town of Enfield, Tompkins County, New York.
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Summary
This report presents new and existing data collected to 

better understand the geohydrology and water quality of the 
Enfield Creek Valley unconsolidated aquifer in the town of 
Enfield, Tompkins County, New York. The report describes the 
methods used to collect all the data, the geological and glacial 
history of the area, sources of groundwater discharge and 
recharge, and water quality of Enfield Creek and the underly-
ing groundwater aquifers.

Eight test wells were drilled to determine the underly-
ing surficial material, to monitor continuous water-level and 
water-temperature changes using data loggers, and to collect 
water-quality data at different depths and locations within the 
boundary of the aquifer. Discharge measurements were made 
along Enfield Creek and its major tributaries to determine 
stream gains to and losses from the aquifer. Horizontal-to-
vertical sounding seismic surveys were collected to assist in 
determining the aquifer geometry. Water-quality samples were 
collected at five locations along Enfield Creek and at all eight 
test wells drilled for the study.

The glacial history and surficial geology were sum-
marized using past reports, orthoimagery, light detection and 
ranging, test wells, horizontal-to-vertical spectral ratio, and a 
large well inventory from the New York State Department of 
Environmental Conservation Water Well Drillers Registration 
Program. The confined and unconfined aquifers were identi-
fied, mostly in the valley. The confined aquifer consists of a 
discontinuous sand-and-gravel layer overlying bedrock. The 
unconfined aquifer consists of ice-contact sand and gravel, and 
alluvial silt, sand, and gravel, all of which were deposited dur-
ing and after the last glacial recession. There are also uncon-
fined aquifers where several large tributary streams deposited 
alluvial fans in the valley.

The main source of groundwater recharge is from the 
infiltration of rainfall or snowmelt onto the land surface 
overlying the aquifer. Other sources of groundwater recharge 
include unchannelized runoff from hills that border the aquifer 
and seepage losses that occur when overlying streams drain 
into the aquifer. Groundwater is discharged in four main ways: 
(1) stream gains when water from the aquifer loses to Enfield 
Creek, (2) losses to wetlands overlying the aquifer, (3) evapo-
transpiration, and (4) groundwater withdrawals from domestic 
and production wells.

Groundwater withdrawals were calculated using several 
sources of information including information from a mobile 
home park and business owners, the U.S. Geological Survey 
water-use circular, and from an estimated visual count using 
orthoimagery and tax parcels. Withdrawals from wells overly-
ing the aquifer accounted for an estimated 28.3 million gallons 
per year.

Six surface-water quality samples, including one repli-
cate sample, were collected for physical properties, common 
inorganic ions, nutrients, and trace elements at five locations 
along Enfield Creek overlying the aquifer boundary. Ground-
water-quality samples were collected for physical properties, 

common inorganic ions, nutrients, groundwater age and gas-
ses, and trace elements at all eight test wells, including one 
blank sample for quality control. Water quality in surface and 
groundwater generally met State and Federal drinking-water 
standards; however, some constituents (chloride, dissolved 
solids, barium, iron, manganese, and methane) did exceed 
these standards. In general, the highest yields and best water 
quality are from wells completed within about 50 feet of land 
surface, which may tap either type of sand-and-gravel aquifer.

Water-chemistry data from U.S. Geological Survey test 
wells within the northern two-thirds of the Enfield Creek Val-
ley (wells TM1075, TM1077, TM1079, and TM1081) indicate 
a downvalley decrease in oxidized chemical species (dissolved 
oxygen, nitrate, and sulfate), an increase in mineral content 
(evidenced by increases in specific conductance and dissolved 
solids), and an increase in methane that is consistent with a 
confined-aquifer system with relatively slow groundwater 
movement and mixing with more highly mineralized bedrock 
groundwater containing methane and saline formation waters 
mixed with shallow dilute groundwater. The groundwater 
quality at wells TM1075 and TM1077 is unpotable without 
treatment and is a limitation of the resource.
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Appendix 1.  Well Logs of Test Wells Drilled in the Enfield Creek 
Unconsolidated Aquifer, Town of Enfield, Tompkins County, New York

This appendix contains the well logs showing specific 
material and well information for the eight test wells drilled 
for the aquifer study.

Table 1.1.  Site identification and well logs for test wells drilled 
for the study in the Enfield Creek Valley, town of Enfield, 
New York.

[Data in the “link to well log” column link to the relevant available data. 
USGS, U.S. Geological Survey; no., number]

USGS local well 
site no. (fig. 8)

USGS station 
identification no.

Link to well log

TM1075 422504076373001 Log 30083

TM1076 422504076373002 Log 30084

TM1077 422623076374501 Log 30085

TM1078 422623076374502 Log 30086

TM1079 422744076373401 Log 30087

TM1080 422744076373402 Log 30088

TM1081 422653076374601 Log 30089

TM1082 422653076374602 Log 30090

http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30481
http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30482
http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30483
http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30484
http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30485
http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30486
http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30487
http://logarchiver.usgs.gov/LogArchiver/LogViewer.ashx?LogId=30488
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Water enters at bottom of 6-inch casing

Latitude and longitude measurement made by Global Positioning System (NAD 83)
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WELL DEPTH: 136 feet 
(6-inch diameter
open-ended casing)

U.S. Geological Survey test wells TM1075 and TM1076

Site name: TM1075 and TM1076 
Site identifier: 422504076373001, 422504076373002
Latitude: 42°25′04.28″
Longitude: 076°37′29.89″

Date completed: 11/11 and 12/2015
Drilling contractor: Frey Well Drilling, Alden, N.Y.
6-inch diameter steel casings
Casing above ground=3.1 feet     Casing above ground=3.7 feet

TM1075
Elev. TOC* (6 inches)=1,084.1 feet
Water level 11/13/2015
1,072.7 feet

Topsoil, brown silt and clay, some sand and gravel, dry

Brown silty loam with sand and fine to medium gravel (flat
stones, shale), Some clay-silt layers, moist, but wet at depth

Brown silt and clay, with some sand and fine to medium
gravel.  Some fine sand and silt zones which tend to flow
into casing,  produces more water at depth 

59

Gray, fine sand and silt, some clay and small gravel,
with some clean clay layers, little water

80

1,0711,071

1,0611,061

1,0221,022

1,0111,011

1,0811,081

Elevation relative
to NAVD 88

70

Gray to black shale, massive

999999

Gray-brown clay and silt, some fine sand

82 Brown medium sand, some gravel, produces some water

92

Brown clean, dense clay, some fine to medium sand and
gravel, little water

Brown silty fine to medium sand, with fine gravel, some water
99

Gray-brown clay and silt, some sand and fine gravel, no water

115

130

Gray silty medium to coarse sand, some gravel, makes
some water at depth

136
Gray silty sand and gravel, makes little/some water

140
Gray, less silty, gravel and sand, makes water, about 20 gallons per minute

989989

982982

966966

951951

945945

 941 941
939939

1,0011,001

142

TM1076
Elev. TOC* (6 inches)=1,084.7 feet
Water level 11/13/2015
1,068.8 feet

Bentonite in annular 
space between 6-inch 
diameter permanent 
casing and drilled hole

Water enters at bottom 
of 6-inch casing WELL DEPTH: 53 feet 

(6-inch diameter
open-ended casing)

Loggers measuring air
and water temperature
inside the well casing

Loggers measuring water 
level and temperature
inside the well casing

Bottom of hole=142 feet

Town of Enfield Highway Department, Town of Enfield, New York

*elevation at top of casing

Figure 1.1.  Well logs for U.S. Geological Survey test wells TM1075 and TM1076.
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Bottom of hole=106 feet

Bentonite in annular space 
between 6-inch diameter 
permanent casing and 
drilled hole

Latitude and longitude measurement made by Global Positioning System (NAD 83)
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WELL DEPTH: 93 feet 
(6-inch diameter
open-ended casing)

U.S. Geological Survey test wells TM1077 and TM1078

Site name: TM1077  and TM1078
Site ID: 422623076374501, 422623076374502
Latitude: 42° 26′22.74″
Longitude: 076°37′44.90″

Date completed: 11/13/2015
Drilling contractor: Frey Well Drilling, Alden, N.Y.
6-inch diameter steel casings
Casings above ground=4.1 feet and 4.3 feet

TM077
Elev. TOC* (6 inches)=1,096.1 feet
Water level 11/16/2015
1,087.6 feet

Fill, brown silt and clay, some sand and gravel, dry

Brown silty loam with medium to coarse sand and 
fine to medium gravel, moist, but wet at depth

Brown to gray silt , some clay, with medium to coarse 
sand and fine to medium gravel, produces water, 
about 20 gallons per minute

26

Gray-brown, silty medium sand, some layers of silt and clay, 
but mostly sand with fine to medium gravel, becoming
cleaner with depth, and produces some water

1,056

1,092

Elevation relative
to NAVD 88

53

Gray to black shale

1,039

As above, but a cleaner sand and gravel, which 
produces much more water

65

90

Brown-gray clay with more sand and gravel, produces some 
water, but with much gray clay  

104
106

1,027

1,002

988
986

28
Gray-brown silt, soft, some minor gravel, moist

36

Gray-brown silt, with medium to coarse sand and fine to 
medium gravel, produces some water

Brown-gray, very clayey sand and gravel, possibly a soft till or 
dense lacustrine deposit, cuts evenly. Becomes more clayey
with depth, less stones, does not produce water 

1,066
1,064

1,077

1,082

WELL DEPTH: 56 feet 
(6-inch diameter open-
ended casing)

TM1078
Elev. TOC* (6 inches)=1096.3 feet
Water level 11/16/2015
1,087.6 feet

Loggers measuring air
and water temperature
inside the well casing

Loggers measuring water 
level and temperature
inside the well casing

Stoneybrook, Town of Enfield, New York

*elevation at top of casing

Figure 1.2.  Well logs for U.S. Geological Survey test wells TM1077 and TM1078.
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Bottom of hole=61 feet

Bentonite in annular space 
between 6-inch diameter 
permanent casing and 
drilled hole

Latitude and longitude measurement made by Global Positioning System (NAD 83)
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WELL DEPTH: 48 feet 
(6-inch diameter
open-ended casing)

U.S. Geological Survey test wells TM1079 and TM1080

Site name: TM1079 and TM1080
Site ID: 422744076373401, 422744076373402
Latitude: 42°27′43.72″
Longitude: 076°37′33.94″

Date completed: 11/16/2015
Drilling contractor: Frey Well Drilling, Alden, N.Y.
6-inch diameter steel casing
Casings above ground=3.1 feet and 3.2 feet

TM1079
Elev. TOC* (6 inches)=1,181.1 feet
Water level 11/17/2015 
1,176.4 feet

Brown silty sand, moist

Gray silty fine to medium sand and fine gravel, moist, 
but wet at depth in a less dirty sand and gravel, makes 
some water

Brown, grading to gray, dense, very silty-clayey medium to 
coarse sand, some gravel, wet?; becoming brown-gray
more stoney at depth, a little water

1,121

1,125

1,178

Elevation relative
to NAVD 88

1,118

Gray-brown, very silty fine to medium sand, little gravel, 
dense, (till?) no water57

60
61 1,117

41

53

Gray, cleaner fine to medium sand and fine to medium 
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WELL DEPTH: 9 feet 
(6-inch diameter
open-ended casing)
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Loggers measuring water 
level and temperature
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Hayts Road, Town of Enfield, New York

Figure 1.3.  Well logs for U.S. Geological Survey test wells TM1079 and TM1080.
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WELL DEPTH: 138 feet 
(6-inch diameter casing
sealed with bentonite 
plugged into casing.)

U.S. Geological Survey test wells TM1081 and TM1082

Site names: TM1081 and TM1082
Site ID: 422653076374601, 422653076374602
Latitude: 42°26′53.15″
Longitude: 076°37′46.43″

Date completed: 04/15–18/16
Drilling contractor: Frey Well Drilling, Alden, N.Y.
6-inch diameter steel casings
Casings above ground=2.0 feet

TM1081
Elev. TOC* (6 inch)=1,134.0 feet
Water level 04/18/16 
1,126.53 feet

Topsoil, brown silt and sand, clean medium gravel, dry 
at top, moist at depth

Brown dirty medium gravel and sand, wet to saturated  
at about 25 feet.  Can produce water, driller estimates 
about 5 gallons per minute

Gray sandy silt and clay, with minor medium gravel

40

Gray, fine sand and silt, with fine to medium gravel,
with a few clay layers, some water

77

1,117

1,099

1,074

1,055

1,132

Elevation relative
to NAVD 88

58

Gray to black shale, massive, dry hole
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Gray-brown gravelly clay and silt, some fine sand, wet
80

Brown silty medium to coarse sand, some coarse gravel, 
produces some water

90
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139

1,037

1,030

 993
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1,052

142

42
Black shale, a “slab” of shale bedrock about 2 feet thick

1,092
1,090

Gray, sandy silt and clay, dense (till?), cuts smoothly
 near top, some boulders at depth, no water

Brown, flowing, fine to medium sand and silt, wet

Brown, fine gravel and sand, less silt, may produce water

*elevation at top of casing

Loggers measuring water 
level and temperature
inside the well casing

Enfield Main Road, Town of Enfield, New York

Figure 1.4.  Well logs for U.S. Geological Survey test wells TM1081 and TM1082.
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Appendix 2.  Test-Well Hydrographs in the Enfield Creek Unconsolidated 
Aquifer, Town of Enfield, Tompkins County, New York

This appendix contains the hydrographs created for data 
collected from the eight test wells drilled for the unconsoli-
dated groundwater aquifer study in the town of Enfield, New 
York. These hydrographs show water level and water tempera-
ture from November 7, 2015, to April 25, 2018.
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Figure 2.1.  Test-well hydrograph for U.S. Geological Survey test well TM1075.
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Figure 2.2.  Test-well hydrograph for U.S. Geological Survey test well TM1076.
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Figure 2.3.  Test-well hydrograph for U.S. Geological Survey test well TM1077.
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Figure 2.4.  Test-well hydrograph for U.S. Geological Survey test well TM1078.
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Figure 2.5.  Test-well hydrograph for U.S. Geological Survey test well TM1079.
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Figure 2.6.  Test-well hydrograph for U.S. Geological Survey test well TM1080.
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Figure 2.7.  Test-well hydrograph for U.S. Geological Survey test well TM1081.
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Figure 2.8.  Test-well hydrograph for U.S. Geological Survey test well TM1082.
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Appendix 3.  Air and Water Temperatures by Depth at Test Wells TM1075 and 
TM1077 in the Enfield Creek Unconsolidated Aquifer, Town of Enfield, 
Tompkins County, New York

This appendix contains two graphs showing ambient air 
and groundwater temperature at multiple depths in the water 
column at test wells TM1075 and TM1077.



Appendix 3  


51

1,081

1,077

1,073

1,069

1,065
Mar. Apr. May  June  July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr.

2016 2017
Date

W
at

er
-le

ve
l e

le
va

tio
n,

 in
 fe

et
 N

AV
D 

88

18.3

12.8

15.6

10

7.2

W
at

er
 te

m
pe

ra
tu

re
, i

n 
de

gr
ee

s 
Ce

ls
iu

s

–1.1

4.4

1.7

Mar. Apr. May  June  July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr.
2016 2017

Date

May  June  July

Elevation of 10-foot temperature logger.
Water level below this line (blue-shaded box) 
 indicates logger was out of the water column.

A. Water level in well TM1075 

B. Water temperature monitored in seven zones in well TM1075 

10 ft (elevation 1,071 ft)
(air)

20 ft (elevation 1,061 ft)
(silty sand, gravel)

45 ft (elevation 1,036 ft)
(clayey sand, gravel)

65 ft (elevation 1,016 ft)
(fine sand)

85 ft (elevation 996 ft)
(dense clay)

100 ft (elevation 981 ft)
(m. sand, some gravel)

134 ft (elevation 947 ft)
(sand and gravel)

Logger depth, in feet feet (ft; elevation
of temperature logger, in feet above
datum [aquifer material])

EXPLANATION

Water level in well

Figure 3.1.  Graph showing ambient air and groundwater temperature at multiple depths in the water column at U.S. Geological Survey test well TM1075.
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Figure 3.2.  Graph showing ambient groundwater temperature at multiple depths in the water column at U.S. Geological Survey test well TM1077.
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